
Accepted Manuscript

From gene to therapy in spinal and bulbar muscular atrophy: Are we there yet?

Maria Pennuto, Carlo Rinaldi

PII: S0303-7207(17)30359-3

DOI: 10.1016/j.mce.2017.07.005

Reference: MCE 10004

To appear in: Molecular and Cellular Endocrinology

Received Date: 7 March 2017

Revised Date: 30 June 2017

Accepted Date: 3 July 2017

Please cite this article as: Pennuto, M., Rinaldi, C., From gene to therapy in spinal and bulbar
muscular atrophy: Are we there yet?, Molecular and Cellular Endocrinology (2017), doi: 10.1016/
j.mce.2017.07.005.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.mce.2017.07.005


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

1 

 

From gene to therapy in spinal and bulbar muscular atrophy: are we 
there yet? 
 
Maria Pennuto1,2*, Carlo Rinaldi3* 
 

1. Dulbecco Telethon Institute, Centre for Integrative Biology, University of Trento, 38123 

Trento, Italy 

2. Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy 

3. Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX, 

Oxford, UK 

 
*Corresponding authors 
 
Maria Pennuto, PhD 
Dulbecco Telethon Institute Lab of Neurodegenerative Diseases 

CIBIO, University of Trento 

Via Sommarive 9, I-38123 Trento, Italy 

Phone +39 0461 285215 

Fax:    +39 0461 283937 

MPennuto@Dti.Telethon.it; maria.pennuto@unipd.it 

 
 
Carlo Rinaldi, MD, PhD 

Department of Physiology, Anatomy and Genetics 

Le Gros Clark Building 

University of Oxford 

South Parks Road 

Oxford, OX1 3QX 

United Kingdom 

Phone: +44 (0)1865 272158 

carlo.rinaldi@dpag.ox.ac.uk 

 

 
  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

2 

 

Abstract 

 

Abnormal polyglutamine expansions in the androgen receptor (AR) cause a muscular condition, 

known as Kennedy’s disease or spinal and bulbar muscular atrophy (SBMA). The disease is 

transmitted in an X-linked fashion and is clinically characterized by weakness, atrophy and 

fasciculations of the limb and bulbar muscles as a result of a toxic gain-of-function of the mutant 

protein. Notably, affected males also show signs of androgen insensitivity, such as gynaecomastia 

and reduced fertility. The characterization of the natural history of the disease, the increasing 

understanding of the mechanism of pathogenesis and the elucidation of the functions of normal and 

mutant AR have offered a momentum for developing a rational therapeutic strategy for this disease. 

In this special issue on androgens and AR functions, we will review the molecular, biochemical, 

and cellular mechanisms underlying the pathogenesis of SBMA. We will discuss recent advances 

on therapeutic approaches and opportunities for this yet incurable disease, ranging from androgen 

deprivation, to gene silencing, to an expanding repertoire of peripheral targets, including muscle. 

With the advancement of these strategies into the clinic, it can be reasonably anticipated that the 

landscape of treatment options for SBMA and other neuromuscular conditions will change rapidly 

in the near future.   
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Introduction 

 

Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy’s disease, is caused 

by expansions of a CAG tandem trinucleotide repeat, encoding glutamine, in the first exon of the 

androgen receptor (AR) gene (La Spada et al., 1991). SBMA is one out of nine neurological 

disorders caused by expansions of CAG repeats in the coding regions of specific genes. These 

disorders are known as polyglutamine diseases and include Huntington’s disease, dentatorubral-

pallidoluysian atrophy, and spinocerebellar ataxia type 1, 2, 3, 6, 7, and 17 (Fan et al., 2014; Orr 

and Zoghbi, 2007; Pennuto and Sambataro, 2010). Polyglutamine diseases are caused by CAG 

repeat expansions in the coding regions of the genes coding for huntingtin (Macdonald et al., 1993), 

atrophin-1 (Koide et al., 1994; Nagafuchi et al., 1994), ataxin-1 (Orr et al., 1993), ataxin-2 (Imbert 

et al., 1996), ataxin-3 (Kawaguchi et al., 1994), CACNA1A (Zhuchenko et al., 1997), ataxin-7 

(David et al., 1997), and the TATA-binding protein (TBP) (Nakamura et al., 2001).  

