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Optimal transport over a linear dynamical system
Yongxin Chen, Tryphon T. Georgiou and Michele Pavon

Abstract—We consider the problem of steering an initial probability
density for the state vector of a linear system to a final one, in finite
time, using minimum energy control. In the case where the dynamics
correspond to an integrator (ẋ(t) = u(t)) this amounts to a Monge-
Kantorovich Optimal Mass Transport (OMT) problem. In general, we
show that the problem can again be reduced to solving an OMT problem
and that it has a unique solution. In parallel, we study the optimal
steering of the state-density of a linear stochastic system with white noise
disturbance; this is known to correspond to a Schrödinger bridge. As the
white noise intensity tends to zero, the flow of densities converges to that
of the deterministic dynamics and can serve as a way to compute the
solution of its deterministic counterpart. The solution can be expressed
in closed-form for Gaussian initial and final state densities in both cases.

Keywords: Optimal mass transport, Schrödinger bridges, stochastic
linear systems, optimal control.

I. INTRODUCTION

We are interested in stochastic control problems to steer the
probability density of the state vector of a linear system between an
initial and a final distribution for two cases, i) with and ii) without
stochastic disturbance. That is, we consider the linear dynamics

dx(t) = A(t)x(t)dt+B(t)u(t)dt+
√
εB(t)dw(t) (1)

where w is a Wiener process, u is a control input, x is the state
process, and A,B is a controllable pair of continuous matrices, for
the two cases where i) ε > 0 and ii) ε = 0. In either case, the
state is a random vector with an initial distribution µ0. Our task is
to determine a minimum energy input that drives the system to a
final state distribution µ1 over the time interval [0, 1], that is, the
minimum of

E{
∫ 1

0

‖u(t)‖2dt} (2)

subject to µ1 being the probability distribution of the state vector at
the terminal time t = 1.

When the state distribution represents density of particles whose
position obeys ẋ(t) = u(t) (i.e., A(t) ≡ 0, B(t) ≡ I , and
ε = 0) the problem reduces to the classical Optimal Mass Transport
(OMT) problem with quadratic cost [1], [2]. Historically, the modern
formulation of OMT is due to Leonid Kantorovich [3] and has
been the focus of dramatic developments because of its relevance
in many diverse fields including economics, physics, engineering,
and probability [4], [5], [6], [7], [2], [1], [8], [9], [10], [11]. Thus,
the above problem, for ε = 0, represents a generalization of OMT to
deal with particles obeying known “prior” non-trivial dynamics while
being steered between two end-point distributions – we refer to this as
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the problem of OMT with prior dynamics (OMT-wpd). The problem
of OMT-wpd was first introduced in our previous work [12] for the
case where B(t) ≡ I . The difference of course to the classical OMT
is that, here, the linear dynamics are arbitrary and may facilitate
or hinder transport. Applications are envisioned in the steering of
particle beams through time-varying potential, the steering of swarms
(UAV’s, large collection of microsatelites, ensemble control, etc.),
as well as in the modeling of the flow and collective motion of
particles, clouds, platoons, flocking of insects, birds, fish, etc. be-
tween end-point distributions [13] and the interpolation/morphing of
distributions [14]. From a controls perspective, “important limitations
standing in the way of the wider use of optimal control can be
circumvented by explicitly acknowledging that in most situations the
apparatus implementing the control policy will be judged on its ability
to cope with a distribution of initial states, rather than a single state”
as pointed out by R. Brockett in [15, page 23].

In the case where ε > 0 and a stochastic disturbance is present,
the flow of “particles” is dictated by dynamics as well as by Brownian
diffusion. The corresponding stochastic control problem to steer the
state density function between the end-point distributions has been
shown to be equivalent to the so-called Schrödinger bridge problem
[16]. The Schrödinger bridge problem, in its original formulation
[17], [18], [19], seeks a probability law on path space with given
two end-point marginals which is close to a Markovian prior in the
sense of relative entropy. Important contributions were due to Fortet,
Beurling, Jamison and Föllmer [20], [21], [22], [23]. Schrödinger’s
original vision was to provide a formulation of Quantum Mechanics
based on diffusion processes which was accomplished in various
versions of Stochastic Mechanics [24], [25]. More recent attempts
to directly connect the Schrödinger bridge problem to Quantum
Mechanics can be found in [26], [27], [28]. Another closely related
area of research has been that of reciprocal processes, with important
engineering applications in, e.g., image processing and other fields
[29], [22], [30], [31], [32], [33], [34].

Renewed interest in Schrödinger bridges was sparked after a
close relationship to stochastic control was recognized [16], [35],
[36]. Recently, the present authors [37], [38], [39] have provided an
attractive, implementable solution to the Schrödinger bridge problem
for the Gauss-Markov case as well as extended the earlier theory in
several directions. In particular, these include the cases of degenerate
noise, differing noise and control channels, infinite horizon, and
anisotropic diffusing particles with losses. Certain physics applica-
tions have also been developed in [40]. The Schrödinger bridge
problem can be seen as a stochastic version of OMT due to the
presence of the diffusive term in the dynamics. As a result, its solution
is more well behaved due to the smoothing property of the Laplacian.
On the other hand, it follows from [41], [42], [43], [44] that for the
special case A(t) ≡ 0 and B(t) ≡ I , the solution to the Schrödinger
bridge problem tends to that of the OMT when “slowing down” the
diffusion by taking ε→ 0. These two facts suggest the Schrödinger
bridge problem as a means to construct approximate solutions to
OMT for both, the standard one as well as the problem of OMT
with prior dynamics.

In this paper, we continue the work initiated in [12] on the
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connection between the bridge and OMT problems. In particular,
we provide the first solution to the problem of optimally steering
between two given probability densities for the state-vector of a
linear noise-free dynamical model. As noted, the importance of such
problems has been advocated by R. Brockett in [15], [45], who solved
the controllability problem for the Gauss-Markov case and provided
necessary conditions for a certain type of optimality. The optimal
transport problem with prior linear dynamics was also considered in
[46]. In our setting, we show that the controllability result for the
steering between (possibly non-Gaussian) densities can be obtained
as a direct byproduct of the existence of optimal mass transport maps.

The present work begins with an expository prologue on OMT
(Section II). We then develop the theory of OMT-wpd (Section III)
and establish that OMT-wpd always has a unique solution. Next we
discuss in parallel the theory of the Schödinger bridge problem for
linear dynamics and arbitrary end-point marginals (Section IV). We
focus on the connection between the two problems and in Theorem
3 we establish that the solution to the OMT-wpd is indeed the limit,
in a suitable sense, of the corresponding solution to the Schrödinger
bridge problem. In Section V we specialize to the case of linear
dynamics with Gaussian marginals, where closed-form solutions are
available for both problems. The form of solution underscores the
connection between the two and that the OMT-wpd is the limit of
the Schrödinger bridge problem when the diffusion term vanishes.
In Section VI we work out two academic examples to highlight the
relation between the two problems (OMT and Schrödinger bridge).

II. OPTIMAL MASS TRANSPORT

Consider two nonnegative measures µ0, µ1 on Rn having equal
total mass. These may represent probability distributions, distribution
of resources, etc. Without loss of generality, we take µ0 and µ1 to
be probability distributions in this paper. In the original formulation
of OMT, due to Gaspard Monge, a transport (measurable) map

T : Rn → Rn : x 7→ T (x)

is sought that specifies where mass µ0(dx) at x must be transported
so as to match the final distribution in the sense that T]µ0 = µ1, i.e.
µ1 is the “push-forward” of µ0 under T meaning

µ1(B) = µ0(T−1(B))

for every Borel set in Rn. Moreover, the map must incur minimum
cost of transportation ∫

c(x, T (x))µ0(dx).

Here, c(x, y) represents the transportation cost per unit mass from
point x to point y and in this section it will be taken as c(x, y) =
1
2
‖x− y‖2.

The dependence of the transportation cost on T is highly
nonlinear and a minimum may not exist. This fact complicated
early analyses to the problem due to Abel and others [1]. A new
chapter opened in 1942 when Leonid Kantorovich presented a relaxed
formulation. In this, instead of seeking a transport map, we seek a
joint distribution Π(µ0, µ1) on the product space Rn × Rn so that
the marginals along the two coordinate directions coincide with µ0

and µ1 respectively. The joint distribution Π(µ0, µ1) is refered to as
“coupling” of µ0 and µ1

1. Thus, in the Kantorovich formulation we

1Throughout the paper it will be tacitly assumed that µ0 and µ1 possess a
finite second moment.

seek
inf

π∈Π(µ0,µ1)

∫
Rn×Rn

1

2
‖x− y‖2π(dxdy). (3)

When the optimal Monge-map T exists, the support of the coupling
is precisely the graph of T , see [1].

