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Abstract

In this paper we are concerned with the analytical description of the change
in floristic composition (species turnover) with the distance between two
plots of a tropical rainforest due to the clustering of the individuals of the
different species. We describe the plant arrangement by a superposition of
spatial point processes and in this framework we introduce an analytical
function which represents the average spatial density of the Sørensen simi-
larity between two infinitesimal plots at distance r. We see that the decay
in similarity with the distance is essentially described by the pair correlation
function of the superposed process and that it is governed by the most abun-
dant species. We test our analytical model with empirical data obtained for
the Barro Colorado Island and Pasoh rainforests. To this end we adopt the
statistical estimator for the pair correlation function in [1] and we design a
novel one for the Sørensen similarity. Furthermore, we test our analytical
formula by modelling the forest study area with Neyman-Scott point pro-
cesses. We conclude comparing the advantages of our approach with other
ones existing in literature.

Keywords: Sørensen similarity, scale dependence, Neyman-Scott point
processes, pair correlation functions, minimum contrast method

Introduction

Estimating biodiversity of forests is a central issue in modern conserva-
tion ecology. Both from the theoretical and field application point of view it
represents a daunting challenge. Since the pioneering work of Whittaker [2]
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and Preston [3, 4] a number of diversity indices have been introduced in liter-
ature and their effectiveness has been tested against field data, with various
degrees of success. In this paper we are concerned with a single aspect of this
broad issue, namely the study of the decay of similarity between two regions
of a landscape as a function of the distance between them. To specify the
intuitive concept of similarity we will adopt the widely used Sørensen1 simi-
larity index [5, 6] (see equation (2) below) and its associated spatial density
(equation (3)). Equally used in literature is the notion, complementary to
the concept of similarity, of species turnover or β-diversity, that is the change
in species composition between two plots as a function of the distance be-
tween them. Even stated in these terms, this more restricted problem is hard
to reduce to a mathematical model since on real landscapes many drivers of
diversity are acting at the same time and may contribute with different in-
tensity depending on the spatial scales [7]: at a continental scale climatic
factor may dominate whereas at a smaller scale orographic factors may cre-
ate specific environmental gradients due to the change in altitude or to the
orientation of valleys. At any scale, the effect of past transformations of the
environment may have shaped the territory with dispersal barriers or niches.
The heterogeneity of these factors may have hampered the construction of a
all-compassing mathematical model and, effectively, a relatively small (com-
pared the huge number of articles dedicated to biodiversity issues) number of
works are available on the specific problem of finding the function that best
describes the change in species composition with the distance. In chrono-
logical order, important contributions to this central problem of estimating
biodiversity of forests are the seminal works of Leight et al. [8], Nekola and
White [9] and the neutral theory approach of Hubbell [10, 11] (see e.g. the
comprehensive book Magurran and McGill [12]).
In this paper we focus on a single driver of diversity, that is the tendency of
plants to form clusters of individuals. The shape and extent of the cluster
may vary from species to species depending on seed dispersal limiting fac-
tors, or other effects, e.g Janzen-Connell effect [13, 14], which may be inter
or intra specific. We aim at reducing this multiplicity of biotic factors to
a single statistical descriptor. Stated in more mathematical terms, we wish

1We are aware that each diversity index has its own field of application and it is more or
less biased. Our analytical treatment of a decay of similarity function based on a specific
index will hence necessarily suffer from the same limitations of the index itself, but we are
confident that our procedure can be applied to other indices.
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to study the effect of spatial correlations between the individuals’ (plants)
positions on the change in the species’ composition of two small plots at a
given distance. The mathematical tool adapted to this task is the spatial
point process theory (see [15, 16]). The main sources of inspiration for our
approach are the works of Shimatani [1, 17], Plotkin and al. [18], Morlon
et al. [19] (based on [18]), and also Chave et al.[20]. Using the language
of point processes we derive in Sect. 1 an analytical formula for χ(r), the
(spatial density of) Sørensen similarity between two small plots distance r
apart. This gives the form of the decay of similarity as a function of the
distance:

χ(r) = λ(gX(r)− 1) + χ∞ (1)

where the first term gX(·) is the pair correlation function of the superposed
process having intensity λ and χ∞ is a constant depending solely on the
species’ abundances and representing the similarity at a scale where the clus-
tering of individuals has no effect. Thus, essentially, the decay in similarity is
described by the pair correlation function of the whole forest plot. This latter
in turn depends on the clustering of each species weighted by their relative
abundance (see equation (15)). Therefore in our model the similarity decay
function is dominated by the most abundant species, a feature previously
recognized in other studies [19], but still debated [6, 21].

Apart from presenting a novel analytical approach to the definition of a
decay of similarity function using point processes, the main aim of this paper
is to test the proposed formula against field data. In our study we use the
BCI (Barro Colorado Island) and Pasoh forest databases, which register the
spatial position of respectively 222602 and 310520 plants belonging to 301
and 927 species covering an area of 50ha each. In Sect. 2 we introduce the
statistical estimators for the similarity decay, χ̂, and for the pair correlation
function, ĝX . The former, based directly on Sørensen similarity formula (2),
as far as we know is a novel one, whereas the latter has been used in [1] and
it is derived from the general theory of point processes even if it does not
need any hypothesis on the type of stochastic point process that we should
associate to the species of the forest under study. They therefore provide a
test of the formula (1) above at a very general level.

A second goal of this work is to select the class of spatial point process
that best describes the plants’ arrangement in the study area and test its
effectiveness in reproducing the decay of similarity function. This is done
in Sect. 3. The clustering of each species α is described by a univariate (if
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we assume rotational symmetry of the two-dimensional cluster) probability
density dα(r), the so-called dispersal kernel, which gives the probability that
an individual of the cluster will establish at distance r from its parent, lo-
cated at the cluster’s center. The dispersal kernel features of each species
are thus the essential informations for our model that have to be drawn from
experimental data (by the minimum contrast method in this work). We test
the effectiveness of three dispersal kernels (exponential, Gaussian, Cauchy)
at describing the species’ clustering. Once we determine the cluster parame-
ters for each species, we compute the analytical form of the pair correlation
function gX and of the similarity index χ(r). These are compared with their
statistical estimates in Sect. 4.3.

