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Abstract
Industry 4.0 aims to make collaborative robotics accessible and effective inside factories. Human–robot interaction is
enhanced by means of advanced perception systems which allow a flexible and reliable production. We are one of the
contenders of a challenge with the intent of improve cooperation in industry. Within this competition, we developed a
novel visual servoing system, based on a machine learning technique, for the automation of the winding of copper wire
during the production of electric motors. Image-based visual servoing systems are often limited by the speed of the image
processing module that runs at a frequency on the order of magnitude lower with respect to the robot control speed.
In this article, a solution to this problem is proposed: the visual servoing function is synthesized using the Gaussian mixture
model (GMM) machine learning system, which guarantees an extremely fast response. Issues related to data size reduction
and collection of the data set needed to properly train the learner are discussed, and the performance of the proposed
method is compared against the standard visual servoing algorithm used for training the GMM. The system has been
developed and tested for a path following application on an aluminium bar to simulate the real stator teeth of a generic
electric motor. Experimental results demonstrate that the proposed method is able to reproduce the visual servoing
function with a minimal error while guaranteeing extremely high working frequency.
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Introduction

Robots currently operating in production plants are not

equipped with perception systems (except for the manda-

tory safety systems). However, perception in industry is a

very active research field, as it is an enabling technology

for developing human–robot interaction in production

plants, and more flexible production processes, leading to

large-scale customization, which is one of the frontiers of

the Industry 4.0 revolution.

The concept of Industry 4.0 revolution is already well

established in the main technological advanced countries.

Europe is moving in this direction by spending many

efforts and resources with high priority. In particular,

according to the pillars in which Industry 4.0 is based,1
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an objective is the promotion of the connection and coop-

eration between research community and industries, also

by means of open projects. This work is part of one of these

projects where our research activity is merged with the

know-how of the industrial partners in order to solve real

industrial problems.

The starting point is the electric engine manufacturing:

this production needs a metal wire to be wrapped around a

metal component, namely the stator. Automating the wrap-

ping process has a strong technological and economical

impact, since it is currently completed by humans for slots

of up to 100,000 pieces. Indeed, this is a time-consuming

task, and even small deviations from the optimal wrapping

process have negative effects on the performance of the

engine produced. In this work, we propose an early imple-

mentation of an advanced visual servoing based on

machine learning for automatically deploying the copper

wire around each stator tooth by means of a lightweight

collaborative robot provided by a custom tool and just a

single monocular camera as perception device. We sim-

plify the problem by simulating the small space between

two engine teeth with the U junction slot in a standard

aluminium profile. They are very similar in shape, and

we can extend experiments to engines of larger dimen-

sions using a longer bar, instead of developing an ad hoc

engine for our tests. Moreover, slots in aluminium bars

are not as narrow as tooth gaps, giving us the perfect

early stage setup.

Visual servoing is widely used while manipulating or

inspecting objects. This tool can be decoupled into two

modules: one is in charge of perception and the other han-

dles robot motion. The main advantage is represented by

the continuous feedback provided by the sensor exploited

for driving the robot motion, following a control law which

relates robot kinematics and object tracking. This mechan-

ism provides several advantages: first, it offers the capabil-

ity of recovering from motion drifts and inaccurate motion

planning (provided by the feedback structure); second, the

measurements provided by the sensor have increased accu-

racy as long as the robot gets closer to the object – this

happens when the sensor is mounted on the robotic arm,

which is very often the case when dealing with visual ser-

voing. However, the direct feedback of the vision sensor on

the robot motion often becomes a weak spot of visual ser-

voing systems. Image processing algorithms are often com-

putationally intensive, and they are the main cause of

latency in the system, which limits the refresh rate of the

commands provided to the robot. Such phenomena are par-

ticularly undesirable for robots, which are inherently real-

time systems. To better understand the difference in the

time scales of perception and action, consider that fast

computer vision algorithms analysing standard-size images

could have running frequency lower than 10 Hz, while

research and industrial robots can accept commands with

a frequency significantly higher than 100 Hz. As the image

processing block required by visual servoing is usually the

bottleneck of this kind of systems, optimization on this side

leads to strong benefits.

We developed a visual servoed path following system in

order to scan the slot of the extrusion bar for simulating the

wire deployment in the real stator teeth. We took care that

the tool pin was kept continuously inserted in the gap at a

fixed height and orientation, and avoid collisions ensuring

an high control rate.

This work tackles the latency introduced by the sensory

system by proposing an alternative method for driving the

robot motion starting from images. Several possible

choices are available to decrease the processing time: the

most straightforward choice is code optimization, which

can lead to sensible improvements, but it is not the best

choice if the required improvement is by an order of mag-

nitude. A second option is graphics processing unit (GPU)

processing, which can provide huge improvements by one

or more orders of magnitude, but requires dedicated hard-

ware and software; more importantly, the speed-up

strongly depends on the algorithm structure and which

portions can be parallelized. A third option is hardware

implementation, which, however, suffers from strong

flows, the main ones being low flexibility and a strong

hardware design effort, with high costs.