Formulation (3) represents a “static” end-point formulation, i.e.,
focusing on “what goes where”. Ingenious insights due to Benamou
and Brenier [2] and [47] led to a fluid dynamic formulation of OMT.
An elementary derivation of the above was presented in [12] which
we now follow. OMT is first cast as a stochastic control problem
with atypical boundary constraints:

inf
v∈V

E
{∫ 1

0

1

2
‖v(t, xv(t))‖2dt

}
, (4a)

ẋv(t) = v(t, xv(t)), (4b)

xv(0) ∼ µ0, xv(1) ∼ µ1. (4c)

Here V represents the family of admissible Markov feedback control
laws. We call a control law v(t, x) admissible if the corresponding
controlled system (4b) has a unique solution for almost every deter-
ministic initial condition at t = 0. Requiring v(t, ·) to be uniformly
Lipschitz continuous on [0, 1] is a sufficient condition, but it is not
necessary.

From this point on we assume that µ0 and µ1 are absolutely
continuous, i.e., µ0(dx) = ρ0(x)dx, µ1(dy) = ρ1(y)dy with
ρ0, ρ1 corresponding density functions. If xv(t) also has a absolutely
continuous distribution, namely, xv(t) ∼ ρ(t, x)dx, then ρ satisfies
weakly2 the continuity equation

∂ρ

∂t
+∇ · (vρ) = 0 (5)

expressing the conservation of probability mass, where ∇· denotes
the divergence of a vector field, and

E
{∫ 1

0

1

2
‖v(t, xv(t))‖2dt

}
=

∫
Rn

∫ 1

0

1

2
‖v(t, x)‖2ρ(t, x)dtdx.

As a consequence, (4) is recast as a “fluid-dynamics” problem [2]:

inf
(ρ,v)

∫
Rn

∫ 1

0

1

2
‖v(t, x)‖2ρ(t, x)dtdx, (6a)

∂ρ

∂t
+∇ · (vρ) = 0, (6b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y). (6c)

The minimum is taken over all the pairs ρ, v satisfying (6b)-(6c) and
other technical assumptions, see [1, Theorem 8.1], [8, Chapter 8].

A. Solutions to OMT

For the case where µ0, µ1 are absolutely continuous (µ0(dx) =
ρ0(x)dx and µ1(dy) = ρ1(y)dy) it is a standard result that OMT
has a unique solution [48], [1], [9] and that an optimal transport T
map exists and is the gradient of a convex function φ, i.e.,

y = T (x) = ∇φ(x). (7)

By virtue of the fact that the push-forward of µ0 under ∇φ is µ1, this
function satisfies a particular case of the Monge-Ampère equation [1,
p.126], [2, p.377], namely, det(Hφ(x))ρ1(∇φ(x)) = ρ0(x), where

2In the sense that
∫
[0,1]×Rn [(∂f/∂t + v · ∇f)ρ]dtdx = 0 for smooth

functions f with compact support.
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Hφ is the Hessian matrix of φ, which is a fully nonlinear second-
order elliptic equation. The computation of φ has received attention
only recently [2], [14], [49] where numerical schemes have been
developed.

Having the optimal mass transport map T , as in (7), the optimal
coupling is

π = (Id× T )]µ0,

where Id stands for the identity map, and the displacement of the
mass along the path from t = 0 to t = 1 is

µt = (Tt)]µ0, Tt(x) = (1− t)x+ tT (x) (8a)

while µt is absolutely continuous with Radon-Nikodym derivative
with respect to the Lebesgue measure

ρ(t, x) =
dµt
dx

(x). (8b)

Accordingly, the optimal control strategy of (4) is given by

v(t, x) = T ◦ T−1
t (x)− T−1

t (x), (9)

and the pair ρ, v solves (6). Here ◦ denotes the composition of maps.
By (8a) Tt is the gradient of a uniformly convex function for 0 ≤
t < 0, so Tt is injective and therefore (9) is well-defined on Tt(Rn).
The values v(t, x) outside Tt(Rn) do not play any role.

An alternative expression for the optimal control (9) can be
established using standard optimal control theory, and this is sum-
marized in the following proposition [1, Theorem 5.51].

Proposition 1: Given marginal distributions µ0(dx) =
ρ0(x)dx, µ1(dx) = ρ1(x)dx, let ψ(t, x) be defined by the
Hopf-Lax representation

ψ(t, x) = inf
y

{
ψ(0, y) +

‖x− y‖2

2t

}
, t ∈ (0, 1]

with
ψ(0, x) = φ(x)− 1

2
‖x‖2

and φ as in (7). Then v(t, x) := ∇ψ(t, x) exists almost everywhere
and it solves (4).

III. OPTIMAL MASS TRANSPORT WITH PRIOR DYNAMICS

The OMT problem

inf
T :µ1=T]µ0

∫
Rn

c(x, T (x))µ0(dx), (10)

and the relaxed version, namely, the Monge-Kantorovich problem

inf
π∈Π(µ0,µ1)

∫
Rn×Rn

c(x, y)π(dxdy) (11)

have also been studied for general cost c(x, y) that derives from an
action functional

c(x, y) = inf
x(·)∈Xxy

∫ 1

0

L(t, x(t), ẋ(t))dt, (12)

where the Lagrangian L(t, x, p) is strictly convex and superlinear in
the velocity variable p, see [9, Chapter 7], [50, Chapter 1], [51] and
Xxy is the family of absolutely continuous paths with x(0) = x and
x(1) = y. Existence and uniqueness of an optimal transport map T
has been established3 for general cost functionals as in (12). It is

3OMT has also been studied and similar results established for Rn replaced
by a Riemannian manifold.

easy to see that the choice c(x, y) = 1
2
‖x− y‖2 is the special case

where L(t, x, p) = 1
2
‖p‖2. Another interesting special case is when

L(t, x, p) =
1

2
‖p− v(t, x)‖2. (13)

This has been motivated by a transport problem “with prior” associ-
ated to the velocity field v(t, x) [12, Section VII]. There the prior was
thought to reflect a solution to a “nearby” problem that needs to be
adjusted so as to be consistent with updated estimates for marginals.

An alternative motivation for (13) is to address transport in an
ambient flow field v(t, x). In this case, assuming the control has the
ability to steer particles in all directions, transport will be effected
according to dynamics ẋ(t) = v(t, x) + u(t) where u(t) represents
control effort and∫ 1

0

1

2
‖u(t)‖2dt =

∫ 1

0

1

2
‖ẋ(t)− v(t, x)‖2dt

represents corresponding quadratic cost (energy). Thus, it is of
interest to consider more general dynamics where the control does not
affect directly all state directions. One such example is the problem
to steer inertial particles in phase space through force input (see [37]
and [38] where similar problems have been considered for dynamical
systems with stochastic excitation).

Therefore, herein, we consider a natural generalization of OMT
where the transport paths are required to satisfy dynamical con-
straints. We focus our attention on linear dynamics and, consequently,
cost of the form

c(x, y) = inf
u∈U

∫ 1

0

L̃(t, x(t), u(t))dt, where (14a)

ẋ(t) = A(t)x(t) +B(t)u(t), (14b)

x(0) = x, x(1) = y, (14c)

and U is a suitable class of controls4. This formulation extends
the transportation problem in a similar manner as optimal control
generalizes the classical calculus of variations [52] (albeit herein
only for linear dynamics). It is easy to see that (13) corresponds
to A(t) = 0 and B(t) the identity matrix in (14). When B(t) is
invertible, (14) reduces to (12) by a change of variables, taking

L(t, x, p) = L̃(t, x,B(t)−1(p−A(t)x)).

However, when B(t) is not invertible, an analogous change of vari-
ables leads to a Lagrangian L(t, x, p) that fails to satisfy the classical
conditions (strict convexity and superlinearity in p). Therefore, in this
case, the existence and uniqueness of an optimal transport map T
has to be established independently. We do this for the case where
L̃(t, x, u) = ‖u‖2/2 corresponding to power. A similar problem has
been studied in [46].

