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ABSTRACT

This paper addresses the problem of hydraulic hysteresis for a supercritical open channel flow approaching a sluice
gate when subcritical flow can establish downstream, against the gate. The possible flow configurations across the
gate are classified on the basis of the Froude number of the incoming and downstream flows, and of the ratio of gate
opening to the upstream supercritical flow depth. Within the above parameter space, two regions exist in which the
problem admits a dual solution, that is, two different flow configurations can establish for the same gate opening and
undisturbed flow conditions. In one of these regions, both smooth flow (i.e. the fluid flows under the gate without
interacting with the gate) and free outflow conditions can establish; in the other region, both smooth flow and
submerged flow can establish. For flow conditions in the above regions, the configuration that actually establishes
depends on the previous history of the flow, thus implying the hysteretic character of the flow.

Keywords: Control structures, Flow-structure interactions, Hydraulic hysteresis, Multiple states, Open-
channel flow

1 Introduction

When a supercritical open channel flow approaches an obstruction, flow and geometry conditions
can be such that two different flow configurations can establish across the obstruction. This be-
haviour is said to be hysteretic since the configuration that actually establishes depends on the
past history of the flow (Defina and Susin, 2003, 2006).
Hydraulic hysteresis has been widely studied both theoretically and experimentally. The hys-

teretic behaviour of flow approaching a sill in a channel of constant width was studied extensively
(Abecasis and Quintela, 1964; Austria, 1987; Baines, 1984; Baines and Whitehead, 2003; Lawrence,
1987; Mehrotra, 1974; Muskatirovic and Batinic, 1977; Pratt, 1983; Sadeghfam, Khatibi, Hassan-
zadeh, Daneshfaraz, & Ghorbani, 2017). The occurrence of hydraulic hysteresis in the case of a
channel contraction was demonstrated by Akers and Bokhove (2008), Defina and Viero (2010), and
by Sadeghfam et al. (2017).
Hysteresis that can develop in a supercritical channel flow approaching a sluice gate was assessed

by Defina and Susin (2003), who proposed a simple theory to predict its occurrence and to classify
possible flow regimes in the vicinity of the gate. They also verified the theory by performing an
in-depth experimental study, and showed that both undisturbed and free outflow conditions may
exist for the same gate opening within a wide range of flow parameters.
However, all the above studies assume supercritical flow conditions close downstream of the

obstacle. In that case, the hysteretic behaviour is controlled by the obstacle characteristics and the
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upstream flow conditions; the two flow configurations that can occur are (i) the supercritical flow
remains supercritical through the obstacle, or (ii) a supercritical to subcritical transition (i.e. a
hydraulic jump) occurs upstream of the obstacle, and critical condition establishes at the obstacle.
Recently, Viero & Defina (2017) demonstrated that hydraulic hysteresis can occur also when

subcritical flow can establish just downstream of, and possibly against an obstacle. In the presence
of a downstream subcritical flow against the obstacle, the problem complicates since it has one
more degree of freedom (i.e. the downstream flow conditions), and the number of possible flow
configurations increases significantly. The two flow configurations that can establish through the
obstacle are (i) supercritical smooth flow configuration, i.e. the flow remains supercritical in passing
the obstacle and supercritical to subcritical transition occurs downstream of the obstacle; (ii)
subcritical smooth flow configuration, i.e. the supercritical to subcritical transition occurs upstream
of the obstacle and the flow remains subcritical through (and downstream of) the obstacle. For
illustration purposes, Viero & Defina (2017) applied the theory to two specific obstacles, namely a
raised bed hump and a channel contraction.
By extending the work of Defina and Susin (2003) in the light of the more general framework

of Viero & Defina (2017), i.e. the possible presence of a downstream subcritical flow, the present
work focuses on the flow through a vertical sluice gate, for which the hysteretic behaviour concerns
the possibility that, for a given gate opening, a supercritical approaching flow may either remain
supercritical without interacting with the gate, or undergo a supercritical to subcritical transition
upstream of the gate, with the flow through the gate that can be either free or submerged depending
on the downstream flow conditions. Anyway, the state that actually establishes is determined by
the past history of the flow.
The sluice gate is a relatively simple device that can lead to an extremely involved hydraulic

behaviour, and for this reason it is worth studying. Practical applications related to this study can
also be found: for example, to divert water from relatively steep channels with large bedload, the
use of gates rather than weir sills to control the upstream level, and hence the diverted discharge, is
often preferred; in addition, for the major flowrates, the possible presence of downstream obstacle
(bridges, channel contractions, etc.) can force subcritical flow downstream the gate.
The paper is outlined as follows. First, the domains of existence are derived theoretically for all the

different flow configurations that can establish through the gate, approached by a supercritical flow
and in the presence of a downstream subcritical flow. Conditions for the existence of a dual solution,
when two different flow configurations can establish for the same gate opening and undisturbed
flow conditions, are then identified. A brief discussion closes the paper.