1. Similarity decay functions

1.1. Sørensen index for point processes

We begin by recalling the definition of Sørensen similarity index. We
consider a flat region W with no environmental gradients. Given two disjoint
(A ∩ B = ∅) subregions A and B, let s(A) and s(B) be the number of
different species present, respectively, in A and B and let s(A,B) be the
number of co-present species in A and B. Provided that s(A) + s(B) > 0,
the Sørensen similarity between regions A and B is the symmetric function
0 ≤ σ(A,B) ≤ 1

σ(A,B) =
s(A,B)

1
2
(s(A) + s(B))

(2)

When s(A) = s(B), σ(A,B) gives the number of co-present species per
species. As it is well known, the number of present or co-present species
depends on the size of the regions A and B. Therefore we assume, as it is
generally the case, that A and B have the same size a and we denote with

χ(A,B) = a−1σ(A,B) (3)

the number of co-present species per species and per unit of survey area, i.e.
the spatial density of Sørensen similarity.

In the same spirit of [1], we wish now to reformulate the notion of Sørensen
similarity in the language of spatial point processes. We model the presence of
S species by a spatial point process X = ∪αXα, which is the superposition of
S mutually independent, homogeneous and isotropic spatial point processes
Xα, α ∈ {1, . . . , S}. In this way we model a community of S independent
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species where intra-specific interactions are allowed. Let us denote with nα(x)
and nα(y) the random number of points of the process Xα contained in two
infinitesimal disks centered at x and y, having equal area dx = dy and being
disjoint. Therefore n(x) =

∑
α nα(x) is the total number of individuals in

dx, regardless of their species.
Let us now introduce some basic notions on point process theory. Let λα(x)
be the intensity (spatial density of points) of Xα, λ(x) =

∑
α λα(x) be the

intensity of the superposed process X, ρα(x, y) be the associated second
order product density (second moment density, see [16] or [22]) and set for
simplicity’ sake ρ(x, y) =

∑
α ρα(x, y). The following interpretations are

standard

λα(x)dx = P (nα(x) = 1), P (nα(x) > 1) = o(dx) (4)

and

ρα(x, y)dxdy = P (nα(x) = 1, nα(y) = 1),

P ({nα(x) > 1} ∪ {nα(y) > 1}) = o(dxdy).

(5)

Denoting with s(x), s(y) and s(x, y) the number of species (point processes)
present in dx, dy and in both dx and dy respectively, and neglecting higher
order terms in dx or dxdy, we have that the expected number of species found
in dx around x can be expressed as

E[s(x)] =
∑
α

P (nα(dx) = 1) = λ(x)dx, (6)

while the average number of co-present species in the infinitesimal regions
dx and dy around x and y is

E[s(x, y)] =
∑
α

P (nα(x) = 1, nα(y) = 1) = ρ(x, y)dxdy. (7)

The number s(x) of species at x and the number s(x, y) of shared species at x
and y are discrete random variables whose expected values can be described
by the above formulae (6) and (7). Apart from their averages, their distri-
bution is assumed to be unknown. The equivalent of the Sørensen similarity
index for infinitesimal regions is thus given by the random variable

σ(x, y) =
2s(x, y)

s(x) + s(y)
, (8)
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which is the ratio of two random quantities. The expected value of this ratio
can be computed from E[s(x)] and E[s(x, y)] using the method of statistical
differentials. Indeed, let us denote with X and Y the two random variables
s(x, y) and s(x) + s(y), respectively. Then (see e.g. [23], p.65)

E
[
X

Y

]
≈ E[X]

E[Y ]

(
1 +

var(Y )

E[Y ]2
− cov(X, Y )

E[X]E[Y ]

)
=

E[X]

E[Y ]
(1 + φ(x, y)). (9)

The point process formulation of the Sørensen similarity index can therefore
be computed as

E[σ(x, y)] =
2E[s(x, y)]

E[s(x) + s(y)]
(1 + φ(x, y)) =

2ρ(x, y)dxdy

λ(x)dx+ λ(y)dy
(1 + φ(x, y)).

(10)
Considering the associated spatial density

χ(x, y)dx = E[σ(x, y)] (11)

we have the following form for the similarity density

χ(x, y) =
2ρ(x, y)

λ(x) + λ(y)
(1 + φ(x, y)). (12)

The factor 1 + φ(x, y) is hard to compute analytically. In Sect. 2 we show
that for our applications it can be set equal to zero.

1.2. Similarity decay under φ(x, y) = 0, stationarity and isotropy hypotheses

Let us consider the special case where φ(x, y) equals 0 for all x and y
in our study region W . If ρα(x, y) is a function of the distance r = |x − y|
(isotropy), and if the intensity (giving the expected density of species in our
model, see (6)) is constant (stationarity), i.e. λ(x) = λ, formula (12) above
becomes distance dependent

χ(r) =
1

λ

∑
α

ρα(r). (13)

If we rewrite ρα(r) = gα(r)λ2α using the pair correlation function gα, and we
introduce the relative intensity pα = λα/λ, with

∑
α pα = 1, equation (13)

becomes

χ(r) =
1

λ

∑
α

gα(r)λ2α = λ
∑
α

gα(r)p2α. (14)
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Introducing the pair correlation function gX(r) of the superposed process [16]

gX(r) =
1

λ2
[∑

α

λ2αgα(r) +
∑
α 6=β

λαλβ
]

