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Abstract

A positive topology is a set equipped with two particular relations
between elements and subsets of that set: a convergent cover relation and
a positivity relation. A set equipped with a convergent cover relation
is a predicative counterpart of a locale, where the given set plays the
role of a set of generators, typically a base, and the cover encodes the
relations between generators. A positivity relation enriches the structure
of a locale; among other things, it is a tool to study some particular
subobjects, namely the overt weakly closed sublocales.

We relate the category of locales to that of positive topologies and we
show that the former is a reflective subcategory of the latter. We then
generalize such a result to the (opposite of the) category of suplattices,
which we present by means of (not necessarily convergent) cover relations.
Finally, we show that the category of positive topologies also generalizes
that of formal topologies, that is, overt locales.

Keywords: Formal topology, Locales, Suplattices, Positivity relations,
Constructive mathematics
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1 Introduction

Formal Topology is a way to approach Topology by means of intuitionistic and
predicative tools only. The original definition given in [17] is now known to
correspond to overt (or open) locales, in the sense that every formal topology is a
predicative presentation of an overt locale and the category of formal topologies
is (dually) equivalent to the full subcategory of the category of locales whose
objects are overt (see section 4 below). By removing the so-called positivity
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predicate from the definition in [17], one gets a predicative version of a locale.
The corresponding structure is called a convergent cover relation (subsection
2.2 below).

A deep rethinking of the foundations of constructive topology has brought
the second author to a two-sided generalization of the notion of a convergent
cover. On the one hand, it is possible to relax the “convergent” condition on
the definition of a convergent cover in order to get presentations of suplattices,
that is, complete join semi-lattices (subsection 2.1).

On the other hand, the structure of a convergent cover can be enriched by
means of a second relation, called a positivity relation, which is used to speak
about some particular sub-topologies (overt weakly closed sublocales). We show
in this paper (section 3) that this enrichment produces a larger category (positive
topologies) in which the category of convergent covers (locales) embeds as a
reflective subcategory. The two generalizations can be combined together to
obtain an extension of the category of suplattices.

The category of positive topologies generalizes that of formal topologies as
introduced in [17] (section 4), which correspond to overt locales. Showing this
is perhaps the main aim of the paper.

Before beginning with the mathematics, we have to spend a few words about
the metamathematics. This paper is written in the spirit of a “minimalist”
approach to foundations [12], a precise formalization of which is given in [11].
Here it is sufficient to state some of the main features of that approach. First,
we are going to use intuitionistic, rather than classical logic (unless otherwise
stated, which we usually do by appending the adverb “classically”). A second
feature is that ours is a “predicative” approach. In particular, this means that:
(i) the collection P(S) of all subsets of a given set S is not assumed to form a
set;1 (ii) usual set-theoretic constructions, specifically quotients, when applied
to collections cannot be expected to produce a set, in general; (iii) one has to
distinguish small propositions, those which do not contain any quantification
ranging over a collection, from large ones which, on the contrary, do contain
some quantification of that sort; (iv) a subset of a set can be given only by
separation with respect to a small propositional function.

We find it convenient to use the symbol G for inhabited intersection, that is,

U G V
def⇐⇒ (∃a ∈ S)(a ∈ U & a ∈ V ) for U, V ⊆ S.

2 Predicative presentations of suplattices and
frames

From a lattice-theoretic point of view, the basic notion in this paper is that of a
suplattice (complete join semilattice). Within usual set-theories, a suplattice is
a partially ordered set (L,≤) in which every (possibly empty) subset X ⊆ L has
a least upper bound

∨
X ∈ L. Since we want to be predicative and, at the same

time, not to lose interesting examples, we allow the carrier L to be a collection

1The only exception is P(∅) which is (isomorphic to) a singleton set.
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(e.g. the power-collection P(S) of a set S), but we content ourselves with the
existence of all least upper bounds of subsets, that is, set-indexed families of
elements of L (compare with the notion of a class-frame in [1, 8]). All examples
of suplattices we are interested in share the following feature: the partial order
is a small binary proposition. We therefore assume this requirement as a part
of the definition of a suplattice.

