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Connectionist models can be characterized within the more general framework of
probabilistic graphical models, which allow to efficiently describe complex statistical
distributions involving a large number of interacting variables. This integration allows
building more realistic computational models of cognitive functions, which more
faithfully reflect the underlying neural mechanisms at the same time providing a
useful bridge to higher-level descriptions in terms of Bayesian computations. Here we
discuss a powerful class of graphical models that can be implemented as stochastic,
generative neural networks. These models overcome many limitations associated
with classic connectionist models, for example by exploiting unsupervised learning
in hierarchical architectures (deep networks) and by taking into account top-down,
predictive processing supported by feedback loops. We review some recent cognitive
models based on generative networks, and we point out promising research directions to
investigate neuropsychological disorders within this approach. Though further efforts are
required in order to fill the gap between structured Bayesian models and more realistic,
biophysical models of neuronal dynamics, we argue that generative neural networks have
the potential to bridge these levels of analysis, thereby improving our understanding of
the neural bases of cognition and of pathologies caused by brain damage.

Keywords: connectionist modeling, unsupervised learning, deep neural networks, probabilistic generative models,
computational neuropsychology

INTRODUCTION

Despite the enormous progress in the prevention and treatment of neuropsychological disorders,
traumatic brain injury and stroke are still among the major causes of adult disability and
death (Mathers et al., 2008; Feigin et al., 2014). This social impact highlights the importance of
neuropsychological research and the recent thrust in supporting empirical investigations with
modern computational tools (Gerstner et al., 2012). In particular, network-based models of brain
function conceive cognitive processes as complex phenomena emerging from the simultaneous
interaction of many constituent components, and are therefore particularly suited to study the
effects of brain damage from a computational perspective (O’Reilly and Munakata, 2000).

One of the most successful attempts to ground neuropsychology within a computational
framework has been achieved by parallel distributed processing (PDP) models
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(Rumelhart and McClelland, 1986), which describe cognition
as the evolution over time of a system of interconnected units
that self-organize according to physical principles. Within this
framework, the pattern seen in overt behavior (macroscopic
dynamics of the system) reflects the operations of subcognitive
processes (microscopic dynamics of the system), such as
the propagation of activation and inhibition among simple
processing units. A distinguishing feature of PDP models is
their ability to adapt to the environment, which allows to
simulate behavioral patterns associated with a broad range of
cognitive functions and to study how learning mechanisms
support cognitive development and knowledge acquisition (e.g.,
Elman et al., 1996). Crucially, the tight link between structure
and function in PDP models allows to investigate how changes
in the underlying processing mechanisms are reflected by
changes in overt behavior, thereby providing a principled way to
simulate neuropsychological disorders following brain damage
(e.g., Hinton and Shallice, 1991; Plaut and Shallice, 1993;
McClelland et al., 1995).

However, despite the broad range of cognitive functions
(and cognitive disorders) investigated through this approach,
many PDP models suffer from serious limitations. In particular,
connectionist models are often trained in a supervised fashion
using error backpropagation, but the assumption that learning
is largely discriminative and that an external teaching signal
is available at each learning event is implausible from a
cognitive perspective (see Zorzi et al., 2013, for discussion).
Moreover, besides the need for labeled patterns, classic PDP
models usually entail an over-simplistic, ‘‘shallow’’ processing
architecture, involving only one layer of hidden units and
strictly feed-forward connectivity. This is in sharp contrast
with well-known properties of cortical circuits, which exhibit
a hierarchical organization (Felleman and Van Essen, 1991)
where information processing relies on both feed-forward
and feedback mechanisms (Sillito et al., 2006; Gilbert and
Sigman, 2007). Finally, these processing constraints (together
with limitations in computational power) have prevented to
extend ‘‘toy models’’ into large-scale simulations of neural
networks composed by thousands of neurons and millions of
connection weights that can be trained using realistic input
patterns.

The aim of this article is to describe a new generation of PDP
models that address these limitations. In particular, we discuss
how they have been exploited for modeling a wide range of
neurocognitive functions, and we highlight their potential for
simulating neuropsychological deficits.