(15)

we obtain the Sørensen similarity decay function (13) in the form

χ(r) = λ(gX(r)− 1) + λ
∑
α

p2α, (16)

which coincides with the pair correlation function of the superposed process
up to a change of scale.2 This is the main object of our paper.
Unlike the original Sørensen index (2) which is an incidence-based index,
i.e. giving equal weight to abundant or rare species, this one takes into
account the relative intensity of species pα. As noted in [6], incidence-based
indices are generally biased downward, underestimating similarity especially
when species richness is large or sample size is small. From formula (14)
we notice that the similarity decay function we propose is dominated by the
most abundant species, a feature which has been previously recognized in
the literature (see [19]), but that is rigorously motivated in our formula.
A useful property of the formula (14) above is that it is independent of the
size of the plots. This is the consequence of our strategy of considering
virtually infinitesimal plots and considering the spatial density of Sørensen
similarity. In a sense, our approach is orthogonal to the one adopted in the
works [19] and [18] where the emphasis is first on the development of an
analytical formula for the similarity between plots of finite area (even if the
assumption of relatively small sample size and relatively large distances is
made in [19]) and then on dealing with the problem of determining how the
model parameters (e.g. the negative binomial clumping parameter in [18])
vary with the area under study. See Sect. 5 below for an overview on this
problem. We think that our approach, even if not all-compassing, is more
straightforward and easier to test against field data.

2If all the species have the same clustering, i.e. are described by the same pair cor-
relation function gα = g, α ∈ {1, . . . , S}, one has that χ(r) = λ(D − 1)g(r), where
D = 1 −

∑
α p

2
α is the Gini-Simpson index, while if they are equally abundant (λα = λ),

then χ(r) = λS−1
∑
α gα(r).
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1.3. Complete spatial randomness case

Let us consider the similarity decay function (16). On the one hand,
since the pair correlation function g(r) tends to 1 as r goes to infinity, χ(r)
tends to a constant value asymptotically. On the other hand, if the complete
spatial randomness hypothesis (CSR) holds for every species, then gα(r) ≡ 1
for every α, and the Sørensen index becomes again distance-independent and
constant. In both cases we set

χ∞ = λ
∑
α

p2α = λ(1−D), (17)

where D = 1 −
∑

α p
2
a, is the Gini-Simpson index [25, 26]. Hence χ∞ is the

product of the probability λ of finding an individual times the probability
1−D of finding two individuals belonging to the same species.
Formula (16) sets the range of applicability of our point process formulation
of Sørensen index since it measures the average change of species composition
at a scale which is comparable with the largest of the correlation range rαc
of the different species (g(r) = 1 for r > rc = maxα r

α
c ). At a broader scale,

the spatial point process description of the landscape composition becomes
in a sense trivial, because all the species appear to be randomly distributed
(CSR hypothesis).
Accordingly, the asymptotic value χ∞ does not depend on the clustering
properties of the various species but only on their abundances. This fea-
ture may be useful for establishing a test of the theory independent of
the chosen cluster model. Using the standard estimator for the intensity
λ̂α = nα(W )/|W |, where |W | is the size of the whole study region W and
nα(W ) is the number of points of the α species within W , we derive the
following estimator for χ∞ in (17)

χ̂∞ =
1

|W |

∑
α n

2
α∑

α nα
. (18)

Let us suppose that the Species Abundance Distribution (SAD) φ(n) of the
regionW under study is known by other means, independently of the assump-
tions made for the spatial process. Then, equation (18) can be rewritten as

χ̂∞ =
1

|W |
Eφ[n2]

Eφ[n]
, (19)

in which χ̂∞ depends on the ratio between the second and first moment of
n.
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1.4. Analytical formula for finite-size cells under CSR hypothesis

For later use, we derive here an analytical formula for the similarity be-
tween two regions of finite and equal area a under the CSR hypothesis, i.e.
for a superposition of Poisson point processes (see e.g. [22]). Under this as-
sumption, every point is uncorrelated to the others, hence the spatial point
pattern is independent of the distance between points. This framework is
thus intended to describe the similarity between two plots of finite area very
far away so that species compositions are virtually independent. This is the
approach taken in [18].
In this case, for two regions A,B ⊂ W of equal area a, setting nα = nα(W )
we have –see (6), (7)–

E[s(A)] =
∑
α

P (nα(A) ≥ 1) =
∑
α

1− e−
nα
|W |a = E[s(B)],

and, since P (nα(A) ≥ 1, nα(B) ≥ 1) = P (nα(A) ≥ 1)P (nα(B) ≥ 1),

E[s(A,B)] =
∑
α

P (nα(A) ≥ 1, nα(B) ≥ 1) =
∑
α

(1− e−
nα
|W |a)2.

Therefore

χ
CSR

(a) =
1

a

E[s(A,B)]

E[s(A)]
=

1

a

∑
α(1− e−

nα
|W |a)2∑

α 1− e−
nα
|W |a

. (20)

Formula (20) gives the asymptotic value of the similarity between two patches
of finite area a far away (see pink solid line in Figure 3). This quantity can
be considered as the discrete analogous of equation (10) in [18] under the
CSR hypothesis (see also [19], Supporting Information F2).
Using the Taylor expansion of the exponential function ex = 1 + x + o(x2),
when a→ 0 the above formula reduces to equation (18):

lim
a→0

χ
CSR

(a) =
1

a

∑
α(1− 1 + a

|W |nα)2∑
α 1− 1 + a

|W |nα
=

1

|W |

∑
α n

2
α∑

α nα
= χ̂∞. (21)

2. Estimators for χ and g

2.1. Direct estimators for χ

Let S be the total number of species andN the total number of individuals
in our study region W , supposed to be a rectangular window of side lengths
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lx and ly. For each species α, the coordinates xαi , i ∈ {1, . . . , nα} of all its
nα = nα(W ) individuals falling within W are known.
In order to estimate the Sørensen similarity (8) whose expected value is (11),
we first divide our region W in cells of area a and call C = |W |/a the total
number of cells. Let ci be the center coordinates of cell i = 1, . . . , C. Then,
calling Kr the number of cells having distance r from each other, we give the
following estimator

χ̂(r; a) =
2

aKr

C∑
i,j=1
j 6=i

s(i, j)

s(i) + s(j)
II(‖ ci − cj ‖= r), (22)

where s(i) is the number of species in cell i, s(i, j) is the number of species
co-present in cells i and j, and II(·) is the indicator function:

II(C) =

{
1 if condition C holds

0 otherwise.

