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Abstract The persistence property of inflation is an important issue not only for
economists, but especially for central banks, given that the degree of inflation per-
sistence determines the extent to which central banks can control inflation. Fur-
ther, not only is it the level of inflation persistence that is important in economic
analyses, but also the question of whether the persistence varies over time, for in-
stance, across business cycle phases, is equally pertinent, since assuming constant
persistence across states of the economy is sure to lead to misguided policy de-
cisions. Against this backdrop, we extend the literature on long-memory models
of inflation persistence for the US economy over the monthly period of 1920:1-
2014:5, by developing an autoregressive fractionally integrated moving average-
generalized autoregressive conditional heteroskedastic (ARFIMA-GARCH) model
with a time-varying memory coefficient which varies across expansions and reces-
sions. In sum, we find that inflation persistence does vary across recessions and
expansions, with it being significantly higher in the former than in the latter. As an
aside, we also show that persistence of inflation volatility is higher during expan-
sions than in recessions. Understandably, our results have important policy impli-
cations. Keywords: Persistence; US Inflation Rate; Time-Varying Long Memory.
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1 Introduction

The persistence property of inflation is an important issue not only for economists,

but especially for central banks, given that the degree of inflation persistence deter-

mines the extent to which central banks can control inflation. Understandably, the

amount of research devoted (and still being carried out), given conflicting results1

in analyzing the inflation persistence property for the US, as well as for other world

economies, is voluminous to say the least.2 Though various approaches3 have been

used to analyze the degree of inflation persistence, autoregressive fractionally inte-

grated moving average (ARFIMA) models is, perhaps, the most popular approach.

This is simply because of the fact that the model nests the unit root and stationarity

properties of the data, given its generalized form.

Not only is it the level of inflation persistence that is important in economic

analyses, but also the question of whether the persistence varies over time, for

instance, being contingent on the state of the economy, is equally pertinent. This

is because, assuming constant persistence across business cycle phases is sure to

lead to misguided policy decisions (as well as inaccurate forecasts). Against this

backdrop, we extend the literature on long-memory models of inflation persistence

for the US economy over the monthly period of 1920:1-2014:5, by developing an

autoregressive fractionally integrated moving average-generalized autoregressive

conditional heteroskedastic (ARFIMA-GARCH) model with a time-varying mem-

1 In analyzing the issue of the degree of persistence of the shocks, a related controversy exists
concerning the possible existence of a unit root in inflation. On one hand, Nelson and Schwert
(1977), Barsky (1987), Ball and Cecchetti (1990), and Brunner and Hess (1993) provide evidence
that U.S. inflation contains a unit root. On the other hand, Hassler and Wolters (1995), Baillie et
al.(1996), Baum et al. (1999), Bos et al. (1999), Baillie et al. (2002), Hsu (2005), Lee (2005), Ajmi
et al. (2008) and Hassler and Meller (2014) among others have found evidence that inflation is
fractionally integrated, suggesting that the differencing parameter is significantly different from
zero and unity.

2 For a detailed survey in this regard, please refer to Balcilar, Gupta and Jooste (forthcoming)
and Martins and Rodrigues (2014).

3 The econometric methods have covered various unit root tests, state-spaced-based time-
varying) autoregressive models, and more recently, quantile regressions-based approaches. For a
detailed literature review in this regard, refer to Tillmann and Wolters (2014) and Manzan and
Zerom (forthcoming).
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ory coefficient4 which varies across expansions and recessions.5 In sum, we find

that inflation persistence does vary across recessions and expansions, with it being

significantly higher in the former than in the latter. As an aside, we also show that

persistence of inflation volatility, however, is higher during expansions than in re-

cessions. The rest of the paper is organized as follows: section 2 discusses the data

and the model, and section 3 is devoted to the results. Finally, section 4 concludes

with some policy recommendations.