We now formulate the corresponding stochastic control prob-
lem. The system dynamics

ẋ(t) = A(t)x(t) +B(t)u(t), (15)

are assumed to be controllable and the initial state x(0) is a random
vector with probability density ρ0. Here, A and B are continuous
maps taking values in Rn×n and Rn×m, repectively. In the stochastic
control formulation, we seek a minimum energy feedback control law
u(t, x) that steers the system to a final state x(1) having distribution

4Note that we use a common convention to denote by x a point in the state
space and by x(t) a state trajectory.
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ρ1(x)dx. That is, we address the following:

inf
u∈U

E
{∫ 1

0

1

2
‖u(t, xu)‖2dt

}
, (16a)

ẋu(t) = A(t)xu(t) +B(t)u(t, xu(t)), (16b)

xu(0) ∼ ρ0(x)dx, xu(1) ∼ ρ1(y)dy, (16c)

where U is the family of admissible Markov feedback control
laws. Recall that we call a control law u(t, x) admissible if the
corresponding controlled system (16b) has a unique solution for
almost every deterministic initial condition at t = 0.

We next show that (16) is indeed a reformulation of (11) with
generalized cost (14) when L̃(t, x, u) = ‖u‖2/2. First we note the
cost is equal to

c(x, y) = min
x(·)∈Xxy

∫ 1

0

L̂(t, x(t), ẋ(t))dt, (17)

where

L̂(t, x, v) =


1
2
(v −A(t)x)′(B(t)B(t)′)†(v −A(t)x),

if v −A(t)x ∈ R(B(t)),

∞ otherwise

with † denoting pseudo-inverse and R(·) “the range of”. If the
minimizer of (17) exists, which will be denoted as x∗(·), then any
probabilistic average of the action relative to absolutely continuous
trajectories starting at x at time 0 and ending in y at time 1
cannot give a lower value. Thus, the probability measure on Xxy
concentrated on the path x∗(·) solves the following problem

inf
Pxy∈D(δx,δy)

EPxy

{∫ 1

0

L̂(t, x(t), ẋ(t))dt

}
, (18)

where D(δx, δy) are the probability measures on C[0, 1] paths whose
initial and final one-time marginals are Dirac’s deltas concentrated at
x and y, respectively.

Let u be a feasible control strategy in (16), and xu(·) be the
corresponding controlled process. This process induces a probability
measure P in D(µ0, µ1), namely a measure on the path space C[0, 1]
whose one-time marginals at 0 and 1 are µ0 and µ1, respectively. The
measure P can be disintgrated as [42], [8]

P =

∫
Rn×Rn

Pxy π(dxdy), (19)

where Pxy ∈ D(δx, δy) and π ∈ Π(µ0, µ1). Then the control energy
in (16) is greater than or equal to

EP
{∫ 1

0

L̂(t, x(t), ẋ(t))dt

}
=

∫
Rn×Rn

EPxy

{∫ 1

0

L̂(t, x(t), ẋ(t))dt

}
π(dxdy)

≥
∫
Rn×Rn

c(x, y)π(dxdy), (20)

which shows that the minimum of (16) is bounded below by the
minimum of (11) with cost in (14) or equivalently (17). In the next
subsection we will construct a control strategy such that the joint
measure π in (19) solves (11) and Pxy is concentrated on the path
x∗(·) for π-almost every pair of intial position x and terminal position
y. Therefore, the stochastic optimal control problem (16) is indeed
a reformulation of the OMT (11) with the general cost in (14), and
we refer to both of them as OMT-wpd.

Once again, formally, the stochastic control formulation (16)
suggests the “fluid-dynamics” version:

inf
(ρ,u)

∫
Rn

∫ 1

0

1

2
‖u(t, x)‖2ρ(t, x)dtdx, (21a)

∂ρ

∂t
+∇ · ((A(t)x+B(t)u)ρ) = 0, (21b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y). (21c)

Establishing rigorously the equivalence between (21) and OMT-wpd
(16) is a delicate issue. We expect the equivalence can be shown
along the lines of [1, Theorem 8.1], [8, Chapter 8], but this is not
our focus in the present paper.

Naturally, for the trivial prior dynamics A(t) ≡ 0 and B(t) ≡ I ,
the OMT-wpd reduces to the classical OMT and the solution {ρ(t, ·) |
0 ≤ t ≤ 1} is the displacement interpolation of the two marginals
[47]. In the next subsection, we show directly that Problem (16) has
a unique solution.

A. Solutions to OMT-wpd

Let Φ(t, s) be the state transition matrix of (15) from s to t,
and

M(t, s) =

∫ t

s

Φ(t, τ)B(τ)B(τ)′Φ(t, τ)′dτ (22)

be the controllability Gramian of the system which, by the control-
lability assumption, is positive definite for all 0 ≤ s < t ≤ 1; we
denote Φ10 := Φ(1, 0) and M10 := M(1, 0). Recall [53], [54] that
for linear dynamics (15) and given boundary conditions x(0) = x,
x(1) = y, the least energy c(x, y) and the corresponding optimal
control input can be given in closed-form, namely

c(x, y) =

∫ 1

0

1

2
‖u∗(t)‖2dt =

1

2
(y−Φ10x)′M−1

10 (y−Φ10x) (23)

where
u∗(t) = B(t)′Φ(1, t)′M−1

10 (y − Φ10x). (24)

The corresponding optimal trajectory is

x∗(t) = Φ(t, 1)M(1, t)M−1
10 Φ10x+M(t, 0)Φ(1, t)′M−1

10 y. (25)

The OMT-wpd problem with this cost is

inf
π

∫
Rn×Rn

1

2
(y − Φ10x)′M−1

10 (y − Φ10x)π(dxdy), (26a)

π(dx× Rn) = ρ0(x)dx, π(Rn × dy) = ρ1(y)dy, (26b)

where π is a measure on Rn × Rn.

Problem (26) can be converted to the standard Kantorovich
formulation (3) of the OMT by a transformation of coordinates.
Indeed, consider the linear map

C :

[
x
y

]
−→

[
x̂
ŷ

]
=

[
M
−1/2
10 Φ10x

M
−1/2
10 y

]
(27)

and set π̂ = C]π. Clearly, (26a-26b) become

inf
π̂

∫
Rn×Rn

1

2
‖ŷ − x̂‖2π̂(dx̂dŷ), (28a)

π̂(dx̂× Rn) = ρ̂0(x̂)dx̂, π̂(Rn × dŷ) = ρ̂1(ŷ)dŷ, (28b)

where

ρ̂0(x̂) = |M10|1/2|Φ10|−1ρ0(Φ−1
10 M

1/2
10 x̂),

ρ̂1(ŷ) = |M10|1/2ρ1(M
1/2
10 ŷ).
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Problem (28) is now a standard OMT with quadratic cost function
and we know that the optimal transport map T̂ for this problem exists
[1]. It is the gradient of a convex function φ, i.e.,

T̂ = ∇φ, (29)

and the optimal π̂ is concentrated on the graph of T̂ [48]. The solution
to the original problem (26) can now be determined using T̂ , and it
is

π = (Id× T )]µ0

with
y = T (x) = M

1/2
10 T̂ (M

−1/2
10 Φ10x). (30)

From the above argument we can see that, with cost function (14)
and L̃(t, x, u) = ‖u‖2/2, the OMT problem (10) and its relaxed
version (11) are equivalent.

The map T , together with the optimal trajectories in (25) for
fixed end-points, leads to the one-time marginals

µt = (Tt)]µ0, (31a)

where

Tt(x)=Φ(t, 1)M(1, t)M−1
10 Φ10x+M(t, 0)Φ(1, t)′M−1

10 T (x), (31b)

and
ρ(t, x) =

dµt
dx

(x). (31c)

Note that (31b) generalizes (8a) to the present setting. In this case, we
refer to the parametric family of one-time marginals as displacement
interpolation with prior dynamics. Combining the optimal map T
with (24), we obtain the optimal control strategy

u(t, x) = B(t)′Φ(1, t)′M−1
10 [T ◦ T−1

t (x)− T−1
t (x)]. (32)

Again Tt is injective for 0 ≤ t < 1, so the above control strategy is
well-defined on Tt(Rn). T0 = Id is of course injective. To see Tt is
an injection for 0 < t < 1, assume that there are two different points
x 6= y such that Tt(x) = Tt(y). Then

0 = (x− y)′Φ(t, 0)′M(t, 0)−1(Tt(x)− Tt(y))′

= (x− y)′Φ(t, 0)′M(t, 0)−1Φ(t, 1)M(1, t)M−1
10 Φ10(x− y)+

(x− y)′Φ′10M
−1/2
10 (∇φ(M

−1/2
10 Φ10x)−∇φ(M

−1/2
10 Φ10y)).