2 Single and double states

In order to find if, and possibly when, a dual solution exists in the flow through a sluice gate
when subcritical flow is allowed to establish downstream against the gate, and in order to make
the analysis as clear as possible, the following steps are taken: (i) the domains of existence of all
the different flow configurations that can establish through the gate are identified separately; (ii)
by superimposing these domains of existence, the dual solution domains, in which two different
flow configurations can establish for the same gate opening and undisturbed flow conditions, are
identified as the regions where the domains of existence overlap.
The solution, i.e. the domain of existence of the different flow configurations across the gate, can

be represented in the 3D space of parameters (a/Yu, Fu, Fd), where a is the gate opening, Yu is the
depth of the incoming flow, which is assumed as the vertical length scale (Viero, Peruzzo, & Defina,
2017), F = U/gY is the Froude number, U is the bulk flow velocity, g is gravity, and the subscripts
“u” and “d” denote the cross sections just upstream and downstream of the gate, respectively. For
clarity, the domains of existence of the different flow configurations are represented in the plane
(Fu, a/Yu), for given values of the downstream Froude number, Fd.
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Figure 1 Steady flow through a sluice gate, with notation. Dotted lines denotes upstream undisturbed flow (if unaffected by

the downstream subcritical flow or by the gate), dash-dotted lines denote the undisturbed downstream flow profile (if unaffected
by the upstream supercritical flow or by the gate).

In the theoretical analysis, the flow is assumed one-dimensional and the pressure, away from the
gate, is assumed hydrostatic. In applying energy and momentum balance equations across and just
downstream the gate, friction and bed slope are neglected.
A dual solution can exist only if the incoming flow is supercritical (e.g. Defina and Susin, 2006);

hence, hereinafter, we assume that the upstream flow has a Froude number greater than one. In
this case, the different flow states that can establish through a vertical sluice gate are shown in
Fig. 1. The labels used to distinguish the different flow configurations are so constructed; the first
character distinguishes the case when the flow does not interact with the gate (U) from free (F) or
submerged (S) outflow; the second character indicates that the depth of the incoming supercritical
flow is smaller (a) or greater (b) than the gate opening; the third character (subscripts 1, 2, or 3)
distinguishes among the possible configurations belonging to the same class, which is identified by
the first two characters.
Among the configurations of Fig. 1, those with the upstream flow depth smaller than the gate

opening are the most interesting, since only in this case two different stable configurations can
occur for the same gate opening and flow conditions. Also interesting is the Sa2 configuration in
which the flow depth at the vena contracta, Yc, controlled by downstream flow, turns out to be
smaller than the gate opening; this submerged flow condition is sometimes referred to as partially
submerged flow (Belaud, Cassan, & Baume, 2009).
The theoretical findings by Defina and Susin (2003), which only refer to the case when super-

critical flow conditions occur downstream of the gate, are preliminarily re-derived following the
approach used in the present work. These results are of interest since they represents the extreme
case in which the downstream subcritical flow does not affect the flow through the gate. This con-
dition occurs when Fd ≥ 1 or when Fu is large enough such that either the incoming supercritical
flow flowing below the gate, or the jet of fluid issuing from under the gate in the case of free
outflow, have large enough momentum to push the subcritical flow far downstream from the gate.
In addition, here we scale the gate opening by the flow depth of the supercritical incoming flow
rather than by the critical depth.
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In general, a dual solution exists, i.e. two different flow states can establish, only if the incoming
supercritical flow can flow under the gate without interacting with it. Trivially, this necessary
condition reads

a

Yu
≥ 1 (1)

The lower boundary of the hysteresis region in the (Fu, a/Yu) plane is then given by the endpoint
of the above interval, i.e. a/Yu=1.
One of the two possible flow states is when the incoming flow does not actually interact with

the gate. This flow configuration is referred to as supercritical smooth flow configuration (see,
for example, flow configurations Ua2 and Ua3 in Fig. 1). The other flow state that can establish
through the gate is the free outflow configuration (see, for example, configurations Fa or Fb in
Fig. 1). In order for this configuration to be stable, the momentum of the incoming flow must be
smaller than or equal to the momentum of the subcritical flow establishing just upstream of the
gate, i.e.:

