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ON THE CODIMENSION OF THE ABNORMAL SET IN STEP TWO

CARNOT GROUPS ∗, ∗∗

Alessandro Ottazzi1 and Davide Vittone2

Abstract. In this article we prove that the codimension of the abnormal set of the
endpoint map for certain classes of Carnot groups of step 2 is at least three. Our result
applies to all step 2 Carnot groups of dimension up to 7 and is a generalisation of a previous
analogous result for step 2 free nilpotent groups.

Résumé. Dans cet article nous montrons que la codimension de l’ensemble abnormal de
la carte de point final pour certaines classes de groupes de Carnot de classe 2 est au moins
trois. Notre résultat s’applique à tous les groupes de Carnot de classe 2 de dimension
jusqu’à 7 et c’est une généralisation d’un résultat analogue précédent pour les groupes
nilpotents libres de pas 2.
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Introduction

Let G be a Carnot group, i.e., a connected and simply connected Lie group with stratified nilpotent
Lie algebra g = V1 ⊕ · · · ⊕ Vs. Let End be the endpoint map

End : L2([0, 1], V1) → G

u 7→ γu(1),

where γu is the curve on G leaving from the identity e ∈ G with γ̇u(t) = (dLγu(t))eu(t), Lg denoting
left translation by g. The abnormal set is the subset AbnG ⊆ G of all singular values of the endpoint
map. Equivalently, AbnG is the union of all abnormal curves passing through the origin. If the
abnormal set has measure 0, then G is said to satisfy the Sard Property. Proving the Sard Property
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in the general context of sub-Riemannian manifolds is one of the major open problems in sub-
Riemannian geometry, see the questions in [6, Sec. 10.2] and Problem III in [2]. See also [1], [3]
and [7]. In [5], the authors of this note and others proved the Sard Property in a number of special
cases, and they also obtained the following first result concerning the interesting problem of obtaining
finer estimates on the size of the abnormal set.

Theorem ( [5, Theorem 3.15]). In any free nilpotent group of step 2 the abnormal set is an algebraic
subvariety of codimension 3.

In the present paper we discuss generalizations of the result above to some classes of step 2 Carnot
groups that are not necessarily free. Our purpose is to present different possible approaches to the
problem. As our examples will show, going from the free to the general case does not seem to be a
trivial step. Before summarizing our contributions in the following statement, it is worth recalling

that a free-nilpotent group of step 2 and rank r has dimension r2+r
2

Theorem. Let G be a step 2 Carnot group and let dimV1 = r. The abnormal set AbnG is contained
in an algebraic subvariety of codimension three (or more) in the following cases:

(i) G has dimension r + 1 or r + 2;

(ii) G has dimension r2+r
2 − 1 or r2+r

2 − 2;
(iii) r = 4 and G has dimension 7.

After having established the notation and having recalled some known results in Section 1, we
state and prove our contributions. In Section 2 we consider Carnot groups of step 2 and dimensions
r + 1 and r + 2. This will be the content of Theorem 2.1 and Theorem 2.3. While the case r + 1
is rather straightforward, in order to prove Theorem 2.3 we reason by induction on r and we need
some fine observations on the bases of V1. Already in dimension r + 3 our technique apparently

fails to being convenient. In Section 3, we consider dimensions r2+r
2 − 1 and r2+r

2 − 2 (Theorem 3.2
and Theorem 3.9). The idea here is to see the Carnot groups as quotients of free-nilpotent groups
of step 2 by 1 and 2−dimensional ideals, respectively. Indeed, it turns out (see Proposition 1.16)
that if π : F → G is a homomorphic projection of stratified groups, then the abnormal curves in G
are the abnormal curves in F that remain abnormal under π. If the dimension of the kernel of π is
1 or 2 and F is free, we are able to study the abnormal curves of G using this method. However,
when the dimension of the kernel is higher, the computations become more complicated. Finally, in
Section 4 we prove Theorem 4.2, which concerns the case where r = 4 and the dimension is 7.

It can be easily checked that all stratified Lie groups up to dimension 7 fall in one of the cases
(i), (ii) or (iii) above. In particular, we have the following consequence.

Corollary. Let G be a step 2 Carnot group of topological dimension not greater than 7; then, the
abnormal set AbnG is contained in an algebraic subvariety of codimension at most three.

1. Preliminaries

In this section we establish the notation we are going to use and we recall some preliminary facts
that were proved in [5].

A Carnot (or stratified) group G is a connected, simply connected and nilpotent Lie group whose
Lie algebra g is stratified, i.e., it has a direct sum decomposition g = V1 ⊕ · · · ⊕ Vs such that

Vj+1 = [Vj , V1] ∀ j = 1, . . . , s− 1, Vs 6= {0} and [Vs, V1] = {0}.

We refer to the integer s as the step of G and to r := dimV1 as its rank. The group identity will be
denoted by e. We will indifferently view g either as the tangent space to G at e or as the Lie algebra
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of left-invariant vector fields in G. Recall that in this case the exponential map exp : g → G is a
diffeomorphism; we write log for the inverse of exp. When we use log to identify g with G, the group
law on G becomes a polynomial map g× g→ g with 0 ∈ g playing the role of the identity element
e ∈ G. For all g ∈ G, denote by Lg and Rg the left and right multiplication by g, respectively. We
write Adg := d(Rg−1 ◦ Lg)e : g→ g. For X ∈ g we define adX : g→ g by adX(Y ) := [X,Y ].

Fix u ∈ L2([0, 1], V1) and denote by γu the curve in G solving

dγ

dt
(t) =

(
dLγ(t)

)
e
u(t), (1.1)

with initial condition γ(0) = e. Vice versa, if γ : [0, 1] → G is an absolutely continuous curve that
solves (1.1) for some u ∈ L2([0, 1], V1), then we say that γ is horizontal and that u is its control. The
endpoint map End is

End : L2([0, 1], V1) → G

u 7→ γu(1).

We will sometimes write EndG to underline the group G we are working with.

Let γ : [0, 1] → G be a horizontal curve with control u and such that γ(0) = e. If Im(dEndu) (
Tγ(1)G we say that γ is abnormal. In other words, a horizontal curve γ : [0, 1] → G is abnormal if
and only if γ(1) is a critical value of End. The main goal of this paper is the study of the abnormal
set AbnG of G defined by

AbnG := {γ(1) : γ : [0, 1]→ G abnormal , γ(0) = e}. (1.2)

The following result is proved in [5, Proposition 2.3].