The second term is nonnegative due to the convexity of φ. The first
term is equal to

(x− y)′
(
Φ(t, 0)′M(t, 0)−1Φ(t, 0)− Φ′10M

−1
10 Φ10

)
(x− y),

which is positive since

Φ(t, 0)′M(t, 0)−1Φ(t, 0)− Φ′10M
−1
10 Φ10

=

(∫ t

0

Φ(0, τ)B(τ)B(τ)′Φ(0, τ)′dτ

)−1

−
(∫ 1

0

Φ(0, τ)B(τ)B(τ)′Φ(0, τ)′dτ

)−1

is positive definite for all 0 < t < 1. Since the control (32)
is consistent with both the optimal coupling π and the optimal
trajectories (25), it achieves the minimum of (11), which is of course
is the minimum of (16) based on (20).

An alternative expression for the optimal control (32) can be
derived as follows using standard optimal control theory. Consider
the following deterministic optimal control problem

inf
u∈U

∫ 1

0

1

2
‖u(t, xu)‖2dt− ψ1(xu(1)), (33a)

ẋu(t) = A(t)xu(t) +B(t)u(t) (33b)

for some terminal cost −ψ1. The dynamic programming principle
[55] gives the value function (cost-to-go function) −ψ(t, x) as

−ψ(t, x) = inf
u:x(t)=x

∫ 1

t

1

2
‖u(t, xu)‖2dt− ψ1(xu(1)). (34)

The associated dynamic programming equation is

inf
u∈Rm

[
1

2
‖u‖2 − ∂ψ

∂t
−∇ψ · (A(t)x+B(t)u)

]
= 0. (35)

Point-wise minimization yields the Hamilton-Jacobi-Bellman equa-
tion

∂ψ

∂t
+ x′A(t)′∇ψ +

1

2
∇ψ′B(t)B(t)′∇ψ = 0 (36a)

with boundary condition

ψ(1, y) = ψ1(y), (36b)

and the corresponding optimal control is

u(t, x) = B(t)′∇ψ(t, x). (37)

When the value function −ψ(t, x) is smooth, it solves the Hamilton-
Jacobi-Bellman equation (36). In this case, if the optimal control (37)
drives the controlled process from initial distribution µ0 to terminal
distribution µ1, then this u in fact solves the OMT-wpd (16). In
general, one cannot expect (36) to have a classical solution and has
to be content with viscosity solutions [56], [55]. Typically, one can
prove existence by including a vanishingly small regularization term
with a Laplacian [57, Section 10.1]. Here, however, it is possible
to give an explicit expression for the value function based only on
the dynamic programming principle (34). This is summarized in the
following proposition.

Proposition 2: Given marginal distributions µ0(dx) =
ρ0(x)dx, µ1(dx) = ρ1(x)dx, let ψ(t, x) be defined by the formula

ψ(t, x) = inf
y

{
ψ(0, y) +

1

2
(x− Φ(t, 0)y)′M(t, 0)−1(x− Φ(t, 0)y)

}
(38)

with
ψ(0, x) = φ(M

−1/2
10 Φ10x)− 1

2
x′Φ′10M

−1
10 Φ10x

and φ as in (29). Then u(t, x) := B(t)′∇ψ(t, x) exists almost
everywhere and it solves (16).

Proof: The proof is given in Appendix A.

IV. SCHRÖDINGER BRIDGES AND THEIR ZERO-NOISE LIMIT

In 1931/32, Schrödinger [17], [18] treated the following prob-
lem: A large number N of i.i.d. Brownian particles in Rn is observed
to have at time t = 0 an empirical distribution approximately equal
to ρ0(x)dx, and at some later time t = 1 an empirical distribution
approximately equal to ρ1(x)dx. Suppose that ρ1(x) considerably
differs from what it should be according to the law of large numbers,
namely ∫

qB(0, x, 1, y)ρ0(x)dx,

where

qB(s, x, t, y) = (2π)−n/2(t− s)−n/2 exp

(
−‖x− y‖

2

2(t− s)

)
denotes the Brownian transition probability density. It is apparent
that the particles have been transported in an unlikely way. But of
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the many unlikely ways in which this could have happened, which
one is the most likely? In view of Sanov’s theorem, see Föllmer
[23], Schrödinger’s question reduces to determining a probability law
P(·) on C[0, 1], the continuous paths over the specified interval, that
minimizes the relative entropy

S(P,Q) :=

∫
C[0,1]

log

(
dP
dQ

)
dP.

Here Q(·) is the probability law induced by the prior Markovian evo-
lution and P(·) is chosen among probability laws that are absolutely
continuous with respect to Q(·) and have the prescribed marginals5.
Evidently, this is an abstract problem on an infinite-dimensional
space. The solution to this optimization problem is referred to as
the Schrödinger bridge. Existence of the minimizer has been proven
in various degrees of generality by Fortet [20], Beurling [21], Jamison
[22], Föllmer [23]. Jamison’s result is stated below.

Theorem 1: Given two probability measures µ0(dx) =
ρ0(x)dx and µ1(dy) = ρ1(y)dy on Rn and the continuous, ev-
erywhere positive Markov kernel q(s, x, t, y), there exists a unique
pair of σ-finite measure (ϕ̂0(x)dx, ϕ1(x)dx) on Rn such that the
measure P01 on Rn × Rn defined by

P01(E) =

∫
E

q(0, x, 1, y)ϕ̂0(x)ϕ1(y)dxdy (39)

has marginals µ0 and µ1. Furthermore, the Schrödinger bridge from
µ0 to µ1 induces the distribution flow

Pt(dx) = ϕ(t, x)ϕ̂(t, x)dx (40a)

with

ϕ(t, x) =

∫
q(t, x, 1, y)ϕ1(y)dy (40b)

ϕ̂(t, x) =

∫
q(0, y, t, x)ϕ̂0(y)dy. (40c)

The flow (40) is referred to as the entropic interpolation with
prior q between µ0 and µ1, or simply entropic interpolation, when it
is clear what the Markov kernel q is. An efficient numerical algorithm
to obtain the pair (ϕ̂0, ϕ1) and thereby solve the Schrödinger bridge
problem is given in [58].

For the case of non-degenerate Markov processes, a connection
between the Schrödinger problem and stochastic control was drawn in
[16], see also [35] and [59]. In particular, for the case of a Brownian
kernel, it was shown there that the one-time marginals ρ(t, x) for
Schrödinger’s problem are the densities of the optimal state vector
in the stochastic control problem

inf
v∈V

E
{∫ 1

0

1

2
‖v(t, xv)‖2dt

}
, (41a)

dxv(t) = v(t, xv(t))dt+ dw(t), (41b)

xv(0) ∼ ρ0(x)dx, xv(1) ∼ ρ1(y)dy. (41c)

Here V is the class of finite energy Markov controls. Using a
localization argument [60, p. 98] one can prove that for every
v ∈ V the controlled process has a weak solution in [0, 1] [61].
This reformulation of the Schrödinger problem builds on the fact
that the relative entropy between xv and x0 (zero control) in (41b)
is bounded above by the control energy, namely,

S(Pxv ,Px0) ≤ E
{∫ 1

0

1

2
‖v(t, xv(t))‖2dt

}
,

5In the above, dP
dQ denotes the Radon-Nikodym derivative.

where Pxv ,Px0 denote the measures induced by xv and x0, respec-
tively. The proof is based on Girsanov theorem, see [16], [61]. The
optimal control to (41) is given by

v(t, x) = ∇ logϕ(t, x)

with ϕ in (40b), see [16]. The stochastic control problem (41) has
the following equivalent formulation [39], [62]:

inf
(ρ,v)

∫
Rn

∫ 1

0

1

2
‖v(t, x)‖2ρ(t, x)dtdx, (42a)

∂ρ

∂t
+∇ · (vρ)− 1

2
∆ρ = 0, (42b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y). (42c)

Here, the infimum is over smooth fields v and ρ solves weakly
of the corresponding Fokker-Planck equation (42b). The entropic
interpolation is Pt(dx) = ρ(t, x)dx.