Y conj
u ≤ YLu (2)

where Y conj
u is the conjugate water depth (or sequent depth) of the incoming supercritical flow, and

YLu is the subcritical depth that establishes just upstream of the gate (Fig. 1). The upper boundary

of the hysteresis region is then given by the endpoint of the above interval (i.e. Y conj
u = YLu), which

is rewritten as

Yu
Ru

2
= YLu (3)

with

Ru = −1 +

√

1 + 8F2u (4)

The flow depth YLu is related to the flow depth at the vena contracta, acc, through the energy
balance equation

YLu +
q2

2gY 2
Lu

= acc +
q2

2g(acc)2
(5)

where q is the flow rate per unit width, a is the gate opening, and cc is the contraction coefficient,
which is a function of the relative gate opening a/YLu.
Equation (5) can be rewritten as

YLu
acc

= 1 +
F
2
c

2

[

1−

(

YLu
acc

)

−2
]

(6)

with Fc the Froude number at the vena contracta.
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Equation (6) has three solutions; one is YLu = acc which is physically unacceptable; among the
other two solutions, one is discarded because it provides a negative value for YLu, the other reads

YLu
acc

=
F
2
c

4

(

1 +

√

1 +
8

F
2
c

)

(7)

Equation (3), with Eq. (7), is rewritten as

Ru

F
2/3
u

=
F
4/3
c

2

(

1 +

√

1 +
8

F
2
c

)

(8)

Recalling that the continuity equation gives YxF
2/3
x = const., where the subscript x denotes any

generic cross section, we can write

a

Yu
=

1

cc

(

Fu

Fc

)2/3

(9)

From a practical standpoint, for each Fu ≥ 1, Eq. (8) implicitly gives Fc; then YLu/acc is computed
from Eq. (7), and hence the contraction coefficient can be estimated, since it only depends on a/YLu.
Finally, Eq. (9) gives the relative gate opening a/Yu. Therefore, by varying Fu, the upper boundary
of the hysteresis region can be plotted in the (Fu, a/Yu) diagram, together with the lower boundary
given by the endpoint of constraint (1) (see Fig. 3, later in the text).
The contraction coefficient used in the present work is that proposed by Defina and Susin (2003),

which was determined by fitting a set of accurate experimental data















cc = 1− r(ϑ) sin(ϑ)
a

YLu
= 1− r(ϑ) [1− cos(ϑ)]

r(ϑ) = 0.153ϑ2
− 0.451ϑ+ 0.727

(10)

with ϑ a dummy parameter in the range 0 ≤ ϑ < 2.5. Importantly, in the following we assume
that, when the flow is submerged, the contraction coefficient is moderately affected by the flow
establishing downstream against the gate (see, e.g. Cassan & Belaud, 2012; Castro-Orgaz, Mateos,
& Dey, 2013), and we still use Eq. (10) to estimate the contraction coefficient.
We now consider the more general case when a subcritical flow is present just downstream of

and possibly against the gate, and study when the different flow configurations shown in Fig. 1 can
establish and when a dual solution occurs.

2.1 The non-interacting flow domain

In the configurations Ua1, Ua2, and Ua3, the fluid flows under the gate without interacting with
the gate since the flow depth is smaller than the gate opening. Flow conditions characterizing the
above configurations are referred to as smooth flow conditions.
Flow configurations Ua1 or Ua2 can establish only if the depth of the downstream flow is smaller

than the gate opening
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a

Yd
≥ 1 (11)

Recalling that the continuity equation allows to write

YuF
2/3
u = YdF

2/3
d , (12)

constraint (11) can be written as

a

Yu
≥

(

Fu

Fd

)2/3

(13)

Within the region of the (Fu, a/Yu) diagram identified by the above constraint, the Ua1 config-
uration can establish only if the momentum of the undisturbed upstream flow is lower than that
of the downstream subcritical flow. This condition can be expressed as

Yu ≥ Y conj

d (14)

Constraint (14), with Eq. (12), is rewritten as

Fu ≤ Fd

(

2

Rd

)3/2

(15)

with

Rd = −1 +

√

1 + 8F2d (16)

If constraint (15) is violated, then flow configuration Ua2 can establish. The threshold Froude
number corresponding to the endpoint of the interval (15) is indicated as

FL1 = Fd

(

2

Rd

)3/2

(17)

In the case of non-interacting flow, the hydraulic jump locates upstream of the gate section if
Fu < FL1, and downstream if Fu > FL1.
The flow configuration Ua3 can establish when supercritical to subcritical transition occurs down-

stream of the gate (mathematically, when constraint (15) is violated) and the gate opening is in
the interval Yu ≤ a ≤ Yd, i.e.:

1 ≤
a

Yu
≤

(

Fu

Fd

)2/3

(18)
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Figure 2 The non-interacting flow domain (the hatched area) in the (Fu, a/Yu) diagram for Fd=0.4; the log-scale is used for
Fu. The three configurations Ua1, Ua2, and Ua3 are shown in Fig. 1.

