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Abstract

In this paper we investigate Marcinkiewicz-Zygmund type inequalities for multivariate polynomials on

various compact domains in Rd. These inequalities provide a basic tool for the discretization of the Lp norm

and are widely used in the study of the convergence properties of Fourier series, interpolation processes

and orthogonal expansions. Recently Marcinkiewicz-Zygmund type inequalities were verified for univariate

polynomials for the general class of doubling weights, and for multivariate polynomials on the ball and

sphere with doubling weights. The main goal of the present paper is to extend these considerations to more

general multidimensional domains, which in particular include polytopes, cones, spherical sectors, toruses,

etc. Our approach will rely on application of various polynomial inequalities, such as Bernstein-Markov,

Schur and Videnskii type estimates, and also using symmetry and rotation in order to generate results on

new domains.

∗AMS Subject classification: 41A17, 41A63. Key words and phrases: multivariate polynomials, Marcinkiewicz-
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1. Introduction

The classical Marcinkiewicz-Zygmund inequality states that for any univariate trigonometric
polynomial of degree at most n and 1 ≤ p <∞ we have∫

|Tn|p ∼
1

n

2n∑
s=0

∣∣∣∣Tn( 2πs

2n+ 1

)∣∣∣∣p (1)

where the constants involved depend only on p. This inequality is a basic tool for the discretization
of the Lp norms of trigonometric polynomials. In the past 30 years Marcinkiewicz-Zygmund type
inequalities for trigonometric and algebraic polynomials with various weights were widely used in the
study of the convergence of Fourier series, Lagrange and Hermite interpolation, positive quadrature
formulas, scattered data interpolation, see [9] for a survey on the univariate Marcinkiewicz-Zygmund
type inequalities. In univariate case a forereaching generalization of (1) for the so called doubling
weights was given by Mastroianni and Totik [12]. Mhaskar, Narcowich and Ward [13] studied the
Marcinkiewicz-Zygmund type problem based on scattered data on the unit sphere in the un weighted
situation. Recently, Feng Dai [7] gave some analogues of Marcinkiewicz-Zygmund type inequalities
for multivariate algebraic polynomials on the sphere and ball in Rd.

The goal of the present paper is to extend the study of Marcinkiewicz-Zygmund type inequalities
to more general multivariate domains. Let K ⊂ Rd be a compact set and denote by P d

n the set of
algebraic polynomials of d variables and degree at most n. Given a positive weight function w on
K we denote by

‖g‖Lp(w) := (

∫
K

|g|pw)1/p, 1 ≤ p <∞

the usual weighted Lp norm on K. Then typically a Marcinkiewicz-Zygmund type result on K
consists in finding a discrete point sets YN = {y1, ..., yN} ⊂ K of cardinality N ∼ nd, and proper
positive numbers aj > 0, 1 ≤ j ≤ N,

∑
1≤j≤N aj ∼ 1 so that for every g ∈ P d

n we have

‖g‖pLp(w) ∼
∑

1≤j≤N

aj|g(yj)|p. (2)

Here and throughout this paper we will write A ∼ B whenever c1A ≤ B ≤ c2A with some constants
c1, c2 > 0 depending only on p,K and the weight, but independent of the individual polynomials
and their degree. The requirement that the cardinality of the discrete set YN satisfies N ∼ nd leads
to an asymptotically smallest possible discrete mesh, because dimP d

n ∼ nd and (2) can not hold
with fewer points than the dimension of P d

n . In addition, it should be also noted that the condition∑
1≤j≤N aj ∼ 1 is a consequence of relation (2) applied with g ≡ 1, i.e., it automatically holds for

any discrete set satisfying (2). Sometimes in the sequel we will call discrete sets YN ⊂ K with
cardinality N ∼ nd satisfying relations (2) MZ meshes for K.

This notion of MZ meshes is closely related to the notion of admissible meshes or norming sets
introduced in [3] and [5]. Admissible meshes YN ⊂ K have the property

max
x∈K
|g(x)| ∼ max

x∈YN
|g(x)|, ∀g ∈ P d

n .
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If in addition, N ∼ nd then the admissible mesh is called optimal. In [8] it was shown that star like
C2-domains and convex polytopes in Rd possess optimal meshes. (See also [2] and [4] where their
construction and various applications are discussed.) Evidently, the MZ meshes can be considered
as the Lp analogues of the optimal meshes.

We will repeatedly use below a generalization of the Marcinkiewicz-Zygmund type inequality for
algebraic polynomials on [−1, 1] given in [12] for the general class of the so called doubling weights.
Recall that a nonnegative integrable weight w on [−1, 1] is called doubling if with certain L > 0
depending only on the weight ∫

2I

w ≤ L

∫
I

w, I ⊂ [−1, 1]

for any interval I and 2I being its double with the same midpoint. In particular, all generalized
Jacobi type weights satisfy the doubling property. Then as shown in [12] there exists an integer
M ∈ N (depending only on the weight) such that whenever m ≥M we have with xj := cos tj, tj :=
πj
mn
, 0 ≤ j ≤ mn ∫ 1

−1

|g|pw ∼
∑

0≤j≤mn

aj|g(xj)|p, ∀g ∈ P 1
n (3)

where

aj :=

∫ tj+1/n

tj−1/n

w(cos t)| sin t|dt, 0 ≤ j ≤ mn.