2 Model and data description

We compute US Inflation as a month-on-month percentage change in the US con-

sumer price index (CPI) covering the monthly period of 1919:12-2014:5. Under-

standably, data on the inflation rate starts from 1920:1. The data on the CPI is

sourced from the Global Financial Database. Note that, even though CPI data is

available since 1876:1, the starting and end points of the sample coincide with the

availability of reliable data at a monthly frequency at the time of writing this paper.

To put it alternatively, we dropped the data before 1920, since the computed infla-

tion rates over 1876:2 to 1919:12 had large amount of zeros and could possibly have

made our results less reliable. The inflation rate data plotted over 1876:2 to 2014:5

vindicates our decision to start the analysis from 1920:1.

Given our objective of associating change in persistence with business cycle

phases, we also recovered the timing of US recessions from the National Bureau

of Economic Research (NBER). Table 1 reports the sequence of peaks and troughs

on a quarterly basis. As our analyses consider monthly inflation time series, we set

the end of recessions (and similarly of expansions) to the last month of the quarters

4 For a detailed survey on ARFIMA models with a time-varying long memory coefficient, the
reader is referred to Boutahar et al. (2008) and Aloy et al. (2013).

5 Note that ever since the work of Granger and Hyung (2000), Diebold and Inoue (2001), and
Mikosch and Starica (2004), it is well-known that spurious long-memory behavior can be detected
in time series known to be theoretically short-memory, due to structural breaks (for a detailed
literature review in this regard, refer to Tsay (2008), Tsay and H ä rdle (2008) and Hassler and
Meller (2014). In our case, we deal with this issue by assuming that the break dates are known and
that we have two regimes in expansions and recessions.
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Fig. 1 Month-on-month US inflation from 1876:2 to 2014:5. Grey shades identify recession periods.

indicated in Table 1. Figure 1 plots the month-on-month inflation rate, along with

the recession periods (highlighted by shaded areas).

To motivate the need for considering changes in inflation persistence across

business cycle phases, we performed a preliminary analysis. In Table 2, we report a

descriptive evaluation of the monthly inflation rate by comparing a few indicators,

and conditioning on cycles. We note that the average inflation was lower during re-

cessions, while the volatility was higher. We also found that inflation was skewed to

the left during recessions, and to the right during expansions. This suggest that ex-

treme values drove the mean and variance outcomes, given that during recessions

we have instances of drops in month-on-month inflation, while during expansions

we observe large inflation values. Notably, the inflation density is more leptokurtic

during expansions, signalling a higher probability of observing extreme inflation

movements.
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Peak Trough
January 1920(I) July 1921 (III)

May 1923(II) July 1924 (III)
October 1926(III) November 1927 (IV)
August 1929(III) March 1933 (I)

May 1937(II) June 1938 (II)
February 1945(I) October 1945 (IV)

November 1948(IV) October 1949 (IV)
July 1953(II) May 1954 (II)

August 1957(III) April 1958 (II)
April 1960(II) February 1961 (I)

December 1969(IV) November 1970 (IV)
November 1973(IV) March 1975 (I)

January 1980(I) July 1980 (III)
July 1981(III) November 1982 (IV)
July 1990(III) March 1991(I)

March 2001(I) November 2001 (IV)
December 2007 (IV) June 2009 (II)

Table 1 Cyclical phases (quarter within parenthesis): source NBER - www.nber.org/cycles.html.

1920:1-2014:5
All Exp Rec

Mean 0.002 0.003 0.000
Median 0.002 0.003 0.000
St.dev 0.006 0.005 0.008
Min -0.032 -0.023 -0.032
Max 0.057 0.057 0.030
Q(1%) -0.015 -0.008 -0.022
Q(99%) 0.018 0.019 0.015
Skew 0.308 1.931 -0.604
Kurt 10.29 18.69 1.51
IQ-range 0.005 0.005 0.011
N. zeros 261 215 46
N. obs. 1133 244 891