2.1 Set-based suplattices and basic covers

Often one knows a base for the suplattice (L,≤) under consideration, that is,
a set S ⊆ L such that

∨
{a ∈ S | a ≤ p} = p for all p in L.2 This we call a

set-based3 suplattice. Clearly, the power-collection P(S) of a set S is a set-
based suplattice (with respect to union) with S itself as a base. (Incidentally,
note that P(S) is the free suplattice over the set S.) Not every suplattice is
expected to have a base constructively.4 For instance, the opposite of P(S),
for S an inhabited set, has a base classically (the complements of singletons)
which does not work intuitionistically. In general, the opposite of a set-based
suplattice need not be set-based. In the set-based case all the information about
the suplattice under consideration can be coded by means of a cover relation on
the base.

Definition 2.1 Let S be a set. A small relation between elements and subsets
of S is called a (basic) cover if

1. a ∈ U =⇒ aC U

2. a ∈ U & (∀u ∈ U)(uC V ) =⇒ aC V

for every a ∈ S and U, V ⊆ S.

The motivating example is given by a set-based suplattice with base S, where
aCU is taken to mean a ≤

∨
U . In general, a cover (S,C) has to be understood

as a presentation of a set-based suplattice, as it is shown below, where S plays
the role of a set of codes for the base. Indeed, any cover (S,C) can be extended
to a preorder U C V on P(S) defined by (∀u ∈ U)(u C V ). This induces an
equivalence relation =C on P(S) where U =C V is U C V & V C U . The
quotient collection P(S)/=C

is a suplattice with
∨

i[Ui] = [
⋃

i Ui] (and [U ] ≤ [V ]

iff U C V ). Such a suplattice has a base, namely the set {[a] | a ∈ S}. (Here
we have adopted a convention we are going to use quite often: for readability’s
sake, we denote a singleton by its unique element.)

To complete the picture, one should note that: (i) the cover induced by
a set-based suplattice L presents a suplattice which is isomorphic to L, the
isomorphism being given by the two mappings x 7→ {a ∈ S | a ≤ x} and
[U ] 7→

∨
U ; (ii) the cover associated to the suplattice presented by a cover

2Note that {a ∈ S | a ≤ p} is a subset by our size assumption about ≤.
3Other authors use the term “set-generated” instead (see, for instance, [1, 8]).
4The authors do not know of a rigorous counterexample.
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(S,C) is isomorphic to (S,C) itself, according to the definition of morphism
given below. Note that each set-based suplattice can be presented by several
covers; all of them are going to be isomorphic to each other, according to the
notion of morphism we are going to introduce below.

Definition 2.2 Let S1 = (S1,C1) and S2 = (S2,C2) be two basic covers.
A small relation s ⊆ S1 × S2 respects the covers if

U C2 V ⇒ s−U C1 s
−V for all U, V ⊆ S2

where s−W = {a ∈ S1 | (∃w ∈W )(a sw)}.
A morphism between S1 and S2 is an equivalence class of relations between S1

and S2 which respect the covers, where two relations s and s′ are equivalent if
s−W =C1

s′−W for every W ⊆ S2.5

Despite looking a bit unnatural, this definition has a very natural meaning:
a morphism between two covers is just a presentation of a suplattice homomor-
phism between the corresponding suplattices. More precisely, there is a bijection
between morphisms from (S1,C1) to (S2,C2) and suplattice homomorphisms
from P(S2)/=C2

to P(S1)/=C1
(contravariance is chosen to match the direction

of locales; see the following section). The correspondence is as follows. Every
morphism s defines the homomorphism [W ] 7→ [s−W ]. Vice versa, every homo-
morphism h : P(S2)/=C2

→ P(S1)/=C1
induces the relation [a] ≤ h−([b]) (see

[2] for details).
Basic covers and their morphisms form a category, called BCov, which is

dual to the category SL of suplattices, impredicatively (see [19] for details). The
previous discussion says that

BCov
(
(S1,C1), (S2,C2)

)
= SL

(
P(S2)/=C2

,P(S1)/=C1

)
.

As a side remark, we note that SL
(
P(S2)/=C2

,P(S1)/=C1

)
is a suplattice with

respect to standard pointwise operations. Therefore BCov
(
(S1,C1), (S2,C2)

)
is a suplattice too. Also in this case the partial order is a small proposition.
Indeed s is less or equal than s′ if and only if s−bC1 s

′−b for every b ∈ S2. Such
a suplattice, however, does not seem to have a base, in general, so it cannot be
presented as a basic cover.