Polyglutamine diseases are all inherited in an autosomal dominant fashion, except for 

SBMA, which is X-linked. These diseases are progressive and have typically a late onset exordium, 

with a negative correlation between the length of the CAG repeat and the age at onset and a positive 

correlation with disease severity. Consistent with these features, polyglutamine diseases show the 

phenomenon of genetic anticipation, with the next generation more likely to inherit a longer 

polyglutamine tract and present a more severe phenotype. Although the polyglutamine-expanded 

proteins are expressed in several tissues and, in some cases, have housekeeping functions in the 

cells, neurons are primary targets of polyglutamine-expanded proteins. Even more intriguingly, 

specific populations of neurons degenerate in polyglutamine diseases, resulting in different clinico-

pathological disease manifestations (Roselli and Caroni, 2015; Saxena and Caroni, 2011). The 

molecular basis of selective neuronal vulnerability remains obscure. 

Polyglutamine diseases are caused by both toxic gain of function and loss of function 

mechanisms. Generation of knock out, knock in and transgenic animal models of polyglutamine 

diseases has allowed to better appreciate the mechanism of neurodegeneration in these disorders. 

Knock out or knock down of polyglutamine proteins generally is associated with phenotypes 

different from those caused by the polyglutamine-expanded proteins. For instance, loss of function 

mutations of AR in humans as well as ablation of AR expression in mice result in a phenotype that 

does not include a neuromuscular dysfunction, supporting a toxic gain of function model for 

SBMA. Moreover, overexpression of polyglutamine-expanded proteins in the presence of the wild 

type counterpart causes disease, indicating that polyglutamine diseases are not caused by pure loss 

of function mechanisms. Nevertheless, polyglutamine expansion also confers a loss of protein 
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function to the mutant protein, which contributes to disease pathogenesis. Indeed, SBMA patients 

present frequently with symptoms of partial androgen insensitivity, such as gynecomastia, reduced 

libido and impotence (Querin et al., 2015). Moreover, loss of endogenous AR has been shown to 

aggravate the phenotype caused by mutant AR, thereby showing a contribution of the loss of AR 

function in SBMA (Thomas et al., 2006).  

Polyglutamine expansion is associated with protein misfolding, aggregation and inclusion 

formation. Polyglutamine-expanded proteins aggregate into detergent-insoluble amyloid-like fibrils 

(Adegbuyiro et al., 2017). The length of the polyglutamine tract directly correlates with the 

propensity to form amyloid fibrils. Biochemically, micro-aggregates/oligomers can be detected as 

high molecular weight species that accumulate in the stacking gel by sodium dodecyl sulphate - 

polyacrylamide gel electrophoresis (SDS-PAGE) and by filter retardation assay (Palazzolo et al., 

2009). In addition, polyglutamine proteins form inclusion bodies, larger structures composed of 

fibrillar aggregates. These inclusions form in both nucleus and cytosol, are a hallmark of disease, 

yet their role is disease pathogenesis is far from understood.  While initially considered toxic 

species whose formation correlated with disease progression, more recently inclusions have been 

proposed to be protective species, and neurons capable of depositing misfolded polyglutamine 

proteins into inclusion bodies were shown to survive longer compared to neurons unable to form 

such structures (Arrasate et al., 2004; Palazzolo et al., 2010). Rather, diffused misfolded proteins 

and amyloid fibrils may be the toxic species that not only grow inside the neurons, but that can also 

be transmitted from one neuron to another in response to neuronal activity and by means of 

extracellular vesicles (Pecho-Vrieseling et al., 2014; Ren et al., 2009).   

An intriguing aspect of polyglutamine diseases is that the same mutation in different genes 

causes the dysfunction and degeneration of specific populations of neurons in the central nervous 

system. This indicates that expansion of polyglutamine tracts is necessary, but not sufficient to 

dictate disease features. Rather, intrinsic protein features play a critical role in dictating the 

initiation and progression to cellular dysfunction and degeneration (Graham et al., 2006; Katsuno et 

al., 2002; Klement et al., 1998; Tsuda et al., 2005). A large body of evidence shows that both the 

structure and the native functions of polyglutamine-expanded proteins are important in the 

neurodegenerative process. This is particularly evident in SBMA. Indeed, the sex-specificity of 

SBMA indicates that the expanded polyglutamine tract is not the only causative determinant of 

motor neuron loss and skeletal muscle atrophy. Rather, protein domains outside the polyglutamine 

tract are expected to play a key role in disease pathogenesis. Moreover, recent findings support the 

idea that the native functions of polyglutamine-expanded proteins cause neurodegeneration through 

gain and loss of function mechanisms involving native protein-protein interactions and alteration of 
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the native functions of the disease proteins. AR is an ideal model protein to appreciate the 

contribution of protein structure and function to disease pathogenesis, as its structure and functions 

are quite well characterized.  