Now let us recall the Marcinkiewicz-Zygmund type results for the sphere and ball given by
Feng Dai [7]. Let B(x, r) be the usual Euclidian ball centered at x ∈ Rd and radius r and let
Bd := B(0, 1), Sd−1 := ∂Bd denote the unit ball and sphere in Rd, respectively. Consider the
mapping T (x) := (x,

√
1− |x|2) ∈ Sd, x ∈ Bd and the corresponding metric ρ(x, y) := |T (x) −

T (y)|, x, y ∈ Bd. Denote by Bρ(x, r) the ball centered at x ∈ Rd and radius r corresponding to this
metric.

Then the weight w is called a doubling weight on Sd−1 or Bd if∫
B(x,2r)

w ≤ L

∫
B(x,r)

w, x ∈ Sd−1 or

∫
Bρ(x,2r)

w ≤ L

∫
Bρ(x,r)

w, x ∈ Bd,

respectively, with a constant L > 0 depending only on the weight.
Furthermore, YN = {y1, ..., yN} ⊂ Bd is called maximal (δ, ρ)-separable if

Bd ⊂ ∪1≤j≤NBρ(yj, δ) and ρ(yj, yk) ≥ δ, 1 ≤ j, k ≤ N, j 6= k.

Then it is shown in [7] that (2) holds for every doubling weight on Bd and every maximal ( δ
n
, ρ)

separable set YN ⊂ Bd with sufficiently small δ and aj =
∫
Bρ(yj ,

δ
n

)
w.

Clearly, we have by the δ
n

separation of YN that Bρ(yj,
δ

2n
), 1 ≤ j ≤ N are pair wise disjoint.

Since in addition, yj ∈ Bd it follows that Bρ(yj,
δ

2n
), 1 ≤ j ≤ N correspond to pair wise disjoint sets

on the unit sphere Sd ⊂ Rd+1 of Lebesgue surface measure ≥ cdn
−d. This yields that N ≤ cdn

d, i.e.,
the discrete set YN is of optimal cardinality. Hence maximal ( δ

n
, ρ) separable sets on Bd are MZ

sets. Similarly maximally δ
n

separable sets with respect to the Euclidean distance are MZ meshes
Sd−1.

The above results for the ball and sphere connecting the maximal separability with the MZ
property of the mesh are quite general in terms weights considered. However the maximal ( δ

n
, ρ)
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separability is not easily verified when d > 1. The main goal of the present paper is twofold: we
will present simple explicit MZ meshes which do not require the somewhat technical condition of
maximal separability, and also extend the above Marcinkiewicz-Zygmund type results to more gen-
eral multivariate domains, which in particular include polytopes, cones, spherical sectors, toruses,
etc. Our approach will rely on application of various polynomial inequalities including Bernstein-
Markov, Schur and Videnskii type estimates, and also on using symmetry and rotation to generate
results on new domains.

2. Circular Sectors

We will show below how some new Marcinkiewicz-Zygmund type inequalities can be derived
using rotation and symmetry of the domain. But first in this section we will consider the more
difficult case of circular sectors which can not be handled by rotational or symmetry type arguments.
Throughout this paper 1 ≤ p <∞.

So let Da ⊂ R2 be the circular sector on the plane given by

Da := {(x, y) = (r cos t, r sin t) : 0 ≤ r ≤ 1, |t| ≤ a}.

We will prove now a Marcinkiewicz-Zygmund type inequality on the circular sector Da for any
rotation invariant doubling weight of the form w0(

√
x2 + y2) where w0(t) is a univariate doubling

weight on [0, 1].
Theorem 1. Let Da ⊂ R2 be the circular sector with a < 1

2
and consider a univariate doubling

weight w0(t) on [0, 1]. Then with any sufficiently large integer m ∈ N depending only on this weight
and p it follows that for every q ∈ P 2

n we have∫
D2

|q(x, y)|pw0(
√
x2 + y2)dxdy ∼

∑
0≤j,k≤mn

aj,k|q(ρk cos yj, ρk sin yj)|p,

where tj := jπ
mn
, yj := a cos tj, 0 ≤ j ≤ mn, ρk := 1

2
(1 + cos tk), 0 ≤ k ≤ mn, and

aj,k := (yj − yj+1)

∫ tk+1

tk−1

w(cos2(t/2)) cos2(t/2)| sin t|dt, 0 ≤ j, k ≤ mn.

First we will verify a lemma which illustrates a general connection between Marcinkiewicz-
Zygmund type inequalities and Lp Bernstein-Markov type inequalities.

For any k > 0 set

∆k(x) :=
1

k2
+

√
1− x2

k
.

Lemma 1. Let g(x), x ∈ [−1, 1] be any differentiable function, g 6= 0 a.e. satisfying relation∫
[−1,1]

(∆k(x)|g′(x)|)pdx ≤
∫

[−1,1]

|g(x)|pdx (4)
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with some k > 0. Then whenver m ≥ [18pk] + 1 and xj := cos jπ
m
, 0 ≤ j ≤ m we have

2

3

∑
0≤j≤m−1

(xj − xj+1)|g(xj)|p ≤
∫

[−1,1]

|g(x)|pdx ≤ 2
∑

0≤j≤m−1

(xj − xj+1)|g(xj)|p. (5)

Proof. It is easy to see that for xj := cos jπ
m

we have

xj − xj+1 ≤ 9∆m(x), ∀x ∈ (xj+1, xj), 0 ≤ j ≤ m− 1. (6)

Indeed
xj − xj+1 ≤

π

m
sin t∗,

√
1− x2 = sin t

with both t∗, t being between jπ
m
, (j+1)π

m
when x ∈ (xj+1, xj). Hence if 1 ≤ j ≤ m− 2 then

| sin t∗ − sin t| ≤ |t∗ − t| ≤ π

m
≤ π

2
sin t,

i.e.,

xj − xj+1 ≤
π

m
sin t∗ ≤ π

m
(1 +

π

2
) sin t ≤ π(1 +

π

2
)∆m(x).