2.2 Frames and locales

A frame or locale is a suplattice L equipped with finite meets (which is always
the case impredicatively) such that binary meets distribute over arbitrary joins,
that is (∨

i∈I
pi

)
∧ q =

∨
i∈I

(
pi ∧ q

)
5Thanks to the definition of joins in P(S1)/=C1

, for two relations s and s′ to be equivalent

it is sufficient to have s−b =C1 s′−b for every b ∈ S2.
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for all q ∈ L and all set-indexed families pi ∈ L (i ∈ I). A frame homomorphism
is a suplattice homomorphism that preserves finite meets; a morphism between
locales is the same thing but in the opposite direction.

We call convergent a basic cover whose corresponding suplattice is a frame.
A morphism between convergent covers is a morphism of basic covers whose
corresponding suplattice homomorphism is, in fact, a frame homomorphism
(preserves finite meets). The resulting category will be called CCov. Impred-
icatively, CCov is dual to the category Frm of frames and hence equivalent to
the category Loc of locales. Within Aczel’s CZF, CCov is equivalent to the
category of set-generated locales [1].

The following result from [19, 4] gives an explicit description of convergent
covers and their morphisms.

Proposition 2.3 A basic cover (S,C) is convergent if and only if

• aC U & aC V ⇒ aC U↓V for every a ∈ S and U, V ⊆ S

where U↓V = {b ∈ S | b C u & b C v for some (u, v) ∈ U × V }. In this case,
[U ] ∧ [V ] = [U↓V ].

A morphism s : (S1,C1) → (S2,C2) between convergent covers is a mor-
phism of basic covers such that

• S1 C1 s
−S2 and

• (s−U)↓1(s−V ) C1 s
−(U↓2V ) for every U, V ⊆ S2.

3 Positivity relations

Folowing [19] and [18] we give the following

Definition 3.1 A positivity relation on a set S is a small relation n between
elements and subsets of S such that

1. an U ⇒ a ∈ U

2. an U & (∀b ∈ S)(bn U ⇒ b ∈ V )⇒ an V

for all a ∈ S and U, V ⊆ S.

This means precisely that the operator J on P(S) which maps a subset W to
JW = {a ∈ S | anW} satisfies the following conditions

1. JU ⊆ U

2. JU ⊆ V ⇒ JU ⊆ J V

for all U, V ⊆ S. In other words J is an interior operator, that is, it is contrac-
tive, monotone and idempotent. The collection of its fixed points Fix(J ) =
{JU | U ⊆ S} is a suplattice with respect to set-theoretic inclusion (which

5



is a small relation: it is defined by a quantification over elements). Joins are
given by unions and so Fix(J ) is a sub-suplattice of P(S). Note that there
seems to be no general way to exhibit a base for this kind of suplattices within
a predicative framework.

Impredicatively, every sub-suplattice P of P(S) is of the form Fix(J ) for
some interior operator J . Indeed, it is easy to show that

JPW
def
=

⋃
{Z ∈ P | Z ⊆W}

defines an interior operator such that Fix(JP ) = P .

Definition 3.2 ([19, 18]) A positivity relation n on S is compatible with a
cover C on S if

3. aC U & an V ⇒ (∃u ∈ U)(un V )

for all a ∈ S and U ⊆ S.
A basic cover (S,C) equipped with a compatible positivity relation (that is, a
relation n satisfying 1, 2 and 3) is called a basic topology. A convergent cover
equipped with a compatible positivity relation is called a positive topology. In
these cases, a subset of the form JU is called formal closed.

The reason for using the term “formal closed” for a subset which is fixed by
an interior operator, such as J , is the following. Let X be a topological space
and assume that its lattice of open subsets has a set-indexed base { ext a ⊆ X |
a ∈ S}. A point x lies in the closure of a subset D if x ∈ ext a ⇒ D G ext a
for all a ∈ S (see page 2 for a definition of G). It is possible to show that
there is an order isomorphism between the collection of closed subsets and the
suplattice of fixed point of the positivity relation nX on S, where a nX U
is ∃x ∈ ext a.∀b ∈ S.x ∈ ext b ⇒ b ∈ U (there is a point in a whose basic
neighbourhoods are all indexed in U). Such an isomorphism maps a closed
subset D to {a ∈ S | ext a G D} and, vice versa, it maps a formal closed subset
JU to {x ∈ X | (∀a ∈ S)(x ∈ ext a ⇒ a ∈ U)}. See [18, 19] for details. See
[20, 16] for a concrete example of a positivity relation related to the Zariski
spectrum of a commutative ring.