It will be shown, later in the text, that when the gate opening is greater than the downstream
flow depth, Ua1 or Ua2 are the only possible flow configurations. Accordingly, constraint (11) is not
only a necessary condition for the occurrence of configurations Ua1 or Ua2, but it also a sufficient
condition.
The regions of the (Fu, a/Yu) diagram where configurations Ua1, Ua2, and Ua3 can establish are

shown in Fig. 2.

2.2 The free outflow domain

The free outflow configuration can establish only if (i) the jet of flow issuing from under the gate
has a momentum that is large enough to push the downstream subcritical flow away from the gate,
and (ii) the incoming supercritical flow has a momentum smaller than that of the subcritical flow
just upstream of the gate.
The first condition, which identifies the upper boundary of the free outflow domain, can be

written as (Lin, Yen, & Tsai, 2002)

acc ≤ Y conj

d (19)

that is

a

Yu
≤

Rd

2cc

F
2/3
u

F
2/3
d

(20)

In order to estimate the upper boundary of the free outflow region, the contraction coefficient
must be evaluated. On assuming free outflow condition, the energy balance equation between the
vena contracta and the cross section just upstream of the gate is given by Eq. (5), which is here
rearranged to read

YLu
acc

= 1 +
F
2
u

2

Y 3
u

(acc)3

[

1−

(

YLu
acc

)

−2
]

(21)
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At the endpoint of interval (20), i.e. when a/Yu = RdF
2/3
u /(2ccF

2/3
d ), Eq. (5) can be written as

YLu
acc

= 1 +
4F2d
R3

d

[

1−

(

YLu
acc

)

−2
]

(22)

Among the three solutions of the above equation, the one of interest is

YLu
acc

= 2

(
√

1 +
R3

d

F
2
d

− 1

)

−1

(23)

For any given Froude number of the downstream flow, Fd, Eq. (23) gives YLu/acc and hence
the contraction coefficient can be estimated with, e.g. Eq. (10). With this, the upper boundary
of the free outflow domain in the (Fu, a/Yu) plane can be evaluated, being given by the endpoint
of interval (20). The range of Fu within which constraint (20) actually ensures that free outflow
configuration can establish is however limited by the second, necessary condition listed above, i.e.
the momentum of the incoming flow must be smaller than that of the subcritical flow establishing
just upstream of the gate. This condition is given by constraint (2), which, with Eqs. (23) and (12),
can be written as

Ru

F
2/3
u

≤
2F

4/3
d

R2
d

(

1 +

√

1 +
R3

d

F
2
d

)

(24)

Let FL2 be the upstream Froude number corresponding to the endpoint of the above inequality.

Since Ru/F
2/3
u increases monotonically with increasing Fu, constraint (24) gives the upper boundary

of the free outflow region when Fu varies in the range 1 ≤ Fu ≤ FL2. When Fu ≥ FL2, the upper
boundary of the free outflow domain corresponds to that given by Eq. (9) (i.e. the momentum of
the incoming flow must be smaller than or equal to that of the subcritical flow establishing just
upstream of the gate in order to ensure free outflow condition).
Beside FL1 and FL2, a third, characteristic value of the upstream Froude number, which is here

denoted with FL3, is that given by the intersection of the upper boundary of the free outflow region
with the line a/Yu=1. Flow configuration Sb can occur only if Fu < FL3. Using (20), we can write

FL3 = Fd

(

2cc
Rd

)2/3

(25)

The lower boundary of the free outflow domain is, trivially, a/Yu=0. For the case Fd=0.4, the
free outflow domain in the (Fu, a/Yu) diagram is shown in Fig. 3.