Proposition 1.3. If γ : [0, 1]→ G is a horizontal curve leaving from e with control u, then

Im(dEndu) = (dRγ(1))e(span{Adγ(t) V1 : t ∈ [0, 1]}). (1.4)

It is clear from (1.4) that Im(dEndu) depends only on γ and not on its parametrization (i.e., on
the control u). Given a horizontal curve γ : [0, 1]→ G with γ(0) = e we define

Eγ := span{Adγ(t) V1 : t ∈ [0, 1]}. (1.5)

By Proposition 1.3, γ is abnormal if and only if Eγ is not the whole Lie algebra g. In fact, Eγ ⊂
TeG ≡ g is the image under the diffeomorphism (dRγ(1))

−1
e of Im(dEndu) ⊂ Tγ(1)G for any control

u associated with γ. Evaluating (1.5) at t = 0 and t = 1 yields

V1 + Adγ(1) V1 ⊆ Eγ . (1.6)

We will sometimes use the notation EG
γ if we need to stress the group under consideration.

Example 1.7. There are no abnormal curves in Rn (seen as a step 1 Carnot group). Indeed, by
(1.6), g = V1 = Eγ for any γ. In particular, AbnRn = ∅.

We restrict our analysis to a Carnot group G associated with a stratified Lie algebra g = V1 ⊕ V2

of step 2. Denote by πV1
: g→ V1 the canonical projection; for any fixed X ∈ g we recall the formula

Adexp(X) = eadX to get

Adexp(X)(Y ) = Y + [X,Y ] = Y + [πV1(X), Y ] ∀ Y ∈ g. (1.8)
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We use this formula to compute more efficiently the linear space Eγ defined in (1.5).

Proposition 1.9. Let G be a Carnot group associated with a stratified Lie algebra g = V1 ⊕ V2 of
step 2. Let γ be a horizontal curve in G with γ(0) = e and define the linear space Pγ ⊆ g by

Pγ := span{πV1
(log γ(t)) : t ∈ [0, 1]}, (1.10)

where log : G→ g is the inverse of exp. Then

Eγ = V1 ⊕ [Pγ , V1]

and, in particular, γ is abnormal if and only if [Pγ , V1] 6= V2.

Proof. Using (1.8) and the fact that V1 ⊆ Eγ (see (1.6)), we obtain

Eγ = span{Y + [πV1(log γ(t)), Y ] : t ∈ [0, 1], Y ∈ V1}
= V1 ⊕ span{[πV1

(log γ(t)), Y ] : t ∈ [0, 1], Y ∈ V1}
= V1 ⊕ [Pγ , V1]

as stated. �

Example 1.11. Given an integer n ≥ 1, the n-th Heisenberg group Hn is the Carnot group associ-
ated with the (2n+ 1)-dimensional stratified Lie algebra V1 ⊕ V2 of step 2 where

V1 := span{X1, . . . , Xn, Y1, . . . , Yn}, V2 := span{T}

and the only non-zero commutation relations between the generators are given by

[Xi, Yi] = T for any i = 1, . . . , n.

In particular, for any horizontal curve γ with γ(0) = e we have [Pγ , V1] = V2 unless Pγ = {0}.
It follows that the only abnormal curve in Hn is the constant curve γ̄(t) ≡ e and, in particular,
AbnHn = {e}. We note here for future reference that Eγ̄ = V1.

Proposition 1.9 allows to give a completely algebraic description of AbnG. Consider an abnormal
curve γ in G leaving from the identity e and let Pγ be as in (1.10). Then Im γ is contained in the
subgroup of G associated to the Lie algebra generated by Pγ , i.e.,

Im γ ⊆ exp(Pγ ⊕ [Pγ , Pγ ]).

Assume for a moment that dimPγ ∈ {r, r − 1}, i.e., that Pγ is either the whole horizontal layer V1

or a hyperplane of V1; in both cases one would have [Pγ , V1] = V2 and, by Proposition 1.9, γ would
not be abnormal. This proves that

AbnG ⊆
⋃
{exp(P ⊕ [P, P ]) : P linear subspace of g, dimP ≤ r − 2, [P, P ] 6= V2}.

The reverse inclusion holds as well. Indeed, if P is a linear subspace of g such that dimP ≤ r−2 and
[P, P ] 6= V2, then by Chow connectivity theorem any point in the subgroup H := exp(P ⊕ [P, P ]) can
be connected to e by a horizontal curve γ entirely contained in H, and such a γ must be abnormal
by Proposition 1.9. We have therefore proved the following result (see also [5, Section 3.1]).
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Proposition 1.12. Let G be a Carnot group associated with a Lie algebra g = V1 ⊕ V2 of step 2;
then

AbnG =
⋃
{exp(P ⊕ [P, P ]) : P linear subspace of g, dimP ≤ r − 2, [P, P ] 6= V2}.

An immediate consequence of Proposition 1.12, proved in [5, Theorem 1.4], is the following result.

Theorem 1.13. Let G be a Carnot group associated with a free Lie algebra of step 2; then AbnG
is contained in an affine algebraic subvariety of codimension 3.

We conclude this section by proving two simple results that hold in general Carnot groups.

Proposition 1.14. Let G and H be Carnot groups associated with stratified Lie algebras g and h
(respectively). Let γ be a horizontal curve in the Carnot group G × H and write γ = (α, β) for
unique horizontal curves α and β in G and H, respectively. Then, γ is abnormal in G ×H if and
only if either α is abnormal in G or β is abnormal in H; in particular

AbnG×H = (AbnG ×H) ∪ (G×AbnH).

Proof. Let V1 and W1 be the first layers in the stratifications of g and h respectively. If u ∈
L2([0, 1], V1) and w ∈ L2([0, 1],W1) are the controls associated to α and β respectively, then (u, v) ∈
L2([0, 1], V1 ×W1) is a control of γ and

dEndG×H(u,v) = dEndGu ⊗ dEndHv .