Moreover, if j = 0 or j = m− 1 then

xj − xj+1 = 1− cos
π

m
≤ π2

2m2
≤ π2

2
∆m(x).

This verifies our claim (6).
Note that by (6) and relation m ≥ [18pk] + 1 it follows that

p(xj − xj+1) ≤ 9p∆m(x) ≤ 1

2
∆k(x), x ∈ (xj+1, xj), 0 ≤ j ≤ m− 1. (7)

Now set

F (x) := |g(x)|p, G(x) := |g(x)|p−1|g′(x)|, Bj :=

∫
[xj+1,xj ]

|g(x)|pdx− (xj − xj+1)|g(xj+1)|p.

These notations easily yield that
|F ′(x)| ≤ pG(x) a.e.

Then using this estimate and (7) we have

|Bj| ≤
∫ xj

xj+1

||g(x)|p − |g(xj+1)|p|dx =

∫ xj

xj+1

∣∣∣∣∣
∫

[xj+1,x]

F ′(t)dt

∣∣∣∣∣ dx ≤
∫ xj

xj+1

∫ xj

xj+1

|F ′(t)|dtdx

≤ (xj − xj+1)

∫ xj

xj+1

|F ′(x)|dx ≤ p(xj − xj+1)

∫ xj

xj+1

G(x)dx ≤ 1

2

∫ xj

xj+1

G(x)∆k(x)dx.

Thus summing up for 0 ≤ j ≤ m− 1 yields∣∣∣∣∣
∫

[−1,1]

|g(x)|pdx−
∑

0≤j≤m−1

(xj − xj+1)|g(xj)|p
∣∣∣∣∣ ≤ ∑

0≤j≤m−1

|Bj| ≤
1

2

∫
[−1,1]

G(x)∆k(x)dx.
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Now applying Hölder inequality together with (4) we get∫
[−1,1]

G(x)∆k(x)dx =

∫
[−1,1]

|g(x)|p−1∆k(x)|g′(x)|

≤
(∫

[−1,1]

(∆k(x)|g′(x)|)p
) 1

p
(∫

[−1,1]

|g(x)|p
) p−1

p

≤
∫

[−1,1]

|g(x)|p.

Combining the last two estimates yields∣∣∣∣∣
∫

[−1,1]

|g(x)|pdx−
∑

0≤j≤m

(xj − xj+1)|g(xj)|p
∣∣∣∣∣ ≤ 1

2

∫
[−1,1]

|g(x)|pdx.

This evidently implies relations (5).
Proof of Theorem 1. Clearly

‖q‖pLp(D2) =

∫
D2

|q|pw =

∫
[−a,a]

∫
[0,1]

|q(r cos t, r sin t)|pw(r)rdrdt, q ∈ P 2
n .

Then setting

g(t) :=

∫
[0,1]

|q(r cos t, r sin t)|pw(r)rdr, ∆a
n(t) :=

a

n
+
√
a2 − t2

we easily obtain using Fubini theorem∫
[−a,a]

∆a
n(t)|g′(t)|dt ≤ p

∫
[−a,a]

∫
[0,1]

∆a
n(t)|q|p−1|∂q

∂t
|w(r)rdrdt =

= p

∫
[0,1]

rw(r)

∫
[−a,a]

∆a
n(t)|q|p−1|∂q

∂t
|dtdr. (8)

Moreover, applying the Hölder inequality to the last integral above yields∫
[−a,a]

|q|p−1|∆a
n(t)

∂q

∂t
|dt ≤

(∫
[−a,a]

(∆a
n(t)|∂q

∂t
|)p
) 1

p
(∫

[−a,a]

|q|p
) p−1

p

. (9)

Now we will need a Videnskii type inequality in Lp norm recently verified by Lubinsky [10] (see
also [6] for its weighted version). It was shown in [10] that for any trigonometric polynomial Q(t)
of degree at most n and a < 1

2
we have∫

[−a,a]

(∆a
n(t)|Q′|)p ≤ cpn

p

∫
[−a,a]

|Q|p.

Clearly the above inequality is applicable for Q(t) := q(r cos t, r sin t) with any fixed r hence we
obtain from (9)∫

[−a,a]

|q|p−1|∆a
n(t)

∂q

∂t
|dt ≤

(
cpn

p

∫
[−a,a]

|q|p
) 1

p
(∫

[−a,a]

|q|p
) p−1

p

= cn

∫
[−a,a]

|q|pdt. (10)
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Combining estimates (8) and (10) and using again Fubuni theorem we arrive at∫
[−a,a]

∆a
n(t)|g′(t)|dt ≤ cpn

∫
[0,1]

∫
[−a,a]

rw(r)|q|pdtdr = c0n

∫
[−a,a]

g(t)dt,

where c0 > 1 depends only on p. This last inequality means that conditions of Lemma 1 hold for
G(x) := g(ax) = g(t) with p = 1, k := mn, for any integer m > c0. Thus we obtain by this lemma
that with tj := jπ

mn
, yj := a cos tj, 0 ≤ j ≤ mn

2

3

∑
0≤j≤mn−1

(yj − yj+1)g(yj) ≤
∫

[−a,a]

g(t)dt ≤ 2
∑

0≤j≤mn−1

(yj − yj+1)g(yj). (11)