3.1 On the greatest positivity relation

The compatibility condition (3. above) says that every JU splits the cover,
where Z ⊆ S splits C if

aC U & a ∈ Z ⇒ U G Z

for all a ∈ S and all U ⊆ S. Let us write Split(S,C) for the collection of all
subsets of S which split C. It is easy to see that Split(S,C) is a sub-suplattice
of P(S).6 By definition, the suplattice Fix(J ) of formal closed subsets is a sub-
suplattice of Split(S,C), for every positivity relation compatible with C. Vice

6Classically, one can show that there is an order-reversing bijection between Split(S,C)
and P(S)/=C

, defined by Z 7→ [−Z] for every splitting subset Z (here − denotes set-theoretic

complement) and [U ] 7→ −{a ∈ S | a C U} for every U ⊆ S.
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versa, every sub-suplattice P of Split(S,C) gives rise to an interior operator
JP (as defined above) and hence to a positivity relation which one can show
to be compatible with (S,C) [6]. Summing up, positivity relations on a set
S corresponds to sub-suplattices of P(S), while those compatible with a given
cover C on S correspond to sub-suplattices of Split(S,C).

Impredicatively, there always exists the greatest among the positivity rela-
tions which are compatible with a given cover (S,C): it is the one corresponding
to the whole of Split(S,C). We denote it by nC. By the discussion above, we
have

anC U
def⇐⇒ a ∈ Z ⊆ U for some Z ∈ Split(S,C)

and Z is formal closed with respect to nC if and only if Z ∈ Split(S,C) (see
[5] for a proof that nC is indeed a positivity relation, that it is compatible with
(S,C) and actually the greatest such). Note that {a ∈ S | anCS} is the largest
element in Split(S,C).

A predicative version of this result requires the cover C to be inductively
generated [7]. This means that C is the least cover relation which satisfies all
“axioms” of the form a C C(a, i) for a ∈ S and i ∈ I(a), where I(a) is some
given set for every a ∈ S, and C(a, i) ⊆ S for every a ∈ S and i ∈ I(a). In this
case, nC can be characterized coinductively [14] as the largest positivity relation
which “splits the axioms” in the sense that a nC U ⇒ ∃b ∈ C(a, i).b nC U for
all a ∈ S, i ∈ I(a), U ⊆ S.

The notion of a splitting subset does not require the cover to be convergent
(and so it makes sense also for suplattices). In the case of a cover which is con-
vergent and inductively generated, a splitting subset is precisely a sympathetic
set in the sense of [15]. In particular, Theorem 5.7 in [15] is our remark above
that {a ∈ S | anC S} is the largest splitting subset.

3.2 Morphisms which respect positivity

The suplattice P(1), where 1 = {0}, can be presented by the basic cover (1,∈).7

As usual, it is convenient to identify elements of P(1), that is subsets of 1, with
(small) propositions, modulo logical equivalence.

Proposition 3.3 For every cover (S,C), there is a suplattice isomorphism be-
tween Split(S,C) and SL

(
P(S)/=C

,P(1)
)

and hence also BCov
(
(1,∈), (S,C)

)
.

Proof: With every Z ∈ Split(S,C) we associate the map ϕZ where ϕZ([U ])
is the proposition U G Z. Since Z is splitting, one has U CW ⇒ (U G Z ⇒
W G Z) for every U,W , from which it follows that ϕZ is well-defined. Moreover,
since by definition

∨
i∈I [Wi] = [

⋃
i∈I Wi], ϕZ(

∨
i∈I [Wi]) is equivalent to the

proposition (
⋃

i∈I Wi) G Z; this is logically equivalent to (∃i ∈ I)(Wi G Z), that
is the join in P(1) of all ϕZ([Wi]) for i ∈ I. This shows that ϕZ preserves joins.