In particular, dEndG×H(u,v) is surjective if and only if both dEndGu and dEndHv are, and this is enough

to conclude. �

We need some terminology before stating our next result. Assume that f = V1 ⊕ · · · ⊕ Vs is a
nilpotent stratified Lie algebra and that I ⊂ V2 ⊕ · · · ⊕ Vs is an ideal of f; consider the quotient Lie
algebra g = f/I. Let π : f → g be the associated canonical projection and let F,G be the Carnot
groups associated with f, g respectively; we use the same symbol π : F → G to denote the canonical
projection at the group level. It is well-known that any horizontal curve γ in G leaving from the
identity (of G) admits a unique lift to F , i.e., a unique horizontal curve γ̄ in F leaving from the
identity (of F ) and such that γ = π ◦ γ̄. Moreover, essentially by definition (see (1.5)) we have that
for any horizontal curve c in F

Eπ◦c = π(Ec). (1.15)

This proves the following result.

Proposition 1.16. Let f = V1⊕· · ·⊕Vs be a nilpotent stratified Lie algebra, let I ⊂ V2⊕· · ·⊕Vs be
an ideal of f and let g = f/I be the quotient Lie algebra. Let π : F → G be the canonical projection
between the Carnot groups F and G associated with f and g, respectively. Then, for any abnormal
curve γ in G, the lift γ̄ is an abnormal curve in F ; in particular,

AbnG ⊂ π(AbnF ).

2. Step 2, rank r, dimensions r + 1 and r + 2

In this section we show that if G is a Carnot group of step 2 such that dimV1 = r and dimV2 = 1
or 2, then the abnormal set Abn has codimension at least 3. The case where dimV2 = 1 is somewhat
elementary. Given an integer ` ≥ 0, we say that a vector X ∈ V1 has rank ` if rank(adX) = `. We
denote by R` the set of vectors in V1 of rank at most `; notice that R0 = z(g) ∩ V1.
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Theorem 2.1. Let G be the Carnot group associated with a stratified Lie algebra g = V1 ⊕ V2 such
that dimV1 = r and dimV2 = 1. Then dim AbnG ≤ r − 2.

Proof. By Proposition 1.9, a curve γ is abnormal if and only if [Pγ , V1] = {0}, i.e., Pγ ⊆ z(g), the
center of g. So the abnormal curves are contained in expR0, which is a subgroup of dimension at
most r − 2, for otherwise g would be abelian. �

We also provide an alternative proof suggested to us by E. Le Donne.

Alternative proof of Theorem 2.1. It is an exercise left to the reader to show that G is isomorphic to
the product Hk×Rh for suitable integers k ≥ 1 and h ≥ 0. The conclusion follows from Proposition
1.14 and Examples 1.7 and 1.11 . �

The proof of the case dimV2 = 2 is less straightforward, and it requires some preliminary results.

Lemma 2.2. Let g = V1⊕V2 be a step two stratified Lie algebra with dimV1 = r ≥ 3 and dimV2 = 2.
Then R1 has codimension at least 1 in V1.

Proof. Let X1, . . . , Xr be a basis of V1 and Z1, Z2 a basis of V2; let X =
∑r
i=1 xiXi ∈ V1. Asking X

to have rank at most 1 amounts to an algebraic condition on x1, . . . , xr: in fact, X has rank at most
1 if and only if all the 2× 2 minors of the matrix M ∈ R2×r defined by [Xj , X] = M1jZ1 +M2jZ2,
j = 1, . . . , r have null determinant. We notice that the entries of M are linear in x1, . . . , xr, hence
all the determinants of the 2 × 2 minors are given by a (possibly zero) homogeneous second-order
polynomial in x1, . . . , xr. It follows that R1 is contained in an algebraic variety of V1.

In order to show that this variety is not the whole V1 (and hence it has positive codimension, as
desired) it is enough to find a vector in V1 of rank 2. This is trivial if r = 3. For r ≥ 4 we reason by
contradiction and assume that all vectors have rank 0 or 1. Fix X1, X2 ∈ V1 such that [X1, X2] =
Z1 6= 0. We can choose1 a basis {X1, X2, X3, . . . , Xr} of V1 so that [Xj , X1] = [Xj , X2] = 0 for every
j = 3, . . . , r. Since dimV2 = 2, we may assume that Z1 and Z2 := [X3, X4] are linearly independent.
Then X1 +X3 has rank 2, and the proof is accomplished. �

Theorem 2.3. Let G be the Carnot group associated with a stratified Lie algebra g = V1 ⊕ V2 such
that dimV1 = r and dimV2 = 2. Then dim AbnG ≤ r − 1.

Proof. We argue by induction on r. Since dimV2 = 2, the smallest possible dimension for V1 is r = 3.
If this is the case, then for every (non-constant) abnormal curve γ the space Pγ has dimension one
(otherwise [Pγ , V1] = V2 and γ would not be abnormal). Therefore γ is a horizontal line, and
Pγ = span{Xγ} for some Xγ ∈ V1; actually, Xγ ∈ R1, for otherwise [Pγ , V1] = V2. It follows that
AbnG ⊂ exp(R1); by Lemma 2.2, this has dimension at most 2, as stated.

Assume now that the thesis is true for dimV1 ≤ r − 1 and let γ be an abnormal curve. Notice
that if dimPγ = 1, then γ ⊆ exp(R1). Therefore, if there is no abnormal curve γ such that
dimPγ ≥ 2, the conclusion follows from Lemma 2.2. Otherwise there is a curve γ which is abnormal
(i.e., dim[Pγ , V1] ≤ 1) and such that Pγ has dimension ≥ 2. If Pγ is abelian for every such γ, then
the abnormal curves are all contained in the space exp(R1), which has dimension at most r − 1 by
Lemma 2.2.

Otherwise, suppose there is an abnormal curve γ such that dimPγ ≥ 2, dim[Pγ , V1] ≤ 1, and
[Pγ , Pγ ] 6= 0, so that dim[Pγ , Pγ ] = dim[Pγ , V1] = 1. Then there are X1, X2 ∈ Pγ such that
[X1, X2] = Z1 6= 0. We may complete2 X1 and X2 to a basis X1, . . . , Xr of V1 so that [Xj , X1] =
[Xj , X2] = 0 for every j = 3, . . . , r. Denoting by g the Lie algebra of G, we have two cases: either Z1

is in the Lie algebra generated by X3, . . . , Xr, or not. In the latter case, we may write g = h⊕ g̃, a

1Otherwise [Xj , X1] = aZ1 and [Xj , X2] = bZ1 and one could replace Xj with Xj − bX1 + aX2.
2See footnote 1.
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Lie algebra direct sum where h := span{X1, X2, Z1} is the three dimensional Heisenberg Lie algebra,
g̃ := span{X3, . . . , Xr, Z2} is a subalgebra of g, and Z2 is a vector in V2 linearly independent from
Z1. In particular, by Proposition 1.14 the abnormal set satisfies

AbnG ⊆
Ä
AbnH × G̃

ä
∪ (H ×AbnG̃)

with H and G̃ denoting the subgroups of G with Lie algebras h and g̃ respectively. One can then
easily conclude using Theorem 2.1 (which applies to G̃) and Example 1.11.