 

Clinical features  

SBMA is an X-linked neuromuscular condition where only males are fully affected. Female 

carriers are generally asymptomatic or may experience recurrent muscle cramps (Schmidt et al., 

2002). Disease onset ranges from about ages 18–64, with most patients presenting in the fourth or 

fifth decade of life with tremor, cramping, proximal and distal weakness, and muscle atrophy, 

secondary to the lower motor neuron degeneration and primary muscle atrophy (Rhodes et al., 

2009). Involvement of the bulbar muscles is a frequent finding, accounting for dysarthria and 

dysphagia, hypernasality, with decreased range of pitch and loudness, and perioral fasciculations. 

Weakness of the temporalis and masseter muscles with selective preservation of pterygoid muscles 

causes fatigue when chewing and occasionally jaw drop (Sumner and Fischbeck, 2002). 

Degeneration of the dorsal root ganglia often results in a loss of sensation in the lower extremities. 

Signs of androgen insensitivity include gynaecomastia, oligospermia and erectile dysfunction, as 

well as reduced risk of androgenetic alopecia in SBMA (Sinclair et al., 2007). SBMA subjects also 

often demonstrate metabolic alterations, including abdominal obesity, increased insulin resistance, 

and dyslipidemia, likely as a result of decreased androgen signal (Rhodes et al., 2009; Hashizume et 

al., 2012; Nakatsuji et al., 2017)). Although most patients have elevations in total testosterone, free 

testosterone and dihydrotestosterone, the levels of free testosterone and dihydrotestosterone may be 

reduced in some individuals. Low sensory nerve amplitudes, decreased compound motor action 

potentials and evidence of diffuse denervation are the characteristic features on electromyography 

and nerve conduction study. Motor unit nerve estimation (MUNE) is reduced to about half of 

healthy control values (Lehky et al., 2009). A muscle biopsy may show evidence of neurogenic and 

myogenic atrophy (Kennedy et al., 1968; Soraru et al., 2008). Female carriers do not usually 

develop weakness, although a minority may have muscle cramps (Ishihara et al., 2001).  

Disease progression is relatively slow, particularly when compared to other motor neuron 

diseases, such as amyotrophic lateral sclerosis (ALS), with muscle strength, as measured by 

quantitative muscle assessment, declining by 2% per year (Fernandez-Rhodes et al., 2011). The 

majority of individuals with SBMA have a normal life expectancy although affected subjects are at 

risk of choking on food and aspiration pneumonia because of weakness of the bulbar muscles 

(Atsuta et al., 2006; Kennedy et al., 1968). As bulbar symptoms correlate with the length of the 

CAG repeat and affect the prognosis (Atsuta et al., 2006), videofluorography-assessed by barium 
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swallow has been suggested as a reliable and relevant outcome measure in SBMA clinical trials 

(Fernandez-Rhodes et al., 2011; Katsuno et al., 2010). Interestingly, a 29-year old patient with 68 

CAG repeats –the largest reported so far- developed signs and symptoms of autonomic dysfunction 

and abnormal sexual development in addition to the typical clinical picture (Grunseich et al., 2014). 

The diagnosis of SBMA is often delayed due to limited awareness; therefore the estimated 

prevalence of 1-2 per 100,000 is likely to be an underestimation. Time to diagnosis after onset of 

weakness averaged 5.5 years, and the time from first medical evaluation to diagnosis averaged more 

than 3 years (Rhodes et al., 2009). SBMA patients are most often misdiagnosed with ALS, 

myasthenia gravis, polymyositis, metabolic myopathy and chronic inflammatory neuropathy. With 

recognition of the characteristic clinical features and the availability of confirmatory genetic testing, 

a diagnosis can be relatively straightforward. 