Now note that

g(yj) :=

∫
[0,1]

|q(r cos yj, r sin yj)|pw(r)rdr =

∫
[0,1]

|qj(r)|pw(r)rdr, 0 ≤ j ≤ mn (12)

with qj(r) := q(r cos yj, r sin yj) ∈ P 1
n being a univariate algebraic polynomial of variable r. More-

over, since w(r) is a doubling weight by [12], Lemma 4.5 w(r)r a doubling weight, as well. Therefore
we can use the Marcinkiewicz-Zygmund type result (3) for univariate algebraic polynomials qj(r)
(with a standard linear transformation of [0, 1] to [−1, 1]) yielding that∫

[0,1]

|qj(r)|pw(r)rdr ∼
mn∑
k=0

αk|qj(ρk)|p,

where ρk := 1
2
(1 + cos tk), 0 ≤ k ≤ mn and m is a properly chosen sufficiently large integer

independent of n. Moreover,

αk :=

∫ tk+1

tk−1

w(cos2(t/2)) cos2(t/2)| sin t|dt, 0 ≤ k ≤ mn.

(Here we can assume without the loss of generality that this integer m is the same as in (11).)
Applying this result to g(yj), 0 ≤ j ≤ m given by (12) yields that

g(yj) ∼
mn∑
k=0

αk|q(ρk cos yj, ρk sin yj)|p.

Finally, this last relation together with (11) implies∫
D2

|q|pw =

∫
[−a,a]

g(t)dt ∼
∑

0≤j≤mn−1

(yj − yj+1)g(yj) ∼
∑

0≤j,k≤mn

(yj − yj+1)αk|q(ρk cos yj, ρk sin yj)|p.

This provides the needed discrete points set (ρk cos yj, ρk sin yj) of cardinality (mn+ 1)2 ∼ n2. �
Evidently, Theorem 1 can be used for deriving Marcinkiewicz-Zygmund type inequalities on any

circular sector by splitting it to a union of smaller sectors satisfying restriction a < 1
2

used in this
theorem. Nevertheless we shall present now a more direct way leading to Marcinkiewicz-Zygmund
type inequalities on the disc B2. The method used in the Theorem 2 below is substantially more
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explicit than the concept of maximally separated meshes. Our approach will be based on weighted
Bernstein- Markov and Schur type inequalities. We will also need certain Jacobi type weights of
the form

φ(t) := h(t)
l∏

s=1

sin
|t− ts|

2
, t ∈ [0, 2π] (13)

where h(t) is a positive 2π periodic function with bounded derivative.
Theorem 2. Let w(x, y) := w(|r|)φ(t), x = r cos t, y = r sin t, r ∈ [−1, 1], t ∈ [0, π], where w is a

univariate doubling weight on [0, 1] and φ(t) is a Jacobi type weight (13). Then with any sufficiently
large integer m ∈ N depending only on the weights and p it follows for every q ∈ P 2

n∫
B2

|q(x, y)|pw(x, y)dxdy ∼ 1

n

∑
0≤j,k≤mn

aj,k|q(rk cos tj, rk sin tj)|p,

where tj := jπ
mn
, rj := cos tj, 0 ≤ j ≤ mn and

aj,k := φ(tj)

∫ rk+1

rk−1

w(|u|)|u|du, 0 ≤ k, j ≤ mn.

The proof of the above theorem needs an auxiliary statement which is somewhat similar to
Lemma 1.

Lemma 2. Let g(x), x ∈ [0, a] be any function satisfying relation∫
[0,a]

|g′(x)|pdx ≤Mp

∫
[0,a]

|g(x)|pdx (14)

with some M > 0. Then choosing m to be an arbitrary integer greater than 2aMp and tj := aj
m
, 0 ≤

j ≤ m we have

2

3

∑
0≤j≤m−1

(tj − tj+1)|g(tj)|p ≤
∫

[0,a]

|g(x)|pdx ≤ 2
∑

0≤j≤m−1

(tj − tj+1)|g(tj)|p. (15)

Proof. Setting G(x) := |g(x)|p−1|g′(x)| one can show analogously to the corresponding estimate
in the proof of Lemma 1 that by (14)∣∣∣∣∣

∫
[0,a]

|g(x)|pdx−
∑

0≤j≤m−1

(tj − tj+1)|g(tj)|p
∣∣∣∣∣ ≤ ap

m

∫
[0,a]

G(x)dx

≤ 1

2M

(∫
[0,a]

|g′(x)|p
) 1

p
(∫

[0,a]

|g(x)|p
) p−1

p

≤ 1

2

∫
[0,a]

|g(x)|p.

This evidently yields relations (15).
Proof of Theorem 2. We will use polar coordinates in x = r cos t, y = r sin t, r ∈ [−1, 1], t ∈

[0, π]. Then

‖q‖pLp(B2) =

∫
B2

|q|pwdxdy =

∫
[0,π]

φ(t)

∫
[−1,1]

|q(r cos t, r sin t)|pw(|r|)|r|drdt, q ∈ P 2
n .
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Setting

g(t) :=

∫
[−1,1]

|q(r cos t, r sin t)|pw(|r|)|r|dr

we obtain similarly to (8) in the proof of Theorem 1∫
[0,π]

|g′(t)|φ(t)dt ≤ p

∫
[−1,1]

w(|r|)|r|
∫

[0,π]

|q|p−1|∂q
∂t
|φ(t)dtdr. (16)

By the Hölder inequality for any r ∈ [−1, 1] and q = q(r cos t, r sin t)∫
[0,π]

|q|p−1|∂q
∂t
|φ(t)dt ≤

(∫
[0,π]

|∂q
∂t
|pφ(t)dt

) 1
p
(∫

[0,π]

|q|pφ(t)dt

) p−1
p

.