Let us remark that, with this estimator we are considering the spatial average
over all cells in W having distance r, while point process theory considers
the average, for fixed cells located in x and y, over many realizations of
the point process. This latter cannot be computed, since, of course, we are
given a single realization of the process, that is the ‘real’ forest. However,
the two kind of averages (respectively over space and over realizations) are
equivalent provided that the stationarity and isotropy hypotheses are realistic
assumptions for our forest.
Denoting with X = s(i, j) and with Y = s(i) + s(j), we have that (22) will
give an estimate of E[X/Y ]. The estimator for the ratio E[X]/E[Y ] can,
instead, be obtained through the following formula

χ̂2(r; a) =
2

a

1
Kr

∑C
i,j=1
j 6=i

s(i, j)II(‖ ci − cj ‖= r)

1
Kr

∑C
i,j=1
j 6=i

[s(i) + s(j)]II(‖ ci − cj ‖= r)
. (23)

From (9), if we compute E[X/Y ] and E[X]/E[Y ] we can also compute φ(x, y).
Let us note that, under the hypotheses of stationarity and isotropy under
which we are working, φ(x, y) is a function of r = |x− y|, i.e. φ(x, y) = φ(r).
Using (22) and (23), we found that for our empirical data φ(r) < 0.05 at
any distance r considered, leading to a relative error of less than 5% between
these two estimators (see Figure 1) χ̂(r; a) and χ̂2(r; a). Therefore, in the
following we will approximate φ(r) ≈ 0.
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Figure 1: Comparison between empirical estimators of χ. We computed the similar-
ity index for the BCI dataset considering species with more than 200 individuals through
(22) (black curve on the left panel) and we compared it with the one obtained through
(23) (grey curve). In both cases we set a = 25. On the left we plotted the value of φ(r)
at any distance. It resulted always smaller than 0.05, leading to a relative error between
the two estimators of less than 5%. We therefore approximate φ(r) ≈ 0 in the rest of the
paper.

2.2. Estimator for χ based on the estimator for g

Following [15] we estimate the empirical pair correlation function of the
α species as follows

ĝα(r) =
1

λ̂αnα

nα∑
j,k=1
k 6=j

w(‖ xαj − xαk ‖ −r)
2πrB(r)

, (24)

where λ̂α = nα/|W | is the unbiased estimator of the density of individuals
of the α species, ‖ · ‖ denotes Euclidean distance on the plane, B(r) = 1 −
r(2lx+2ly−r)/lxlyπ is the edge corrector function and w is the Epanenchnikov
kernel, defined as

w(y) =


3

4δ

(
1− y2

δ2

)
for |y| < δ

0 for |y| ≥ δ,

with δ = 0.2/
√
λ̂α.

The estimator for the pair correlation function gX of the superposed process
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X can thus be computed using formula (15) as

ĝX(r) =
1

λ̂2

[∑
α

λ̂2αĝα(r) +
∑
α 6=β

λ̂αλ̂β

]
, (25)

where λ̂ = N/|W | is the unbiased estimator of the total density of individuals.
Therefore, an indirect estimator of χ can be obtained from plugging (25)
above and (18) into (16):

χ̂(r) = λ̂(ĝX(r)− 1) + χ̂∞. (26)

2.3. Finite cell size scaling

Note that the statistical estimator χ̂(r; a) in (22) for χ(r) depends on an
extra parameter, the cell size a. Since our analytical formula (16) is designed
for an ideally infinitesimal area, we are faced with the problem of coupling
the results of the direct estimator χ̂(r; a) relative to finite area cells to the
output of (26) where the finiteness is taken into account by the Epanench-
nikov kernel. Below we show how to properly rescale the decay curves of
χ̂(r; a).
In Sect. 1.4 we derived the analytical formula (20) for the similarity between
two regions of equal area under the complete spatial randomness hypothesis.
Out of this special case, it is hard to guess how the output of the similarity
estimator (22) depends on the cell size a. We therefore tested the incidence
of the cell size on the output of similarity estimator (22) by superimposing
five different grids onto the 50ha plot, with square cells of area 1, 4, 25, 100
and 625 square meters respectively.
In Figure 2, we can see that the choice of the cell size a strongly influences the
curves χ̂(r; a) although the general trend results stable. However, as shown in
the right panel of the same figure, the curves χ̂(r; a) divided by their respec-
tive value at the largest considered distance, χ̂(rmax; a), are approximatively
independent on the cell size. For us rmax is the maximal available distance in
the study area given by the shorter side of the rectangular study area, that
is rmax = 500 m. In the following, we set χ̂(rmax; a) = χ̂rmax(a).
Therefore, from Figure 2 right panel we can experimentally deduce that at
any distance r

χ̂(r; a)

χ̂rmax(a)
≈ f(r),
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i.e. the ratio is independent of the cell size. Hence, for two cell sizes a and b

χ̂(r; b) ≈ f(r)χ̂rmax(b) ≈ χ̂(r; a)
χ̂rmax(b)

χ̂rmax(a)
. (27)

and taking the limit for b→ 0 we may derive the statistical estimator for an
infinitesimal cell size given the estimator for a finite cell size χ̂(r; a)

χ̂(r; 0) ≈ χ̂(r; a)
χ̂rmax(0)