Table 2 Descriptive analyses

If changes in persistence were present, one way of deducing this would be

through the computation of the autocorrelation function conditional on the state

of the economy (or state-dependent ACF). As in Caporin and Pres (2013), we con-

sidered the following estimators of the state-dependent autocorrelation function at

lag k,
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ρR (k) =
1

TR(k)−k ∑T
t=k+1 xtxt−kSt

1
TR(k)−k ∑T

t=k+1 x2
t St

(1)

ρE (k) =
1

TE(k)−k ∑T
t=k+1 xtxt−k (1 − St)

1
TE(k)−k ∑T

t=k+1 x2
t (1 − St)

(2)

where xt is the month t inflation rate in deviation from the sample mean, R

stands for recession and E for expansion, St is an indicator function assuming the

value of 1 during recessions, T is the total sample size, TR (k) is the number of

months associated with a recession (∑T
t=k+1 St = TR (k)), and TE (k) is the number

of months where the economy is in expansion, TE (k) = T − TR (k)− k.

Note that the quantities in (1) and (2) represent only a preliminary check for

the possible presence of changes in the persistence across states of the economy.

Moreover, from a methodological point of view, we stress that, by construction, the

presence of the indicator function St allows for computing the two serial depen-

dence measures focusing on the time t business cycle phase. Therefore, if the lag

k is not too large and the cycle phases are not too short, ρR (k) and ρE (k) will be

based on different samples of data. On the contrary, for large values of k, it is pos-

sible that the two serial dependence measures are computed on data belonging to

different economic states. Nevertheless, both ρR (k) and ρE (k) monitor the depen-

dence on past data of the current observation and allow us to verify if a change in

the state of the economy influences such a dependence. Therefore, the fact that past

data belongs to different cycle phases might have had an effect on the evaluation

of the correlations, but this did not prevent an interpretation of the state dependent

autocorrelation measures. The two quantities in (1) and (2) will allow anyway to de-

termine if past data become more or less important in affecting the current inflation

level. The Appendix reports further details on the effect of overlapping regimes on

the computation of the state dependent autocorrelation measures ρR (k) and ρE (k).

Figure 2 reports the autocorrelations computed with the standard estimator, and

by conditioning on the state of the economy, with the sample period starting in
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(a) Full sample ACF

(b) Expansion ACF

(c) Recession ACF

Fig. 2 Autocorrelation functions (ACF) for the sample from 1920:1 computed with the classic esti-
mator and by conditioning on the cycle phase.

1920:1. Notably, we have evidence of changes in the persistence over the cyclical

phases. The plots suggest that the inflation time series might be characterized by the

presence of a long-memory behavior. However, a similar pattern could be generated
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by a short-memory process with specific parameter values, such as those of an auto-

regressive model with coefficients close to the non-stationarity bound.

Further, the reported correlograms do not show clear evidence of seasonal pat-

terns. However, seasonal variation is known to generally affect inflation as is shown

in Ajmi et al. (2008) and references cited therein. Therefore, we decided to remove

the seasonal pattern for our sample starting in 1920:1 with the modified X-13 method

of Balcilar, Gupta and Jooste (forthcoming), and Balcilar, Gupta and Uwilingiye

(forthcoming), which allowed us to deal with seasonality for data over 50 years of

data.6

To shed some light on the possible presence of long-memory and, at the same

time, allow for a change in the persistence across states of the economy, we mod-

elled the CPI-based inflation rates as in Caporin and Pres (2013), with a Time Vary-

ing Auto Regressive Fractionally Integrated Moving Average (TV-ARFIMA) model.

Notably, the model allowed for a change in the memory and, therefore, in the infla-

tion persistence over time according to a time-function, such as the change in sea-

sons, or conditionally upon a knowledge of changes in the business cycle phases.