An alternative equivalent reformulation given in [12] is

inf
(ρ,v)

∫
Rn

∫ 1

0

[
1

2
‖v(t, x)‖2 +

1

8
‖∇ log ρ(t, x)‖2

]
ρ(t, x)dtdx,

(43a)
∂ρ

∂t
+∇ · (vρ) = 0, (43b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y), (43c)

where the Laplacian in the dynamical constraint is traded for a
“Fisher information” regularization term in the cost functional. It
answers at once a question posed by E. Carlen in 2006 investigating
the connections between optimal transport and Nelson’s stochastic
mechanics [63]. Although the form in (43) is quite appealing, for the
purposes of this paper we will use only (42).

Formulation (42) is quite similar to OMT (6) except for the
presence of the Laplacian in (42b). It has been shown [43], [44],
[41], [42] that the OMT problem is, in a suitable sense, indeed the
limit of the Schrödinger problem when the diffusion coefficient of the
reference Brownian motion goes to zero. In particular, the minimizers
of the Schrödinger problems converge to the unique solution of OMT,
see below.

Theorem 2: Given two probability measures µ0(dx) =
ρ0(x)dx, µ1(dy) = ρ1(y)dy on Rn with finite second moment, let
PB,ε01 be the solution of the Schrödinger problem with Markov kernel

qB,ε(s, x, t, y) = (2π)−n/2((t− s)ε)−n/2 exp

(
−‖x− y‖

2

2(t− s)ε

)
(44)

and marginals µ0, µ1, and let PB,εt be the corresponding entropic
interpolation. Similarly, let π be the solution to the OMT problem
(3) with the same marginal distributions, and µt the corresponding
displacement interpolation. Then, PB,ε01 converges weakly6 to π and
PB,εt converges weakly to µt, as ε goes to 0.

To build some intuition on the relation between OMT and
Schrödinger bridges, consider dx(t) =

√
εdw(t) with w(t) being

the standard Wiener process; the Markov kernel of x(t) is qB,ε in
(44). The corresponding Schrödinger bridge problem with the law of

6A sequence {Pn} of probability measures on a metric space S converges
weakly to a measure P if

∫
S fdPn →

∫
S fdP for every bounded, continuous

function f on the space.
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x(t) as prior, is equivalent to

inf
(ρ,v)

∫
Rn

∫ 1

0

1

2ε
‖v(t, x)‖2ρ(t, x)dtdx, (45a)

∂ρ

∂t
+∇ · (vρ)− ε

2
∆ρ = 0, (45b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y). (45c)

Note that the solution exists for all ε and coincides with the solution
of the problem to minimize the cost functional∫

Rn

∫ 1

0

1

2
‖v(t, x)‖2ρ(t, x)dtdx

instead, i.e., “rescaling” (45a) by removing the factor 1/ε. Now
observe that the only difference between (45) after removing the
scaling 1/ε in the cost functional and the OMT formulation (6) is
the regularization term ε

2
∆ρ in (45b). Thus, formally, the constraint

(45b) becomes (6b) as ε goes to 0.

Below we discuss a general result that includes the case when
the zero-noise limit of Schrödinger bridges corresponds to OMT-wpd.
This problem has been studied in [41] in a more abstract setting based
on Large Deviation Theory [64]. Here we consider the special case
that is connected to our OMT-wpd formulation. To this end, we begin
with the Markov kernel corresponding to the process

dx(t) = A(t)x(t)dt+
√
εB(t)dw(t). (46)

Notice that the corresponding transition kernel (see (62) in Appendix
B) is everywhere positive because of the controllability assumption.
Moreover, ϕ(t, x) for 0 ≤ t < 1 satisfying (40b) is also everywhere
positive and smooth.

Motivated by the previous case, we consider the following
stochastic control problem,

inf
u∈U

E
{∫ 1

0

1

2
‖u(t, xu)‖2dt

}
, (47a)

dxu(t) = A(t)xu(t)dt+B(t)u(t, xu)dt+
√
εB(t)dw(t), (47b)

xu(0) ∼ ρ0(x)dx, xu(1) ∼ ρ1(y)dy. (47c)

Here, U is the set of admissible Markov controls such that for each
u ∈ U the controlled process admits a weak solution in [0, 1] and the
control has finite energy. By a general version of Girsanov theorem
[65, Chapter IV.4] and the contraction property of relative entropy
[66], we have

S(Pxu ,Px0) ≤ E
{∫ 1

0

1

2ε
‖u(t, xu(t))‖2dt

}
,

where Pxu ,Px0 denote the measures induced by xu and x0 (zero
control) in (47b), respectively.

Let ϕ, ϕ̂ be as in (40b) with the Markov kernel corresponding
to (46) (and given in (62) in Appendix B). We claim that, under
the technical assumptions that i)

∫
Rn ϕ(0, x)µ0(dx) < ∞ and ii)

S(µ1, ϕ̂(1, ·)) <∞, the optimal solution to (47) is

u(t, x) = εB(t)′∇ logϕ(t, x). (48)

The assumption i) guarantees that the local martingale ϕ(t, x(t)),
where x is the uncontrolled evolution (46), is actually a martingale.
The assumption ii) implies that the control (48) has finite energy. For
both statements see [16, Theorem 3.2], whose proof carries verbatim.
While these conditions i) and ii) are difficult to verify in general, they
are satisfied when both µ0 and µ1 have compact support (c.f. [16,
Proposition 3.1]).

Then, by the argument in [16, Theorem 2.1] and in view of
the equivalence between existence of weak solutions to stochastic
differential equations (SDEs) and solutions to the martingale problem
(see [67, Theorem 4.2], [61, p. 314]), it follows that with u(t, x) as
in (48) the SDE (47b) has a weak solution. By substituting (48) in
the Fokker-Planck equation it can be seen that the corresponding
controlled process satisfies the marginals (47c). In fact, the density
flow ρ coincides with the one-time marginals of the Schrödinger
bridge (40a).

Finally, to see that (48) is optimal, we use a completion of
squares argument. To this end, consider the equivalent problem of
minimizing the cost functional

J(u) = E
{∫ 1

0

1

2ε
‖u(t)‖2dt− logϕ(1, x(1)) + log(ϕ(0, x(0))

}
in (47a) (the boundary terms are constant over the admissible path-
space probability distributions, cf. (47c)). Using Ito’s rule, and the
fact that u in (48) has finite energy, a standard calculation [68] shows

J(u) = E
{∫ 1

0

1

2ε
‖u(t)‖2dt− d logϕ(t, x(t))

}
= E

{∫ 1

0

1

2ε
‖u(t)− εB(t)′∇ logϕ(t, x(t))‖2dt

}
,

from which we readily conclude that (48) is the optimal control law.

The entropic interpolation Pt(dx) = ρ(t, x)dx can now be
obtained by solving

inf
(ρ,u)

∫
Rn

∫ 1

0

1

2
‖u(t, x)‖2ρ(t, x)dtdx, (49a)

∂ρ

∂t
+∇ · ((A(t)x+B(t)u)ρ)− ε

2

n∑
i,j=1

∂2(a(t)ijρ)

∂xi∂xj
= 0, (49b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y), (49c)

where a(t) = B(t)B(t)′, see [39], [40]. Comparing (49) with (21)
we see that the only difference is the extra term

ε

2

n∑
i,j=1

∂2(a(t)ijρ)

∂xi∂xj

in (49b) as compared to (21b).

Formally, (49b) converges to (21b) as ε goes to 0. This suggests
that the minimizer of the OMT-wpd might be obtained as the limit of
the joint initial-final time distribution of solutions to the Schrödinger
bridge problems as the diffusivity goes to zero. This result is stated
next and can be proved based on the result in [41] together with the
Freidlin-Wentzell Theory [64, Section 5.6] (a large deviation principle
on sample path space). As kindly noted by a referee, it can also
be derived by showing tightness of solution laws of the family of
martingale problems by applying, e.g., [69, Theorem 9.4, p. 145], and
appealing to the fact that martingale property w.r.t. natural filtration
is preserved under weak convergence, along with well-posedness of
the limiting martingale problem. For completeness we include in
Appendix B an alternative detailed proof.

Theorem 3: Given two probability measures µ0(dx) =
ρ0(x)dx, µ1(dy) = ρ1(y)dy on Rn with finite second moment,
let Pε01 be the solution of the Schrödinger problem with reference
Markov evolution (46) and marginals µ0, µ1, and let Pεt be the
corresponding entropic interpolation. Similarly, let π be the solution
to (26) with the same marginal distributions, and µt the corresponding
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displacement interpolation. Then, Pε01 converges weakly to π and Pεt
converges weakly to µt as ε goes to 0.