Our innovative approach overcomes the bottleneck of

the general class of image-based visual servoing (IBVS)

systems using a different technique. Since the time scales

of image processing and robot control in an IBVS system

typically differ for an order of magnitude, the solution

proposed to reduce the processing time is to substitute the

image processing module by learning the visual servoing

function. A machine learning algorithm is trained using a

small portion of the image and the corresponding robot

control command, to be considered, respectively, as input

and output data in the testing phase. The model chosen in

this study is a Gaussian mixture model (GMM). After train-

ing, the model can be used in place of the IBVS system: this

novel way of exploiting machine learning for synthesizing

an IBVS system leads to a strong decrease of the processing

time, bringing the working frequency of the visual servoing

system close to the typical values of robotic systems.

The remainder of this article is organized as follows. In

‘State of the art’ section, related work on visual servoing

and machine learning for robot control is discussed;

details on our approach will be given in ‘System’ section,

and the results of our tests, both in terms of precision and

speed-up, will be detailed in ‘Experiments and results’

section. Final remarks and conclusions are reported in

‘Conclusions’ section.

State of the art

In the context of IBVS, the literature shows different

attempts to avoid image processing and feature tracking for

increasing the processing speed. Direct visual servoing

approaches addressed this issue by considering the image
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as a whole: the task is defined as a minimization problem

between the current and the desired image.2 An interesting

alternative is represented by the introduction of new visual

features based on luminance.3 The approach called photo-

metric visual servoing4 is mainly based on the simple

extraction of the image gradient, consequently removing

any other necessity for image processing. The main draw-

backs of photometric visual servoing are the strong non-

linearities in the system dynamics: to address this problem,

the use of photometric moments has been introduced.

Moments capture the characteristics of an unknown distri-

bution. They have been applied to image intensity in order

to obtain a large convergence domain5 and extended

including spatial weights to contrast the disappearance of

portions of the scene.6 A second way to increase the con-

vergence domain of the photometric visual servoing is to

represent each intensity pixel as a Gaussian distribution

extending its influence to the neighborhood.7 The goal is

to minimize the difference between the desired Gaussian

mixture and the current one. Photometric and photometric

moments are geometrical interpretations of a more general

class of methods called kernel-based visual servoing8 in

which spatial sampling functions called ‘kernels’ are used

to find so-called abstract visual features.

Another recent technique exploits mutual information,9

defined as the quantity of information shared by two signals

(images in our case) to align two images to be robust to

appearance variations. On the contrary, our approach does

not properly belong to the class of direct visual servoing.

Indeed, it relies on a machine learning algorithm to model

the control law implemented by a ‘traditional’ feature-

based approach. The idea is very similar to the one pro-

posed by Hafez et al.,10 where the feature tracking step has

been removed by modelling image features with a Gaussian

mixture. We expanded this concept by removing both

image processing and feature tracking from the loop, mov-

ing to a completely different direction with respect to other

works aiming at the same objective.

On the other hand, Hafez et al.’s work10 is not the only

attempt of using machine learning for improving robot

motion control. Reinforcement learning (RL) based on

neural networks (NNs) has been used to enhance visual ser-

voing for a manipulator in the case of visibility problems,

incorrect calibration parameters, white noise and modelling

errors11 or for reducing the required amount of information

in tasks, such as reaching and grasping.12 In a different

paper,13 an adaptive distributed fuzzy proportional–deriva-

tive (PD) controller served as a map between the image error

vector and the joint velocities of the robot. This avoided the

need to compute both pseudo-inverse robot Jacobian and

inverse interaction matrix, yet maintaining the image pro-

cessing phase. With Sadeghzadeh et al.,14 again the available

information is limited and the system is able to learn online

new tasks by means of fuzzy NNs and RL.

In a very recent work,15 deep learning has been used to

learn hand–eye coordination for grasping purposes. The

approach consists of two parts: one predicts the probability

of success of a certain command from the camera image and

the other functions as the continuous servoing. This

approach substantially removes any kind of image process

and feature tracking using a huge amount of data (more than

800,000 grasp attempts) for training the deep convolutional

NN driving the algorithm. Nevertheless, the actual aim of

this work was a task generalization more than a computa-

tional redaction. Indeed, no analysis has been performed

regarding control rate or responsiveness of the system.

With respect to the majority of these works, our working

setup is restricted and we already know the essential infor-

mation about the environment in advance. Our key contri-

bution consists in having the entire visual servoing process

replaced by a probabilistic framework for improving the

robot control rate and with only a limited number of exam-

ples coming from a traditional visual servoing at disposal to

train the model acting as control law.

System

As outlined in ‘Introduction’ section, this study aims at

creating a visual servoing system based on machine learn-

ing – this offers the major advantage of a much faster

processing and increased reactivity while keeping precision

at almost the same level of a traditional visual servoing

used for training the system.