2.3 The submerged outflow domain

The lower boundary of the submerged outflow domain corresponds to the upper boundary of the
free outflow domain, which is given by Eq. (24) for 1 ≤ Fu ≤ FL2, and by Eq. (9) for Fu > FL2.
As for the upper boundary, it is worth recalling that the submerged flow configuration can

establish only if the momentum of the incoming flow is smaller than, or equal to, the momentum
of the subcritical flow just upstream of the gate, as given by Eq. (2). With Eq. (3), the upper

8
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Figure 3 The free outflow domain (light grey hatched area) in the (Fu, a/Yu) diagram for Fd=0.4. The dashed line is the upper
boundary of the hysteresis region when downstream flow does not affect the flow through the gate (Eq. (9)); this boundary

overlaps the present boundary for free outflow when Fu > FL2.

boundary of the submerged flow domain, which is the endpoint of the interval (2), can be written
as

Yu
acc

Ru

2
=

YLu
acc

(26)

which is rearranged to read

a

Yu
=

Ru

2cc

(

YLu
acc

)

−1

(27)

In addition, Eq. (26), with Eq. (12), yields

Ru

F
2/3
u

=
2

F
2/3
d

YLu
acc

(

Yd
acc

)

−1

(28)

In order to assess the upper boundary of the submerged flow domain, we need to relate down-
stream flow conditions to flow conditions just upstream of the gate. This is achieved by using
the energy-momentum method (Henderson 1966; see also Castro-Orgaz et al. 2013), which gives
reliable results at least at the leading order of approximation.
Momentum balance equation between the downstream flow and the vena contracta cross section

writes

Y 2
c

2
+

q2

gacc
= Y 2

d

(

1

2
+ F

2
d

)

(29)

which can be solved for Yc to read

Yc = Yd

√

1 + 2F2d

(

1−
Yd
acc

)

(30)

The energy balance equation between the vena contracta and the cross section just upstream of

9
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the gate gives

Yc +
q2

2g(acc)2
= YLu +

q2

2gY 2
Lu

(31)

Equation (31), with Eq. (30), yields

YLu
acc

=
Yd
acc

{
√

1 + F
2
d

(

1−
Yd
acc

)

+
F
2
d

2

(

Yd
acc

)2
[

1−

(

YLu
acc

)

−2
]}

(32)

For any given Froude number of the downstream flow, Fd, the set of equations (27), (28), and
(32) together with (12) and with an equation relating cc to YLu/a (e.g. Eq. (10)), can be solved to
give Yd/acc, YLu/acc, cc, Fu, and a/Yu.
To solve the above set of equations, the following procedure can be adopted. Using Yd/acc as a

dummy variable, YLu/acc is computed from Eq. (32). After estimating the contraction coefficient
with Eq. (10), the upstream Froude number, Fu, is computed from Eq. (28). The relative gate
opening, a/Yu, is finally evaluated from Eq. (27). The interval within which Yd/acc can vary is
determined by observing that, with reference to Fig. 1, the flow depth Yc can vary in the range

acc ≤ Yc ≤ Yd (33)

Using Eq. (30), and after some algebra, the above interval for Yc gives the range within which
Yd/acc is allowed to vary, reading

1 ≤
Yd
acc

≤
2

Rd
(34)

The left inequality of constraint (34) implies that the depth of the downstream flow must be
greater than the gate opening (indeed, under submerged flow conditions, Yd = acc entails cc = 1, see
Appendix A). The left endpoint thus corresponds to a particular condition in which the downstream
flow depth is equal to both the gate opening and the subcritical flow depth just upstream the gate
(i.e. Yd = a = YLu). The right inequality of constraint (34) implies that the downstream flow has
a momentum that is greater than that of the undisturbed flow at the vena contracta. Accordingly,
the right endpoint exactly corresponds to the upper boundary of the free outflow domain given by
Eq. (24). This can easily be shown by solving Eq. (12) for Yd and by substituting the result in the
constraint (34).
The upper boundary of the submerged flow region, with Fu in the interval FL1 ≤ Fu ≤ FL2, can

be determined by varying Yd/acc in the range given by Eq. (34). The assessment of the upper
boundary for 1 ≤ Fu ≤ FL1 is rather intriguing, since the condition Yd/acc=1, i.e. the left endpoint
of constraint (34), actually gives the solution for all the upstream Froude numbers in the above
interval. To make this point clear, the constraint (33) is rewritten as

acc
Yd

≤
Yc
Yd

≤ 1 (35)

Figure 4 shows how acc/Yd and Yc/Yd vary with a/Yu, when Fd=0.4 and Fu=2.0 (i.e. 1 ≤

10
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Figure 4 YLu/Yd, Yc/Yd, a/Yd, and acc/Yd as a function of a/Yu for Fd=0.4 and Fu=2.0.

