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Abstract A simple procedure based on relabelling to deal with label switching when
exploring complex posterior distributions by MCMC algorithms is proposed. Al-
though it cannot be generalized to any situation, it may be handy in many applica-
tions because of its simplicity and low computational burden. A possible area where
it proves to be useful is when deriving a sample for the posterior distribution aris-
ing from finite mixture models when no simple or rational ordering between the
components is available.
Abstract Si propone una strategia di ‘relabelling’ per il problema del ‘label switch-
ing’ nell’esplorazione di distribuzioni a posteriori con algoritmi di tipo MCMC.
Nonostante non sia possibile generalizzare tale metodo in ogni situazione, esso si
dimostra adatto in molte applicazioni in virtù della sua semplicità e della comp-
lessità computazionale relativamente bassa. In particolare, l’approccio proposto si
rivela utile nel caso si voglia simulare un campione da una mistura con un numero
finito di componenti.
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1 Introduction

The label switching problem arises in Markov Chain Monte Carlo (MCMC) explo-
ration of the posterior distribution of a Bayesian finite mixture model [2] because the
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likelihood of the model is invariant to the relabelling of mixture components. Since
there are as many maxima of the likelihood as there are permutations of the indices
which denote the G elements of the mixture, this is a minor problem in the context
of classical inference where any maximum, regardless of which one is chosen, leads
to a valid solution and equivalent inferential conclusions. On the contrary, invari-
ance with respect to labels is a major problem when Bayesian methods are used. In
fact, if the prior distribution is invariant with respect to the labelling as well as the
likelihood, then the posterior distribution is multimodal.

To make inference on a parameter specific of a component of the mixture a sam-
ple from the posterior that represent different modes would be inappropriate. An
actual MCMC sample may or may not switch labels depending on the efficiency of
the sampler. If the raw MCMC sampler randomly switch labels, then it is unsuitable
for exploring the posterior distributions for component related parameters.

A range of solutions has been proposed, depending on the objective of the infer-
ence. See, e.g., [5] and [3], where the relabelling involves imposing identifiability
constraints. However, such methods may not be applicable when an obvious con-
straint does not exist or when the components are not well separated.

The general problem is introduced in Sect. 2. Besides the extreme case of label
invariant quantities, in Sect. 3 we illustrate a method which, starting from a cluster-
ing of the samples, performs a relabelling with the purpose of obtaining an MCMC
sample suitable to infer on the characteristics of the clustering in terms of both prob-
abilities of each unit being in each group and the group parameters. The simulation
study is discussed in Sect. 4 and Sect. 5 concludes.

2 The relabelling problem

Prototypical models in which the labelling issue arises are mixture models, where,
for a sample y = (y1, . . . ,yn) we assume (Yi|Zi = g) ∼ f (y; µg,φ), with Zi, i =
1, . . . ,n, i.i.d. random variables and Zi ∈ {1, . . . ,G}, P(Zi = g) = πg. The likeli-
hood of the model is

L(y;µ,π,φ) =
n

∏
i=1

G

∑
g=1

πg f (yi; µg,φ), (1)

and it is invariant under a permutation of the indices of the groups.
As a consequence, the model is not identified with respect to an arbitrary per-

mutation of the labels. When Bayesian inference for the model is performed,
if the prior distribution p0(µ,π,φ) is invariant under a permutation of the in-
dices, that is p0(µ,π,φ) = p0(µ

′,π′,φ), then so is the posterior p(µ,π,φ |y) ∝

p0(µ,π,φ)L(y;µ,π,φ), which is then multimodal with (at least) G! modes.
In what follows, we assume that a sample is obtained from the posterior distribu-

tion for model (1) with a labelling invariant prior. Let {[θ ]h : h = 1, . . . ,H} denote
the MCMC sample for the parameter θ = (µ,π,φ) and {[Z]h : h = 1, . . . ,H} the
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sample for the Z variable. In principle, a perfectly mixing chain should visit the
points (µ,π,φ) and (µ′,π′,φ) with the same frequency. A chain with a less than
perfect mixing may either concentrate on one mode of the posterior distribution or
exhibit random switches.