Since the last estimate holds for ∀r ∈ [−1, 1] and evidently

q(−r cos t,−r sin t) = q(r cos(t+ π), r sin(t+ π))

it easily follows that the above relation holds on [−π, π], as well. Thus∫
[−π,π]

|q|p−1|∂q
∂t
|φ(t)dt ≤

(∫
[−π,π]

|∂q
∂t
|pφ(t)dt

) 1
p
(∫

[−π,π]

|q|pφ(t)dt

) p−1
p

, ∀r ∈ [−1, 1].

Using that for every r ∈ [−1, 1] q = q(r cos t, r sin t) is a univariate trigonometric polynomial of
degree at most n we have by the Lp Bernstein inequality for doubling weights given in [12], p.45(∫

[−π,π]

|∂q
∂t
|pφ(t)dt

) 1
p

≤ cn

(∫
[−π,π]

|q|pφ(t)dt

) 1
p

, ∀r ∈ [−1, 1].

Combining the last two estimates yields∫
[−π,π]

|q|p−1|∂q
∂t
|φ(t)dt ≤ cn

∫
[−π,π]

|q|pφ(t)dt, ∀r ∈ [−1, 1].

Using this estimate together with (16) we obtain∫
[0,π]

|g′(t)|φ(t)dt ≤ p

∫
[0,1]

w(|r|)|r|
∫

[−π,π]

|q|p−1|∂q
∂t
|φ(t)dtdr

≤ cpn

∫
[0,1]

w(|r|)|r|
∫

[−π,π]

|q|pφ(t)dtdr = cpn

∫
[0,π]

|g(t)|φ(t)dt. (17)

Furthermore, we can also estimate the next integral using a Schur type inequality for trigono-
metric polynomials with the Jacobi type weight φ (see [12], p.49)∫

[0,π]

g(t)|φ′(t)|dt ≤ c

∫
[0,π]

g(t)dt ≤ 2c

∫
[−1,1]

w(|r|)|r|
∫

[−π,π]

|q|pdtdr

≤ cn

∫
[−1,1]

w(|r|)|r|
∫

[−π,π]

|q|pφ(t)dtdr = cn

∫
[0,π]

|g(t)|φ(t)dt.
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Clearly this last estimate together with (17) yields∫
[0,π]

|(g(t)φ(t))′|dt ≤ cn

∫
[0,π]

g(t)φ(t)dt.

Thus conditions of Lemma 2 are satisfied for the function g(t)φ(t) with p = 1, a = π and M = cn.
Hence relations (15) hold for any integer m > 2cπ and tj := jπ

mn
, 0 ≤ j ≤ mn, i.e., setting

Aj := g(tj) =

∫
[−1,1]

|q(r cos tj, r sin tj)|pw(|r|)|r|dr

we have
c2

n

∑
0≤j≤mn

Ajφ(tj) ≤
∫

[0,π]

g(t)φ(t)dt =

∫
B2

|q|pwdxdy ≤ c1

n

∑
0≤j≤mn

Ajφ(tj). (18)

Since qj(r) := q(r cos tj, r sin tj) ∈ P 1
n is a univariate algebraic polynomial of the variable r ∈ [−1, 1],

and w(|r|)|r| a doubling weight on [−1, 1] we can use the Marcinkiewicz-Zygmund type result (3)
for univariate algebraic polynomials yielding with any sufficiently large integer m

Aj =

∫
[−1,1]

|qj(r)|pw(|r|)|r|dr ∼
mn∑
k=0

ak|q(rk cos tj, rk sin tj)|p,

where

ak :=

∫ rk+1

rk−1

w(|u|)|u|du, rk := cos
kπ

mn
, 0 ≤ k ≤ mn.

(We have assumed here without the loss of generality that (18) holds with the same integer m.)
Finally, this and (18) yields∫

B2

|q|pwdxdy ∼ 1

n

∑
0≤j,k≤mn

akφ(tj)|q(rk cos tj, rk sin tj)|p. �

3. Symmetry and rotation in Marcinkiewicz-Zygmund type results

The family of sets possessing Marcinkiewicz-Zygmund type inequalities can be substantially
widened using symmetry and rotation. We will formulate now some general principles which are
based on symmetry and rotation and then proceed by combining them with the results from the
previous section leading to new applications and examples.

We start by exhibiting how the symmetry of the domain can be utilized in Marcinkiewicz-
Zygmund type inequalities. Let L : Rd → Rd be a regular linear transformation satisfying L2 = I,
i.e., L is an involutary matrix. Consider domain K ⊂ Rd which is invariant with respect to
the transformation L, that is L(K) = K. Our next proposition asserts that if K possesses sets
YN = {y1, ..., yN} ⊂ K with the Marcinkiewicz-Zygmund property (2) then without the loss of
generality it can be assumed that YN is invariant with respect to the transformation L, as well.

10



Proposition 1. Let K ⊂ Rd and positive weight w be invariant with respect to the transforma-
tion L,L(K) = K,w(x) = w(Lx), x ∈ K, where L : Rd → Rd, L2 = I. Assume in addition that K
possesses a set YN = {y1, ..., yN} ⊂ K with the Marcinkiewicz-Zygmund property (2) for the weight
w. Then ZN := YN ∪ L(YN) is also an MZ set which is invariant with respect to L.