We are left with the case where Z1 is in the Lie algebra generated by X3, . . . , Xr. In this case
X3, . . . , Xr generate two independent vectors Z1 and Z2 in V2. Define the Lie algebra g′ :=
span{X3, . . . , Xr, T, Z2} with Lie product given by declaring the map φ : g → g′, defined by
φ(Z1) = T and by the identity on the other basis vectors, to be an isomorphism. Then we can
write

g = (h⊕ g′)/I,

where I := span{T −Z1} and again h := span{X1, X2, Z1}. The homomorphic surjective projection
π : h ⊕ g′ → g defines a natural projection (for which we use the same symbol π) at the Lie group
level

π : H ×G′ → G,

where G′ denotes the exponential group of g′. By Proposition 1.16 the abnormal curves γ in G
are projections of abnormal curves (α, β) in H × G′, with α and β horizontal curves in H and G′

respectively. Namely, γ = π(α, β). By Proposition 1.14, (α, β) is abnormal in H × G′ if and only
if at least one of α and β is abnormal in H and G′ respectively. So, the abnormal set AbnG is
contained in AH ∪AG′ , where

AH := {γ(1) : γ = π(α, β) abnormal in G, γ(0) = e, α abnormal in H}

and
AG′ := {γ(1) : γ = π(α, β) abnormal in G, γ(0) = e, β abnormal in G′}

We first consider AH . By Example 1.11, the only abnormal curves in H leaving from e is the
constant curve ᾱ ≡ e; we claim that γ = π(ᾱ, β) is abnormal in G if and only if β is abnormal in G′.

Indeed, if this was not the case, then EG′

β = g′ and EH
ᾱ = V h

1 , where V h
1 = span{X1, X2}. Recalling

(1.15) we would have EG
γ = π(EH

ᾱ ⊕ EG′

β ) = g and γ would not be abnormal in G. This proves that

AH ⊆ π({e} ×AbnG′) and, in particular, that AH has codimension at least 5.

Next, we consider AG′ . If γ is abnormal in G and α is not constant, then EH
α = h by Example

1.11. Hence, in order to have EG
γ 6= g, it must be that

EG′

β ⊆ V g′

1 ⊕ RT,

with V g′

1 = span{X3, . . . , Xr}. If EG′

β = V g′

1 , then [Pβ , V
g′

1 ] = {0}. So β ⊆ exp(V g′

1 ∩ z(g′)), with

z(g′) the center of g′. But V g′

1 ∩ z(g′) has dimension at most r − 5, so we reach the conclusion in

this case. Otherwise β is such that EG′

β = V g′

1 ⊕ RT , which implies that [Pβ , V
g′

1 ] = RT . Namely,

β ⊆ exp(M ⊕ RT ), where

M = {X ∈ V g′

1 : Im(adX) ⊆ RT}.
Notice that M is a linear subspace of V g′

1 and that dimM ≤ r−4. Using the fact that π(T −Z1) = 0
we obtain

π(α, β) ⊆ π(H × exp(M × R)) = π(H × exp(M))

and the set on the right hand side has dimension r − 1. This concludes the proof.
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�

3. Step 2, rank r, dimension r2+r
2
− 1 and r2+r

2
− 2.

Let g = V1⊕V2 be a step two Lie algebra with dimV1 = r. Let fr,2 be the nilpotent free Lie algebra
of rank r and step 2 and let Fr,2 be the Carnot group with fr,2 as Lie algebra. Denote by W1⊕W2 a

stratification of fr,2, and recall that dimW2 = r(r−1)
2 . Then the Lie algebra g can be viewed as the

quotient of fr,2 by a subspace W of W2. One possible strategy for studying the abnormal set of G is
to study those abnormal curves in Fr,2 that project to abnormal curves on G. In the following two

sections we use this idea to study the abnormal set of G when dimV2 = r(r−1)
2 − 1 (i.e., dimW = 1)

and dimV2 = r(r−1)
2 − 2 (i.e., dimW = 2). As the dimension of the space W grows, the discussion

becomes considerably more complicated and this strategy (apparently) ceases to be convenient. The
following lemma will be useful for both cases

Lemma 3.1. The set A ⊆ Fr,2 defined by

A :=
⋃
{Im γ : γ is a curve in Fr,2 and dimPγ ≤ r − 3}

has dimension r2+r
2 − 6.

Proof. Denoting by Gr(W1, k) the Grassmannian of k-planes in W1, we have

A =
r−1⋃
h=3

Ah, where Ah :=
⋃

P∈Gr(W1,r−h)

exp(P ⊕ [P, P ]).

Each set Ah can (locally) be parametrized by a smooth map depending on a number of parameters
equal to dimGr(Rr, r − h) + dimFr−h,2, hence it has dimension

h(r − h) +
(r − h)(r − h+ 2)

2
=
r2 + r

2
− h(h+ 1)

2
≤ r2 + r

2
− 6

because h ≥ 3. �

3.1. Dimension r2+r
2 − 1

We prove the following.

Theorem 3.2. Let G be the Carnot group associated with a step two stratified Lie algebra g = V1⊕V2

with dimV1 = r and dimV2 = r(r−1)
2 − 1. Then AbnG has codimension at least 3.