χ̂rmax(a)
≈ χ̂(r; a)γ̂(a), (28)

where we have set χ̂rmax(0) ≡ χ̂∞ and

γ̂(a) = χ̂∞/χ̂rmax(a). (29)

Note that the scaling factor γ̂(a) is the ratio of two similarities between plots
very far away, where we may assume that the CSR hypothesis holds. In
Sect. 1.4, we have derived the analytical function χ

CSR
(a) of the similarity

under CSR hypothesis and its limit for a→ 0, χ̂∞ (see (20)).
We tested if the assumption χ̂rmax(a) = χ

CSR
(a) does hold for our study area

so that we may compute analytically the scaling factor as

γ(a) = χ̂∞/χCSR
(a). (30)

Results are contained in Figure 3, where we plotted the function χ
CSR

(a)
defined by (20), for a up to 625 square meters (solid pink line) and the
empirical values of χ̂rmax(a) computed through the estimator (22) for different
cell-sizes (colored symbols). The agreement between these two quantities
improves with the cell size a (the off-curve point a = 1 square meters is
probably due to the finite diameter of the plants) meaning that, at least for
a ≥ 25 square meters, the CSR hypothesis holds for distances r ∼ rmax = 500
meters where correlations between points become negligible. Note that the
curve χ

CSR
(a) (pink solid line) tends asymptotically to χ̂∞ (blue line) for

a→ 0 as prescribed by (21).
With the scaling formula (28), we can now rescale the output of the direct
statistical estimator χ̂(r; a) for finite cell size a to an infinitesimal cell size in
order to compare it with the output of the indirect estimator (26) based on
the pair correlation function gX of the superposed process.
Note that the rescaling (both upscaling or downscaling) can be done also
between two empirical curves χ̂(r; a) and χ̂(r; b) through formula (27), using
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the empirical scaling factor γ̂(b, a) = χ̂rmax(b)/χ̂rmax(a) or the analytical one
γ(b, a) = χ

CSR
(b)/χ

CSR
(a).

In Figure 4 we downscaled the similarity decay function χ̂(r; a) estimated
via (22) with a = 625 to χ̂(r, a)γ(b, a) for b = 25, 100, 400 (dashed lines) and
compared the curves with the original ones χ̂(r; b) for the same values of b
(colored symbols). As expected, for such fairly large areas, all the rescaled
estimators are in good agreement. In the sequel we used the empirical scaling
factor γ̂(a) for smaller plots (1 to 4 square meters).
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Figure 2: Sensitivity of Sørensen similarity index on cell size. We computed the
similarity index for the BCI dataset considering species with more than 200 individuals.
We superimposed to the 1000x500 observation window different regular square grids and
estimated the corresponding Sørensen indexes χ̂(r; a) via (22). In figure, different colors
represent different cell sizes, as in the legend. On the left panel: the choice of the cell
size strongly influences the result, by “shifting the curve χ̂(r; a) along the y-axis”. On
the right panel: we divided each curve by its empirical value at the maximum considered
distance, χ̂rmax

(a). The resulting curve can be considered approximatively independent of
the cell size and the error decreases with the distance.

3. Study of clustering using Neyman-Scott processes

By construction, the Sørensen similarity decay function (16) depends on
the relative abundances of species and on their pair correlation function. This
latter depends essentially on the clustering of the individuals. Therefore,
the crucial point for the description of real data patterns is the choice of
the cluster model of the point process. The theory exposed in this section,
establishing a link between the form of the dispersal kernel -see iii) below–
and the form of the resulting similarity decay function, could help to select
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Figure 3: χ∞ for finite-size cells. On the left: the pink line represents the asymptotic
value of the theoretical similarity index, χ

CSR
(a) as a function of the cell-area – see (20)–.

Colored symbols are the empirical values χ̂rmax
(a) computed via (22) for cell sizes of 1,

4, 25, 100, 400 and 625 square meters, respectively, and considering only species with
more than 200 individuals. The straight light blue line represents the value of χ̂∞ for
infinitesimal cells computed through the abundances (see (18)). On the right: relative
percentage error between the empirical values and the theoretical ones.
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Figure 4: Comparison between rescaled χ estimators. We tested the goodness of
rescaling (27) by plotting the estimator (22) for χ̂(r; b) with b = 25 (triangles), b = 100
(crosses) and b = 400 (dots) against the rescaled one χ̂(r; a)γ(b, a) for a = 625 (dashed
line). The difference between the two curves increases with |b− a|, but there is always an
excellent fit.

the form of the dispersal kernel from the empirical similarity curve as an
inverse problem. In particular, it would be interesting to determine the
dispersal kernel that gives rise to a compound exponential decay function, as
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predicted by Hubbell neutral theory. The reader interested to the application
of the theory exposed above to real forests can go directly to Sect. 4 below.

In this paper we limit ourselves to Neyman-Scott (NS) processes [28].
These processes have found large applications in ecological theory due to
their ability to model the clumping mechanism of plants’ species in which
daughter seeds are spread around a parent tree’s location (see Supplementary
Material for their definition).
The pair correlation function of a NS cluster process of parameters (ρ, µ, γ)
is given by (see [29], pp. 318-319)

gγ(r) = 1 +
1

ρ
fγ(r), (31)

where fγ(r) is the convolution of the 2-dimensional probability density dγ(r):

fγ(r) = fγ(|x|) =

∫
R2

dγ(|y|)dγ(|y − x|)dy = dγ ? dγ. (32)

Note that fγ(x) is the probability that two offsprings belonging to the same
cluster have x as the vector difference of their positions with respect to the
cluster center. If dγ(·) is a radial function, so is fγ(·).
Considering S Poisson cluster processes Xα of parameters (ρα, µα, γα), the
Sørensen index of similarity of the process resulting from their superposition
can then be obtained by plugging formula (31) into (14)