7P(1) is also a frame, actually the initial object in the category of frames. Note that P(1)
is not initial in the category of suplattices SL. The initial (and terminal) object of SL is P(∅).
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Vice versa, if ϕ : P(S)/=C
→ P(1) preserves joins, we put Zϕ = {a ∈ S |

ϕ([a]) true}. If aCU and a ∈ Zϕ, that is [a] ≤ [U ] and ϕ([a]) true, then ϕ([U ])
is true because ϕ preserves order. Since [U ] =

∨
u∈U [u] and ϕ preserves joins,

it follows that (∃u ∈ U)ϕ([u]) is true, that is, U G Zϕ. This shows that Zϕ is
splitting.

It is clear that both maps Z 7→ ϕZ and ϕ 7→ Zϕ preserve order. It remains
to prove that they form a bijection.

Since P(S)/=C
is set based on {[a] | a ∈ S}, ϕ(Zϕ) = ϕ follows from ϕ(Zϕ)([a])

⇔ ϕ([a]) for all a ∈ S. This holds because ϕ(Zϕ)([a]) ⇔ {a} G Zϕ ⇔ a ∈ Zϕ ⇔
ϕ([a]).

For every Z ∈ Split(S,C), ZϕZ
is by definition {a ∈ S | ϕZ([a]) true}, which

coincides with Z since ϕZ([a]) is {a} G Z, that is, a ∈ Z. q.e.d.

Since Split(S,C) can be identified with BCov
(
(1,∈), (S,C)

)
, we can think

of Fix(J ) as a sub-suplattice of BCov
(
(1,∈), (S,C)

)
for every positivity rela-

tion compatible with C (see [6] for details).
Let S1 = (S2,C1,n1) and S2 = (S2,C2,n2) be two basic topologies and let

(S1,C1)
s−→ (S2,C2) be a morphism in BCov. We read every formal closed

subset JU of S1 as a morphism (1,∈)
JU−→ (S1,C1). The composition (1,∈)

sJU−→
(S2,C2) might or might not correspond to one of the formal closed subsets
of S2. If this is the case for every formal closed subset of S1, then we say
that s respects positivity. The following gives an explicit characterization of
morphisms in BCov which respect positivity.

Proposition 3.4 ([19, 6]) Let S1 = (S2,C1,n1) and S2 = (S2,C2,n2) be
two basic topologies. A morphism s : (S1,C1) → (S2,C2) in BCov respects
positivity if and only if

a s b & an1 U ⇒ bn2 sU

for all a ∈ S1, b ∈ S2 and U ⊆ S1, where sU = {v ∈ S2 | (∃u ∈ U)(u s v)}.

Proof: By definition, s respects positivity means that sJ1U ∈ Fix(J2),
that is sJ1U = J2sJ1U , for every U ⊆ S1. Since J2 is contractive, this is
equivalent to sJ1U ⊆ J2sJ1U . In turn, since J1,J2 are interior operators, this
is equivalent to sJ1U ⊆ sJ1U , which is another way to express a s b & an1U ⇒
bn2 sU , for all a ∈ S1, U ⊆ S1 and b ∈ S2. q.e.d.

Basic topologies and morphisms in BCov which respect positivity form a
category BTop. Similarly, positive topologies and morphisms in CCov which
respect positivity form a category PTop.

3.3 Cofree construction of positivity relations

The construction of the greatest positivity relation nC on a (basic) cover C
(subsection 3.1) can be seen, as shown below, as a cofree functor G from BCov
to BTop whose left adjoint is the obvious forgetful functor U . This adjunction
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restricts to an adjuntion between CCov and PTop. In both cases, the com-
position UG is the identity functor and so G turns out to be full, faithful and
injective on objects. Thus BCov and CCov become reflective subcategories of
BTop and PTop respectively.

BTop
U // BCov_?G
oo SLop

n
U // SLop
_?G

oo

PTop
?�

OO

U // CCov
?�

OO

_?G
oo Locn

?�

OO

U // Loc
?�

OO

_?G
oo

The object part of the functor G is defined as

G(S,C) = (S,C,nC)

where nC is the greatest positivity relation of subsection 3.1. For a morphism
s, we take G(s) to be (the equivalence class whose representative is) s itself.
This makes sense because of the following general fact.