 

From the AR gene to protein 

The AR gene lies on the X chromosome and is composed of eight exons that encode a 

protein of about 110 kDa (about 920 amino acids depending on the length of several polymorphic 

trinucleotide repeats, NM_000044). In addition to the open reading frame, the 11 kb mRNA 

contains 1.1 kb 5’ untranslated region (UTR), the longest among steroid receptors, and a 6.8 kb 

3’UTR (Faber et al., 1991). AR is highly expressed in sexual organs in males as well as in motor 

neuron and muscle cells, which degenerate in SBMA patients. AR negatively regulates its own 

expression by binding to the second intron of the AR gene (Cai et al., 2011). The AR is a steroid 

hormone receptor composed of three main domains: Exon 1 encodes the amino-terminal domain 

(amino-acids 1-555), exons 2 and 3 encode the DNA binding domain and the hinge region (amino-

acids 556-670), and exons 4-8 encode the ligand binding domain (amino-acids 671-920). The AR is 

a transcription factor activated by testosterone and dihydrotestosterone.  

The amino-terminal domain of the AR is poorly conserved throughout evolution and is the 

less structured domain of the protein. This domain contains the polyglutamine tract whose 

expansion causes SBMA. The length of the pathogenic polyglutamine tract ranges between 5 and 

36 residues in the normal population, with an average length of about 21 glutamines. Expansions of 

38-to-68 residues cause SBMA. The size of this polyglutamine tract affects AR function, with 

longer repeat tracts associated with lower AR activity (Harada et al., 2010; Tut et al., 1997; Wang et 

al., 2004). In SBMA, pathogenic expansions of the polyglutamine tract reduce AR activity and may 

be responsible for partial loss of AR function. AR has two other short polyglutamine tracts, whose 

length also negatively affects AR function (Harada et al., 2010).  AR has two more tandem repeats, 

a polyglycine tract and a polyproline tract that are polymorphic in size. The length of the 
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polyglycine tract does not correlate with severity of disease (Bertolin et al., 2016). The role of the 

polyproline tract in SBMA is not known.  The amino-terminal domain of the AR is critical for its 

function. It contains two subdomains, namely activating function 1 (AF-1) and AF-5, which span 

amino acids 51-211 and 370-494, respectively. AF-1 is masked by heat shock proteins (HSPs) and 

functions in a ligand-dependent fashion. The relevance of these functional domains in SBMA 

pathogenesis remains to be elucidated.  

The DNA binding domain of AR is composed of two zinc fingers, of which the first one 

dictates binding site specificity by contacting the major grove of DNA, and the other one stabilizes 

binding. The AR has a nuclear localization signal spanning residues 617-634, which works in a 

hormone-dependent fashion. This nuclear localization signal is bipartite and is composed of two 

clusters of conserved basic residues separated by 10 amino acids (Simental et al., 1991). Nuclear 

import of AR occurs through the importin-α and importin-β systems (Cutress et al., 2008). The 

hinge region contains a sequence known as PEST (where P is proline, E glutamic acid, S serine, and 

T threonine) (Sheflin et al., 2000), which targets proteins for degradation by the ubiquitin-

proteasome system (UPS) (Rechsteiner and Rogers, 1996). Normal and polyglutamine-expanded 

AR are indeed rapidly and efficiently degraded mainly through the UPS in a process regulated 

through phosphorylation at the amino-terminal domain and the ligand-binding domain (Lin et al., 

2001; Palazzolo et al., 2007). 

The ligand-binding domain of AR is composed of 12 alpha-helices and 4 beta-strands 

(Matias et al., 2000). Hormone binding results in a conformational change that leads to formation of 

a transactivation domain, namely AF-2. AF-2 recruits co-regulators of transcription bearing the 

LXXLL motif (where L is leucine and X any amino acid). In the AR, the AF-2 preferentially binds 

to the FXXLF motif (where F is phenylalanine) and the WXXLF motif (where W is tryptophan ) in 

the amino-terminal domain of the protein (He et al., 2000), resulting in an interaction between the 

amino (N)-terminal domain and the carboxy (C)-terminal domain, which is known as the N/C 

interaction (Langley et al., 1995; Langley et al., 1998). The N/C interaction can be intra-molecular 

and inter-molecular, the first likely occurring in the cytosol and the other in the nucleus (Schaufele 

et al., 2005).  