Our system is divided into two modules: an offline

phase and an online phase. The offline phase exploits an

IBVS system running on a custom data set, in which the

cavity in the middle of an extrusion bar is visible, as shown

in Figure 1. The robot task is to follow the cavity. Such task

requires a high precision, since the bar cavity is narrow.

We recorded several runs with the robot following the

cavity driven by IBVS: acquired images and resulting velo-

cities were used to train the machine learning framework

acting as visual servoing. A GMM has been used for data

representation, while Gaussian mixture regression (GMR)

has been exploited for computing the output during the

online phase. We selected such framework mainly, because

Gaussian mixtures generally need a smaller number of

examples with respect to other techniques in order to obtain

significant results. Moreover, the regression process is very

fast, which is crucial to achieve a high frame rate in the

whole process and therefore a higher robot control rate.

Visual servoing

We considered the problem of scanning a gap on a straight

object with a camera mounted on the robot end-effector. The

control of the robot has been performed through a visual

servoing approach with an eye-in-hand configuration,16,17

assuming the camera frame defined as in Figure 1.

The desired pose of the camera with respect to the bar is

with the z-axis perpendicular to its direction, at a fixed

distance and the scanning direction parallel to the y-axis,

Castelli et al. 3



going towards the negative values. In this configuration,

the x-axis will be always perpendicular to the bar direction.

These choices do not affect the generality of the system.

We define, with x 2 R6, the actual camera configuration

in the Cartesian space and, with s 2 Rm, a set of m scalar

values representing a parametrization of the image features,

which can be extracted from the scene, such as points, lines

and ellipses. Camera configuration and image features rep-

resentation are related by a general non-linear function Gð�Þ
as in (equation (1))

s ¼ GðxÞ (1)

The main purpose of visual servoing is to provide a

closed-loop control law to drive the camera from x to a

desired pose x� in such a way, the image feature parameters

assume the desired values s�. In general, this is achieved by

relating the camera displacement vc 2 R6, that is, three

linear velocities vx; vy and vz and three angular velocities

!x; !y and!z, to the visual features error e ¼ s � s�,
according to the general formulation18

_e ¼ Lvc (2)

where L 2 Rm� 6 is the interaction matrix built from the

knowledge of the visual features in the 3D space and the

actual values of a parametrization of these visual features in

the image plane. We implemented an IBVS scheme18 by

exploiting the tools provided by an open-source visual ser-

voing library for Cþþ, namely visual servoing platform

(ViSP).19,20 In this case, we selected two line features cor-

responding to the two edges of the object cavity of Figure

2(a), represented with the common 2D formulation

L ¼ fðx; yÞ 2 I : x cos� þ y sin� � � ¼ 0g

where � denotes the angle with the x-axis, while � defines

the distance of the line from the origin. This convention

provides a subsequent parametrization Lið�i; �iÞ i ¼ 1:2.

Since m ¼ 4 in our case, L is formed by two stacked

blocks as the one in (equation (3))

L ¼

l� cos� l� cos�

l� sin� l� sin�

�l�� �l��
ð1 þ �2Þ sin� �� cos�

�ð1 þ �2Þ cos�

0

�� sin�

� 1

2
666666666664

3
777777777775

l� ¼ �
A

D
� cos� � B

D
� sin� � C

D

l� ¼ �
A

D
sin� þ B

D
cos�

(3)

where A;B;C and D are the coefficients of a 3D plane con-

taining the line. In order to ensure the exponential

decoupled decreasing of the positioning error e, the camera

velocity can be expressed as

vc ¼ � lLye (4)

where l is a proportional gain involved in the exponential

convergence of e and y denotes the pseudo-inverse. L is a

time varying matrix and depends on both 3D and 2D values

of the visual features; since we do not operate any depth

estimation, L is approximated using the desired values of

the features. This approximation presents desirable

Figure 1. Image of the bar taken from the camera mounted on
the robot tool center point (TCP). We consider as the camera
frame the one fixed in the center of the image, with the z-axis
coincident with the optical axis of the camera and the x- and y-axis
parallel to the horizontal direction and vertical direction of the
view, respectively.

Figure 2. (a) Source image. (b) Edges image. (c) Clusters of lines
(red, blue) and the final selected lines (green). (d) ViSP moving
edge tracker result. ViSP: visual servoing platform.
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properties only in an area nearby the convergence config-

uration. The convergence region is restricted and the tra-

jectory is not optimal. This solution is suitable for our case,

since we start from a solution nearby convergence. Further

details concerning the interaction matrix approximation

can be found in Chaumette and Hutchinson.21

Since we have a contour following problem, the camera

motion must be controlled in order to follow the desired

path, which should go along the two lines. Our main goal is

to maintain the camera aligned with the gap and move

along the bar for its whole length with respect to the cam-

era’s y-axis, and therefore, the y velocity component Vy is

controlled depending on the features error e. In particular,

Vy is forced to be linearly dependent by the sum of squares

of the error e, since it is not involved in the alignment task.