A NEW GENERATION OF PARALLEL
DISTRIBUTED PROCESSING MODELS

Probabilistic graphical models provide a general approach to
model the stochastic behavior of a large number of interacting
variables, whose relations are efficiently represented using
graphical structures (Koller and Friedman, 2009). Notably, many
PDP models can be characterized within this probabilistic
framework (Jordan and Sejnowski, 2001). In particular, a
powerful class of stochastic, recurrent neural networks can

be characterized as fully-connected graphical models, where
the undirected nature of the edges implies bidirectional flow
of information between the nodes (Ackley et al., 1985).
This probabilistic interpretation of neural networks provides
a useful bridge to more abstract computational descriptions
of cognitive processes (Griffiths et al., 2008), suggesting how
high-level Bayesian computations might be implemented in
neural circuits. Indeed, the problem of finding the best
possible interpretation of an ambiguous stimulus can be
formalized as an unconscious, statistical inference process.
A possible role for recurrent feed-forward/feedback loops in
the cerebral cortex might therefore be to integrate top-down,
contextual priors with bottom-up, sensory observations, so
as to implement concurrent probabilistic inference along the
whole cortical hierarchy (Lee and Mumford, 2003; McClelland,
2013).

Unsupervised Learning in Generative
Neural Networks
Learning in probabilistic graphical models can be framed within
two different settings. In discriminative learning, the goal is to
model only conditional distributions over a set of target variables,
whose values are specified by associating an explicit label to each
observed pattern. In generative learning, instead, the aim is to
model the joint distribution of all the variables in the model,
thus including also the observed variables. Notably, generative
models can be efficiently implemented as stochastic neural
networks that learn to reconstruct the sensory input (maximum-
likelihood learning) through feedback connections and Hebbian-
like learning mechanisms (Hinton, 2002). From a cognitive
modeling perspective, these models are appealing because they
can build high-level, distributed representations of the data by
extracting statistical regularities in a completely unsupervised
way (Zorzi et al., 2013). Moreover, feedback connections have a
primary role in generative networks because they carry top-down
expectations of the model, which are updated during learning in
order to better reflect the observed sensory data (Hinton et al.,
1995).

Simple generative networks can be used as building blocks
for more complex architectures, such as those used in deep
learning systems, where the hidden variables of the generative
model are hierarchically organized (Hinton and Salakhutdinov,
2006). Hierarchical generative models efficiently structure the
representation space by promoting features reuse: simple features
extracted at lower levels can be successively combined to
create more complex features, which eventually unveil the
main causal factors underlying the data distribution (Hinton,
2007). Moreover, these high-level, abstract representations of
the sensory data can also easily support supervised read-outs
(Testolin et al., 2013; Zorzi et al., 2013; Figure 1A).

Generative networks have also been extended to the temporal
domain (e.g., Sutskever et al., 2008), where input patterns appear
in a precise, sequential order. In this case, statistical inference
is performed by considering, besides the current observed
evidence, also the history provided by the temporal context,
which is propagated through delayed connections (Figure 1B).
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FIGURE 1 | (A) Graphical representation of a hierarchical generative model implemented as a deep neural network. Undirected edges entail bidirectional (recurrent)
connections, which are encoded by different weight matrices at each processing layer (V represents the set of visible units, while Hn represents the set of hidden
units at layer n). Dotted arrows with blue captions on the side of the hierarchy provide a Bayesian interpretation of bottom-up and top-down processing in terms of
conditional probabilities. Multiple classification tasks (directed arrows on top) can be performed by applying supervised read-out modules (e.g., linear classifiers) to
the top-level, abstract representations of the model. (B) Graphical representation of a sequential generative model implemented as a temporal, recurrent restricted
Boltzmann machine (Sutskever et al., 2008; Testolin et al., 2016). At each timestep, directed connections are used to propagate temporal context over time through
a hidden-to-hidden weight matrix. Blue captions provide a Bayesian interpretation of temporal prediction in terms of conditional probabilities: to differ from static,
hierarchical models, here the activation probability Hn of hidden units is conditioned on both the previous hidden state Hn−1 and the current observed evidence Vn.