Proof. Since both K and w are invariant with respect to L we clearly have that∫
K

|g(x)|pw(x)dx = |L|
∫
K

|g(Lx)|pw(x)dx, g ∈ P d
n ,

where |L| stands for the determinant of L.
Now using (2) for polynomials g(x) and g(Lx) yields

2

∫
K

|g(x)|pw(x)dx =

∫
K

|g(x)|pw(x)dx+ |L|
∫
K

|g(Lx)|pw(x)dx ∼
∑

1≤j≤N

aj(|g(yj)|p + |g(Lyj)|p).

Evidently this means that ZN := YN ∪ L(YN) is an MZ set, too. Since L2 = I we clearly have that
L(ZN) = ZN . �

Remark 1. It should be noted that the above proposition yields explicit L-invariant MZ sets
YN ∪ L(YN) with the same coefficients aj assigned to the corresponding points.

The above proposition can be used to derive new Marcinkiewicz-Zygmund type results. For
instance, it will be shown below how we can obtain MZ sets on the standard simplex from MZ sets
on the ball.

But first let us give another general method of deriving new MZ sets which is based on rota-
tion. Consider a set D ⊂ Rd−1 which is symmetric with respect to one of the coordinates, say
(x1, ..., xd−1) ∈ D ⇔ (x1, ..., xd−2,−xd−1) ∈ D. Then the rotation of the set D around this axis of
symmetry yields the domain

KD := {(x1, ..., xd) ∈ Rd : (x1, ..., xd−2, (x
2
d−1 + x2

d)
1
2 ) ∈ D} ⊂ Rd. (19)

Proposition 2. Let D ⊂ Rd−1 be symmetric with respect to its last coordinate and consider
the body of revolution KD ⊂ Rd given by (19). If D possesses an MZ set with respect to the weight
w(x1, ..., xd−1) even in xd−1 then it follows that KD possesses an MZ set with respect to the weight

w∗(x) := (x2
d−1 + x2

d)
− 1

2w(x1, ..., xd−2, (x
2
d−1 + x2

d)
1
2 ), x ∈ Rd. (20)

Proof. Consider the cylindrical substitution x = T (z, t), z := (z1, ..., zd−1) ∈ D, t ∈ [0, π] defined
by xj = zj, 1 ≤ j ≤ d − 2, xd−1 = zd−1 cos t, xd = zd−1 sin t. Clearly, T : D × [0, π] → KD is a
one-to-one correspondence. Setting F (z, t) := f(T (z, t)) we have∫

KD

|f(x)|pw∗(x)dx =

∫
[0,π]

∫
D

|F (z, t)|pw(z)dzdt, x := (z1, ..., zd−2, zd−1 cos t, zd−1 sin t).

Moreover, using the symmetry of D and w and substituting zd−1 by −zd−1 also yields∫
[0,π]

∫
D

|F (z, t)|pw(z)dzdt =

∫
[π,2π]

∫
D

|F (z, t)|pw(z)dzdt,

11



i.e., ∫
KD

|f(x)|pw∗(x)dx =
1

2

∫
[0,2π]

∫
D

|F (z, t)|pw(z)dzdt.

Note that whenever f ∈ P d
n then for any fixed t ∈ [0, 2π] we have F (z, t) ∈ P d−1

n . Moreover
by the assumption D possesses an MZ set with respect to the weight w(z) hence there exists
YN = {y1, ..., yN} ⊂ D, N ∼ nd−1, and aj > 0,

∑
1≤j≤N aj = 1 so that∫

D

|F (z, t)|pw(z)dz ∼
∑

1≤j≤N

aj|F (yj, t)|p, ∀t ∈ [0, 2π].

Using this together with the previous relation yields∫
KD

|f(x)|pw∗(x)dx ∼
∑

1≤j≤N

aj

∫
[0,2π]

|F (yj, t)|pdt.

Now note that for any fixed z the function F (z, t) is a univariate trigonometric polynomial of degree
n for which the classical Marcinkiewicz-Zygmund type inequality implies∫

[0,2π]

|F (yj, t)|pdt ∼
1

n

2n∑
s=0

|F (yj, γs)|p, γs :=
2πs

2n+ 1
.

Finally, combining the last two estimates we arrive at∫
KD

|f(x)|pw∗(x)dx ∼
∑

1≤j≤N

2n∑
s=0

aj
n
|F (yj, γs)|p =

∑
1≤j≤N

2n∑
s=0

aj
n
|f(yj,s)|p,

where yj,s = T (yj, γs) ∈ KD.�
Remark 2. Again it should be noted that Proposition 2 yields explicit MZ sets in case when

YN = {y1, ..., yN} ⊂ D, N ∼ nd−1 is an MZ set for the set D ⊂ Rd−1 with corresponding coefficients
aj, 1 ≤ j ≤ N . As can be easily seen from the proof in this case T (yj,

2πs
2n+1

), 1 ≤ j ≤ N, 0 ≤ s ≤ 2n

is an MZ set of cardinality ∼ nd with corresponding coefficients being
aj
n
.

4. Applications: ball, simplex, cone, spherical sector, torus

Propositions 1 and 2 provide convenient tools for obtaining new Marcinkiewicz-Zygmund type
results from the known cases. In this last section we will combine these propositions with results
from Section 2 in order to derive explicit MZ meshes on various domains. Let us show for instance
how the explicit mesh given for the disc in Theorem 2 together with Proposition 2 yields a simple
MZ mesh for the ball in R3. Throughout this section we denote

tj :=
jπ

mn
, rj := cos tj, γs :=

2πs

2n+ 1
, 0 ≤ j ≤ mn, 0 ≤ s ≤ 2n.