The formulation is

Vy ¼ V max 1 � kek2
sat

kek2
max

� �
(5)

where kek2
max denotes the maximum allowed error (in sum

of squares) for the forward motion of the camera, and

kek2
sat is the output of a saturation function

kek2
sat ¼ maxfminfkek2; kek2

maxg; kek2
ming

with kek2
min ¼ 0 the error value for which the velocity

must be maximum. We selected this solution in order to

maintain a linear velocity between minimum bounded error

and a saturation value. More complex laws can be found in

the study by Marchand.19

Actual values of the visual feature parameters

ð�i; �iÞ; i ¼ f1; 2g needed to compute L are continuously

updated by a feature tracker. In particular, the algorithm is

initialized by detecting lines using an edge detector (Figure

2(b)) on the input image (Figure 2(a)). Since edges are

almost vertical lines, we used a first-order Sobel derivative

filter with a Scharr kernel along the x- and y-directions. The

edge image is then evaluated using a binary threshold on

the weighted sum of the two derivatives. Since lines are

almost vertical within the image in the case at hand, the y-

direction derivative has been weighted at 30% and the x-

direction at 70%, in order to give more relevance to vertical

edges. This way to detect edges is simple and computation-

ally very efficient, even though it leads to some noise in the

detection: a morphological erosion is therefore exploited

for reducing noise.

The Hough line transform22 has been employed in order

to retrieve all the line parameters Lið�i; �iÞ, as shown in

Figure 2(c). Due to the presence of noise in the input

images, several lines could be detected. A K-means clus-

tering23 is run on the � values of the detected lines to group

together close lines related to the same edge of the cavity.

Among the available clustering methods,24 the K-means

algorithm needs an a priori knowledge of the number of

clusters, which adapts to our case. Indeed, we know the

number of edges to be found in the image, and therefore,

this clustering method provides a stable output. Clusters

have been sorted according the average � value and the two

desired lines are selected in order to be tracked.

The tracker selected for following the cavity edges is a

moving-edge line tracker,25 which demonstrated good per-

formance for the problem at hand; moreover, a fast and

reliable implementation can be found in ViSP.

GMM and GMR

The GMM is a parametric probability density function rep-

resented as a weighted sum of Gaussian component densi-

ties, which best fit the training data set. Naming K the

number of Gaussian components with which the problem

must be approximated, the model can be characterized by

the list of parameters

θ ¼ ft1 . . . tK ; μ 1 . . . μK ;∑1 . . . ∑Kg (6)

where:

� ti 2 R is the prior probability of the i th Gaussian

component, such that
PK

i¼ 1ti ¼ 1.

� μ i 2 Rd is the mean vector of the i th Gaussian

component.

� ∑i 2 Rd� d is the covariance matrix of the i th Gaus-

sian component.

� d 2 R represents the dimensionality of the problem.

All the parameters ðt; � and sÞ can be estimated from a

training data set through an iterative expectation maximi-

zation (EM) algorithm.

Considering a single training data x 2 Rd , its probability

density function is assumed to be a weighted sum of normal

probability density functions

pðxjθÞ ¼
XK

j¼ 1

tjNðxjμ j;∑jÞ (7)

where

Nðxjμ;∑Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞd j∑j

q e
�1

2
ðx� μÞT ∑�1

ðx� μÞ

The EM algorithm is applicable only if K is known a

priori. A method to estimate K is to use the Bayesian infor-

mation criterion,26 but we used an empirical method, based

on experimental observations. Indeed, few components

cannot completely describe the system, while by selecting

many components, the model becomes much complex

introducing redundant information and then giving a null

weight to some prior.

GMR estimates output data by specifying the desired

input. Therefore, input and output data together represent

a possible occurrence of training data set, where the input is

selected by the user and the output is an estimation calcu-

lated using GMM.27 In particular, a single data element can

be rewritten as

Castelli et al. 5



x ¼
u

y

� �
(8)

Gaussian model parameters are partitioned in a similar

way

μ j ¼
μu

j

μy
j

" #
; ∑j ¼

∑u
j ∑uy

j

∑yu
j ∑y

j

" #
;

XK

j¼ 1

tj ¼ 1 (9)

Then, the regression function assumes the form

myðuÞ ¼ E½yju� ¼
XK

j¼ 1

pjðuÞmjðuÞ (10)

with

pjðuÞ ¼
tjNðu; μu

j ;∑
u
j ÞXK

i¼ 1

tiNðu; μu
i ;∑

u
i Þ

mjðuÞ ¼ �y
j þ ∑yu

j ∑u
j
� 1ðx � μu

j Þ

(11)

Offline phase

This step aims to acquire a valid data set, suitable to train a

GMM, as described in ‘GMM and GMR’ section. In par-

ticular, several scanning trials are performed with the

visual servoing approach of ‘Visual servoing’ section,

starting from different initial positions and with small

external perturbations in order to make the system more

robust. Visual servoing needs images with a high resolu-

tion in order to extract good features to be tracked, with a

consequent frame rate limitation.