Extracting temporal dependencies is a formidable challenge
for the brain (Dehaene et al., 2015), but it leads to more
powerful internal models of the environment that can be used
to actively predict the sensory stream (Friston, 2010; Clark,
2013). The ability to anticipate external events is also crucial
for attentional mechanisms, which efficiently select sensory
information according to top-down expectations and current
goals (Corbetta and Shulman, 2002). In this respect, generative
models allow to conceive attention as an intrinsic property
of bidirectional processing networks (Casarotti et al., 2012)
and to use information theoretic measures to operationalize
properties like novelty/surprise in terms of discrepancy between
model’s expectation and observed sensory evidence (Itti and
Baldi, 2009).

Finally, deep learning systems coupled with reinforcement
learning algorithms have recently obtained state-of-the-art
performance in extremely challenging cognitive tasks, for
example by learning to play videogames at human-level (Mnih
et al., 2015) or by defeating professional players on difficult board
games (Silver et al., 2016). This powerful learning modality takes
into account the effects of actions on the environment without
requiring an explicit supervision signal, and therefore would
constitute a cognitively (Botvinick et al., 2009) and biologically
(Gläscher et al., 2010) plausible way to couple unsupervised deep
learning with goal-directed behavior.

Recent Neurocognitive Models
In the domain of numerical cognition, unsupervised deep
learning has been successfully used to show how visual
numerosity could emerge as a statistical property of images
containing a variable number of items (Stoianov and Zorzi, 2012;
Figure 2A). Numerosity detectors developed by the network had

response profiles resembling those of monkey parietal neurons
(Roitman et al., 2007), and supported numerosity estimationwith
the same behavioral signature shown by humans and animals. A
subsequent study simulated typical and atypical developmental
trajectories through incremental learning and manipulation of
the computational resources (i.e., number of hidden units) of
the generative model (Stoianov and Zorzi, 2013), in line with the
reduced gray matter density in the intraparietal sulcus observed
in dyscalculic subjects (Rotzer et al., 2008). Generative networks
have also been used to model learning of arithmetic facts as joint
distributions of operands and results, and to simulate acquired
acalculia (Stoianov et al., 2004; Zorzi et al., 2005).

Another major cognitive domain that has been modeled
within this framework is that of visual object recognition, where
the hierarchical representations emerging in deep networks
show remarkable similarities with those recorded in the ventral
visual pathway of the human brain (Güçlü and van Gerven,
2015). Unsupervised deep learning has also been recently applied
to model human-like letter perception (Testolin et al., under
review), where visual primitives extracted from natural scenes
are later recycled for learning letters (Figure 2B) thereby
supporting the hypothesis that the shape of visual symbols
has been culturally selected to match the statistical structure
found in our visual environment (Dehaene and Cohen, 2007).
Perception of single letters can also be extended to model
visual word recognition (Di Bono and Zorzi, 2013; Zorzi et al.,
2013), and a temporal version of the model has been used
to learn the statistical structure of letter sequences and to
simulate spontaneous generation of words and pseudowords
(Testolin et al., 2016). These generative networks can be
used as building blocks to develop more realistic models
of visual word recognition, paving the way for full-blown
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FIGURE 2 | (A) Graphical representation of the numerosity perception model of Stoianov and Zorzi (2012). A hierarchical generative model was first trained on a
large set of realistic images containing visual sets with a varying number of objects. A linear read-out layer was then trained on the top-level internal representations
on a numerosity comparison task. (B) Graphical representation of the letter perception model of Testolin et al. (under review). The bottom layer of the network
receives the sensory signal encoded as gray-level activations of image pixels. Low-level processing occurring in the retina and thalamus is simulated using a
biologically inspired whitening algorithm that captures local spatial correlations in the image and serves as a contrast-normalization step. Following generative
learning on a set of patches of natural images, neurons in the first hidden layer (V1) encoded simple visual features which constitute a basic dictionary describing the
statistical distribution of pixel intensities observed in natural environments. Specific learning about letters was then introduced in the model by training a second
hidden layer with images containing a variety of uppercase letters. Neurons in the second hidden layer (V2/V4) learned to combine V1 features to represent letter
fragments and in some cases, whole letter shapes. A linear read-out layer (OTS) was then trained on the top-level internal representations in order to decode letter
classes. (C) Different types of high-level features (receptive fields) emerging from unsupervised deep learning. On the left side, a prototypical face (Le et al., 2012), a
prototypical handwritten digit (Zorzi et al., 2013) and a prototypical printed letter (Testolin et al., under review). In the middle panel, population activity of
number-sensitive hidden neurons (mean activation value) as a function of number of objects in the display (Stoianov and Zorzi, 2012). In the right panel, a prototypical
hidden neuron with a retinotopic receptive field exhibiting gain modulation (De Filippo De Grazia et al., 2012).