Fu ≤ FL1=3.1). The constraint (35) is satisfied when a/Yu ranges from the free outflow limit
(i.e. a/Yu=1.23) to when acc = Yc = Yd (i.e. a/Yu=2.92). At the latter endpoint, we also have
YLu = a = Yd, that is, here Eq. (A3) holds and leads to the same conclusions drawn above, that is,
the upper boundary of the submerged flow domain corresponds to the lower boundary of the Ua1
smooth flow configuration. This conclusion is independent of Fd and Fu provided that 1 ≤ Fu ≤ FL1.
Therefore, ultimately, the upper boundary of the submerged flow domain is given by the con-

straint (13) when 1 ≤ Fu ≤ FL1, and by the solution to the set of equations (27), (28), (32), and
(10), when FL1 ≤ Fu ≤ FL2. When Fu ≥ FL2, as stated above, the submerged flow configuration
cannot establish because the flow issuing from under the gate has a momentum that is large enough
to push away the downstream subcritical flow.
It is interesting to observe, in Fig. 4, that the flow depth Yc is either greater or smaller than

the gate opening, depending on the ratio a/Yu. When Yc > a the Sa1 configuration establishes,
otherwise, the Sa2 configuration occurs. Therefore, it is of interest to determine the boundary
Yc = a between the two configurations. With Eq. (30), the condition Yc = a can be written as

Yd
acc

√

1 + 2F2d

(

1−
Yd
acc

)

=
1

cc
(36)

For any given Fd, the set of equations (32), (36), and (10), can be solved to give Yd/acc, YLu/acc,
and cc. This set of equations has two, out of nine, physically acceptable solutions for Yd/acc,
since both Yd and YLu must be real and positive, and the flow just upstream of the gate must be
subcritical. However, given the strong nonlinearity of the equations of the set, explicit expressions
for the two solutions are not available. It is worth noting that the two solutions only depend on
Fd, i.e. they are independent from Fu.
In order to assess the two boundaries Yc = a in the (Fu, a/Yu) plane, we use the continuity

Eq. (12) rewritten to read

Yu
a

=
Yd
a

F
2/3
d

F
2/3
u

(37)

With the two solutions for Yd/a, Eq. (37) describes the two boundary curves a/Yu as a function
of Fu, separating the Sa1 from the Sa2 sub-domains. The interval within which Fu can vary extends
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Figure 5 Submerged outflow domain (shaded area) in the (Fu, a/Yu) diagram for Fd=0.4. The thick, dotted lines correspond

to the condition Yc = a and separate the Sa1 from the Sa2 sub-domains.

from Fu=1 up to a threshold value that is determined by the constraint (2), which, with Eq. (12),
can be rearranged to read

Ru

F
2/3
u

≤
2

F
2/3
d

YLu
Yd

(38)

The above inequality constraint, with the two solutions for Yd/acc and YLu/acc, hence, with the
two solutions for YLu/Yd, allows to compute the two upper threshold values of Fu.
Figure 5 shows the submerged flow domain for the case Fd=0.4, together with the boundary

curves separating the Sa1 from the Sa2 sub-domains. Sa2 sub-domains, in the (Fu, a/Yu) diagram,
are shaped as two thin strips next to the upper and lower boundaries of the submerged flow domain.
The width of these strips depends on the Froude number of the downstream flow. Specifically,
their width increases with increasing Fd (see Fig. 6); the internal boundaries of these sub-domains
(the two dotted curves of Fig. 6) move one toward the other until they overlap, leading to the
disappearance of the Sa1 configuration domain. This happens when Fd is greater than the threshold
value FD1=0.437.
To better illustrate this behaviour, we plot Yc/a as it varies with a/Yu for different values of

the upstream and downstream Froude numbers (Fig. 7). The curves for Fd < FD1 intersects the
line Yc/a=1 at two points, namely (a/Yu)1 and (a/Yu)2, with (a/Yu)1 <(a/Yu)2. Between these
points, Yc is greater than a and the Sa1 configuration can establish; when a/Yu < (a/Yu)1 or
a/Yu >(a/Yu)2, Yc turns out to be smaller than a and the Sa2 configuration can establish. The
curves for Fd > FD1 have no intersection with the line Yc/a=1; they remain below this line so that
Yc is always smaller than the gate opening, i.e. Sa1 configuration is not possible, and when the flow
is submerged, only Sa2 configuration can occur.