Let yt be the inflation rate, which we modelled as follows:

(1 − L)dt Φ (L) (yt − µ) = Θ (L) εt (3)

where dt is a time varying memory coefficient, µ is the unconditional mean of

the inflation, Φ (L) is an Auto Regressive (AR) polynomial, Θ (L) is a Moving Aver-

age (MA) polynomial and εt is the inflation shock which we assume to be identically

and independently distributed with a zero mean and a standard deviation of σε. The

change in the memory coefficients has a step-wise evolution over time according to

changes in the phases of the business cycle. If we denote Rt as the recession dummy,

the memory coefficient assumed two possible values:

6 FORTRAN codes used here to conduct seasonal adjustment for long-span data is available
upon request from the authors.
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dt =

 dR Rt = 1

dE Rt = 0
(4)

where dE and dR denote the memory level during expansions and recessions,

respectively.

In ARMA-type models, we measure the persistence of a series by means of the

model parameters and through their role in the moving average infinite represen-

tation of the model. Larger persistence means that shocks do produce effects on

the series realizations for longer time. In the TVARFIMA model, both long-memory

and short-memory parameters affect persistence, as both play a role in the MA(∞)

model representation. As a consequence, there will be two different degrees of per-

sistence over recessions and expansions. However, when comparing persistence

across the two states, given that the short-memory parameters are time-invariant,

we can reason in a ceteris paribus way. Therefore, the occurrence of equal memory

coefficients means equality of persistence across the two business cycle phases. Al-

ternatively, a larger (smaller) memory coefficient in one cyclical phase means that

this phase has larger (smaller) persistence.

Given that the change in persistence varies according to an exogenous variable,

and is thus not exactly a function of time, the TVARFIMA model of Caporin and

Pres (2013) becomes similar to the Threshold ARFIMA (TARFIMA) of Goldman et

al. (2013). However, it differs from the TARFIMA model since the regime change

is not associated with the level of the dependent variable (the CPI-based inflation

rate), as happens in dynamic models with threshold-driven regimes. On the con-

trary, the change in the parameter structure depends on an exogenous variable,

which in turn, is the dummy capturing recessions. The model can thus be compared

with the approach of Haldrup and Nielsen (2006a,b), and could be considered to be

equivalent to a Markov switching model where regimes are known and evolve in a

fully independent way.
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In order to capture the possible presence of heteroskedasticity, the model was

extended by allowing the error variance to change over time according to the TVFI-

GARCH model of Caporin and Pres (2009). Therefore, the variance of the inflation

shock was denoted as σ2
t and evolved as:

σ2
t = ω + β (L) σ2

t−1 +
[
1 − β (L)− Ψ (L) (1 − L)λt

]
ε2

t (5)

where β (L) and Ψ (L) are short-memory polynomials and λt is the variance

memory parameter that changes over time according to the business cycle phases

as follows:

λt =

 λR Rt = 1

λE Rt = 0
(6)

where Rt is the recession dummy. Similarly to what was stated for the dynamics

of the mean, the persistence of conditional variance depends on both short- and

long-memory coefficients. However, short-memory parameters are time-invariant

and thus, ceteris paribus, larger values of the long-memory coefficient are indicative

of larger persistence.

Notably, in the dynamics of both the mean and the variance, the evolution of the

persistence affects the current (time t) observation, irrespective of the fact that past

data, on which the time t observation depends, belongs to different business cycle

phases. What the model provides is a change in the dependence over past data,

conditional on the fact that at time t we are in a given economic state. Therefore,

depending on the state, the serial correlation might be stronger or weaker, and thus

lead to a larger or smaller impact of past observations, irrespective of whether these

are associated with an expansion or a recession.

Estimation of the models is performed by maximum likelihood methods. The

full model can be estimated in a single step but, to simplify the computational com-

plexity, a two-step approach is also feasible (at the cost of a loss in efficiency). In
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the latter case, we first estimate the mean dynamics (the TV-ARFIMA part of the

model) and, conditional on the first step estimation results, we recover mean resid-

uals and estimate the variance dynamics (the TV-FIGARCH part of the model). Ca-

porin and Pres (2013), by means of a Monte Carlo study, show that small sample

performances of maximum likelihood estimators converge to the true parameter

values with increasing sample sizes. Moreover, as expected, the estimator’s density

dispersion decreases with the sample size. The authors also provide evidence sup-