simulations of orthographic learning in both normal and
atypical development, as well as of the impairments caused
by brain damage, such as pure alexia (Plaut and Behrmann,
2011).

Generative neural networks have also been used to study
space coding for sensorimotor transformations and multisensory
integration (De Filippo De Grazia et al., 2012). The authors
found that receptive fields reflecting those observed in
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the monkey posterior parietal cortex can emerge through
unsupervised learning (Figure 2C), suggesting that gain
modulation is an efficient coding strategy to integrate visual
and postural information toward the generation of motor
commands even though learning does not involve any explicit
coordinate transformation. Notably, models of sensorimotor
transformations building upon stipulated gain modulation have
been used to account for visuospatial attention (Casarotti et al.,
2012) and neuropsychological deficits like hemineglect (Pouget
and Driver, 2000). Therefore, a promising venue for research
will be to investigate these phenomena within the emergentist
framework of deep generative networks.

Implications for Neuropsychology
From a neuropsychological modeling perspective, we discuss
below a series of methodological advantages that this new
generation of PDP models offers over more traditional
connectionist models.

Localized Damage Within a Hierarchical Architecture
The structured architecture of deep learning models allows to
more carefully simulate cognitive deficits caused by localized
brain damage, which may affect a specific representation level.
Indeed, deep networks exploit multiple levels of representation,
where low-level features are gradually combined in order to
produce more abstract representations of the sensory data.
For example, in the domain of visual object recognition,
unsupervised deep learning can lead to the emergence of
extremely high-level visual features (Figure 2C), such as those
representing prototypical faces (Le et al., 2012). By applying
selective lesions to these models, we could assess the effect of
damage to specific cortical regions, ranging from early visual
processing to higher-level extrastriate areas, up to more anterior,
associative areas. This would allow to simulate various forms of
visual agnosia (Farah, 2004) and investigate the emergence of
category-specific deficits (Humphreys and Forde, 2001). Most
notably, the realistic scale of these models allows to evaluate
the effect of damage using the same type of stimuli employed
in patients’ testing (e.g., standardized pictures of Snodgrass and
Vanderwart, 1980).

Multiple Connection Pathways and Multimodal
Learning
Deep learning architectures can also be used to simulate
selective damage to specific connection pathways. For example,
Cappelletti et al. (2014) simulated the declined performance
of elderly population in numerosity comparison using the
model of Stoianov and Zorzi (2012). Stochastic decay was
applied to synaptic strengths to investigate two different types
of impairment: a global degradation involving all network
synapses, and a more selective degradation involving only
the inhibitory synapses of a specific processing layer. The
specific impairment of inhibition caused a large decrease of
performance on stimuli in which irrelevant, continuous visual
features competed with numerosity, mirroring the empirical
data; conversely, the decline in performance following global
impairment was identical across conditions. In line with an

inhibition deficit hypothesis, the authors concluded that reduced
inhibition of irrelevant information is critical to explain the
specific pattern of impaired performance observed in aging.
Selective damaging of connection pathways is also interesting in
the context of multimodal deep learning (Ngiam et al., 2011).
For example, learning a shared representation for arithmetic
facts presented in both semantic and symbolic formats produces
two different subnetworks that can be selectively damaged to
simulate different patterns of acquired acalculia (Stoianov et al.,
2004).

Balance Between Bottom-Up and Top-Down
Processing
The prominent role of feedback connections in generative
networks also allows to simulate unbalancing between top-
down and bottom-up integration mechanisms, which are
thought to underlie positive symptoms commonly observed
in psychiatric disorders (Manford and Andermann, 1998).
Hierarchical generative models have been used to simulate visual
hallucinations in the Charles Bonnet syndrome (Reichert et al.,
2013), suggesting that impaired homeostatic regulation of feed-
forward and feedback neuronal activity might be responsible for
a wide range of symptoms observed in patients.