The dimension of the input data is a crucial parameter

for any machine learning algorithm; in particular, high-

dimensional input vectors stimulate the curse of dimen-

sionality, leading to poor performance and need for huge

training data sets. To reduce the number of inputs, one

single image row (called patch) is provided to the GMM:

this is feasible for our problem, as the input images are

invariant along the y-axis.

During each trial, for each control loop, namely for each

frame IðtÞ, the camera velocity vcðtÞ computed from the

control law is saved in correspondence to the patch PðIðtÞÞ
extracted from the considered frame. In the examined

setup, each saved patch corresponds to a subset of intensity

values of a single line of pixels transversal to the bar length.

In this way, it is possible to store all the information of the

cavity position with respect to the camera (see Figure 3).

A data set composed of many couples ðvcðtÞ;PðtÞÞ has

been used to train a GMM with K ¼ 4 empirically chosen

Gaussian components. For all the tests, we adopted a

ð6 þ 100Þ � N dimension training data with six camera

velocity components, 100 pixel intensity values sampled

from a significant line of the raw image, while N is the

number of samples recorded from the simulations.

Online phase

In the online phase, the camera resolution has been physi-

cally reduced to an area which correspond to the patch

extracted during the offline step. For each frame, the rela-

tive camera velocity has been estimated through GMR by

exploiting the GMM trained during the offline phase. In

this way, it is possible to emulate the visual servoing con-

trol law with a statistical model with the advantage of elim-

inating all the image processing on high-resolution images.

This corresponded a reduction in the processing time, and

the consequent possibility to increase the camera frame rate

and the overall control rate.

Experiments and results

Experimental setup

We tested our system in a real environment reproducing an

industrial setup (Figure 4) composed by a lightweight col-

laborative 6 degrees of freedom (DOFs) manipulator (Uni-

versal Robots UR10) equipped with a fully calibrated

camera PointGrey Grasshopper 3 with the following

specifications:

� Model: GS3-U3-28S4C-C.

� Sensor: Sony ICX687 CCD, 1/1.800, 3.69 �m.

� Megapixel: 2.8MP.

� Interface: USB3.

� Resolution max: 1928 � 1448.

� Frame rate: 26 fps at full res.

� Optic: Computar 8 mm 1:1.4 2/3.

The aluminium bar has been fixed horizontally to the

robot support to represent the engine tooth to be scanned,

a gap of 1.2 cm between the borders, as shown in Figure

2(a). All the developed code has been written in Cþþ
within the ROS framework, exploiting the tools provided

by the open source libraries OpenCV28,29 and ViSP. Simu-

lations have been launched and monitored in a personal

computer (PC) with the following specifications:

� Processor: Intel Xeon CPU E3R25 at 3:10 GHz� 4.

� OS: Ubuntu 14.04 (x86-64).

Figure 3. Each patch has a gray level distribution related to the
bar pose with respect to the camera, that is, all the information
that needed to compute the camera displacement can be
extracted from the image as IBVS does. IBVS: image-based visual
servoing.
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� RAM: 4GB.

� Graphics: NVIDIA GT218.

Results

A training data set has been built by acquiring several scans

of the bar cavity based on the IBVS framework presented in

‘Visual servoing’ section. The camera employed has a

frame rate of 26 fps at full resolution, which could not be

sufficient for applications requiring high responsiveness.

For this reason, we reduced the resolution of the images

in input to the IBVS system. A size of 500 � 400 at 55 fps

has been selected as a good trade-off between frame rate

and feature quality for detection and tracking. Performance

decreased without a significant increase in the frame rate

by further reducing the resolution.

The tune-up of the IBVS system consisted in the defi-

nition of the desired lines configuration ð��i ; ��i Þ i ¼ f1; 2g
and in the setting of the forward velocity parameters of

(equation (5)). The desired view and motion of the camera

led to the feature target values

��1;2 ¼ +0:0045 m

��1;2 ¼ 0�

(
(12)

that is, we assumed the lines as vertical; according to the

camera parameters, these values correspond to a height of

the camera from the bar of about 15 cm. The parameters

regulating the camera motion have been selected with

empirical observations after some trials, resulting as

V max ¼ � 0:01 m= s

k e k2
max ¼ 0; 0002

k e k2
min ¼ 0

8><
>: (13)

Several trials starting from different initial positions of

the camera were recorded. The velocity has been computed

using the IBVS control law, while the patches have been

derived from a subsampling operation on the central pixel

row, leading to an image of size 500 � 1.