porting using the model within a forecasting exercise conditional on a knowledge

of the evolution of seasons. We stress that a theory for efficiency, consistency and

asymptotic normality of the maximum likelihood estimator for the TV-ARFIMA

and TV-FIGARCH models is still missing, as well as a theory for short-memory

specifications with time-varying parameters. We point out that those models belong

to the broad family of threshold models, among which we can distinguish between

specifications where the coefficients change sign according to the modelled variable

moving above and below a threshold (self-exiting specifications) and specifications

where the change in regimes is due to an exogenous but observable variable, as in

our case. While for the former the theory is available, for the latter it is not, as is

pointed out by Tong (2011).

The model complexity also motivates focussing on the presence of time-variation

only in the memory coefficient. From a theoretical point of view, all parameters

could be allowed to change over seasons or business cycle phases. However, this

increases the number of parameters to be estimated and the computational burden

in the model’s estimation. In this paper, we thus preferred to focus on specifications

where only the long-memory coefficients change across business cycle phases.

3 Persistence in US inflation

We fitted the TVARFIMA-TVFIGARCH on the monthly inflation time series start-

ing from 1920. In order to highlight the improvement of our proposed modelling

strategy, we compared it with specifications where memory was either absent or
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ARMA ARFIMA TVARFIMA
Coeff. S.E. Coeff. S.E. Coeff. S.E.

dR 0.366 0.052 0.477 0.072
dE 0.303 0.038
φ1 0.667 0.092
φ4 0.139 0.057 0.110 0.048 0.106 0.047
φ7 0.074 0.037
θ1 0.299 0.115
θ12 0.147 0.064 0.190 0.061 0.189 0.062
Llik 383.99 389.42 396.09
AIC -755.97 -780.85 -782.18
BIC -725.77 -750.72 -757.02
Q(3) 0.63 0.77 0.44
Q(12) 0.74 0.24 0.21
Q(24) 0.00 0.00 0.01
LR 0.00

Table 3 Estimation output for competing models on monthly inflation from 1920:1. S.E. denotes the
standard error. R denotes the recession coefficients, and E, expansion coefficients. Llik is the model’s
likelihood, while AIC and BIC are the Akaike and Bayesian information criteria, respectively. Q(j)
denotes the Ljung-Box test for the residual correlation at lag j, for which we report the p-value. LR
corresponds to the p-value of the likelihood ratio test for the null of equal memory across the two
business cycle phases.

was time invariant. Consequently, we estimated ARMA and ARFIMA specifica-

tions for the mean, while for the variance, we considered both GARCH and FI-

GARCH models. Given that we adopted a two-step estimation strategy, we report

separate results for the mean and the variance dynamics. We estimated the compet-

ing variance models on the residuals of the most appropriate mean specification.

Further, in order to confirm the need for time-variation in the memory coefficients,

we report a likelihood ratio test between the time-varying and time-invariant long-

memory specifications. Parameter symbols correspond with those adopted in the

general model representations introduced in the previous section. Estimation ta-

bles report the parameters, the quasi maximum likelihood standard errors, as well

as the model likelihood, the AIC and BIC information criteria, and the Ljung-Box

test for the residual correlation of selected lags. To determine the appropriate spec-

ification of the short-memory orders, for both the mean and variance dynamic, we

took into account both the significance of the estimated coefficients and the values

of the information criteria.
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GARCH FIGARCH TVFIGARCH
Coeff. S.E. Coeff. S.E. Coeff. S.E.