Proof. As we said, the algebra g is isomorphic to the quotient of fr,2 by a one dimensional subspace
of W2, say RZ. From Proposition 1.16, every abnormal curve in G lifts to an abnormal curve in
Fr,2. Denote by π the projection of Fr,2 onto G, and let γ be an abnormal curve in Fr,2. Then Pγ
has dimension at most r− 2 in W1 by Proposition 1.12; the set AbnG is thus contained in the union
A ∪B, where

A := {π ◦ γ(1) : γ abnormal in Fr,2 and dimPγ ≤ r − 3}
and

B := {π ◦ γ(1) : γ abnormal in Fr,2 and dimPγ = r − 2}.
Since A coincides with the projection π(A ) of the set A introduced in Lemma 3.1, A has codimension
at least 5 in G. Next, we analyze the set B and consider an abnormal curve γ in Fr,2 such that
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Pγ is (r − 2)-dimensional; in particular, dim[Pγ ,W1] = r(r−1)
2 − 1 = dimW2 − 1. It follows that

the projection π ◦ γ is abnormal if and only if Z ∈ [Pγ ,W1], which is an easy consequence of the
equalities

Eπ◦γ = π(Eγ) = π(W1 ⊕ [Pγ ,W1]),

where we denoted by π also the projection fr,2 → g. Let ` = r(r−1)
2 and fix a basis Z1, . . . , Z` of

W2. Without loss of generality, we may assume Z1 = Z. Let Z ′1, . . . , Z
′
`−1 be independent vectors

of [Pγ ,W1], that we can write as Z ′j =
∑`
i=1 a

j
iZi, j = 1, . . . , `− 1. Then Z ∈ [Pγ ,W1] if and only if

the matrix

(
Z Z ′1 · · · Z ′`−1

)
=

à
1 a1

1 . . . a``−1

0
...

...
...

...
...

0 a1
` . . . a`−1

`

í
has determinant equal to zero. This gives a non-trivial algebraic condition on Pγ . Therefore, the
space of all (r − 2)-dimensional subspaces Pγ of W1 such that Z ∈ [Pγ ,W1] has dimension at most
dimGr(r, r − 2) − 1 = 2(r − 2) − 1. Now, every (r − 2)-dimensional plane in W1 generates a Lie

algebra of dimension (r−2)(r−1)
2 . So B has dimension at most 2(r − 2)− 1 + (r−2)(r−1)

2 = r2+r
2 − 4,

that is, B has codimension at least 3 in G. We then conclude that AbnG has codimension at least
3, as stated. �

3.2. Dimension r2+r
2 − 2

Let G be a Carnot group of step 2 whose algebra g = V1 ⊕ V2 is such that dimV1 = r and

dimV2 = r2−r
2 −2. Let F = Fr,2 be the free Carnot group of rank r and step 2; in this section it will

be convenient to identify the Lie algebra f of F with V1⊕Λ2V1; accordingly, we will indifferently use
the symbols [X,Y ] and X ∧ Y to denote the Lie bracket of X,Y ∈ V1. There exists a 2-dimensional
subspace W ⊆ Λ2V1 such that

V2 ≡ Λ2V1/W. (3.3)

We use the same symbol π to denote the canonical projections π : Λ2V1 → V2 and π : F → G.

Before stating the main result of this section, some preparatory work is in order. Let a ∈W \ {0}
be a 2-vector and let k ≥ 1 be its rank; let e1, e2, . . . , e2k ∈ V1 be such that

a = (e1 ∧ e2) + · · ·+ (e2k−1 ∧ e2k).

We complete e1, . . . , e2k to a basis e1, . . . , er of V1 and we endow V1 of a scalar product making
this basis orthonormal. This induces a canonical scalar product on Λ2V1 making (ei ∧ ej)1≤i<j≤r
an orthonormal basis. Finally, we choose b ∈ W in such a way that a, b is a basis of W ; writing
b =

∑
1≤i<j≤r cij ei ∧ ej , up to replacing b with b− c12a we can assume that

c12 = 0. (3.4)
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Let us introduce the following skew-symmetric r × r matrices:

Ω :=



0 1
−1 0

0 1
−1 0 0

. . .

0 1
−1 0

0 0


,

where k blocks of the form
Ä

0 1
−1 0

ä
appear, all not-shown entries are null and 0 denotes null

matrices of proper sizes, and

C :=

á
0 c12 c13 c14 · · ·
−c12 0 c23 c24 · · ·
−c13 −c23 0 c34 · · ·

...
...

...
. . . · · ·

ë
These matrices have the following notable relations with a, b. If one considers x, y ∈ V1 as column-
vectors written in the basis e1, . . . , er, then

(x ∧ y) · a = x · (Ωy) = xtΩy and (x ∧ y) · b = x · (Cy) = xtCy, (3.5)

where · denotes scalar product (either in V1 or in Λ2V1) and t denotes transposition. Notice also
that, by skew-symmetry,

x · (Ωy) = −(Ωx) · y and x · (Cy) = −(Cx) · y. (3.6)

We will later need the following special form of the matrix C in the particular case in which Ω
and C commute.

Lemma 3.7. Assume that ΩC = CΩ. Then, the basis e1, . . . , er of V1 can be chosen in such a way
that

a = (e1 ∧ e2) + · · ·+ (e2k−1 ∧ e2k)

and there exists a (r − 2k)× (r − 2k) skew-symmetric matrix D such that

C =



0 c12

−c12 0
0 c34

−c34 0 0
. . .

0 c2k−1,k

−c2k−1,k 0
0 D


.

In particular, cij = 0 whenever i = 1, . . . , 2k − 1 and j ≥ i+ 2.
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Proof. Since −Ω2 is the projection on span {e1, . . . , e2k}, for any i, j such that i ≤ 2k < j we have
by skew-symmetry

0 = Ω(ei + ej) · CΩ(ei + ej) = Ω(ei + ej) · ΩC(ei + ej)

= −Ω2(ei + ej) · C(ei + ej) = ei · C(ei + ej) = cij .

In particular, C takes the form

C =

Å
E 0
0 D

ã
for suitable 2k × 2k and (r − 2k)× (r − 2k) matrices E,D.

Let now i, j ∈ {1, . . . , 2k} be fixed with j odd. Upon agreeing that cii = 0 and cij = −cji if i > j,
one has

cij =ei · Cej = ei · CΩej+1

=ei · ΩCej+1 = −Ωei · Cej+1 =

ß
−ci−1,j+1 if i is even
−ci+1,j+1 if i is odd.

Hence the 2k × 2k matrix E is composed of k2 (2× 2)-blocks of the form
Ä

a b
−b a

ä
, which in turn

gives the following information: upon identifying R2k ≡ Ck in the standard way

(x1, . . . , x2k)←→ (x1 + ix2, . . . , x2k−1 + ix2k),

C can be identified with a C-linear endomorphism of Ck (notice that, with this identification, Ω is
the scalar multiplication by −i in Ck). Since Ω and C commute, each of them preserve the other’s
eigenspaces; since C is algebraically closed, they can be simultaneously diagonalized in Ck, which
proves the Lemma. �

We will also need the following simple result

Lemma 3.8. Let H be an hyperplane in V1; then, the set B ⊆ F defined by

B :=
⋃

U∈Gr(H,2)

exp(U⊥ ⊕ [U⊥, U⊥])

has dimension at most r2+r
2 − 5. In particular, the dimension of π(B) ⊆ G is at most r2+r

2 − 5.