An important consequence of this theorem is that one can now
develop numerical algorithms for the general problem of OMT with
prior dynamics, and in particular for the standard OMT, by solving
the Schrödinger problem for a vanishing ε. This approach appears
particular promising in view of recent work [70] that provides an
effective computational scheme to solve the Schrödinger problem
by computing the pair (ϕ̂0, ϕ1) in Theorem 1 as the fixed point
of an iteration. This is now being developed for diffusion processes
in [58]. See also [71], [72] for similar works in discrete space
setting, which has a wide range of applications. This approach to
obtain approximate solutions to general OMT problems, via solutions
to Schrödinger problems with vanishing noise, is illustrated in the
examples of Section VI. It should also be noted that OMT problems
are known to be computationally challenging in high dimensions, and
specialized algorithms have been developed [2], [14]. The present
approach suggests a totally new computational scheme.

V. GAUSSIAN MARGINALS

We now consider the correspondence between Schrödinger
bridges and OMT-wpd for the special case where the marginals
are Gaussian distributions. That the OMT-wpd solution corresponds
to the zero-noise limit of the Schrödinger bridges is of course a
consequence of Theorem 3, but in this case, we can obtain explicit
expressions in closed-form and this is the point of this section.

Consider the reference evolution

dx(t) = A(t)x(t)dt+
√
εB(t)dw(t) (50)

and the two marginals

ρ0(x) =
1√

(2π)n|Σ0|
exp

[
−1

2
(x−m0)′Σ−1

0 (x−m0)

]
, (51a)

ρ1(x) =
1√

(2π)n|Σ1|
exp

[
−1

2
(x−m1)′Σ−1

1 (x−m1)

]
, (51b)

where, as usual, the system with matrices (A(t), B(t)) is control-
lable. In our previous work [37], [38], we derived a “closed-form”
expression for the Schrödinger bridge, namely,

dx(t) = (A(t)−B(t)B(t)′Πε(t))x(t)dt

+B(t)B(t)′m(t)dt+
√
εB(t)dw(t) (52)

with Πε(t) satisfying the matrix Riccati equation

Π̇ε(t)+A(t)′Πε(t)+Πε(t)A(t)−Πε(t)B(t)B(t)′Πε(t) = 0, (53)

Πε(0) = Σ
−1/2
0 [

ε

2
I + Σ

1/2
0 Φ′10M

−1
10 Φ10Σ

1/2
0

− (
ε2

4
I + Σ

1/2
0 Φ′10M

−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2]Σ

−1/2
0 , (54)

and
m(t) = Φ̂(1, t)′M̂(1, 0)−1(m1 − Φ̂(1, 0)m0), (55)

where Φ̂(t, s), M̂(t, s) satisfy

∂Φ̂(t, s)

∂t
= (A(t)−B(t)B(t)′Πε(t))Φ̂(t, s), Φ̂(t, t) = I

and

M̂(t, s) =

∫ t

s

Φ̂(t, τ)B(τ)B(τ)′Φ̂(t, τ)′dτ.

The probability law Pε(·) induced on path space by the stochastic
process in (52) is indeed the solution of the Schrödinger bridge
problem with prior corresponding to the law induced by the stochastic
process in (50) and marginals (51).

Next we consider the zero-noise limit by letting ε go to 0. In the
case where A(t) ≡ 0, B(t) ≡ I , the Schrödinger bridges converge
to the solution of the OMT. In general, when A(t) 6≡ 0, B(t) 6≡ I ,
by taking ε = 0 in (54) we obtain

Π0(0) = Σ
−1/2
0 [Σ

1/2
0 Φ′10M

−1
10 Φ10Σ

1/2
0

− (Σ
1/2
0 Φ′10M

−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2]Σ

−1/2
0 , (56)

and the corresponding limiting process

dx(t) = (A(t)−B(t)B(t)′Π0(t))x(t)dt+B(t)B(t)′m(t)dt,

x(0) ∼ (m0,Σ0) (57)

with Π0(t),m(t) satisfying (53), (55) and (56). In fact Π0(t) has the
explicit expression

Π0(t) = −M(t, 0)−1 −M(t, 0)−1Φ(t, 0)

×
[
Φ′10M

−1
10 Φ10 − Σ

−1/2
0 (Σ

1/2
0 Φ′10M

−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2Σ

−1/2
0

−Φ(t, 0)′M(t, 0)−1Φ(t, 0)
]−1

Φ(t, 0)′M(t, 0)−1. (58)

As indicated earlier, Theorem 3 already implies that (57) yields
an optimal solution to (21). Here we give an alternative proof by
“completion of squares”, a technique used in optimal control theory.

Proposition 3: Given Gaussian marginal distributions as in
(51), the linear control

u(t, x) = −B(t)′Π0(t)x+B(t)′m(t), (59)

with Π0 in (53) and m in (55) solves (16).

Proof: We show first that u in (59) is a feasible control by
proving that the corresponding probability density function ρ satisfies
the boundary condition (51), and second, that this control u is the
optimal one.

The controlled process (57) is linear with gaussian initial
condition, hence x(t) is a gaussian process. We claim that density of
x(t) is

ρ(t, x) =
1√

(2π)n|Σ(t)|
exp

[
−1

2
(x− n(t))′Σ(t)−1(x− n(t))

]
where

n(t) = Φ̂(t, 0)m0 +

∫ t

0

Φ̂(t, τ)B(τ)B(τ)′m(τ)dτ

and

Σ(t) = M(t, 0)Φ(0, t)′Σ
−1/2
0

×
[
−Σ

1/2
0 Φ′10M

−1
10 Φ10Σ

1/2
0 + (Σ

1/2
0 Φ′10M

−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2

+ Σ
1/2
0 Φ(t, 0)′M(t, 0)−1Φ(t, 0)Σ

1/2
0

]2
Σ
−1/2
0 Φ(0, t)M(t, 0)

(60)

for t ∈ (0, 1]. It is obvious that E{x(t)} = n(t) and it is also
immediate that

lim
t→0

Σ(t) = Σ0.
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Straightforward but lengthy computations show that Σ(t) satisfies the
Lyapunov differential equation

Σ̇(t) = (A(t)−B(t)B(t)′Π0(t))Σ(t)

+ Σ(t)(A(t)−B(t)B(t)′Π0(t))′.

Hence, Σ(t) is the covariance of x(t). Now, observing that

n(1) = Φ̂(1, 0)m0 +

∫ 1

0

Φ̂(1, τ)B(τ)B(τ)′m(τ)dτ

= Φ̂(1, 0)m0 +

∫ 1

0

Φ̂(1, τ)B(τ)B(τ)′Φ̂(1, τ)′dτ

× M̂(1, 0)−1(m1 − Φ̂(1, 0)m0)

= m1

and

Σ(1) = M(1, 0)Φ(0, 1)′Σ
−1/2
0

×
[
(Σ

1/2
0 Φ′10M

−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2

]2
Σ
−1/2
0 Φ(0, 1)M(1, 0)

= Σ1,

allows us to conclude that ρ satisfies ρ(1, x) = ρ1(x).

For the second part, consider the OMT-wpd (16) with aug-
mented cost function

J(u) = E{
∫ 1

0

1

2
‖u(t)‖2dt+

1

2
x(1)′Π0(1)x(1)

−1

2
x(0)′Π0(0)x(0)−m(1)′x(1) +m(0)′x(0)}.

This doesn’t change the minimizer because the extra terms are
constant under the fixed boundary distributions. Observing

J(u) = E{
∫ 1

0

1

2
‖u(t)‖2dt+

1

2
d(x(t)′Π0(t)x(t))

−d(m(t)′x(t))}

= E{
∫ 1

0

1

2
‖u(t) +B(t)′Π0(t)x(t)−B(t)′m(t)‖2dt}

+

∫ 1

0

1

2
m(t)′B(t)B(t)′m(t)dt,

it is easy to see that u in (59) achieves the minimum of J(u). This
completes the proof.

VI. NUMERICAL EXAMPLES

We present two examples. The first one is on steering a
collection of inertial particles in a 2-dimensional phase space between
Gaussian marginal distributions at the two end-points of a time
interval. We use the closed-form control presented in Section V.
The second example is on steering distributions in a one-dimensional
state-space with specified prior dynamics and more general marginal
distributions. In both examples, we observe that the entropic inter-
polations converge to the displacement interpolation as the diffusion
coefficient goes to zero.