Lemma 3.5 Every morphism s : (S1,C1) → (S2,C2) in BCov respects posi-
tivity from (S1,C1,n1) to (S2,C2,nC2) for every n1 compatible with C1, that
is, it is a morphism s : (S1,C1,n1)→ (S2,C2,nC2

) in BTop.

Proof: Every formal closed subset of (S1,C1,n1) can be seen as a morphism
from (1,∈) into (S1,C1) in BCov. By composing with s, we obtain a morphism
from (1,∈) into (S2,C2). By proposition 3.3, this corresponds to an element of
Split(S2,C2), that is a formal closed subset of (S2,C2,nC2

) as shown in section
3.1. This shows that s respects positivity. q.e.d.

So G is obviously a functor. The functor U maps every basic topology
(S,C,n) to (S,C) and every morphism into itself.

Proposition 3.6 The functor G from BCov to BTop defined above is right
adjoint to the forgetful functor U . Such an adjunction restricts to an adjunction
between CCov and PTop. Therefore BCov and CCov are reflective subcate-
gories of BTop and PTop, respectively.

Proof: The composition UG is the identity functor on BCov. Therefore we
take the counit ε of the adjunction to be the identity natural transformation.
As for the unit η, we define η(S,C,n) to be the identity relation on S (see the
previous lemma). In this way, triangular identities reduce to the following two
facts: (i) U(η(S,C,n)) = 1(S,C) and (ii) ηG(S,C) = 1G(S,C). Both are trivialities.

The subcategories CCov and PTop of BCov and BTop, respectively, are
defined via conditions involving only covers. On the other hand, the functors
G,U between BCov and BTop deal only with positivities. Hence they remain
functors also between CCov and PTop. q.e.d.

Let T be the monad induced by the adjunction U a G between BTop and
BCov; it is an idempotent monad. By proposition 4.2.3 and corollary 4.2.4 of
[3], we get the following.
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Corollary 3.7 BCov is equivalent both to the category of free algebras (the
Kleisli category) and to the category of algebras (the Eilenberg-Moore category)
on T , hence the adjunction U a G is monadic.

In our case, all this is very easy to see. Indeed UG is the identity functor
and the counit ε is the identity natural transformation. So the multiplication
GUGU = GU → GU is the identity natural transformation as well. An al-
gebra is a basic topology S = (S,C,n) together with an arrow s : GU(S) =
(S,C,nC) → S such that s ◦ GU(s) = s and s ◦ ηS = IdS . Because of the
definition of η, the relation s has to be the identity relation on the set S. Such
a relation gives a morphism from (S,C,nC) to (S,C,n) if and only if n = nC.
Therefore S = GU(S), that is, S is a free algebra.
A similar corollary holds for the adjunction between PTop and CCov.

4 Overt locales and formal topologies

An element x of a locale L is positive [9, 10] if (x ≤
∨
Y ) ⇒ (Y G L) for

every Y ⊆ L. With classical logic, x is positive if and only if x 6= 0. In the
language of formal topology this notion is translated as follows, which requires
some impredicativity.

Definition 4.1 Given a (convergent) cover (S,C), we say that a ∈ S is positive
if (a C U) ⇒ (U G S) for every U ⊆ S. We call POS the subset of positive
elements of S. A subset U ⊆ S is said to be positive if U G POS.

Lemma 4.2 For every cover (S,C), the following hold:

1. POS contains every splitting subset;

2. POS is splitting if and only if POS = {a ∈ S | anC S}.

Proof: If Z ⊆ S is splitting, then a ∈ Z and a C U yield U G Z hence,
a fortiori, U G S; which proves that a ∈ POS. In particular, POS contains
{a ∈ S | anC S}, the greatest splitting subset; and the two coincide when POS
is splitting. q.e.d.

As a corollary, a n S ⇒ a ∈ POS for every a in a positive (or even basic)
topology (S,C,n).

A locale is overt (or open [9, 10]) if every element is a (possibly empty) join
of positive elements. (Classically every locale is overt, of course.) Clearly it is
sufficient to require this condition for the elements of a base. In terms of a cover
(S,C), this means that aC {b ∈ S | bC a} ∩ POS for all a ∈ S. To show that
this is covered by {a}∩POS, let bC a and b ∈ POS. It is easy to see that then
a ∈ POS as well, so that bC {a} ∩ POS. The converse holds because aC a.