The integer n here will always correspond to the degree of the polynomials, while the integer m is
a fixed integer depending on the domain and the weight considered.
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Example 1. (Ball) Let K := B3. For a given a univariate doubling weight w0 on [0, 1] consider
the weights

w∗(x, y, z) := (y2 + z2)−
1
2w(x, (y2 + z2)

1
2 ), w(x, y) := |y|w0((x2 + y2)

1
2 ).

Then clearly w(r cos t, r sin t) = |rw0(|r|) sin t| is of the form required by Theorem 2 with φ(t) =
| sin t| and w(r) = rw0(r). (Note that here again we use the fact that tw0(t) is doubling when-
ever w0(t) is doubling.) Thus Theorem 2 is applicable on the disc B2 with the weight w(x, y) =

|y|w0((y2 + z2)
1
2 ). Therefore we can use Proposition 2 for K = B3 (which is the the body of revolu-

tion of B2) and the above weight w∗(x, y, z) = w0(
√
x2 + y2 + z2). Hence we get an MZ set on B3

by applying transformation T : B2 × [0, π]→ B3 specified in the proof of Proposition 2 to the MZ
set of the disc presented by Theorem 2. This easily yields the following Marcinkiewicz-Zygmund
type result for B3 with the doubling weight w0(

√
x2 + y2 + z2)∫

B3

|q(x, y, z)|pw0(
√
x2 + y2 + z2) ∼

∑
0≤s≤2n,0≤j,k≤mn

aj,k|q(ηk,j,s)|p,

where

ηk,j,s := rk(rj, sin tj cos γs, sin tj sin γs), aj,k :=
sin tj
n

∫ rk+1

rk−1

w0(|u|)u2dt

0 ≤ j, k ≤ mn, 0 ≤ s ≤ 2n.

Example 2. (Simplex) We will deduct now a Marcinkiewicz-Zygmund type inequality on the
standard simplex using our previous results from Sections 2 and 3. Let us call a multivariate function
even if it is even in each of its variables. Denote by Bd

+ := {x = (x1, ..., xd) ∈ Bd : xj ≥ 0, 1 ≤ j ≤ d}
the ”positive” part of the unit ball. By Proposition 1 any MZ set with an even weight on the ball
Bd can be symmetrized by reflecting it about each coordinate plane. Therefore we can choose an
MZ set Y ⊂ Bd, CardY ∼ nd so that for every y = (y1, ..., yd) ∈ Y we have y = (±y1, ...,±yd) ∈ Y .
Then it is easy to see that for even weight w and every even polynomial g ∈ P d

n we have∫
Bd+

|g|pw ∼
∑

yj∈Y ∩Bd+

aj|g(yj)|p. (21)

where Y is a symmetric MZ set on Bd for w.
Consider now the standard simplex

∆ := {x = (x1, ..., xd) : xj ≥ 0,
∑

1≤j≤d

xj ≤ 1}.

For x = (x1, ..., xd) ∈ ∆ set y =
√
x := (

√
x1, ...,

√
xd) ∈ Bd

+, x := y2 := (y2
1, ..., y

2
d). Setting

J(y) :=
∏

1≤j≤d |yj| we clearly have for any g ∈ P d
n∫

∆d

|g(x)|pw(x)dx = 2d
∫
Bd+

|g(y2)|pw(y2)J(y)dy, x = y2.
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Thus whenever Y ⊂ Bd is a symmetric MZ set for the unit ball with the even weight w(y2)J(y)
we can us (21) for the even polynomials g(y2) ∈ P d

2n yielding∫
∆d

|g(x)|pw(x)dx =

∫
Bd+

|g(y2)|pw(y2)J(y)dy ∼
∑

yj∈Y ∩Bd+

aj|g(y2
j )|p =

∑
zj∈Z

aj|g(zj)|p (22)

where Z := {y2
j : yj ∈ Y ∩ Bd

+}. This establishes a Marcinkiewicz-Zygmund type result on the
standard simplex.

Let, for instance d = 2. Then by Theorem 2 the discrete set

{(rkrj, rk
√

1− r2
j ), 0 ≤ j, k ≤ mn} ⊂ R2

is a symmetric around each coordinate axis MZ set on the unit disc for the weight

w(x, y) := w0(|r|)|xy| = w0(|r|)r2| sin t cos t|, x = r cos t, y = r sin t,

where w0 is a univariate doubling weight on [0, 1]. Therefore using Theorem 2 and relations (22)
with this weight yields that for any univariate doubling weight w0 and any bivariate polynomial
g ∈ P 2

n we have the following Marcinkiewicz-Zygmund type result on the triangle ∆2∫
∆2

|g(x, y)|pw0(
√
|x|+ |y|)dxdy ∼

∑
0≤j,k≤mn

aj,k|g(zj,k)|p, (23)

with

zj,k := r2
k(r

2
j , 1− r2

j ), aj,k := |rj|
√

1− r2
j

∫ rk+1

rk−1

w(|u|)|u|3du, 0 ≤ k, j ≤ mn. (24)

Similarly, we can consider the weight w0(
√
|x|+ |y|)|x−y| on ∆2 which after proper transformation

leads to the MZ problem on the disc with the weight w0(
√
x2 + y2)|xy(x2−y2)|. The corresponding

Marcinkiewicz-Zygmund type result with this weight on the triangle ∆2 appears in the form∫
∆2

|g(x, y)|pw0(
√
|x|+ |y|)|x− y|dxdy ∼

∑
0≤j,k≤mn

bj,k|g(zj,k)|p (25)

with

bj,k := |2r3
j − rj|

√
1− r2

j

∫ rk+1

rk−1

w(|u|)|u|5du, 0 ≤ k, j ≤ mn. (26)

We will use this last example providing MZ sets on the simplex with weights of the form
w0(
√
|x|+ |y|)|x− y| in order to derive MZ meshes on the cone, see Example 3 below.
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Figure 1: The simplex for d = 2, n = 8 and m = 3.