ω 0.001 0.001 0.000 0.000 0.001 0.007
λR 0.410 0.049 0.299 0.037
λE 0.454 0.057
α1 0.149 0.055
β1 0.850 0.051 0.167 0.093 0.164 0.083
Llik 681.59 677.35 682.32
AIC -1357.19 -1348.70 -1358.64
BIC -1342.09 -1333.60 -1343.54
Q(3) 0.92 0.90 0.90
Q(12) 0.99 0.99 0.99
Q(24) 0.99 0.99 0.99
LR 0.00

Table 4 Estimation output for competing models on the residuals of the TVARFIMA model for
monthly inflation from 1920:1. S.E. denotes the standard error. R denotes the recession coefficients,
and E, the expansion coefficients. Llik is the model likelihood, while AIC and BIC are the Akaike and
Bayesian information criteria, respectively. Q(j) denotes the Ljung-Box test for residual correlation
at lag j, for which we report the p-value. We performed the test on squared standardized residuals
(mean residuals divided by the estimated conditional standard deviations) to test for the presence
of residual heteroskedasticity. LR corresponds to the p-value of the likelihood ratio test for the null
of equal memory across the two business cycle phases.

Before, we describe the details of the results regarding persistence, we observe

the following characteristics of the models estimated: As can be seen from Table 3,

residual correlation is found to be present for lags above 12, which could possibly

be due to some element in the ACF being quite large. Generalizing the models with

higher lags did not improve the results, since these additional coefficients turned

out to be statistically insignificant, which in turn, was also vindicated by higher

values of the AIC and the BIC. The ARMA specification was found to have a couple

of economically significant lags, namely lag-lengths 4 and 7, while the ARFIMA

and TVARFIMA were estimated with a lag-length of only 4. In addition, we note

that the models required a lag 12 on the MA, which is possibly a by-product of

the seasonal adjustment, or due to some stochastic seasonality. Importantly, the LR

test was in favour of the TVARFIMA, which in turn, was also confirmed by both

the AIC and the BIC. Turning now to the variance specifications in Table 4, the

GARCH model is substantially equivalent to TVFIGARCH, both in terms of the

standardized residual serial correlation, and in terms of the likelihood. Note that
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the TVFIGARCH model is more flexible than the FIGARCH model, as it accounts

for time-varying persistence, and a likelihood ratio test indicates a preference for the

former. A similar test is not available for the comparison of TVFIGARCH against

GARCH, with them being non-nested models. For the FIGARCH model, whose

likelihood is inferior to both the GARCH and the TVFIGARCH, we observe that

the parameters are significant, as in the other variance specifications.

Tables 3 and 4 report the estimated coefficients, and we stress that the memory

parameters are always statistically significant. Our empirical results suggests that

inflation persistence is changing across business cycle phases, and is higher during

recessions. In fact, while the memory coefficient in the mean is equal to 0.477 for

recessions, it decreases to 0.303 in periods of expansion. Conversely, the variance

persistence moves from 0.299 in recessions up to 0.454 during expansions.7 We be-

lieve this is a relevant finding, and is supported by the overwhelming rejection of

the Likelihood ratio test for equality of the memory coefficients across the business

cycle phases. The null hypothesis is dE = dR, and the test statistic, assumed to be

asymptotically distributed as a Chi-square with 1 degree of freedom, provides a

p-value less than 0.001.

The observation that the persistence is higher in recessions than in expansions

might be motivated by the fact that recessions are shorter and more clearly identi-

fiable than expansionary phases. Supporting evidence is provided by the average

duration of the business cycle phases: while for recessions we have an average du-

ration of 14.3 months, for expansions the value increases to 52.3 months. Further,

during expansions we might have oscillations in the growth cycle that could affect

the persistence. In addition, another line of reasoning could be that while in our

model we have two states, in reality we might also have stagnation, which in our

analysis, is associated with expansion, and hence, could affect the persistence dur-

ing expansion. As an aside, we also show that the persistence of inflation volatility

is higher during expansions than during recessions. This is somewhat expected, as

7 These results were also qualitatively the same when we considered the longer sample starting
in 1876:2. Complete details of these results are available upon request from the authors.
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it implies that volatility persists on low regimes during expansions, while we have

greater uncertainty and stronger reactions to shocks during recessions (less persis-

tence induces a bigger reaction of volatility to innovations).