Definition 4.3 A convergent cover (S,C) is overt if aC {a} ∩ POS for every
a ∈ S.
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Note that (S,C) is overt if and only if [U ] = [U ∩ Pos] for every U ⊆ S.
Classically, every convergent cover is overt and so POS is always splitting,
hence it coincides with {a ∈ S | anC S}.

Lemma 4.4 If (S,C) is overt, then POS is a splitting subset (and hence it is
the greatest splitting subset by lemma 4.2).

Proof: Let a ∈ POS and aCU , we claim that U G POS. Clearly uCU∩POS
for every u ∈ U , because of the assumption. So also a C U ∩ POS and hence
U ∩ POS has to be inhabited. q.e.d.

Lemma 4.5 In every cover (S,C), if a subset H satisfies a C {a} ∩H for all
a ∈ S, then POS ⊆ H and hence Z ⊆ H for every splitting subset Z.

Proof: By lemma 4.2, it is enough to check that POS ⊆ H. For every
a ∈ S, one has a C {a} ∩ H. If a ∈ POS, then {a} ∩ H is inhabited; that is,
a ∈ H. q.e.d.

Proposition 4.6 In every cover (S,C), there is at most one subset H which is
splitting and satisfies aC {a} ∩H for all a ∈ S.

Proof: We show that if H, H ′ are two subsets satisfying the hypotheses of
the proposition, then H = H ′. Since H is splitting and H ′ satisfies aC{a}∩H ′
for all a ∈ S, by the lemma 4.5 one has H ⊆ H ′. And by symmetry H ′ ⊆ H.
q.e.d.

Overt locales are usually defined in an equivalent way, as follows.
The category of locales has a terminal object which, as a frame, is the power

P(1) of the singleton 1 = {0}. This corresponds to the convergent cover (1,∈).
We think of the elements of P(1) as propositions modulo logical equivalence
(that is, truth values).

For each convergent cover (S,C) there exists a unique (up to equivalence)
morphism s : (S,C) → (1,∈) between convergent covers (put s−0 = S). As a
frame homomorphism P(1) → P(S)/=C

it maps a proposition p to the equiva-

lence class [{a ∈ S | p}].
The following is essentially Proposition 7 in [21].

Proposition 4.7 Given a (convergent) cover (S,C), the following are equiva-
lent impredicatively:

1. the cover (S,C) is overt, that is, a C {a} ∩ POS for every a ∈ S;

2. a C {a} ∩ {x ∈ S | xnC S} for every a ∈ S;

3. there exists a splitting subset H ⊆ S such that, for every a ∈ S,

a C {a} ∩H ;

11



4. the unique morphism (S,C)→ (1,∈) has a left adjoint, that is, there exists
a predicate ∃ on P(S)/=C

such that, for all U ⊆ S and p ⊆ 1,

∃[U ]⇒ p if and only if U C {a ∈ S | p} .

Proof: 1 implies 2 by lemmas 4.4 and 4.2. 2 implies 3 because {x | xnC S}
is splitting. 3 implies 1 by lemmas 4.2 and 4.5.

Equivalence between 1 and 4 is due essentially to [9]. A proof follows for the
reader’s convenience.

Given 1, we define ∃[U ] to be U G POS. Now U C {a ∈ S | p} implies
(U G POS) ⇒ p by the definition of POS. Thank to 1, the other direction
reduces to checking that (U G POS)⇒ p yields (U ∩POS)C{a ∈ S | p}, which
is easy: if a ∈ U ∩POS, then U G POS and hence p; so aC{a ∈ S | p} = S. We
now show that 4 implies 3 with Pos = {a ∈ S | ∃[a]}. Such a subset is splitting;
indeed if ∃[a] and a C U , that is, [a] ≤ [U ], then ∃[U ] because ∃ is monotone;
therefore ∃[u] for some u ∈ U because [U ] =

∨
{[u] | u ∈ U} and ∃ preserves

joins, being a left adjoint. It only remains to prove that a C {a} ∩ Pos for all
a ∈ S. This is the only step where convergence of (S,C) plays a role. From 4
we have aC {x | ∃[a]} and hence aC {a}↓{x | ∃[a]} = {y ∈ S | yC a & yCx for
some x such that ∃[a]}. We claim that this last subset is covered by {a} ∩Pos.
Indeed if yC a and yC x with ∃[a], then {a}∩Pos is just {a} and we are done.
q.e.d.