Proof. Each set of the form exp(U⊥ ⊕ [U⊥, U⊥]) is a subgroup of F isomorphic to Fr−2,2. Hence,
the set B can (locally) be parametrized by a smooth map of a number of parameters equal to

dimGr(H, 2) + dimFr−2,2 = 2(dimH − 2) +
(r − 2)(r − 1)

2
=
r2 + r

2
− 5.

�

We can now state the main result of this section.

Theorem 3.9. Let G be a Carnot group associated with a step two stratified Lie algebra g = V1⊕V2

with dimV1 = r and dimV2 = r(r−1)
2 − 2. Then AbnG has codimension at least 3, i.e., dim AbnG ≤

r2+r
2 − 5.
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Proof. As in the previous section, our strategy consists in studying the set of abnormal curves γ in
F such that π ◦ γ is abnormal in G. By Lemma 3.1, if γ is such that dimPγ ≤ r − 3, then π ◦ γ
is contained in a subset of G with codimension at least 4. It is therefore enough to study those
abnormal curves γ in F such that dimPγ = r − 2 and π ◦ γ is abnormal in G.

Let then such a γ be fixed; since dim[Pγ , V1] = r2−r
2 −1, we have codim E F

γ = 1 and, in particular,

codim EG
π◦γ = codimπ(E F

γ ) ≤ 1.

Since π ◦ γ is abnormal in G, we have therefore codimπ(E F
γ ) = 1, which is equivalent to W ⊆ E F

γ =
V1 ⊕ [Pγ , V1] (recall that W was introduced in (3.3)) and, in turn, to

W ⊆ [Pγ , V1] = [P⊥γ , P
⊥
γ ]⊥. (3.10)

We have therefore to study those planes U := P⊥γ ∈ Gr(V1, 2) such that W ⊥ [U,U ]. By Lemma

3.8 it is enough to study the case in which U 6⊆ e⊥1 . Since U is 2-dimensional, there exists a unique
(up to a sign) unit vector x ∈ U ∩ e⊥1 . Writing x = (x1, . . . , xr) with respect to the basis e1, . . . , er,
we have x2

1 + · · ·+ x2
r = 1 and x1 = 0. Let then y ∈ U be the unique (up to a sign) unit vector such

that x · y = 0; notice that y1 6= 0, otherwise U =span{x, y} ⊆ e⊥1 . Setting

M̃ := {(x, y) ∈ Rr × Rr : ‖x‖2 = ‖y‖2 = 1, x1 = 0, x · y = 0, y1 6= 0},

the map

M̃ 3 (x, y) 7−→ Ux,y := span{x, y} ∈ Gr(V1, 2) \Gr(e⊥1 , 2)

is smooth, locally injective and surjective (actually, it is 4-to-1); moreover, [Ux,y, Ux,y] = span {x∧y}.
Therefore, the analysis of those planes U 6⊆ e⊥1 such that W ⊥ [U,U ] can be reduced to the analysis

of the couples (x, y) ∈ M̃ such that W = span {a, b} ⊥ x∧ y, or equivalently (recall (3.5)) such that

x · Ωy = x · Cy = 0 .

We divide our study in two cases according to whether Ω and C commute or not.

Case 1: ΩC 6= CΩ. In this case we have ker (ΩC −CΩ) 6= V1, hence ker (ΩC −CΩ) is contained
in some hyperplane H ⊆ V1. By Lemma 3.8 it is enough to consider those couples (x, y) such that
Ux,y 6⊆ H; notice that this condition implies that either x /∈ ker (ΩC − CΩ) or y /∈ ker (ΩC − CΩ).
We will show that the set

M :=

(x, y) ∈ Rr × Rr :
‖x‖2 = ‖y‖2 = 1, x1 = 0, x · y = 0, y1 6= 0,
x · Ωy = x · Cy = 0,
‖(ΩC − CΩ)x‖2 + ‖(ΩC − CΩ)y‖2 > 0

 (3.11)

is the union of two smooth manifolds M1,M2 of dimension 2r − 6, and we claim that this will be
enough to prove Theorem 3.9 in Case 1. Indeed, by the discussion above, in order to prove that

AbnG has dimension at most r2+r
2 − 5 it is enough to show that (the projection on G of) the set⋃

(x,y)∈M

exp(U⊥x,y ⊕ [U⊥x,y, U
⊥
x,y]) ∪

⋃
U∈Gr(e⊥1 ,2)∪Gr(H,2)

exp(U⊥ ⊕ [U⊥, U⊥]) (3.12)

has dimension at most r2+r
2 − 5. This would be true because the second set in the right hand side

has dimension at most r2+r
2 − 5 by Lemma 3.8, while (provided M = M1 ∪M2 as claimed above)
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the first set can (locally) be parametrized by two smooth maps of (2r − 6) + dimFr−2,2 = r2+r
2 − 5

parameters.

We start by showing that

M1 := M ∩ {(x, y) ∈ Rr × Rr : y · (ΩC − CΩ)x 6= 0}

is a smooth submanifold of dimension 2r − 6. Defining the open set

O1 := {(x, y) ∈ Rr × Rr : y1 6= 0, ‖(ΩC − CΩ)x‖2 + ‖(ΩC − CΩ)y‖2 > 0, y · (ΩC − CΩ)x 6= 0}

we have
M1 = O1 ∩ {(x, y) ∈ Rr × Rr : F (x, y) = (1, 1, 0, 0, 0, 0)}

where F (x, y) := (‖x‖2, ‖y‖2, x · y, x1, x · Ωy, x · Cy). We have to show that the rank of ∇F is 6 at
all points of M1; using (3.6) one can compute

∇F (x, y) =

Å
2x 0 y ε1 Ωy Cy
0 2y x 0 −Ωx −Cx

ã
,

where ε1 = (1, 0, . . . , 0)t ∈ Rr and 0 is the null (column) vector in Rr. Assume by contradiction
that there exists (x, y) ∈ M1 such that the six columns are linearly dependent, i.e., there exists
λ ∈ R6 \ {0} such that ®

λ1x+ λ3y + λ4ε1 + λ5Ωy + λ6Cy = 0

λ2y + λ3x− λ5Ωx− λ6Cx = 0
(3.13)

Taking into account (3.6) and the fact that (x, y) ∈ M , by scalar multiplying by x and y the two
equalities in (3.13) one obtains 

λ1 + λ4x1 = 0

λ3 = 0

λ3 + λ4y1 = 0

λ2 = 0,

i.e., λ1 = λ2 = λ3 = λ4 = 0, because x1 = 0 and y1 6= 0. Therefore (λ5, λ6) 6= (0, 0) are such that®
λ5Ωy + λ6Cy = 0

λ5Ωx+ λ6Cx = 0,

i.e., (Ωx,Ωy) and (Cx,Cy) are linearly dependent, hence

0 = −Ωy · Cx+ Cy · Ωx = y · (ΩC − CΩ)x,

a contradiction.