χ(r) = χ∞ +
∑
α

µαfα(r)pα, (33)

where we have set fα = fγα for simplicity. In the general case, the form of
the function dα(r) reflects the cluster characteristics and may have short or
long tails. Here we consider Gaussian (single or mixture), inverse power or
exponential dispersal kernels (see [30]). Since χ(r) tends to χ∞, necessarily

lim
r→∞

fα(r) = 0, (34)

while the limit of fα(r) for r → 0+ may be finite or infinite (in this latter
case the function is said to have a pole at 0). Our aim now is to compare the
above curve (33) for χ(r) with the empirical ones (22) and (26) coming from
field data to select the best cluster model and determine the corresponding
cluster parameters.
In the Supplementary Material we report in details the theory necessary for
computing the convolution function fγ given the dispersal kernel dγ.
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3.1. Preliminary test on computer-generated forests

We tested the validity of estimator (22) rescaled according to (28) on four
artificial forests generated according to different point processes: a Poisson
one and three cluster processes (exponential, Gaussian and Cauchy). In all
cases, we considered a square window of side 500 meters and generated a
forest consisting of 50 species with abundances distributed according to a
normal distribution of mean and standard deviation equal to 1000 and 300
individuals, respectively (see Figure 5).
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Figure 5: Test of estimator (28) on four artificial forests generated according to different
point processes: a Poisson one and three cluster processes (exponential, Gaussian and
Cauchy). We compared χ̂(r; b)γ̂(b) for b = 25 (triangles), 100 (crosses), 400 (dots) and
625 (stars) with the theoretical similarity decay function (solid curves) given by (17) for
the Poisson process and by (33) for the Neyman-Scott processes. The agreement between
the empirical and theoretical curves increases as b decreases, but it is always very good.

For the exponential and modified Thomas cluster processes, to each species
was assigned a random average radius r drawn from a normal distribution
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of mean 20 and standard deviation 5. These values determined the cluster
parameters β = 2/r and σ = r

√
2/π. Since the average radius is not well

defined for a Cauchy cluster process, in this case we arbitrarily set the cluster
parameter b equal to r/2.
Once generated the four forests, we estimated the similarity decay func-
tion for infinitesimal area using the rescaled estimator χ̂(r; b)γ̂(b) for b =
25, 100, 200 and 625. We then compared the empirical curves with the the-
oretical similarity decay functions given by (17) for the Poisson process and
(33) for the Neyman-Scott processes. The agreement between the empirical
and theoretical curves increases as cell size b decreases, but it is always very
good (see Figure 5).

4. Test of estimators on BCI ecological dataset

We test our analytical formula and its related estimators on the Barro
Colorado Island ecological dataset (BCI) consisting of the spatial coordinates
of 222602 individuals belonging to 301 different species of plants within a
50ha rainforest plot.

4.1. Species selection and subsampling

Species selection. To see if neglecting the scarcely abundant species
strongly affects the similarity index for BCI, we superimposed a 5x5 grid
onto the plot and compared the distance-dependent Sørensen index com-
puted via equation (22) taking into account species having least abundance
of 0, 20, 100, 200, 300 and 500 individuals, which represent, respectively, the
100%, 73%, 49%, 36%, 30% and 24% of the total species richness and which
account for the 100%, 99%, 98%, 96%, 93% and 90% of the total number
of individuals. From our analytical formula, we know that the similarity is
affected only by the most abundant species.
On the left panel of Figure 6 we plot the obtained empirical curves, while in
the right plot the corresponding relative percentage error with respect to the
Sørensen index computed for the whole forest. By selecting the species with
a population of at least 200 individuals (107 species), we get a curve which
differs form the similarity curve of the whole BCI for about 5%, a reasonable
restriction for our goal.

Sub-sampling. As a last preliminary test, we checked whether sub-sampling
affects the estimate of the Sørensen index. Again, we superimposed a 5x5
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Figure 6: Sensitivity of Sørensen similarity index on abundances. We have already
noticed that our distance-dependent Sørensen index is dominated by the most abundant
species. On the left panel, we show the different curves χ̂(r; 25) that we obtained via
estimator (22) by taking into account only species having least abundance as indicated in
the legend. On the right panel, we computed the relative percentage error with respect to
the black curve, which is the similarity index for the whole forest.

grid on our study region and considered three scales of sub-sampling by ran-
domly taking the following percentages of the 20·000 available cells: 50%,
25% and 5%. In Figure 7, points are the result of averaging over 10 trials
for each sub-scale. We can observe that, although lower percentages affect
the curve by significantly increasing the fluctuations, the general trend of the
curve is very well preserved for a sub-sampling of up to 25% of the data.

4.2. Comparison of direct and indirect similarity estimators

We can test the validity of our similarity decay model (formulae (14) and
(16))

χ(r) = λ(gX(r)− 1) + χ∞

by estimating independently its left and right sides. For χ(r) we use the esti-
mator χ̂(r; a)γ̂(a) given by (22) multiplied by the finite cell size scaling factor
γ̂(a) in (29), whereas for the right hand side we use the indirect estimator
(26). Results are displayed in Figure 8, which seems to show good agreement
between the two estimates if the smallest cell sizes are used (a = 1 or 4 square
meters), which are the closest to the theoretical hypothesis of infinitesimal
cell size, but the use of the finite cell size scaling factor gives fairly good
results even for greater cell sizes. Moreover, we see that the estimated decay
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Figure 7: Sensitivity of Sørensen similarity index on sub-sampling. We in-
vestigated the effect of sub-sampling in computing the empirical Sørensen index esti-
mated through (22). We first superimposed a 5x5 grid on the window, corresponding to
C = 20·000 square cells. For every percentage p shown in the legend, we randomly choose
pC cells and compute the distance-dependent similarity index between them, χ̂p(r; 25).
Points are the mean on 10 trials. Clearly, the lower the percentage of considered cells,
the more fluctuations affect the curve, although the trend results very stable under sub-
sampling.