   

Disease mechanisms 

Since the discovery of polyglutamine expansions as the genetic cause of SBMA, a large 

body of evidence has been obtained to explain how binding of androgens to polyglutamine-

expanded AR triggers SBMA. In the unbound/inactive state, AR forms complexes with heat shock 

proteins (HSPs) in the cytosol (Fig. 1). Binding to androgens results in dissociation from HSPs, a 
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conformational change that results in N/C interactions, translocation to nucleus, DNA binding, 

interaction with transcription co-factors and regulation of gene expression (Parodi and Pennuto, 

2011). All these post-translational events triggered by hormone binding have been shown to play a 

role in disease pathogenesis. Moreover, hormone binding induces several post-translational 

modifications that play a key role in SBMA (Fig. 1). The relevance of post-translational 

modifications in SBMA pathogenesis is discussed elsewhere (Pennuto et al., 2009; Sambataro and 

Pennuto, 2017).  

The interaction between polyglutamine-expanded AR and the HSPs has been extensively 

investigated in several in vitro and in vivo models of SBMA. Overexpression of HSPs, such as 

HSP40, HSP70, and HSP105alpha,  in animal models of SBMA and other polyglutamine diseases 

reduces the toxicity of polyglutamine proteins by reducing protein aggregation and inducing protein 

degradation (Adachi et al., 2003; Adachi et al., 2007; Bailey et al., 2002; Howarth et al., 2007; 

Ishihara et al., 2003; Kobayashi et al., 2000). Recently, the heat shock protein B8 (HspB8), a 

member of the small heat shock protein family, has been shown to facilitate the clearance of 

polyglutamine-expanded AR through autophagy (Rusmini et al., 2013). AR is a HSP90 client 

protein that forms two types of complexes with opposite functions, one containing HSP70 and Hop, 

which drives proteins to degradation through the UPS, and the other containing Cdc37 and p23, 

which stabilizes proteins. Compounds like 17-AAG that promote the assembly of the 

HSP90/Hop/AR complex have been shown to have therapeutic potential in SBMA (Waza et al., 

2005).  

Binding of AR to androgens results in dissociation from the HSPs, an event followed by a 

change in conformation leading to intra- and inter-molecular N/C interactions. Recent evidence has 

emerged showing that the N/C interactions play a critical role in the pathogenesis of SBMA. 

Disruption of the N/C interactions by mutation of the FXXLF motif has been shown to reduce 

mutant protein aggregation and toxicity in cell models of SBMA (Orr et al., 2010). Since the N/C 

interaction is needed for protein stabilization in response to hormone binding (He et al., 2001), the 

beneficial effect derived from decreased N/C interactions may be the result of increased turnover, 

reduced protein accumulation and aggregation, and increased degradation by the UPS.  

Hormone binding results in AR nuclear translocation. Localization of polyglutamine 

proteins in the nucleus is a prerequisite for neurodegeneration (Bichelmeier et al., 2007; Klement et 

al., 1998; Saudou et al., 1998). In the case of SBMA, nuclear translocation is necessary, but not 

sufficient for toxicity. Indeed, either deletion of the nuclear localization signal (NLS) or addition of 

a nuclear export signal (NES) reduce hormone-induced nuclear translocation and attenuate 

neurodegeneration, indicating that nuclear localization is a key event in disease pathogenesis 
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(Montie et al., 2009; Nedelsky et al., 2010; Takeyama et al., 2002). Consistent with these findings, 

mutation of the acetylation motif, KXKK (where K is lysine), within the NLS reduces nuclear 

translocation and attenuates neurodegeneration in fly models of SBMA (Nedelsky et al., 2010). 

However, forced nuclear translocation of mutant AR in the absence of hormone binding failed to 

induce neurotoxicity, supporting the concept that nuclear localization is needed for toxicity, but is 

not sufficient to cause neuronal damage (Montie et al., 2009; Nedelsky et al., 2010). This evidence 

implies that events occurring in the nucleus and linked to AR biology and function are involved in 

neuronal damage and muscle atrophy. 

Within the nucleus, activated AR binds to specific sequences, namely androgen-responsive 

elements (AREs), to regulate the expression of androgen-responsive genes (Fig. 1). DNA binding is 

therefore another androgen-induced post-translational event that is necessary for toxicity in SBMA. 