We now show that M2 := M \M1 is a (2r − 6)-dimensional smooth manifold. Defining the open
set

O2 := {(x, y) ∈ Rr × Rr : y1 6= 0, ‖(ΩC − CΩ)x‖2 + ‖(ΩC − CΩ)y‖2 > 0}
we have

M2 = O2 ∩ {(x, y) ∈ Rr × Rr : G(x, y) = (1, 1, 0, 0, 0, 0, 0)}
where G(x, y) := (‖x‖2, ‖y‖2, x · y, x1, x ·Ωy, x ·Cy, y · (ΩC −CΩ)x). We have to show that the rank
of ∇G is 6 at all points of M2; using y · (ΩC − CΩ)x = −x · (ΩC − CΩ)y one can compute

∇G(x, y) =

Å
2x 0 y ε1 Ωy Cy −(ΩC − CΩ)y
0 2y x 0 −Ωx −Cx (ΩC − CΩ)x

ã
.



14 TITLE WILL BE SET BY THE PUBLISHER

Assume by contradiction that there exists (x, y) ∈M2 such that the rank of ∇G(x, y) is not 6; then,
the first six columns are linearly dependent and, reasoning as above, one can show the existence of
(λ5, λ6) 6= (0, 0) such that

λ5(Ωx,Ωy) + λ6(Cx,Cy) = 0.

Since y1 6= 0 we have Ωy 6= 0, hence λ6 6= 0; in particular

(Cx,Cy) = λ(Ωx,Ωy) for λ := −λ5

λ6
. (3.14)

Since also the columns 1–5 and 7 of ∇G are linearly dependent, there exists µ ∈ R6 \ {0} such that®
µ1x+ µ3y + µ4ε1 + µ5Ωy − µ6(ΩC − CΩ)y = 0

µ2y + µ3x− µ5Ωx+ µ6(ΩC − CΩ)x = 0.

After scalar multiplication by x and y, and taking into account that v · (ΩC − CΩ)v = 0 for any
v ∈ V1, one gets 

µ1 + µ4x1 = 0

µ3 = 0

µ3 + µ4y1 = 0

µ2 = 0,

and, as before, µ1 = µ2 = µ3 = µ4 = 0. We deduce that there exist (µ5, µ6) 6= (0, 0) such that
µ5Ωy − µ6(ΩC − CΩ)y = 0. We scalar multiply this equation by Ωy (which is not null because
y1 6= 0) to get

0 = µ5‖Ωy‖2 − µ6Ωy · (ΩC − CΩ)y

(3.14)
= µ5‖Ωy‖2 − µ6

(
Ωy · λΩΩy − Ωy · CΩy

)
= µ5‖Ωy‖2,

which contradicts the fact that Ωy 6= 0. This concludes Case 1.

Case 2: ΩC = CΩ. Let C be as in Lemma 3.7; we can also assume (3.4). Reasoning as before
(and, in particular, using Lemma 3.8 and the fact that C 6= 0, i.e., that ker C is contained in some
hyperplane of Rr), it will be enough to show that the variety

N :=

ß
(x, y) ∈ Rr × Rr :

‖x‖2 = ‖y‖2 = 1, x1 = 0, x · y = 0, y1 6= 0,
x · (Ωy) = x · (Cy) = 0 and x, y /∈ ker C

™
={(x, y) ∈ Rr × Rr : y1 6= 0, x, y /∈ ker C and F (x, y) = (1, 1, 0, 0, 0, 0)}

(where F is as above) is (2r − 6)-dimensional, i.e., that for any (x, y) ∈ N the columns of ∇F (x, y)
are linearly independent. If this were not the case, reasoning as in Case 1 one would find (x, y) ∈ N
and (λ5, λ6) 6= (0, 0) such that

λ5Ωx+ λ6Cx = 0 and λ5Ωy + λ6Cy = 0.

By the particular forms of the matrices Ω and C one has

0 = (λ5Ωy + λ6Cy) · (0, 1, 0, . . . , 0) = −λ5y1

and, since y1 6= 0, we get λ5 = 0 and λ6 6= 0. This implies that x, y ∈ ker C 6= Rr, a contradiction. �
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4. Step 2, rank 4, dimension 7

The cases discussed in the previous sections cover all Carnot groups of dimension up to 6 and,
among Carnot groups of dimension 7, only those with rank 4 are left out. We discuss them in the
following Theorem 4.2

Lemma 4.1. Let g = V1 ⊕ V2 be a step two stratified Lie algebra with dimV1 = 4 and dimV2 = 3;
assume that there exists a linear subspace P ⊂ V1 such that

dimP = 2, dim[P, V1] = 2 and dim[P, P ] = 1.

Then, there exist λ ∈ R and bases X1, . . . , X4 of V1 and X21, X31, X32 of V2 such that

[X2, X1] = X21, [X3, X1] = X31, [X4, X3] = X43, [X4, X2] = λX31,

[X4, X1] = [X3, X2] = 0.

Proof. We can first fix a basis X1, X2 of P and a vector X3 ∈ V1 \ P such that X21 := [X2, X1] and
X31 := [X3, X1] are linearly independent. By assumption we will have

[X3, X2] = aX21 + bX31

and, up to replacing X3, X2 with (respectively) X3 + aX1, X2 − bX1, we can assume a = b = 0.
Complete X1, X2, X3 to a basis of V1 by choosing some X4 ∈ V1; we will have

[X4, X1] = cX21 + dX31

and we can assume c = d = 0 up to replacing X4 with X4 − cX2 − dX3. At this point, we have

[X4, X2] = eX21 + λX31

and we can assume e = 0 up to replacing X4 with X4 + eX1. The choice of X43 := [X4, X3], which
must necessarily be independent from X21, X31, completes the proof. �

Theorem 4.2. Let G be a Carnot group associated to a step two stratified Lie algebra g = V1 ⊕ V2

with dimV1 = 4 and dimV2 = 3. Then AbnG has codimension at least 3, i.e., dim AbnG ≤ 4.