A. Gaussian marginals

Consider a large collection of inertial particles moving in a 1-
dimension configuration space (i.e., for each particle, the position
x(t) ∈ R). The position x and velocity v of particles are assumed

Fig. 1: Interpolation based on Schrödinger bridge with ε = 9

to be jointly normally distributed in the 2-dimensional phase space
((x, v) ∈ R2) with mean and variance

m0 =

[
−5
−5

]
, and Σ0 =

[
1 0
0 1

]
at t = 0. We seek to steer the particles to a new joint Gaussian
distribution with mean and variance

m1 =

[
5
5

]
, and Σ1 =

[
1 0
0 1

]
at t = 1. The problem to steer the particles provides also a natural
way to interpolate these two end-point marginals by providing a flow
of one-time marginals at intermediary points t ∈ [0, 1].

When the particles experience stochastic forcing, their trajecto-
ries correspond to a Schrödinger bridge with reference evolution

d

(
x(t)
v(t)

)
=

[
0 1
0 0

](
x(t)
v(t)

)
dt+

[
0
1

]√
εdw(t).

In particular, we are interested in the behavior of trajectories when the
random forcing is negligible compared to the “deterministic” drift.

Figure 1 depicts the flow of the one-time marginals of the
Schrödinger bridge with ε = 9. The transparent tube represents the
3σ region

(ξ(t)′ −m′t)Σ−1
t (ξ(t)−mt) ≤ 9, ξ(t) =

[
x(t)
v(t)

]
and the curves with different color stand for typical sample paths
of the Schrödinger bridge. Similarly, Figures 2 and 3 depict the
corresponding flows for ε = 4 and ε = 0.01, respectively. The
interpolating flow in the absence of stochastic disturbance, i.e., for
the optimal transport with prior, is depicted in Figure 4; the sample
paths are now smooth as compared to the corresponding sample paths
with stochastic disturbance. As ε ↘ 0, the paths converge to those
corresponding to optimal transport and ε = 0. For comparison, we
also provide in Figure 5 the interpolation corresponding to optimal
transport without prior, i.e., for the trivial dynamics A(t) ≡ 0 and
B(t) ≡ I , which is precisely a constant speed translation.

B. General marginals

Consider now a large collection of particles obeying

dx(t) = −2x(t)dt+ u(t)dt
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Fig. 2: Interpolation based on Schrödinger bridge with ε = 4

Fig. 3: Interpolation based on Schrödinger bridge with ε = 0.01

in 1-dimensional state space with marginal distributions

ρ0(x) =

{
0.2− 0.2 cos(3πx) + 0.2 if 0 ≤ x < 2/3

5− 5 cos(6πx− 4π) + 0.2 if 2/3 ≤ x ≤ 1,

and
ρ1(x) = ρ0(1− x).

These are shown in Figure 6 and, obviously, are not Gaussian. Once
again, our goal is to steer the state of the system (equivalently,
the particles) from the initial distribution ρ0 to the final ρ1 using
minimum energy control. That is, we need to solve the problem of
OMT-wpd. In this 1-dimensional case, just like in the classical OMT

Fig. 4: Interpolation based on OMT-wpd

Fig. 5: Interpolation based on OMT

Fig. 6: Marginal distributions

problem, the optimal transport map y = T (x) between the two end-
points can be determined from7∫ x

−∞
ρ0(y)dy =

∫ T (x)

−∞
ρ1(y)dy.

The interpolation flow ρt, 0 ≤ t ≤ 1 can then be obtained using
(31). Figure 7 depicts the solution of OMT-wpd. For comparison, we
also show the solution of the classical OMT in figure 8 where the
particles move on straight lines.

Finally, we assume a stochastic disturbance,

dx(t) = −2x(t)dt+ u(t)dt+
√
εdw(t),

with ε > 0. Figure 9–12 depict minimum energy flows for diffusion
coefficients

√
ε = 0.5, 0.15, 0.05, 0.01, respectively. As ε→ 0, it

is seen that the solution to the Schrödinger problem converges to the
solution of the problem of OMT-wpd as expected.

VII. RECAP

The problem to steer the random state of a dynamical system
between given probability distributions can be equally well be seen as
the control problem to simultaneously herd a collection of particles
obeying the given dynamics, or as the problem to identify a potential
that effects such a transition. The former is seen to have applications

7In this 1-dimensional case, (30) is a simple rescaling and, therefore, T (·)
inherits the monotonicity of T̂ (·).
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Fig. 7: Interpolation based on OMT-wpd

Fig. 8: Interpolation based on OMT

in the control of uncertain systems, system of particles, etc. The latter
is seen as either a modeling or a system identification problem, where
e.g., the collective response of particles is observed and the prior
dynamics need to be adjusted by postulating a suitable potential so
as to be consistent with observed marginals. When the dynamics are
trivial (the state matrix is zero and the input matrix is the identity), the
problem reduces to the classical OMT problem. Herein we presented
a generalization to nontrivial linear dynamics. A version of both
viewpoints where an added stochastic disturbance is present relates to
the problem of constructing the so-called Schrödinger bridge between
two end-point marginals. In fact, Schrödinger’s bridge problem was

Fig. 9: Interpolation based on Schrödinger bridge with
√
ε = 0.5

Fig. 10: Interpolation based on Schrödinger bridge with
√
ε = 0.15

Fig. 11: Interpolation based on Schrödinger bridge with
√
ε = 0.05

conceived as a modeling problem to identify a probability law on
path space that is closest to a prior and is consistent with the
marginals. Its stochastic control reformulation in the 90’s has led
to a rapidly developing subject. The present work relates OMT
as a limit to Schrödinger bridges, when the stochastic disturbance
goes to zero, and discusses the generalization of both to the setting
where the prior linear dynamics are quite general. It opens the way
to employ the efficient iterative techniques recently developed for
Schrödinger bridges [70] to the computationally challenging OMT
(with or without prior dynamics). This is the topic of [58].

Fig. 12: Interpolation based on Schrödinger bridge with
√
ε = 0.01
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APPENDIX

A. Proof of Proposition 2

The velocity field associated with u(t, x) = B(t)′∇ψ(t, x) is

v(t, x) = A(t)x+B(t)B(t)′∇ψ(t, x),

which is well-defined almost everywhere (as it will be shown below
that ψ is indeed differentiable almost everywhere). Since we already
know from previous discussion that Tt in (31b) gives the trajectories
associated with the optimal transportation plan, it suffices to show

v(t, ·) ◦ Tt = dTt/dt,

that is, v(t, x) is the velocity field associated with the trajectories
(Tt)0≤t≤1. We next prove v(t, ·) ◦ Tt = dTt/dt.

For 0 < t < 1, formula (38) can be rewritten as

g(x) = sup
y

{
x′M(t, 0)−1Φ(t, 0)y − f(y)

}
,

with

g(x) =
1

2
x′M(t, 0)−1x− ψ(t, x)

f(y) =
1

2
y′Φ(t, 0)′M(t, 0)−1Φ(t, 0)y + ψ(0, y).

The function

f(y) =
1

2
y′Φ(t, 0)′M(t, 0)−1Φ(t, 0)y + ψ(0, y)

=
1

2
y′
[
Φ(t, 0)′M(t, 0)−1Φ(t, 0)− Φ′10M

−1
10 Φ10

]
y

+φ(M
−1/2
10 Φ10y)

is uniformly convex since φ is convex and the matrix

Φ(t, 0)′M(t, 0)−1Φ(t, 0)− Φ′10M
−1
10 Φ10

=

(∫ t

0

Φ(0, τ)B(τ)B(τ)′Φ(0, τ)′dτ

)−1

−
(∫ 1

0

Φ(0, τ)B(τ)B(τ)′Φ(0, τ)′dτ

)−1

is positive definite. Hence, f, g, ψ are differentiable almost ev-
erywhere, and from a similar argument to the case of Legendre
transform, we obtain

∇g ◦ (M(t, 0)Φ(0, t)′∇f(x)) = M(t, 0)−1Φ(t, 0)x,

for all x ∈ Rn. It follows

(M(t, 0)−1 −∇ψ(t, ·)) ◦
(
M(t, 0)Φ(0, t)′

×
[
Φ(t, 0)′M(t, 0)−1Φ(t, 0)x+∇ψ(0, x)

])
= M(t, 0)−1Φ(t, 0)x.