Mutations preventing DNA binding suppress toxicity, thereby indicating that DNA binding is a key 

event in the cascade of modifications triggered by androgen binding (Nedelsky et al., 2010).  

DNA binding is followed by co-factor recruitment through the AF-2 surface (van Royen et 

al., 2007). Disruption of the AF-2 surface reduces co-factor recruitment and attenuates the toxicity 

of mutant AR (Nedelsky et al., 2010). One of the co-factors recruited through the AF-2 surface is 

protein arginine methyltransferase 6 (PRMT6), a co-activator of AR whose structural and functional 

interaction with AR is enhanced by polyglutamine expansion (Scaramuzzino et al., 2015). 

Recruitment of co-factors through AF-2 aberrantly enhances mutant AR function, thereby 

contributing to neurodegeneration. These observations provide evidence to the concept that native 

protein-protein interactions and functions of mutant AR are fundamental aspects in the 

neurodegenerative process. Whether the AF-1 and AF-5 in the amino-terminal domain of AR play a 

role in SBMA remains to be established. 

As a transcription factor activated by androgens, the AR regulates (activates and represses) 

expression of androgen responsive genes in a tissue- and time-specific fashion. AR function is 

altered in SBMA, and dysregulation of gene expression has been reported in neuronal and 

peripheral tissues, such as skeletal muscle (Lieberman et al., 2002; Rocchi et al., 2016). Changes in 

gene expression can be primary, due to altered binding site specificity of mutant AR, or secondary, 

due to changes in the expression and function of other transcription factors and epigenetic 

regulators of gene expression. In skeletal muscle, expression of polyglutamine-expanded AR results 

in aberrant expression of hundreds of genes. Notably, several independent studies carried out on 

different rodent models of SBMA have led to identification of genes that are upregulated and genes 

whose expression is downregulated in SBMA muscle (Giorgetti et al., 2016; Mo et al., 2010; 

Rocchi et al., 2016). Gene ontology analysis revealed alterations in several pathways, including 
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glycolysis, lipid metabolism, mitochondrial genes, cell adhesion, and of course muscle atrophy and 

myogenesis. These gene expression analyses in muscle revealed altered muscle energy balance and 

metabolism and mitochondrial dysfunction as leading mechanisms underlying SBMA skeletal 

muscle atrophy. 

Genes whose expression is altered in SBMA are peroxisome proliferator-activated receptor 

gamma coactivator-1 alpha (PGC-1α) and genes encoding mitochondrial proteins (Borgia et al., 

2017b; Ranganathan et al., 2009; Rocchi et al., 2016). PGC-1α controls mitochondrial biogenesis 

and function. Interestingly, mutant AR localizes to mitochondria and causes mitochondrial 

membrane depolarization both in SBMA motor neurons and muscle cells (Borgia et al., 2017a; 

Ranganathan et al., 2009). Amino-terminal fragments of mutant AR induce Bax-dependent 

cytochrome c release and apoptosis in primary cortical neurons (Young et al., 2009), as well as 

accumulation of reactive oxygen species, which can be reduced by the antioxidants co-enzyme Q 

and idebenone (Ranganathan et al., 2009). Importantly, muscle pathology is associated with 

increased clearance of the damaged mitochondria by mitophagy in SBMA patients (Borgia et al., 

2017a). This evidence supports the idea that polyglutamine-expanded AR causes muscle atrophy by 

altering the energy balance and mitochondrial function.  

Another gene whose expression is dysregulated in SBMA is dynactin 1, which is a central 

regulator of axonal transport (Katsuno et al., 2006). Mutant AR has been shown to inhibit fast 

axonal transport through activation of cJun N-terminal kinase (JNK), which in turn phosphorylates 

kinesin-1 heavy chains and inhibits its microtubule-binding activity (Morfini et al., 2006). Although 

axonal transport defects were not detected in an animal model of SBMA (Malik et al., 2011), 

defects in motoneuronal retrograde axonal transport have been described in knock in SBMA mice 

and in mice overexpressing normal AR solely in skeletal muscle, suggesting that these alterations 

are consequence of expression of mutant AR in muscle and occur in a non-cell-autonomous fashion 

in the motor neuron (Halievski et al., 2016; Kemp et al., 2011).  