4 Concluding remarks

Given that the degree of inflation persistence determines the extent to which cen-

tral banks can control inflation, the persistence property of inflation is an important

issue. Also, not only is it the level of inflation persistence that is important in eco-

nomic analyses, but also the question of whether the persistence varies over time,

for instance, across business cycle phases, is equally pertinent. This is understand-

able since assuming constant persistence across expansionary and contractionary

states of the economy is sure to lead to misguided policy decisions. Against this

backdrop, we extend the literature on long-memory models of inflation persistence

for the US economy over the monthly period of 1920:1-2014:5, by developing an

autoregressive fractionally integrated moving-average-generalized autoregressive

conditional heteroskedastic (ARFIMA-GARCH) model, with a time-varying mem-

ory coefficient that varies across expansions and recessions. In sum, we find that in-

flation persistence does vary across recessions and expansions, with it being signif-

icantly higher in the former (with the mean of inflation being relatively lower) than

in the latter. As an aside, we also show that the persistence of inflation volatility,

however, is higher during expansions (with the mean of volatility being relatively

lower) than in recessions. Based on our findings, we can deduce the following in

terms of monetary policy behaviour, conditioned on expansions or recessions, in

the US historically: since higher persistence of inflation and its volatility associates

itself with lower mean values of inflation and its volatility, monetary policy seems

to be more proactive when the authorities perceive inflation and its volatility to be

‘too high’ on average. When inflation and its volatility are perceived to be low on

average, monetary policy is aimed at keeping the levels where they are, implying

higher persistence. In other words, the Federal Reserve seems to reduce the level of
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inflation during expansions and the volatility of the same during recessions,8 while

it tries to stabilize inflation during recessions and its volatility during expansions.

Understandably, our results imply that the policy stance of the Federal Reserve to

movements in inflation seems to be asymmetric, with it depending on not only its

concern with the level or volatility of inflation, but also with whether the economy

is in a recession or an expansion. It must be highlighted here that, besides price

stability, the Federal Reserve is also concerned with the output gap. Given this, our

discussion on its response to inflation is not foolproof, but with the analysis con-

ditioned on business cycle phases, we accommodate for the mandate of maximum

sustainable output and employment simultaneously in an implicit fashion.
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A State-dependent Auto Correlations

We focus here on the computation of the two auto correlation measures ρR (k) and ρE (k), whose

expression we report below, to clarify the following discussion:

ρ0 (k) =
1

TR(k)−k ∑T
t=k+1 xtxt−kSt

1
TR(k)−k ∑T

t=k+1 x2
t St

,

ρ1 (k) =
1

TE(k)−k ∑T
t=k+1 xtxt−k (1 − St)

1
TE(k)−k ∑T

t=k+1 x2
t (1 − St)

.

Note that we re-labelled states as 0 and 1 to be more general. We postulated that the zero-mean

series xt’s dynamic behaviour changes over time and moves between two states or regimes. The

variable St monitors the states evolution, and takes value 0 in the first state and value 1 in the

second state. We refer to the previous expressions as the estimators of the State-Dependent Auto

Correlation Functions.

This Appendix discusses two aspects. Firstly, the appropriateness of the state-dependent Auto

Correlation Functions to highlight differences in the serial dependence across states. Secondly, we

note that the estimation of the state-dependent Auto Correlation Functions following the above

reported estimators might suffer for distortions due to the fact that observations xt and xt−k might

belong to two different states. We evaluated the impact of those distortions.

We tackled the two points by means of simulations, computing the average, across simulations,

or the empirical ACF obtained from simulated series. We believe that the derivation of the theoreti-

cal expressions of the state-dependent ACF is beyond the scopes of the present paper and postpone

that to future contributions.

We simulated data from the following TVARFIMA stochastic process

(1 − L)dt xt = εt

with εt distributed as a standardized Normal, and

dt =

 d0 St = 0

d1 St = 1
.

Moreover, we assumed that the variable St moves from one state to the other every M obser-

vations. Further, we noted that if d0 = d1 the model collapsed to an ARFIMA(0,d,0).