Patch selection is a critical step of this approach: it must

maximize the information contained while minimizing the

size for both reducing the dimensionality of the problem

and increasing the frame rate during the online phase. In

particular, we discarded 100 pixels from both sides of the

image, since they contained background; from the remain-

ing 300 elements, only one over three pixels has been

selected as training data, obtaining a 100 � 1 patch as

shown in Figure 3. Our data set was composed of approx-

imately N ’ 10; 000 samples, where about 4000 samples

came from scanning started from position aligned with the

bar or with small perturbations, while 3000 samples were

extracted from left misalignments, and the last 3000 were

obtained from right misalignments. As already claimed, in

this work, we supposed a correct initial height of the cam-

era, and therefore, only lateral displacement has been con-

sidered for the tests. Finally, we trained a GMM composed

of K ¼ 4 Gaussian components. The number of compo-

nents has been selected empirically by comparing results

from models created with the same input data, but with

increasing K values.

In the testing phase, the resolution of the camera has

been reduced to the minimum size height allowed by the

camera, that is, 500 � 2. A 100 � 1 patch has then been

obtained by selecting the first row and subsampling it.

Using these settings, it was possible to reach a frame rate

of 94 fps, the maximum achievable by the camera, accord-

ing to its datasheet. This represents an improvement of

about 41:5% with respect to the framerate used during the

offline phase (Figure 5).

The real visual servoing was compared to our learning-

based method in order to verify the performance in terms of

path followed, velocity set, precision and control rate

improvements. In Figure 6, position and rotation of the

camera have been monitored over the samples for the two

considered systems (real visual servoing and GMM-based).

The learning-based system was able to follow the gap in the

aluminium bar, the recorded poses differed from the ones

set by the traditional visual servoing system only for a

small tolerance. This result is crucial, as it demonstrates

that a learning engine is able to emulate the entire visual

servoing behaviour when properly trained.

In order to better evaluate the performance of our sys-

tem, commanded velocity has been monitored within the

same experiment, and plotted in Figure 7. Oscillating beha-

viours in the y component of the IBVS are projected into

each component of the learning-based system, and are

caused by the use of a distribution obtain through a sum

of Gaussians. Indeed, the oscillations coming from the for-

ward velocity control have been modelled as input data

without a clear separation of the single velocity compo-

nents, leading to a correlation between the parts and a

consequent propagation of oscillations. Moreover, GMM

performs an intrinsic smoothing of the data, resulting in

Figure 4. System used for simulations.
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low velocity values. In particular, for the forward velocity

vy, we reached an average value of about �0:005 m= s

starting from a desired value of �0:01 m= s. It should be

observed that during the 25 s (Figure 7) of simulation, the

difference in the number of samples due to the increased

frame rate allows the learning system to perform the velo-

city control more times with respect to the standard IBVS,

with a consequent improvement in responsiveness.

The slight degradation of the control performance caused

by velocity oscillations is counterbalanced by the higher

frame rate. For IBVS, the average processing time is of

about 13.6 ms, which allows a maximum throughput rate

of about 73 fps without frame loss. Therefore, even if a

powerful camera is used, the effective throughput of the

control law would be limited by the constraint given by

the processing time. Using the learning-based control, on the

other hand, leads to the average processing time of about

0.17 ms, 100 times lower than the previous case (Figure 8).
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The maximum allowed theoretical throughput would be of

about 5882 fps with a dramatic performance improvement

(Figure 9). The proposed solution offers a good trade-off

between accuracy and responsiveness.

Conclusions

In this article, we dealt with a real industrial setting in

which the problem of automatically deploying copper wire

around the narrow stator teeth of an electrical engine has

been considered. In particular, we modelled the problem as

a path following task to be performed with a collaborative

robot provided by a monocular camera.

We presented an innovative approach to visual servoing,

based on a machine learning technique, for boosting the control

rate during the robot motion in order to avoid collisions. The

starting point was an IBVS to perform a precise scanning of a

cavity in a metal bar. Traditional visual servoing systems usu-

ally work with high-resolution images at low frame rate, which

makes them unsuitable for highly responsive applications.

Our approach aims at avoiding all image processing on

high-resolution images by replacing the control structure of

a standard visual servo control scheme with a learning

engine which emulates it given a very low-resolution infor-

mative image as input. A GMM has been trained with a

custom data set extracted from several visual servoing

scanning experiments. The data samples are patches of the

camera view coupled with the velocity command computed

by the traditional servo control law.

The GMM trained with such samples was then used to

replace the IBVS. Velocities for robot control have been

estimated based on a GMR algorithm analysing only a

small patch as input, allowing a very high control rate. The

learning-based framework has been able to emulate the

standard solution within a limited configuration.

The proposed system shows a dramatic increase in

control rate at the cost of a slightly lower accuracy. The

effective increase of the frame rate is of about 41% for the

tested setup, with a theoretical maximum control rate of

5882 fps.