Polyglutamine expansion results in the accumulation of mutant AR in the forms of micro-

aggregates/oligomers and inclusion bodies (Fig. 1). Deposition of AR aggregates is increased in 

tissues that degenerate in SBMA, such as spinal cord and skeletal muscle (Katsuno et al., 2002; 

Palazzolo et al., 2009). By atomic force microscopy, polyglutamine expansion has been shown to 

shift the deposition of AR from annular oligomers to fibrillar oligomers, which may be toxic species 

(Jochum et al., 2012). Notably, activation of signaling pathways that increase the propensity of 

polyglutamine-expanded AR to form annular oligomers have been shown to exert beneficial effects 

on the phenotype of knock in SBMA mice (Polanco et al., 2016). Moreover, compounds that 

enhance inclusion formation also suppress polyglutamine-expanded AR toxicity in vitro and in vivo 
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(Palazzolo et al., 2010). Although the role of fibrils and inclusions in SBMA remains to be fully 

understood, it is possible that aggregates/fibrils represent toxic species, whereas inclusion are 

protective species, as established in other polyglutamine diseases (Arrasate et al., 2004).  

 

Therapeutic perspectives  

No disease-modifying treatment is currently available for SBMA. During the last few years, 

a number of potential therapeutic strategies for SBMA have emerged, some of which are already 

starting to be tested in clinical trials, as a result of a deeper understanding of the mechanisms of 

disease pathogenesis (Fig. 1). Several studies in animal models have demonstrated that SBMA 

pathogenesis depends on high circulating levels of testosterone in males, since surgical castration 

(Chevalier-Larsen et al., 2004; Katsuno et al., 2002) and androgen deprivation (Katsuno et al., 

2003) are sufficient to reverse the phenotype in mice. These findings have prompted researchers to 

test anti-androgen therapies in clinical trials in SBMA. Promising results in preclinical (Katsuno et 

al., 2003) and phase 2 clinical trials (Banno et al., 2009) using leuprorelin, a potent luteinizing 

hormone-releasing hormone analogue that suppresses the release of gonadotropins, luteinizing 

hormone and follicle-stimulating hormone, led to the establishment of a larger, multicentre, 

placebo-controlled phase 3 clinical trial of leuprorelin in SBMA, where the primary endpoint was 

pharyngeal barium residue, measured by videofluorography (Katsuno et al., 2010). A total of 199 

SBMA male patients were assigned to receive either leuprorelin or placebo subcutaneous injections 

every 3 months for 12 months. The treatment did not show significant effects on swallowing 

function in SBMA patients, unless treatment was initiated in early-stage patients (disease 

duration<10 years). A more recent placebo-controlled, phase 2 trial using dutasteride, a potent 

inhibitor of the enzyme 5-α-reductase, which mediates the conversion of testosterone to DHT, also 

failed to show a significant effect on the progression of muscle weakness (Fernandez-Rhodes et al., 

2011).  

Increasing protein degradation represents another promising attractive therapeutic strategy in 

disorders such as SBMA, where protein aggregation is a key pathological feature. Several 

approaches have been undertaken by targeting various components of the proteostasis network to 

enhance mutant AR clearance (Adachi et al., 2007; Bott et al., 2016; Katsuno et al., 2005; Rinaldi et 

al., 2016; Tokui et al., 2009; Waza et al., 2005). Recently, Wang et al. identified a small molecule 

that allosterically promotes HSP70 binding to unfolded substrates, alleviating toxicity in an SBMA 

Drosophila model (Wang et al., 2013). Trehalose stimulates autophagy and induces HSPB8 

expression, suggesting therapeutic potential in SBMA (Rusmini et al., 2013). Although several of 

these strategies are effective in increasing HSP expression, non-specific upregulation of HSP levels 
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can potentially have deleterious consequences. However, one agent that can upregulate HSP 

expression yet avoid the potential problems of non-specific elevation in HSPs, is arimoclomol, a co-

inducer of the heat shock response (HSR) only in stressed cells (Kieran et al., 2004) and that has 

been shown to be effective in an SBMA mouse model (Malik et al., 2013),.  