We first show that the ACF of the TVARFIMA computed on the full sample is a mixture of the

ACF of the TVARFIMA computed on the two states. We thus estimated and averaged the ACFs of

the TVARFIMA process over N = 500 simulated series, characterized by a change of state every

M = 50 observations. We assumed that the timing of the state change is known. For those series
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Fig. A.1 Simulated empirical ACF from TVARFIMA with two states, with memory coefficients
d = 0.45 and d = 0.1, respectively.

Fig. A.2 Simulated empirical ACF from TVARFIMA with two states, with memory coefficients
d = 0.4 and d = 0.2, respectively.

we considered a sample size of T = 1000 observations. Note that in the simulation we adopted a

pre-sample of T observations to control for the dependence on initial values. We considered two

cases: d0 = 0.45 and d1 = 0.1; d0 = 0.4 and d1 = 0.2. We provided two plots, Figure A.1 and A.2,

where we report the empirical ACFs (averaged across the N simulations) for the full sample as well

as those computed on each state according to the above-reported estimators.

From the two figures, it emerged clearly how the full sample ACF lies in the middle between

the ACFs computed on the two states. The ACFs get closer when the persistence of the two states

is closer, as we might have expected. Consequently, identifying long-range dependence by means
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Fig. A.3 Simulated state-dependent empirical ACF from TVARFIMA with two states, with memory
coefficients d = 0.45 and d = 0.1, respectively.

of a full-sample ACF might not have allowed us to detect the presence of two states characterized

by very different memory degrees, as Figure A.1 shows.

We now move to the evaluation of the effect associated with the introduction in the computa-

tion of state-dependent ACF of observations belonging to different regimes. For that purpose we

compared the estimators we proposed with the alternative ones reported below:

δ0 (k) =
1

TR(k)−k ∑T
t=k+1 xtxt−kStSt−k

1
TR(k)−k ∑T

t=k+1 x2
t StSt−k

,

δ1 (k) =
1

TE(k)−k ∑T
t=k+1 xtxt−k (1 − St) (1 − St−k)

1
TE(k)−k ∑T

t=k+1 x2
t (1 − St) (1 − St−k)

.

These two competing estimators differ from the one we previously adopted in the sense that

the pairs of observations xtxt−k contribute to the evaluation of the ACF only if they both belong to

the same state. We provide then simulated empirical ACF (averaging across simulations) using the

same data generating process previously adopted. The following two figures, Figure A.3 and A.4,

focus on the two different generators.

By analyzing the figures, we note that the state-dependent ACFs are contaminated by the pres-

ence of observations belonging to different states. In fact, the ACF for the higher memory states is

downward biased, being contaminated by observations coming from a state with lower memory.

We observe the opposite effect on the ACF of the lower memory state. This effect is, obviously,

more evident if we have states with closer memory degree, or if one of the two states has very low

memory.
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Fig. A.4 Simulated state-dependent empirical ACF from TVARFIMA with two states, with memory
coefficients d = 0.4 and d = 0.2, respectively.

While on the one side this evidence could suggest the use of δ0 and δ1 in place of ρ0 and ρ1, we

must stress that the evaluation of δ0 and δ1 is limited by the size of the observed states. In fact, if

states have, in a limiting case, an equal size of M observations, the maximum lag for which we can

compute δ0 and δ1 is exactly M, but at the cost of sensibly reducing the accuracy of the estimators

for lags close to M, due to the limited number of pairs xtxt−k contributing to their evaluation. In

practice, we might compute the estimators up to a fraction of M.

Consequently, the use of ρ0 and ρ1 is advisable, as they could allow for evaluating the state

dependent ACFs, even if the duration of states is limited. We must, however, advise the user on the

presence of the distortions due to the inclusion, in the estimator evaluation, of observations belong-

ing to different states. Nevertheless, as the state-dependent ACF should be adopted only within an

identification step, and thus should be preliminary to any estimation, we do believe that the pres-

ence of distortions will have a limited impact. Those ACF would just suggest a possible presence

of states with differing memory degrees, and only a model estimation would allow making a final

decision.
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