One can use the previous proposition to sidestep any impredicativity in the
notion of overtness just by adding the positivity predicate as a new primitive,
as follows. This is essentially the original definition in [17].

Definition 4.8 A formal topology is a triple (S,C, Pos) where (S,C) is a con-
vergent cover and Pos ⊆ S is a splitting subset such that a C {a} ∩ Pos for
every a ∈ S.

We call FTop the full subcategory of CCov whose object are formal topolo-
gies.8 It follows from the above discussion that FTop is equivalent to the cate-
gory of overt locales, impredicatively.9

In [13], Maietti and Valentini construct a functor M : CCov→ FTop which
is right adjoint to the full and faithful functor I which forgets Pos. So the
category of formal topologies (overt locales) can be identified with a coreflective
subcategory of CCov (= Loc). Given a convergent cover S = (S,C), the
construction of M(S) is predicative as long as S is inductively generated; in
the terminology of the present paper, it proceeds essentially as follows. First

8A morphism s : (S1,C1, Pos1) → (S2,C2, Pos2) automatically satisfies the following
condition (which was required in the definition of a morphism as proposed in [17]): for every
b ∈ S2, if Pos1 G s−b, then b ∈ Pos2. Here is a proof. From b C2 {b} ∩ Pos2 one gets
s−b C1 s−({b} ∩ Pos2) because s is a morphism. Therefore Pos1 G s−({b} ∩ Pos2) because
Pos1 G s−b and Pos1 is splitting. In particular, s−({b} ∩ Pos2) is inhabited and hence
{b} ∩ Pos2 is inhabited as well; that is b ∈ Pos2.

9Note that FTop is dual to the category of formal topologies originally introduced in [17],
simply because there the opposite direction on morphisms is adopted.
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construct nC by coinduction [14]. Then put Pos = {a ∈ S | a nC S} and
generate the least cover C′ which satisfies all the axioms for C and, in addition,
all axioms of the form aC′{a}∩Pos. So aCU ⇒ aC′U because C′ satisfies also
the axioms of C. The structure (S,C′, Pos) turns out to be a formal topology.
Indeed, a C′ {a} ∩ Pos holds by the definition of C. So one only has to check
that Pos splits C′, that is, a C′ U & a ∈ Pos ⇒ U G Pos. Actually, it is
enough to check this for the axioms of C′. Since Pos splits C, it only remains
to prove that Pos splits the extra axiom generating C′, so the claim is a ∈ Pos &
aC′ {a}∩Pos⇒ ({a}∩Pos) G Pos, which is obvious because ({a}∩Pos) G Pos
simply means a ∈ Pos. So the formal topology M(S) is a presentation of the
greatest overt sublocale of S. Now if a relation s defines a morphism S1 → S2 in
CCov, then the same s works also as a morphism M(S1)→M(S2), so it makes
sense to define M(s) = s (see [13] for details). The proof of the adjunction
I aM follows easily.

Summing up, we have a chain of subcategories, one reflective and the other
coreflective, as shown in the following picture.

PTop
U // CCov_?G
oo

M
// FTop? _Ioo Locn

U // Loc_?G
oo

M
// overtLoc? _Ioo

The embedding of FTop in PTop, which appears as a composition in the
diagram above, does not seem to have any adjoint, either left or right. It is
perhaps worth noting that “overtness” is preserved by such embedding. Indeed,
if (S,C, Pos) is a formal topology (overt locale), then also its image in PTop,
namely (S,C,nC), has a positivity predicate, namely {a ∈ S | a nC S}, by
proposition 4.7. This suggests a possible extension of the notion of overtness
to positive topologies: we say that a positive topology (S,C,n) is overt if
a C {a} ∩ {b ∈ S | b n S} for every a ∈ S. Note that, if (S,C,n) is overt as
a positive topology, then (S,C) is overt as a convergent cover and so {a ∈ S |
anS} = POS = {a ∈ S | anCS}. Note however that overtness of (S,C,n) does
not follow from overtness of (S,C). For instance, (S,C, ∅), where ∅ is the empty
relation, is overt only if aC ∅ for every a ∈ S (such a cover is a presentation of
the trivial locale). On the other hand, overtness is preserved by the embedding
G.
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