Noise Might not Always be Detrimental
Another major difference with respect to traditional
connectionist models relates to the role of noise in simulating
brain damage. Injection of noise in the activation of hidden
units has been often used as a way to simulate brain damage
by disrupting internal representations (e.g., Joanisse and
Seidenberg, 1999). In stochastic models, instead, adding noise
allows for a more efficient exploration of the network state space
and helps settling into more stable attractors (Kirkpatrick et al.,
1983). This is compatible with the hypothesis that neuronal
noise has a key computational role in the brain, for example
by keeping it in a ‘‘metastable’’ state that facilitates flexible
settling into the most appropriate configuration (Kelso, 2012).
Notably, this might also explain how structured fluctuations
of brain activity, such as those observed during resting state,
could emerge from noise-driven explorations of oscillatory states
(Deco et al., 2013).

From Toy Models to Realistic, Large-Scale
Simulations
Finally, the appeal of generative neural networks has long been
hindered by their high computational complexity. This has been
radically changed by recent advances in parallel computing
architectures, which allow to efficiently simulate large-scale
neural networks composed by thousands of neurons (Raina et al.,
2009; Testolin et al., 2013) that can be trained and tested using
the same type of stimuli adopted in empirical research (Stoianov
and Zorzi, 2012; Güçlü and van Gerven, 2015). This increased
realism will have important benefits for neuropsychological
modeling, which traditionally relied on small-scale, ‘‘toy-models’’
that cannot reproduce realistic experimental settings.
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PERSPECTIVES AND FUTURE
CHALLENGES

An important challenge will be to more closely link generative
networks with structured Bayesian models (Ghahramani, 2015),
which can successfully simulate a wide variety of high-level
cognitive functions ranging from one-shot learning (Lake et al.,
2015) to inferring causal relations, categories and hidden
properties of objects, and meanings of words (see Tenenbaum
et al., 2011, for discussion).

At the opposite end, bridging generative networks to more
realistic neuronal models that incorporate biophysical details
is another major challenge. The popularity of supervised deep
learning both in academic and industry research (LeCun
et al., 2015) has offset research on generative models, which
nevertheless entail a more psychologically-plausible learning
regimen as well as more biologically-plausible processing
mechanisms (Zorzi et al., 2013; Cox and Dean, 2014).We believe,
however, that generative networks will have an increasingly
central role in neurocognitive modeling because they can
simulate both evoked (feed-forward) and intrinsic (feedback)
brain activity, where top-down mechanisms generate and
maintain active representations that are modulated, rather than
determined, by sensory information (Fiser et al., 2010). In this
respect, although the classical approach in cognitive neuroscience
has been to study neuronal responses to stimuli during task
performance, the importance of intrinsic activity in shaping
brain dynamics is now widely recognized (Raichle, 2015).
Accordingly, spontaneous activity might not reflect trivial noisy
fluctuations, because it is organized into clear spatiotemporal
profiles that might reflect the functional architecture of the
brain (Greicius et al., 2003; Buckner et al., 2008). The fact
that intrinsic activity persists during sleep suggests its potential
role in development and plasticity (Raichle, 2015), which is
in line with previous attempts to characterize learning in
generative networks as being driven by ‘‘wake’’ and ‘‘sleep’’
phases (Hinton et al., 1995). Nevertheless, resting activity is likely
supported by dynamics emerging from synchronous oscillations
of different brain areas over multiple frequency bands (Engel
et al., 2001; Varela et al., 2001), but PDP models usually adopt
processing units that are characterized by a single, real value
representing the average activity of a neural ensemble. This
implies that potentially important phase relations between spikes
are completely lost. A possible way to address this limitation
could be to integrate generative networks with spiking models,
which can also perform near-optimal Bayesian inference (Rao,
2004; Ma et al., 2006; Deneve, 2008) or implement efficient
belief propagation schemes in generic graphical models (Pecevski
et al., 2011). Alternatively, networks of spiking neurons can
perform probabilistic inference, thereby emulating Boltzmann
machines, using an efficient but biologically realistic sampling
scheme that explains many functional aspects of low-level
brain dynamics, such as refractory mechanisms and finite
durations of postsynaptic potentials (Buesing et al., 2011).
Moreover, related models have shown howmaximum-likelihood
learning might occur in this type of networks by exploiting
spike-timing dependent plasticity, which could be facilitated by