A naive, but effective, solution to the relabelling issue is to use a sampler which
is inefficient with respect to the labelling – that is, it is unlikely to switch labels – but
otherwise efficient [4]. A limitation of such an approach is the fact that, in practice,
it is difficult to tune a sampler so that it is inefficient enough to avoid label switches
but not too inefficient.

Note that the presence of label switches is totally not relevant if the quantities we
are interested in are invariant with respect to the labels, as is the case of a prediction
for y, or the inference for the parameter φ ; moreover, a partition of the observations
in Ĝ groups can also be easily obtained by employing some clustering technique.

A particularly relevant example of invariant quantity is the probability of two
units being in the same group, ci j = P(Zi = Z j|D), i, j = 1, . . . ,n whose estimate
based on the sample is

ĉi j =
1
H

H

∑
h=1

∣∣[Zi]h = [Z j]h
∣∣ . (2)

The n× n matrix C with elements ĉi j can be seen as a similarity matrix between
units and S, with elements ŝi j = 1− ĉi j, as a dissimilarity matrix.

Relabelling becomes relevant when we are interested in the features of the G
groups, as the difference µ2− µ1 or the probability of each unit belonging to each
group, qig = P(Zi = g|D).

In order to study the posterior distributions of component-related quantities such
as µg, we need to define a suitable method to permute the labels at each iteration
of the Markov chain. Then, the new labels are such that different labels do refer to
different components of the mixture.

3 Pivotal method

Consider a partition of the observations in Ĝ groups, G1, . . . ,GĜ, obtained with a
suitable clustering technique. Suppose we are interested in the probabilities P(Zi =
g) and in the posteriors for groups parameters µg. Assume that we can find Ĝ units,
i1, . . . , iĜ, one for each group, which are (pairwise) separated with (posterior) prob-
ability one (that is, the posterior probability of any two of them being in the same
group is zero). In terms of the matrix C, the Ĝ× Ĝ submatrix with only the row and
columns corresponding to i1, . . . , iĜ will be the identity matrix. Such units, called
pivots in what follows, can be used to identify the groups and to relabel the chains:
for each h = 1, . . . ,H and g = 1, . . . , Ĝ

[µg]h = [µ[Zig ]h
]h; [Zi]h = g for i : [Zi]h = [Zig ]h. (3)
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The availability of Ĝ perfectly separated units is crucial to the procedure, and it
can not always be guaranteed. In particular, there exist three different circumstances
under which the relabelling procedure is unsuitable: the number of actual groups in
the MCMC sample is (i) higher than Ĝ, (ii) lower than Ĝ, (iii) equal to Ĝ but the
pivots are not perfectly separated, where the actual number of groups is the number
of non empty groups, denoted by G0. It is then clear that the Markov chain does not
have informations on more than G0 groups.

Now, let [G]h = #{g : [Zi]h = g for some i}. Consider now the set H1⊂{1, . . . ,H}
of iterations where [G]h > Ĝ; some units and groups will then have no available
pivot. For these units

Ĝ

∑
g=1

P̂(Zi = g) =
Ĝ

∑
g=1

q̂ig =
Ĝ

∑
g=1

1
H

H

∑
i=1
|[Zi]h = g|< 1 (4)

We suggest cancelling those iterations of the chains where this occur, that is, the final
–partial– chain is a sample from the posterior conditional on having at most Ĝ non
empty groups. Consider now the set H2 ⊂ {1, . . . ,H} of iterations where [G]h < Ĝ;
if h ∈H2, then [Zik ]h = [Zis ]h for some pivots ik, is. As a consequence, the pivots are
not perfectly separated: ĉhk > 0. The procedure in (3) can not be performed so also
in this case we proceed cancelling that part of the chain. Finally, consider the set of
iterations H3 = {h : ∃k,s s.t. [Zik ]h = [Zis ]h}, where (at least) two pivot are put in
the same group. As above, we need to get rid of this part of the chain.