Post-translational protein modifications, such as phosphorylation, methylation, 

SUMOylation and acetylation, modulate AR toxicity and therefore represent another promising 

target for therapeutic intervention (Chua et al., 2015; Montie et al., 2011; Palazzolo et al., 2007; 

Palazzolo et al., 2009; Pennuto et al., 2009; Scaramuzzino et al., 2015). Based on preclinical work 

showing therapeutic potential of IGF1-mediated phosphorylation of AR (Palazzolo et al., 2009; 

Rinaldi et al., 2012), a phase 2 clinical trial using an analogue of the insulin-like growth factor 1 

(IGF-1) has been performed in a cohort of SBMA (ClinicalTrial.gov, Identification number: 

NCT02024932); its results will be soon available.   

Among all viable approaches, a RNA interference strategy to target AR for suppression is 

currently gaining increasing interest, particularly in light of recent clinical success in other 

neuromuscular diseases (Finkel et al., 2016): reduction of polyglutamine-expanded AR expression 

was recently achieved in a mouse model of SBMA using miRNAs targeting AR either directly 

(Pourshafie et al., 2016) or indirectly (Miyazaki et al., 2012) delivered via recombinant adeno-

associated virus (rAAV), and an antisense oligonucleotide targeting AR exclusively in either the 

periphery  (Lieberman et al., 2014) or spinal cord after subcutaneous or intrathecal administration 

(Sahashi et al., 2015). This option holds great potential as a therapeutic strategy for SBMA and 

other diseases caused by a mechanism of toxic gain-of-function, as it allow to reduce the expression 

of the mutant protein before it can cause its deleterious effects. Nevertheless, translation of this 

approach into clinical setting may be hampered by the potential of exacerbation of signs and 

symptoms of loss of androgen function, given that affected patients only have one copy of the gene.  

 

Outstanding questions and concluding remarks 

Since the discovery of the causative gene in 1991, much work has been done to unravel the 

pathophysiology of SBMA. A tremendous advancement in knowledge has been achieved toward 

understanding the molecular details of disease pathogenesis. Today, we know that polyglutamine 

expansion causes neuronal dysfunction because it leads to protein misfolding and aggregation, and 

it hampers several cellular processes occurring in the nucleus, cytosol, and neurites. Polyglutamine 

expansion alters DNA, RNA and protein processing, stabilization, repair and function. Moreover, 

we know that polyglutamine expansion confers a toxic gain of function to the mutant protein, which 

involves amplification of native protein function, as well as a loss of protein function. Nevertheless, 
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despite these recent advancements, still a number of critical issues remain unsolved, which might at 

least partially account for why therapeutic strategies that work well in preclinical models have not 

quite yet been translated into a cure for patients. Here we have identified the following open 

questions in SBMA:  

1. What are the molecular mechanisms underlying the tissue-specific toxicity? 

2. What are the relative contributions to the disease pathogenesis of the proteotoxic gain of function 

and the intrinsically altered transcriptional activity of mutant AR? 

3. How solely targeting muscle for therapy can attenuate disease severity and improve motor neuron 

pathology? 

4. What are the non-neuromuscular features of SBMA and what is their burden on the disease 

phenotype? 

5. Are therapeutic strategies simply aimed at reducing AR protein levels sufficient to treat the 

disease in affected patients? 

 

Answering those questions not only will advance our understanding of the underlying 

molecular mechanisms in SBMA and other diseases of the motor unit, but it may also improve our 

ability to identify therapeutic targets with highly translational potential. We are optimistic that the 

increasing knowledge about the molecular mechanisms of polyglutamine disease pathogenesis will 

lead to the development of new and effective therapy for patients.   
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Figure Legend 

Fig.1. Disease mechanisms and therapeutic targets for SBMA. The current understanding of 

disease pathogenesis has led to the identification of four main possible therapeutic strategies to treat 

SBMA: i) Androgen deprivation, ii) Therapies aimed at improving the protein quality control 

system in the cell, iii) Modulation of AR function (e.g. by targeting disease-specific post 

translational modifications or interaction with co-factors), and iv) Gene silencing (e.g. via antisense 

oligonucleotides or AAV-delivered miRNAs).  
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Review highlights 

• Polyglutamine expansions in the androgen receptor cause spinal and bulbar muscular atrophy, also 

known as Kennedy’s disease 

• Clinical features: genotype/phenotype correlation 

• From gene to protein: Molecular pathways to neurodegeneration 

• Development of novel therapeutic approaches  