BOX 1 | OUTSTANDING QUESTIONS

• Current deep learning research is mostly focused on supervised learning
and feed-forward convolutional networks trained with error backpropagation
(LeCun et al., 2015), which have also been used to model cortical
processing (e.g., Khaligh-Razavi and Kriegeskorte, 2014). How well do
generative/recurrent vs. discriminative/feed-forward models compare with
respect to simulating neurophysiological data and the effect of network
damage?
• Feature detectors emerging in deep networks can be extremely complex
and specialized. How does this relate to the theoretical debate on localist
vs. distributed representations (e.g., Bowers, 2009)? Is it possible to learn
a form of explicit, localistic coding that retains the advantages provided
by distributed representations? What is the theoretical implication for
computational modeling in neuropsychology?
• Is it possible to simulate the emergence of brain-like structural properties,
such as small-worldness and rich-club organization, by starting from a general
deep learning architecture? Do we need to include additional constraints (e.g.,
topological, metabolic)? How do learning regularizers (e.g., sparsity, weight
decay, drop-out) compare with respect to organizational principles of biological
neuronal networks?
• Can we improve lesioning studies in PDP models by taking into account
structural and functional properties of the network? Could deep learning
systems exhibit the same universal resilience patterns observed in other types
of complex networks (Gao et al., 2016)?

other physiological mechanisms such as background oscillations
and synchronous activity (Nessler et al., 2013). Notably, there
have been other attempts to integrate models of spiking
neurons with coarser mean-field models and neural masses,
with the aim of providing multi-scale dynamical models of
large-scale brain networks (Deco et al., 2008; Mavritsaki et al.,
2011). Although these models are less easily interpretable
in terms of high-level Bayesian learning and computation,
they provide a more direct link to the vast amount of
empirical data provided by modern neuroscience methods (e.g.,
Jirsa et al., 2010).

Finally, a largely unexplored research frontier would be to
study PDP models using the powerful analytical techniques
developed by network science (Albert and Barabasi, 2002;
Newman, 2010), which are rapidly becoming a standard tool in
neuroscience research (e.g., Bullmore and Sporns, 2009; Bressler
and Menon, 2010; Medaglia et al., 2015). This would allow to
more precisely characterize the relationship between structure
and function in complex, self-organizing networks: indeed, in
PDP models the initial processing architecture is fairly generic
(e.g., for the restricted Boltzmann machine, a fully-connected
bipartite graph with uniform random connections), and complex
structural patterns gradually emerge as a product of learning.
To the best of our knowledge, it is still unknown whether
the emergent structure exhibits organizational principles that
match those observed in brain networks, such as small-
worldness and partial segregation into motifs (Park and Friston,
2013). Notably, it has also been shown that a resilience
index of complex networks can in fact be measured using
a universal resilience function, thereby unveiling the network
characteristics that can enhance or diminish its robustness
to damage and external perturbations (Gao et al., 2016).
This surprising discovery could have a profound impact on
neuropsychology, because it might allow to better understand
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how to improve fault-tolerance in neuronal networks, and
how to more effectively recover network functions after
damage.

In conclusion, we believe that stochastic, generative neural
networks provide a unique interface between high-level
descriptions of cognitive functions in terms of structured
Bayesian computations and low-level, mechanistic explanations
based on dynamical systems theory and simulations of
networks whose connectivity and processing mechanisms
can be constrained by neurobiological evidence. Such an
integrated framework would allow building computational
models spanning many levels of detail, capable of
predicting salient aspects of behavior at varying levels of
resolution at the same time guaranteeing interpretability
according to different levels of abstractions (Gerstner
et al., 2012). If this ambitious enterprise will succeed
(see Box 1 for a list of outstanding research questions)
we would have the most valuable tools to understand

how neuronal processes support complex behavior and
cognition, how brain damage impairs performance, and
how to devise intervention strategies to improve recovery
of function.
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