curves tends to the analytical one monotonically from below. Therefore the
analytical curve sets an upper bound for the density of similarity. Note also
that when using the smallest cell sizes the curve displays a tri-phasic behav-
ior with a steep initial descent, a linear descent in the middle and a hollow
tail. This behavior is not captured with coarser cell sizes. We will discuss a
possible explication of this phenomenon in Sect. 4.3.
We stress that the basic estimator (22) is independent of any assumptions on
the clustering of the individuals, which are not known a priori, while these as-
sumptions are contained in the indirect estimator (26). The good agreement
between the two estimates supports the conclusion that, at the considered
scale 0 < r < 500 m, clustering is a main driver of species turnover. Also, at
contrast with Hubbell Neutral theory [11], we find that rare species do not
contribute significantly to the specie turnover even at local scales.
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Figure 8: Similarity Index for BCI. Similarity index for BCI dataset computed by (26)
(black dots) compared with the estimator (28) for different cell sizes a (colored symbols).
The agreement between the two estimators increases as the cell size decreases. This is in
accordance with the theory.

4.3. Comparing estimated and theoretical similarity functions

Let us now focus on modelling BCI species through the three NS point
processes described in Sect. 3.1: exponential, Gaussian (modified Thomas)
and 2Dt kernel processes.
For each species α, the first step is to estimate the set of parameters (ρα, µα, γα)
which best describe its pattern. We do this by the method of minimum con-
trast [32], which relies on the minimization of the following integral∫ rmax

0

(ĝ1/4α (r)− g1/4α (r))2dr,

where ĝα is the empirical pair correlation function estimated according to
(24) and rmax is the maximum considered distance, equal to 500 meters.

By inserting the fitted parameters of each model into the corresponding
formulation of equation (33), we can get the predicted theoretical similarity
curve for the BCI forest (see Figure 9). We find a good agreement between
the model prediction and the empirical data for all cluster types. Neverthe-
less, the Cauchy cluster type gives the best results at fitting the single species
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pair correlation function (see the results of the χ2 test in the Supplementary
Material).
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Figure 9: Sørensen index for BCI. Comparison between the empirical distance-
dependent Sørensen index χ̂(r; 0) = χ̂(r; a)γ̂(a) (where χ̂(r; a) has been computed via
(22) and γ̂(a) = χ̂∞/χ̂rmax

(a)) for square cells of area 1 (triangles) and 4 (squares) square
meters and the exact functional form of χ(r) by the three cluster models using (33). We
find a good agreement between model prediction and empirical data for all cluster type.

Our analytical similarity decay function (16) was derived using the point pro-
cess framework and is based on the following assumptions: 1) we compare
the species’ composition of two regions of infinitesimal size and 2) the point
process is stationary and isotropic (i.e. translation and rotation invariant)
and homogeneous, i.e. the intensity λ, which is the density of individuals, is
constant (see Sect. 1.1). Here we would like to discuss the impact of hypoth-
esis 2).
To investigate this, we generated three artificial forests as follows: for each
BCI species having more than 200 individuals, we generated a Neyman-Scott
homogeneous, stationary and isotropic cluster process within the 50ha plot
having the same number of individuals as the original species and according
to the three different cluster types parameters. We then computed the em-
pirical Sørensen similarity index χ̂(r; 0) = χ̂(r; a)γ̂(a), with a = 4 and 25 for
the superposed process and compared it with the theoretical one (equation
(33)). Results are displayed in Figure 10.
For the forests generated according to the three cluster model hypothesis 2)
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holds. Considering a cell area of 25m2 (left column), the empirical similarity
decay function of the artificial forest does not display the linear descent in
the middle part, which is on the contrary present in the empirical curve of
the BCI data. At smaller cell area scale(4m2, right column), we found mixed
results: the linear descent is present in the Gaussian dispersal kernel, is ab-
sent in the exponential one and is very hollow in the Cauchy kernel. This
is a consequence of the different average cluster radius of the three models,
which is infinite for the Cauchy cluster.

To give a hint for a possible explanation for the linear descent phe-
nomenon in Figure 11 we show the pattern of two different species of the BCI
forest, one showing an homogeneous behavior (left column, first panel) and
one affected by anisotropy and non-stationarity (right column, first panel).
For both species, bottom panels show the analytical curves of the pair cor-
relation function (colored lines, see (31)), with parameters obtained by the
minimum contrast method against the empirical pair correlation estimated
via (25). In contrast to the first species, where all three models are able to
capture the empirical curve, for the second species the fit is much worse and,
more importantly, the curve shows a hollow part in the middle due to over-
dispersion at that scale. Since the pair correlation function of the superposed
process is the sum weighted by the abundances of the pair correlation func-
tion of the different species, we may think that the linear descent of the curve
in its middle part is an average behavior due to the fact that for some species
the patterns are not homogeneous nor translation or rotation invariant.

5. A synopsis of similarity decay functions

In this section we give an account of the various approaches to the prob-
lem of describing the decay in similarity with the distance that we have
found in literature. In their pioneering paper [9] Nekola and White studied
North America boreal spruce forests using data from 34 nine hectare plots
distributed from Newfoundland to Alaska. The similarity was computed us-
ing Jaccard index and species were subdivided in homogeneous classes in
terms of growth or dispersal form. Linear regression was used to calculate
the decay rate of the logarithm of the similarity against linear distance. This
implies an exponential rate of the distance decay, with different exponents
for various classes.