Proof. By Proposition 1.12, dimPγ ≤ 2 for any abnormal curve γ in G. The union⋃{
Im γ : γ abnormal in G and dimPγ = 1

}
is contained in exp(V1), whose codimension is 3. Similarly, if Pγ has dimension 2 but it is Abelian,
then is contained in exp(V1).

We then have to consider only those abnormal curves γ such that dimPγ = 2, [Pγ , V1] 6= V2

and dim[Pγ , Pγ ] = 1. If there existed one such γ with dim[Pγ , V1] = 1, one could choose a basis
X1, . . . , X4 of V1 with X1, X2 ∈ Pγ such that

[Xi, Xj ] =

®
X21 6= 0 if (i, j) = (2, 1)

∈ RX21 for i = 1, 2 and j = 3, 4,

which would contradict the fact that dimV2 = 3. Therefore all abnormal curves γ we have to
consider satisfy

dimPγ = 2, dim[Pγ , V1] = 2 and dim[Pγ , Pγ ] = 1. (4.3)
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Assuming that one such γ exists (otherwise the proof would be concluded) we can use Lemma 4.1
to find bases X1, . . . , X4 of V1 and X21, X31, X32 of V2 such that

[X2, X1] = X21, [X3, X1] = X31, [X4, X3] = X43, [X4, X2] = λX31,

[X4, X1] = [X3, X2] = 0

for a suitable λ ∈ R. Let γ be an abnormal curve as in (4.3); the end point of γ will be the
exponential exp(U) of a vector

U = X + Z =
4∑
i=1

xiXi + x21X21 + x31X31 + x43X43

with X =
∑4
i=1 xiXi ∈ Pγ . We can safely assume that X 6= 0, for otherwise the endpoint exp(U) of

γ would be contained in a variety of dimension 3. Since dim[X,V1] ≤ 2, we have to require that the
matrix

M(X) :=

Ñ
x2 −x1 0 0
x3 λx4 −x1 −λx2

0 0 x4 −x3

é
,

has rank not greater than 2, where the columns of M(X) represent (in the basis X21, X31, X43) the
vectors [X,Xi] for i = 1, 2, 3, 4. On computing the determinants of the four 3× 3 minors we obtain

xi(x1x3 + λx2x4) = 0 ∀i = 1, . . . , 4

and, since X 6= 0, we deduce that

x1x3 + λx2x4 = 0. (4.4)

We also notice that, since Z ∈ [Pγ , Pγ ] ⊂ Im adX , Z must be a linear combination of the columns
of M(X).

From now on we use exponential coordinates adapted to the basis X1, . . . , X43 of g, i.e., we identify
G and R7 by

R7 3 (x1, x2, x3, x4, x21, x31, x43)

←→ exp(x1X1 + x2X2 + x3X3 + x4X4 + x21X21 + x31X31 + x43X43) ∈ G.

Assume first that either x2 = x3 = 0 or x1 = x4 = 0; then the endpoint exp(U) of γ belongs to
the variety A ∪B, where

A := {(x1, 0, 0, x4, x21, x31, x43) : (x21, x31, x43) = a(−x1, λx4, 0) + b(0,−x1, x4), x1, x4, a, b ∈ R}

and

B = {(0, x2, x3, 0, x21, x31, x43) : (x21, x31, x43) = a(x2, x3, 0) + b(0,−λx2,−x3), x2, x3, a, b ∈ R}.

This easily follows from the fact that Z is a linear combination of the columns of M(X). The variety
A ∪B has dimension 4.

We can now assume that

(x1, x4) 6= (0, 0) and (x2, x3) 6= (0, 0). (4.5)



TITLE WILL BE SET BY THE PUBLISHER 17

Consider Y =
∑4
i=1 yiXi ∈ Pγ linearly independent from X: without loss of generality, we can also

assume3 that if xi 6= 0 then yi 6= 0. We consider three cases to conclude the proof.

(i) Suppose that x2 6= 0 and x4 6= 0. Then Im adX contains the linearly independent vec-
tors (x2, x3, 0) and (0,−x1, x4). Since [Pγ , V1] has dimension two, Im adY is also linearly
generated by (x2, x3, 0) and (0,−x1, x4). In particular, our choice of Y yields

(y2, y3, 0) = a(x2, x3, 0) and (0,−y1, y4) = b(0,−x1, x4),

for a, b ∈ R \ {0}. Since Z is a multiple of

[X,Y ] = (b− a)
(
x1x2X21 + (x1x3 − λx2x4)X31 − x3x4X43

)
= (b− a)

(
x1x2X21 + 2x1x3X31 − x3x4X43

)
by (4.4), the endpoint exp(U) of γ is in the four dimensional variety

{(x1, x2, x3, x4, tx1x2, 2tx1x3,−tx3x4) : x1, x2, x3, x4, t ∈ R, x1x3 + λx2x4 = 0}.

(ii) Suppose that x2 = 0. By (4.5), x3 6= 0 and M(x) has two linear independent columns
(0, x3, 0) and (0, 0, x3), which therefore generate Im adX . By (4.4), x1 = 0. Then the
endpoint exp(U) of γ is in the four dimensional variety

{(0, 0, x3, x4, 0, x31, x43) : x3, x4, x31, x43 ∈ R},

because (x21, x31, x43) ∈ Im adX .
(iii) Suppose that x4 = 0. By (4.5), x1 6= 0 and the vectors (1, 0, 0) and (0, 1, 0) generate the

column space of M(x). By (4.4), x3 = 0. As before, we conclude that the endpoint exp(U)
of γ is in

{(x1, x2, 0, 0, x21, x31, 0) : x1, x2, x21, x31 ∈ R},
that has dimension 4.

The proof is accomplished. �
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[6] R. Montgomery, A tour of subriemannian geometries, their geodesics and applications. Mathematical Surveys

and Monographs, 91. American Mathematical Society, Providence, RI, 2002.
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