Example 3. (Cone) We will derive now a Marcinkiewicz-Zygmund type result on the cone
{(x, y, z) :

√
y2 + z2 ≤ x ≤ 1} ⊂ R3 by considering this cone as the rotation of the simplex

∆′ := {(u, v) : |v| ≤ u ≤
√

2/2} around axis u. Consider the weight

w0(
√
|u− v|+ |u+ v|)|v| = w0(

√
u)|v|, (u, v) ∈ ∆′

where as above w0 is a univariate doubling weight on [0, 2−1/4]. The MZ problem on ∆′ with this
weight after a standard linear transformation is equivalent to MZ problem on ∆2 with the weight

w0(
√
|x|+ |y|)|x− y|, (x, y) ∈ ∆2.

Hence using (25) and (26) we obtain setting ηk,j := r2
k − 2r2

kr
2
j ∈ ∆′∫

∆′
|g(u, v)|pw0(

√
u)|v|dudv ∼

∑
0≤j,k≤mn

bj,k|g(r2
k, ηk,j)|p (27)

with bj,k-s being specified in (26). Now we can use Proposition 2 for the cone

KD = K∆′ := {(x, y, z) :
√
y2 + z2 ≤ x ≤ 1} ⊂ R3

with D := ∆′ being endowed with the weight w0(
√
u)|v|. In view of relation (20) of Proposition 2

this yields an MZ set on the cone K∆′ with the weight w(x, y, z) := w0(
√
x). Moreover by Remark

2 and Proposition 2 we can easily derive an explicit Marcinkiewicz-Zygmund type mesh on the cone
by applying transformation T of Proposition 2 to the MZ set {(r2

k, ηk,j), 0 ≤ j, k ≤ mn} ⊂ ∆′. This
together with the formula for the coefficients specified in Proposition 2 yields∫

K∆′

|g|pw0(
√
x)dxdydz ∼

∑
0≤j,k≤mn,0≤s≤2n

bj,k
n
|g(r2

k, ηk,j cos γs, ηk,j sin γs)|p, ∀g ∈ P 3
n ,
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where bj,k-s are given by (26). This provides an explicit Marcinkiewicz-Zygmund type result for the
cone in R3.

Figure 2: The cone obtained by rotating the simplex of Example 2, with n = 6 and m = 2.

Example 4. (Spherical sector or ”ice cream” cone) Now we consider the ”ice cream” cone

Kb := {(x, y, z) :
√
y2 + z2 ≤ bx, x2 + y2 + z2 ≤ 1} ⊂ R3, b > 0

in R3 which is the intersection of the unit ball and cone. This domain can be obtained by rotating
the circular sector Da := {(x, y) = (r cos t, r sin t) : 0 ≤ r ≤ 1, |t| ≤ a}, a := arctan b around axis
x. Therefore, we can obtain a Marcinkiewicz-Zygmund type result on the ”ice cream” cone by
combining Theorem 1 and Proposition 2. The MZ set can be obtained by applying transformation
T of Proposition 2 to the MZ set of the circular sector Da given in Theorem 1. This yields the
following MZ mesh on Kb, b < tan 1/2

ξj,k,s :=
(1 + rk)

2
(cos arj, sin arj cos γs, sin arj sin γs); 0 ≤ j, k ≤ mn, 0 ≤ s ≤ 2n.

With this MZ mesh we have the next Marcinkiewicz-Zygmund type result on the ”ice cream”
cone for an arbitrary univariate doubling weight w0∫

Kb

|g|pw0(
√
x2 + y2 + z2)(y2 + z2)−1/2dxdydz ∼

∑
0≤j,k≤mn,0≤s≤2n

aj,k
n
|g(ξj,k,s)|p, ∀g ∈ P 3

n ,
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where coefficients aj,k are the same as in Theorem 1.

Figure 3: The rotated circular sector or “ice cream” cone for n = 6 and m = 2.

Example 5. (Torus) Proposition 2 provides MZ meshes for sets obtained by rotating a do-
main D symmetric in its last coordinate. Analogously we can consider rotation of D ⊂ Rd−1

+ :=
{(x1, ..., xd−1) : xd−1 ≥ 0} around axis xd−1 leading to similar conclusions as given in Proposition 2.
This approach allows to consider non convex domains like for instance the torus

T0 := {x2 + y2 + z2 ≤ 4
√
y2 + z2 − 3} ⊂ R3.

resulting from full rotation of the two dimensional disc x2 + (y − 2)2 ≤ 1 around axis x. On this
disc we can choose the MZ set

(rkrj, ξj,k), ξj,k := rk(1− r2
j )

1/2 + 2 0 ≤ j, k ≤ mn

which results from a proper shift of the mesh given for the unit disc by Theorem 2. Now similarly
as this was done in Proposition 2 the rotation of this MZ set yields an the following MZ mesh on
the torus T0

zj,k,s := (rkrj, ξj,k cos γs, ξj,k sin γs) ∈ T0, 0 ≤ j, k ≤ mn, 0 ≤ s ≤ 2n.

The weight function and the proper coefficients aj,k can be specified similarly to the previous
example, we omit the details.
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Figure 4: The torus for n = 6 and m = 2.
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