2.4 The hysteresis domains

In the previous sections, the domains for non-interacting flow, free outflow, and submerged outflow
configurations have been determined and shortly discussed. By composing these domains, some of
them are shown to overlap, thus indicating that two different states can establish for the same gate
opening and flow conditions.
Figure 8 shows, for the case Fd=0.4, the results of this superposition. As expected, overlapping

only occurs if Fu ≥ FL1, i.e. when smooth flow conditions for the incoming supercritical flow can
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establish. On the contrary, when Fu < FL1, no double solution exists; this is not surprising since,
to some extent, conditions in this range are equivalent to the case of subcritical incoming flow,
for which hysteresis is not possible (Defina and Susin, 2003). Dual solution occurs in the hatched,
dark grey region of Fig. 8 (resulting from the superposition of the hatched Ua3 region of Fig. 2 and
the dark grey region of Fig. 5). In this region, both smooth flow condition (Ua3) and submerged
flow condition (either Sa1 or Sa2) can establish. This region is referred to as submerged outflow
hysteresis domain. Dual solution also occurs in cross-hatched, light grey region of Fig. 8 (resulting
from the superposition of the hatched Ua3 region of Fig. 2 and the hatched, light grey region
of Fig. 3). In this region, both smooth flow condition (Ua3) and free outflow condition (Fa) can
establish. This region is referred to as free outflow hysteresis domain. It is worth noting that this
region is a part of the hysteresis domain determined by Defina and Susin (2003).
In order to clarify what is meant by hysteretic behaviour, consider for example the case of Fd=0.4

and Fu=3.5 (i.e. FL1 ≤ Fu ≤ FL2) and see the configurations that establish by raising and lowering
the gate (Fig. 9). Let us start from smooth flow condition (Ua2 configuration) with a ≫ Yu (point
I in Fig. 9), and gradually lower the gate. As long as the gate opening remains greater than the
upstream flow depth, smooth flow conditions persist (Ua2 configuration from point I to point II,
and Ua3 configuration from point II to point III). As soon as the edge of gate touches the free
surface or just enters the flow, free outflow configuration (Fb) quickly establishes (point IV). Free
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outflow persists not only as the gate is lowered and/or raised along the branch from VI to V (Fb
configuration), but also when the gate is raised along the branch from IV to VI (Fa configuration),
i.e. until the relative gate opening a/Yu ≈ 1.8 is reached. Further opening of the gate produces
submerged flow condition (Sa2 configuration as long as a/Yu < 2.1, i.e. from point VI to point
VII, and Sa1 configuration for larger gate opening, i.e. from point VII to point VIII). Smooth flow
condition (i.e. Ua3 configuration) is recovered only when the relative gate opening becomes greater
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than approximately 3.5 (point IX).
In this example, the a/Yu interval within which two different flow configurations can establish

is relatively large, since it extends from a = Yu to a = 3.5Yu. More precisely, both Ua3 and
Fa configurations can establish when the relative gate opening is approximately in the range 1≤
a/Yu <1.8, and both Ua3 and Sa1 or Sa2 configurations can establish when the relative gate opening
is in the range 1.8 < a/Yu < 3.5.
With respect to the upstream Froude number, both the hysteresis domains are bounded below by

Fu = FL1; the free outflow hysteresis domain is unbounded above, whereas the submerged outflow
hysteresis domain is bounded above by Fu = FL2. It is therefore of interest to see how Fd affects
the threshold values of the upstream Froude number. To this purpose, the left panel of Fig. 10
shows the threshold Froude numbers FL1, FL2, and FL3 as a function of the downstream Froude
number, Fd. At small Fd, all the threshold Froude numbers quickly grow to extremely high values;
this makes hysteresis unlikely to occur in practical cases if Fd is smaller than 0.3-0.4.
At relatively high values of Fd (i.e. Fd greater than 0.7-0.8), the curves for FL1 and FL2 nearly

overlap so that the domain of submerged outflow hysteresis turns out to be extremely small; when
Fd=1, we have FL1=FL2=1. At this extreme case, the double solution region with submerged outflow
is reduced to a point and the hysteresis region turns out to coincide with that found by Defina and
Susin (2003).
We also observe that the limit FL3 turns out to be smaller than one when Fd is greater than

a threshold value of the downstream Froude number, i.e. FD2 ≈ 0.53. This is more clearly shown
in the right panel of Fig. 10, where FL3 is computed using three different formulations for the
contraction coefficient. In this range (i.e. Fd ≥ FD2), the Sb configuration cannot establish.
Figure 11 shows the domains and sub-domains of all the possible flow configurations, and the

two dual solution regions, when the downstream Froude number is Fd=0.2, 0.3, 0.5, and 0.6. At
small Fd (e.g. Fd=0.2), hysteresis can occur only when the Froude number of the incoming flow is
extremely large. Hereof, it is worth recalling that at high Froude number (roughly, Fu > 4-5), the
flow is likely to entrain air (Defina, Susin, & Viero, 2008; Kramer and Hager, 2005; Takahashi &
Ohtsu, 2017) and this process strongly affects the dynamics so that the present theory no longer
applies.
The amplitude of the hysteresis region, which is defined as the difference, ∆a, between the gate