After some cancellations it yields

∇ψ(t, ·) ◦ Φ(t, 0)x+∇ψ(t, ·) ◦M(t, 0)Φ(0, t)′∇ψ(0, x)

− Φ(0, t)′∇ψ(0, x) = 0. (61)

On the other hand, since

T (x) = M
−1/2
10 ∇φ(M

−1/2
10 Φ10x) = M10Φ′01∇ψ(0, x) + Φ10x,

we have

Tt(x) = Φ(t, 1)M(1, t)M−1
10 Φ10x+M(t, 0)Φ(1, t)′M−1

10 T (x)

= (Φ(t, 1)M(1, t) +M(t, 0)Φ(0, t)′)M−1
10 Φ10x

+M(t, 0)Φ(0, t)′∇ψ(0, x)

= Φ(t, 0)x+M(t, 0)Φ(0, t)′∇ψ(0, x).

The fact that (Φ(t, 1)M(1, t) +M(t, 0)Φ(0, t)′)M−1
10 Φ10 = Φ(t, 0)

follows by substituting expressions for the Grammians from (22). It
now follows that

dTt(x)

dt
= A(t)Φ(t, 0)x+A(t)M(t, 0)Φ(0, t)′∇ψ(0, x)

+B(t)B(t)′Φ(0, t)′∇ψ(0, x).

Therefore,

v(t, ·) ◦ Tt(x)− dTt(x)

dt
=
[
A(t) +B(t)B(t)′∇ψ(t, ·)

]
◦ [Φ(t, 0)x

+M(t, 0)Φ(0, t)′∇ψ(0, x)
]

−
[
A(t)Φ(t, 0)x+A(t)M(t, 0)Φ(0, t)′∇ψ(0, x)

+B(t)B(t)′Φ(0, t)′∇ψ(0, x)
]

= B(t)B(t)′ {∇ψ(t, ·) ◦ Φ(t, 0)x

+∇ψ(t, ·) ◦M(t, 0)Φ(0, t)′∇ψ(0, x)

− Φ(0, t)′∇ψ(0, x)
}

= 0,

by (61), which completes the proof.

B. Proof of Theorem 3

The Markov kernel of (46) is

qε(s, x, t, y) = (2πε)−n/2|M(t, s)|−1/2 (62)

× exp

(
− 1

2ε
(y − Φ(t, s)x)′M(t, s)−1(y − Φ(t, s)x)

)
.

Comparing this and the Brownian kernel qB,ε we obtain

qε(s, x, t, y) = (t− s)n/2|M(t, s)|−1/2

× qB,ε(s,M(t, s)−1/2Φ(t, s)x, t,M(t, s)−1/2y).

Now define two new marginal distributions ρ̂0 and ρ̂1 through the
coordinates transformation C in (27),

ρ̂0(x) = |M10|1/2|Φ10|−1ρ0(Φ−1
10 M

1/2
10 x),

ρ̂1(x) = |M10|1/2ρ1(M
1/2
10 x).

Let (ϕ̂0, ϕ1) be a pair that solves the Schrödinger bridge problem
with kernel qε and marginals ρ0, ρ1, and define (ϕ̂B0 , ϕ

B
1 ) as

ϕ̂0(x) = |Φ10|ϕ̂B0 (M
−1/2
10 Φ10x), (63a)

ϕ1(x) = |M10|−1/2ϕB1 (M
−1/2
10 x), (63b)

then the pair (ϕ̂B0 , ϕ
B
1 ) solves the Schrödinger bridge problem with

kernel qB,ε and marginals ρ̂0, ρ̂1. To verify this, we need only to
show that the joint distribution

PB,ε01 (E) =

∫
E

qB,ε(0, x, 1, y)ϕ̂B0 (x)ϕB1 (y)dxdy
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matches the marginals ρ̂0, ρ̂1. This follows from∫
Rn

qB,ε(0, x, 1, y)ϕ̂B0 (x)ϕB1 (y)dy

=

∫
Rn

qB,ε(0, x, 1,M
−1/2
10 y)ϕ̂B0 (x)ϕB1 (M

−1/2
10 y)d(M

−1/2
10 y)

= |M10|1/2|Φ10|−1

∫
Rn

qε(0,Φ−1
10 M

1/2
10 x, 1, y)

× ϕ̂0(Φ−1
10 M

1/2
10 x)ϕ1(y)dy

= |M10|1/2|Φ10|−1ρ0(Φ−1
10 M

1/2
10 x) = ρ̂0(x),

and ∫
Rn

qB,ε(0, x, 1, y)ϕ̂B0 (x)ϕB1 (y)dx

=

∫
Rn

qB,ε(0,M
−1/2
10 Φ10x, 1, y)ϕ̂B0 (M

−1/2
10 Φ10x)

× ϕB1 (y)d(M
−1/2
10 Φ10x)

= |M10|1/2
∫
Rn

qε(0, x, 1,M
1/2
10 y)ϕ̂0(x)ϕ1(M

1/2
10 y)dx

= |M10|1/2ρ1(M
1/2
10 y) = ρ̂1(y).

Compare PB,ε01 with Pε01 it is not difficult to find out that PB,ε01 is a
push-forward of Pε01, that is,

PB,ε01 = C]Pε01.

On the other hand, let πB be the solution to classical OMT (3) with
marginals ρ̂0, ρ̂1, then

πB = C]π.

Now since PB,ε01 weakly converge to πB from Theorem 2, we
conclude that Pε01 weakly converge to π as ε goes to 0.

We next show Pεt weakly converges to µt as ε goes to 0 for all
t. The corresponding path space measure µ can be expressed as

µ(·) =

∫
Rn×Rn

δγxy (·) π(dxdy),

where γxy is the minimum energy path (25) connecting x, y, and δγxy

is the Dirac measure concentrated on γxy . Similarly, the Schrödinger
bridge Pε can be decomposed [42] as

Pε(·) =

∫
Rn×Rn

Qεxy(·) Pε01(dxdy),

where Qεxy is the pinned bridge [73] (a generalization of Brownian
bridge) associated with (46) conditioned on xε(0) = x and xε(1) =
y, and it has the stochastic differential equation representation

dxε(t) = (A(t)−B(t)B(t)′Φ(1, t)′M(1, t)−1Φ(1, t))xε(t)dt

+B(t)B(t)′Φ(1, t)′M(1, t)−1ydt+
√
εB(t)dw(t) (64)

with initial value xε(0) = x. As ε goes to zero, Qεxy tends to
concentrate on the solution of

dx0(t) = (A(t)−B(t)B(t)′Φ(1, t)′M(1, t)−1Φ(1, t))x0(t)dt

+B(t)B(t)′Φ(1, t)′M(1, t)−1ydt, x0(0) = x,

which is γxy . The linear stochastic differential equation (64) repre-
sents a Gaussian process. It has the following explicit expression

xε(t) = γxy(t) +
√
ε

∫ t

0

Φ̃(t, τ)B(τ)dw(τ), 0 ≤ t < 1, (65)

where Φ̃ is the transition matrix of the dynamics (64), and xε(t)
converges to y almost surely as t goes to 1, see [73]. From (65) it
is easy to see that the autocovariance of xε(·) depends linearly on ε

and therefore goes to 0 as ε→ 0. Combining this and the fact xε(·)
is a Gaussian process we conclude that the set of processes xε(·)
is tight [74, Theorem 7.3] and their finite dimensional distributions
converge weakly to those of x0(·). Hence, Qεxy converges weakly to
δγxy [74, Theorem 7.1] as ε goes to 0.

We finally claim that Pεt weakly converges to µt as ε goes to
0 for each t. To see this, choose a bounded, uniformly continuous8

function h and define

gε(x, y) := 〈Qεxy,t, h〉,

g(x, y) := 〈δγxy,t, h〉
= h(γxy(t)),

where 〈·, ·〉 denotes the integration of the function against the
measure. From (25) it is immediate that g is a bounded continuous
functions of x, y. Since Qεxy,t is a Gaussian distribution with mean
γxy(t) and covariance which is independent of x, y and tends to zero
as ε→ 0 based on (65), gε → g uniformly as ε→ 0. It follows

〈Pεt , h〉 − 〈µt, h〉 = 〈Pε01, g
ε〉 − 〈π, g〉

= (〈Pε01, g〉 − 〈π, g〉) + 〈Pε01, g
ε − g〉.

Both summands tend to zero as ε→ 0, the first due to weak conver-
gence of Pε01 to π and the second due to the uniform convergence
of gε to g. This completes the proof.
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