Our approach exploited constraints and information

knew in advance about the selected real case, as the image

invariance along one axis. The effectiveness of the algo-

rithm is surely influenced by such a priori knowledge,

since we were able to use a single row image instead of

larger portions. Indeed, the scalability to more general and

complex scenarios needs further investigation. Neverthe-

less, we believe the proposed approach could be extended

effectively.

In the near future, we plan to improve the system accu-

racy by testing advanced and smoother control laws while

comparing the efficiency of different learning engines and

regression techniques.
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20. Marchand É and Chaumette F. Feature tracking for visual

servoing purposes. Robot Auton Syst 2005; 52(1): 53–70.

21. Chaumette F and Hutchinson S. Visual servoing and visual

tracking. In: Siciliano, Bruno, Khatib, Oussama (eds)

Springer handbook of robotics, 2008, pp. 563–583. Verlag

Berlin Heidelberg: Springer.

22. Ballard DH. Generalizing the Hough transform to detect arbi-

trary shapes q. Pattern Recognit 1981; 13(2): 111–122.

23. Jain AK. Data clustering: 50 years beyond k-means. Pattern

Recognit Lett 2010; 31(8): 651–666.

24. Jain AK, Murty MN and Flynn PJ. Data clustering: a review.

ACM Comput Surv (CSUR) 1999; 31(3): 264–323.

25. Bouthemy P. A maximum likelihood framework for deter-

mining moving edges. IEEE Trans Pattern Anal Mach Intell

1989; 11(5): 499–511.

26. Schwarz G. Estimating the dimension of a model. Ann Stat

1978; 6(2): 461–464.

27. Cohn DA, Ghahramani Z and Jordan MI. Active learning

with statistical models. J of Artifi Intell Res 1996; 129–145.

https://www.scopus.com/inward/record.uri?eid¼2-s2.0-

0029679131&partnerID¼40&md5¼77620557046f3

a845dd4ab05fb1dba6d.

28. Itseez. Open source computer vision library. https://github.

com/itseez/opencv (accessed 24 October 2017).

29. Bradski G. The OpenCV Library. Dr Dobb’s Journal of

Software Tools 2000; 25(11): 120–123.