In the end, we will relabel the chain with iterations H0 = {1, . . . ,H}\(H1∪H2∪
H3) which can be considered a sample from the posterior distribution conditional
on (i) there being exactly Ĝ non empty groups, (ii) the pivots falling into differ-
ent groups. The extent to which this conditioning is restrictive is measured by its
probability, whose estimated based on the (original, raw) MCMC sample is

1
H

#H0. (5)

A relevant issue is how to identify the pivots, noting that perfectly separated
pivots may not exist and that, even if they exist, we may not be able to find them.
A unit for each group can be selected according to some criterion, for instance for
group g containing units Gg we choose ī ∈ Gg that maximizes one of the quantities

max
j∈Gg

cī j, ∑
j∈Gg

cī j, ∑
j∈Gg

cī j− ∑
j 6∈Gg

cī j. (6)

Notice that other criteria can be considered as well, for instance one can choose
ī ∈ Gg which minimizes ∑ j 6∈Gg cī j. The quality of the choice is then measured by the
probability of the conditioning event (5).

The idea of solving the relabelling issue by fixing the group for some units dates
back to [1]. More recently, [6] proposed an approach similar to the one we present,
where each iteration is relabelled by minimizing some distance from a reference
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labelling. Such a method avoids the need to condition on the pivots being separated,
but it can be computationally demanding because of the required minimizations.

4 Some preliminary results from a simulation exercise

A simulation exercise is performed in order to allow a preliminary evaluation of the
general behaviour of the pivotal method explained in Sect. 3. In the simplest scenario
we could simulate data which exhibit a natural groups separation and thus the pivots
detection is easy to achieve. For instance, when considering data concerning the
urban traffic between cities of a specific region, the pivots are likely to coincide
with the main urban centrers. Then a more complex framework is considered in
order to induce the label switching problem and to make the pivots choice and the
relabelling issue not trivial. The simulation scheme consists in the following steps.

(i) Simulate N values from a mixture of bivariate normal distributions with G com-
ponents ∑

G
j=1 p jN2(µ j,Σ), where p j, j = 1, ...,G are the weights assigned to the

mixture components.
(ii) Set up a Bayesian model in JAGS with non-informative and weakly informative

prior distributions and run the MCMC algorithm with M iterations.
(iii) If necessary, discard some of the iterations of the chains according to the criterion

discussed in Sect. 3.
(iv) Perform a post-process relabelling of the chains after the MCMC sampling.
(v) Apply a suitable clustering technique to the similarity matrix C of the MCMC

sample in order to detect the pivots.

Different clustering algorithms have been considered, including hierarchical and
non-hierarchical techniques. Then, the pivots are identified according to one of the
criteria suggested in Eq. (6). An alternative approach consists in performing a cluster
analysis via non-parametric density estimation and then select those units whose
estimated density is maximum within each cluster.

To the end of a first exploration of the performances of the proposed method,
a bivariate normal distribution for the mixture components seems appropriate. To
start, G equally weighted components are considered, where G is a small number
(e.g. G=3, 4). The input means are allowed to vary in the bi-dimensional space,
while the variance components are fixed. As a result, we found that the ‘closer’ the
means are, the harder is to obtain perfectly separated pivots, as expected. In this
situation the submatrix of C corresponding to the selected pivots is far to be the
identity matrix.

Being interested in the ability of our method in detecting the pivots, we need to
define a more challenging scenario in terms of both relabelling issue and pivotal
choice. To do this, a mixture of mixtures is considered in step (i), meaning that
conditionally of being in one of the G groups, the value of the single yi is picked
out from one of two possible normal distributions, one more ‘peaked’ (subgroup
1), and one more ‘flat’ (subgroup 2), with weights π j1,π j2, j = 1, ...,G. In this
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case we held the means fixed, by varying the subgroups covariance matrices and
the π js, j = 1, ...,G, s = 1,2. The simulation results show that the greater is the
difference between π j2 and π j1, the more overlapped are the groups and the harder
is to satisfactorily pick out the pivots.

Preliminary results seem to confirm that the proposed approach may represent a
valid solution to the label switching problem, giving overall good results in detect-
ing the pivotal units for the mixture components even when no trivial partition is
derivable from the data structure.

5 Conclusions

A methodology for dealing with the relabelling issue in Bayesian mixture models is
proposed. It requires the identification of the pivotal units of the model components
and consists in post-processing the MCMC chains in such a way it enables us to
draw inference on both probabilities of each unit being in each group and the group
parameters. The performance of the method is explored via a simulation exercise,
in terms of the ability in identifying the pivots according to different criteria. Possi-
ble applications of the proposed approach and the comparison with other available
methods will be discussed.
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