opening at the upper and lower boundary of the hysteresis region (Defina and Susin, 2003), is a
function of both Fd and Fu. However, as a first, rough approximation, larger amplitudes occur at
smaller values of Fd (see Fig. 11).
Interestingly, within the range FL1 < Fu < FL2, that is, when submerged flow hysteresis can occur,

the amplitude of the hysteresis region is greater than that when submerged flow cannot establish.
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For example, the relative amplitude is ∆a/Yu=0.9 for Fu=2.5, when only free outflow hysteresis
can occur, whereas it is ∆a/Yu=1.6 for the same Fu, when Fd=0.5; the relative amplitude increases
to ∆a/Yu=1.2 for Fu=3.5, when only free outflow hysteresis can occur, whereas it becomes as large
as ∆a/Yu=2.5 for the same Fu, when Fd=0.4). As a rough guide, when the downstream Froude
number is in the range 0.4-0.6, the relative amplitude of the hysteresis region, at Fu just greater
than FL1, is approximately twice the relative amplitude that is found, for the same Fu, when only
free outflow hysteresis can occur.

3 Conclusions

A simple theoretical approach to predict conditions for the occurrence of hydraulic hysteresis for
a supercritical flow approaching a sluice gate when subcritical flow can establish downstream,
against the gate, has been proposed. It was shown that two different hysteresis regions exist in the
(Fu, a/Yu) plane; in one region both smooth flow condition (Ua3 configuration) and submerged
outflow condition (either Sa1 or Sa2 configuration) can establish, in the other region both smooth
flow condition (Ua3 configuration) and free outflow condition (Fa configuration) can establish. The
boundaries of these regions, that depend on the Froude number of the downstream flow, have been
determined.
It has been shown that, when submerged outflow establishes and flow conditions are within the

range of submerged outflow hysteresis, the gate must be raised to openings higher, although not
much higher, that the downstream subcritical flow in order to recover the smooth flow configuration
(anyway, much greater than the depth of the incoming flow). This occurrence, as well as the other
behaviours outlined and discussed in the present work, are of practical interest since sluice gates
are widely used in laboratory experiments (e.g. Peruzzo, Viero, & Defina, 2016; Reichstetter &
Chanson, 2013; Viero, Pradella, & Defina, 2017), as well as for flow control in open channels
(Ansar & Chen, 2009; Triki, 2014, 2017), for example to control the upstream flow depth as an
alternative to weir sills in the presence of large bedload. Thus, an in-depth knowledge of the
hydraulic behaviour of this movable device is important in the effective design and operation of
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flow control systems.
It has to be noted that the solutions obtained in this study, and shown in Figs. 2-11, can be

moderately affected, from the quantitative point of view, by factors such as the use of correction
coefficients for energy and momentum, and the actual value of the contraction coefficient, which
depends on the type and the shape of the gate and on the Reynolds number as well (Belaud,
Cassan, & Baume, 2012; Habibzadeh, Vatankhah, & Rajaratnam, 2011; Montes, 1997). However,
these factors are not expected to affect the overall behaviour. Finally, we recall that the main
goal of the present study was to demonstrate the existence of double solution domains in the flow
through a sluice gate when the incoming flow is supercritical and subcritical flow is allowed to
establish downstream against the gate and, especially, to suggest an effective theoretical approach
to reconstruct all possible flow configurations.

Notation

a = gate opening (m)
cc = contraction coefficient (–)
F = Froude number (–)
g = gravity acceleration (ms−2)
q = flow rate per unit width (m2s−1)
Y = water depth (m)
∆a = amplitude of the hysteresis region (m)

Appendix A.

At the left endpoint of the interval (34), that is when Yd/acc=1, Eq. (32) reduces to

YLu
acc

= 1 +
F
2
d

2

[

1−

(

YLu
acc

)

−2
]

(A1)

which has three solutions

YLu
acc

= 1,
YLu
acc

=
F
2
d

4

(

1±

√

1 +
8

F
2
d

)

(A2)

The two solutions on the right of (A2) are not acceptable, since one gives negative values for
YLu/acc, the other violates the constraint (2), which ensures that subcritical flow, with water depth
YLu, can establish just upstream of the gate. Therefore, at the left endpoint of the interval (34),
with YLu/acc=1 (hence cc=1), and recalling (33), we have

YLu = Yd = acc = a = Yc (A3)

The above multiple equality makes sense if, and only if, a = Yd, that is when the downstream
subcritical flow almost touches the edge of the gate.
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