10 International Journal of Advanced Robotic Systems

https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938268922&doi=10.1109%2fICRA.2015.7140046&partnerID=40&md5=41a6d533dd44e388d2b23628a038e6f4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938268922&doi=10.1109%2fICRA.2015.7140046&partnerID=40&md5=41a6d533dd44e388d2b23628a038e6f4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938268922&doi=10.1109%2fICRA.2015.7140046&partnerID=40&md5=41a6d533dd44e388d2b23628a038e6f4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938268922&doi=10.1109%2fICRA.2015.7140046&partnerID=40&md5=41a6d533dd44e388d2b23628a038e6f4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938268922&doi=10.1109%2fICRA.2015.7140046&partnerID=40&md5=41a6d533dd44e388d2b23628a038e6f4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938268922&doi=10.1109%2fICRA.2015.7140046&partnerID=40&md5=41a6d533dd44e388d2b23628a038e6f4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938268922&doi=10.1109%2fICRA.2015.7140046&partnerID=40&md5=41a6d533dd44e388d2b23628a038e6f4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938268922&doi=10.1109%2fICRA.2015.7140046&partnerID=40&md5=41a6d533dd44e388d2b23628a038e6f4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938268922&doi=10.1109%2fICRA.2015.7140046&partnerID=40&md5=41a6d533dd44e388d2b23628a038e6f4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958206435&doi=10.1109%2fIROS.2015.7354154&partnerID=40&md5=7dafe4e8ec101ef024b4b9f864007dff
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958206435&doi=10.1109%2fIROS.2015.7354154&partnerID=40&md5=7dafe4e8ec101ef024b4b9f864007dff
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958206435&doi=10.1109%2fIROS.2015.7354154&partnerID=40&md5=7dafe4e8ec101ef024b4b9f864007dff
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958206435&doi=10.1109%2fIROS.2015.7354154&partnerID=40&md5=7dafe4e8ec101ef024b4b9f864007dff
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958206435&doi=10.1109%2fIROS.2015.7354154&partnerID=40&md5=7dafe4e8ec101ef024b4b9f864007dff
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958206435&doi=10.1109%2fIROS.2015.7354154&partnerID=40&md5=7dafe4e8ec101ef024b4b9f864007dff
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958206435&doi=10.1109%2fIROS.2015.7354154&partnerID=40&md5=7dafe4e8ec101ef024b4b9f864007dff
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958206435&doi=10.1109%2fIROS.2015.7354154&partnerID=40&md5=7dafe4e8ec101ef024b4b9f864007dff
https://www.scopus.com/inward/record.uri?eid=2-s2.0-51349129639&doi=10.1109%2fIROS.2007.4399546&partnerID=40&md5=35dd414d1c9df8b49e009b5a96f356f3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-51349129639&doi=10.1109%2fIROS.2007.4399546&partnerID=40&md5=35dd414d1c9df8b49e009b5a96f356f3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-51349129639&doi=10.1109%2fIROS.2007.4399546&partnerID=40&md5=35dd414d1c9df8b49e009b5a96f356f3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-51349129639&doi=10.1109%2fIROS.2007.4399546&partnerID=40&md5=35dd414d1c9df8b49e009b5a96f356f3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-51349129639&doi=10.1109%2fIROS.2007.4399546&partnerID=40&md5=35dd414d1c9df8b49e009b5a96f356f3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-51349129639&doi=10.1109%2fIROS.2007.4399546&partnerID=40&md5=35dd414d1c9df8b49e009b5a96f356f3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-51349129639&doi=10.1109%2fIROS.2007.4399546&partnerID=40&md5=35dd414d1c9df8b49e009b5a96f356f3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-51349129639&doi=10.1109%2fIROS.2007.4399546&partnerID=40&md5=35dd414d1c9df8b49e009b5a96f356f3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-51649126259&doi=10.1109%2fROBOT.2008.4543702&partnerID=40&md5=d473d76858f4a03883c6d7b5b3f8363a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-51649126259&doi=10.1109%2fROBOT.2008.4543702&partnerID=40&md5=d473d76858f4a03883c6d7b5b3f8363a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-51649126259&doi=10.1109%2fROBOT.2008.4543702&partnerID=40&md5=d473d76858f4a03883c6d7b5b3f8363a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-51649126259&doi=10.1109%2fROBOT.2008.4543702&partnerID=40&md5=d473d76858f4a03883c6d7b5b3f8363a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-51649126259&doi=10.1109%2fROBOT.2008.4543702&partnerID=40&md5=d473d76858f4a03883c6d7b5b3f8363a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-51649126259&doi=10.1109%2fROBOT.2008.4543702&partnerID=40&md5=d473d76858f4a03883c6d7b5b3f8363a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-51649126259&doi=10.1109%2fROBOT.2008.4543702&partnerID=40&md5=d473d76858f4a03883c6d7b5b3f8363a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-51649126259&doi=10.1109%2fROBOT.2008.4543702&partnerID=40&md5=d473d76858f4a03883c6d7b5b3f8363a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-51649126259&doi=10.1109%2fROBOT.2008.4543702&partnerID=40&md5=d473d76858f4a03883c6d7b5b3f8363a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893561637&doi=10.1109%2fIJCNN.2013.6707053&partnerID=40&md5=ce344620b2537462a18daa96d8e78ad6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893561637&doi=10.1109%2fIJCNN.2013.6707053&partnerID=40&md5=ce344620b2537462a18daa96d8e78ad6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893561637&doi=10.1109%2fIJCNN.2013.6707053&partnerID=40&md5=ce344620b2537462a18daa96d8e78ad6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893561637&doi=10.1109%2fIJCNN.2013.6707053&partnerID=40&md5=ce344620b2537462a18daa96d8e78ad6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893561637&doi=10.1109%2fIJCNN.2013.6707053&partnerID=40&md5=ce344620b2537462a18daa96d8e78ad6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893561637&doi=10.1109%2fIJCNN.2013.6707053&partnerID=40&md5=ce344620b2537462a18daa96d8e78ad6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893561637&doi=10.1109%2fIJCNN.2013.6707053&partnerID=40&md5=ce344620b2537462a18daa96d8e78ad6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893561637&doi=10.1109%2fIJCNN.2013.6707053&partnerID=40&md5=ce344620b2537462a18daa96d8e78ad6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893561637&doi=10.1109%2fIJCNN.2013.6707053&partnerID=40&md5=ce344620b2537462a18daa96d8e78ad6
https://doi.org/10.1177/0278364917710318
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032640449&partnerID=40&md5=2a2ece1c71bca6e337abc2b238c98cbb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032640449&partnerID=40&md5=2a2ece1c71bca6e337abc2b238c98cbb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032640449&partnerID=40&md5=2a2ece1c71bca6e337abc2b238c98cbb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032640449&partnerID=40&md5=2a2ece1c71bca6e337abc2b238c98cbb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032640449&partnerID=40&md5=2a2ece1c71bca6e337abc2b238c98cbb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032640449&partnerID=40&md5=2a2ece1c71bca6e337abc2b238c98cbb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032640449&partnerID=40&md5=2a2ece1c71bca6e337abc2b238c98cbb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029679131&partnerID=40&md5=77620557046f3a845dd4ab05fb1dba6d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029679131&partnerID=40&md5=77620557046f3a845dd4ab05fb1dba6d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029679131&partnerID=40&md5=77620557046f3a845dd4ab05fb1dba6d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029679131&partnerID=40&md5=77620557046f3a845dd4ab05fb1dba6d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029679131&partnerID=40&md5=77620557046f3a845dd4ab05fb1dba6d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029679131&partnerID=40&md5=77620557046f3a845dd4ab05fb1dba6d
https://github.com/itseez/opencv
https://github.com/itseez/opencv


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 175
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