In Hubbell’s neutral theory of ecology [11] the similarity decay is also
considered for an artificial community. The form of the decay function is a
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compound exponential, i.e. a linear combination of exponentials with differ-
ent exponents. The steeper decay rate is the contribution due to the rare
species, which are also confined to restricted areas, while the tail of the curve
has a lower decay due to the abundant and widespread species with lower
turnover. The overall decay is steeper and the overall similarity is lower if a
smaller grain size (i.e. plot size) is used. This latter aspect can be discussed
only qualitatively within the theory. However, the dependence of the decay
curve on the size of the plot is an unavoidable consequence of the very defi-
nition of similarity, which is area-dependent. This renders more difficult the
comparison of different graphs realized with diverse grain sizes and extents,
and its potential impact on the conclusions drawn from these data have been
recalled in various works [24, 27].

In [19], an analytical model for the similarity decay function is presented,
extending a spatially implicit model contained in [18]. This spatially explicit
model considers two small regions A and B of area a at distance r and is
based on the conditional probability

P (nα(B) ≥ 1|nα(A) ≥ 1, r)

that gives a distance dependent similarity index. In [19], the probabilities
are computed for a specific spatial point process, a modified Thomas cluster
process of parameters (µ, ρ, σ). The resulting formula of the Sørensen simi-
larity, for a discrete number of species (see [19], Supporting Information F2)
is the following

σ(a, r) =

∑
α

(
1− exp(−acα(a)nα)

)(
1− exp(−acα(a)nαgα(r))

)
∑

α

(
1− exp(−acα(a)nα)

) (35)

where gα(r) is the pair correlation function of the modified Thomas process

gα(r) = 1 +
e
− r2

4σ2α

4πρασ2
α

and cα(a) is an area-dependent correcting factor for the clustering of indi-
viduals having dimension area−1:

cα(A) =
1

µαA

∫
W

(
1− e−

∫
A

dα(u− s)du
)
ds,
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where dα is the Gaussian dispersal kernel function (see (13) of the Supple-
mentary Material). For randomly distributed individuals c(a) = 1, while c(a)
tends to zero for highly clustered patterns. Note that, for a random pattern,
also gα(r) = 1 for every specie α. Therefore, in this case, dividing (35) by the
area a, we obtain (20). For the continuous case the formula is more involved.
However, when the term acα(a)nα is small, keeping only the leading term
in the Taylor expansion of the exponential as done before, we find that the
Sørensen similarity for very small plots is (this derivation is ours)

σ(a, r) = a

∑
α gα(r)c2α(a)n2

α∑
α cα(a)nα(a)

,

which again, under the random placement hypothesis, reduces to (21) when
divided by a. There are probably other approaches to the problem of deter-
mining the form of the similarity decay function of which we are not aware
of, but, as far as we know, it seems to us that formulating the theory for
the similarity between plots of finite area produces very complex formulae
in which the dependence on the area is not easy to investigate. We are con-
vinced that the formulation presented in this paper based on infinitesimal
plots offers a clearer picture of the problem.

6. Conclusion

Spatial point processes are a powerful statistical tool for the description
of patterns in tropical rainforests. In particular, we investigated the role of
spatial clustering in shaping the curve of species turnover with the distance.
Therefore our results can be applied to a forest extent where climatic, oro-
graphic or other shaping factors are not present. In this framework we have
derived an analytical formula for the average decay in similarity with the
distance between two relatively small plots. A peculiar trait of our approach
is the use of the spatial density of the similarity with respect to the area.
Essentially, we find that the decay function of the similarity density is given
by the pair correlation function of the whole forest (see (16)) and that it is
determined by the most abundant species. This formula thus establishes a
link between a very important concept in quantitative ecology like the decay
in similarity, with a widely used concept in the statistical description of a
general particle systems. This hollow curve tends to an asymptotic value
which is determined by the relative abundances. Our similarity decay func-
tion χ(r) is related to the distance-dependent Simpson index of Shimatani
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[1], β(r), and to the codominance index F (r) in [20]. To test the analyti-
cal theory against real data, we have designed a statistical estimator for the
similarity which is based on presence-absence counts on plots of finite size
and on an area-scaling factor. We are thus able to interface our analytical
theory, which refers to plots of infinitesimal size, with the estimator.
The limiting hypothesis of relatively small size of the plots with respect to
the distance between them is present in all other works we examined dealing
with this problem, and it is not easy to manage (see e.g. [24]). We think
that in our approach the dependence on the area is easier to control since
it is transferred to the statistical estimator, which is flexible enough. We
tested our findings on the extent of the study area of BCI and Pasoh forests,
which are both of 50ha, obtaining a satisfactory fitting of the empirical data.
At larger scales, if other drivers of biodiversity other than clustering of in-
dividuals are acting, our model can not be applied directly. Nevertheless, if
no strong environmental inhomogeneities are encountered, it could be effec-
tively employed for larger portions of rainforests, where a complete survey of
all individuals is impossible, since it performs well with respect to random
subsampling.
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Figure 10: Empirical Sørensen index for artificial forests. We generated three
artificial forests as follows: for each species of BCI having more than 200 individuals,
we generated a Poisson cluster process (modified Thomas in the top panels, Exponential
in the middle panels and Cauchy in the bottom panels) within the 50 ha plot having
the same number of individuals as the original species. We then computed the empirical
Similarity index for the new generated superposed process χ̂art(r; 0) = χ̂art(r; a)γ̂(a)art

(the superscript “art” stands for artificial forest) and compared it with the theoretical
one (see (33)) and the empirical one for the real BCI χ̂real(r; 0) = χ̂real(r; a)γ̂(a)real (the
superscript “real” stands for real forest), when using 25 square meters cell area (left
column) and 4 square meters cell area (right column).
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Figure 11: Pair Correlation Function for two species. On the top: two species
distributions within the 1000x500 surveyed area of the BCI. We can notice that the species
on the right panel shows a non-isotropic nor homogeneous pattern, resulting in contrast
with our model hypothesis. Such behavior does not characterize the species on the left.
On the bottom: empirical pair correlation function computed via (24) (black dots) and
the analytical one (solid lines) computed through equation (31) with parameters fitted by
minimum contrast method.
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