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Bowling strategy building in limited over cricket
match: An application of statistics

Akash Adhikari, Rishabh Saraf and Rishikesh Parma

Indian Institute of Technology (ISM), Dhanbad, Jharkhand, India.
rajaadhikari23@gmail.com, rishabh.15je1745@am.ism.ac.in, rishikesh.parma9@gmail.com

Abstract

Cricket has been one of the oldest form of sports played around the globe. Though not as popular
as Foothall it has its” own charm and spectators do get frenzy with every ball to the bat. This bat
and ball game has always attracted Mathematicians and Statisticians for the enormous scope of
research to improve the game. Our idea involves implementation of statistical operations and data
analysis, to deduce a Dominance factor, that will facilitate to select the most efficient bowler in a
limited overs cricket match. The factor will ultimately simplify strategy building for the
corresponding team. The research includes analysis of data of all bowlers in their past matches.
The data used span the years 2007 to 2016. Assessing the statistics of the data, two important
parameters: Runs conceded in between fall of consecutive wickets (RBW) and number of
deliveries bowled in between fall of consecutive wickets (BBW) in a spell of the respective
bowler, are evaluated. We have used these parameters to calculate a factor (Dominance factor)
for the bowlers which are among the top 30 rankings (ICC ODI rankings) as of 2016. The
Dominance factor will sort the bowlers in terms of priority for a particular over span. This factor
will be of great help for respective teams to decide their bowling strategy. The result can be of
immense use to bid for bowlers during cricket league auctions, to make an optimum bowling unit
for the team. In addition to this, people who frequently play bets and are very much enthusiastic
about gambling can make good use of the Dominance Factor to decide the bowler to bet on.
Apart from the Dominance factor, we have done detail study about the variation pattern in
bowling of the bowlers. We compared the characteristics of closely ranked bowlers in part, and
discussed contradictions and supports to these rankings, on the basis of the parameters (BBW and
RBW) and other statistical operations.

1 Introduction

Cricket has always been an amusing game for public in general and statisticians in particular. Given its
popularity, its slow pace, its length of play time, each game of cricket throws up a huge amount of
performance related statistics and provide enormous data set to analyze on.

Cricket has been one of those sports which has been evolving with time. With an intention to increase
excitement and entertainment this game has attracted huge crowds in following years. The formats of the
game include Test cricket which can go as long as five days, One day International (ODI) comprising of
50 overs and T20 which limits to 20 overs. Moreover the introduction of new rules for example batting
and bowling powerplay (a field restriction where only limited number of fielders are allowed outside the
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30 yards circle around the batsman) have made the game an interesting one. Producing statistical and/or
computational models which would enable reliable predictions of match results or scores, and
probabilities relating to these, could be of interest to the cricketing, gambling and legal authorities.

In this paper, we have focused on the bowler’s performance in the matches and attempted to build a
strategy based on their performance. The two parameters BBW and RBW are used to formulate a factor
called Dominance factor. A separate analysis of a bowler’s performance in 1-30 overs and 31-50 overs is
done in order to build a strategy to use a more efficient bowler in that very period where his Dominance
factor is numerically higher among the other bowlers under consideration.

2 Need for Strategy Building

In a limited overs cricket match, a bowler is constrained to bowl maximum of 10 overs (ODI) or 4 overs
(T20).These are the limitations on deliveries for a bowler. In the early hours of the game it is very
important for the fielding team to get early breakthroughs to avoid any long partnerships from the batting
side. Whereas in the death overs bunch of dot balls are quite satisfying. The present statistic mainly used
to decide the bowling approach is the bowling average which is defined as total number of runs conceded
by the bowler divided by the number of wickets obtained. The second is the economy rate which is
defined as the total number of runs conceded by the bowler divided by the number of overs bowled. The
third is the bowler's strike rate which is defined as the total number of balls bowled divided by the number
of wickets obtained. However, these statistics are individually deficient as they do not adequately account
for overs, wickets and runs respectively.

Previous works done for better precision in calculating a bowler's performance, includes calculating a
performance indicator by Attanayake and Hunter (2015), in which the performance of the bowler is
calculated by the formula Performance = (Runs conceded)®(Balls bowled)"(Wickets taken)” where a, P, y
are some constants for each model. The traditional bowling average has o=1, f=0, and y= -1, and the
bowling economy rate have a=1, p= -1, y=0. Another paper to evaluate batting performance by
Damodaran (2006) uses the concept of Stochastic Dominance to calculate a better batting average by
finding the conditional average for the “not out” scores of the batsman. However, very less exploration
has been done in detailing the bowling statistics. When the name cricket strikes the first thing which
anyone asks is who is your favorite batsman? delving into something out of the box, we decided to focus
on bowling statistics.

3 Data and Method

The performance of a bowler in context of one-day cricket relates differently when he bowls in the first 30
overs, Set 1 (1-30) and in the last 20 overs, Set 2 (31-50). We have proposed a new basis to judge a
bowler’s performance, to evaluate it distinctly in this two set of overs. The probability (P) to take wickets
for any bowler is calculated distinctly in these two sets. We have plotted scatter graph for these calculated
probabilities. Cumulative distributive function (cdf) is used to generate the formula for probability (P).
The data for five best rated Slow-arm spinners and Fast-arm seamers (as per ICC ODI rankings 2016) who
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have played ODI cricket at some point of time during 2007-2016 have been used in the analysis. For each
bowler every match played by him during the period have been included in the analysis.

Say, w,= total number of wickets taken by the bowler, w; = ith wicket ( 1 <i <w,), b = number of balls
delivered between wickets w; and W, ri = number of runs conceded between wickets w; and w... The
procedure that is adopted in the paper is to first compute the value of BBW(b)) by calculating the number
of balls delivered between two consecutive wickets and RBW(r) by calculating the runs conceded
between two consecutive wickets, these computation is continued till the last wicket of the bowler during
the considered span (‘Run-Out’ is not considered). Also, b, = k {1 <k <max (b)}, and r,=n {0 <n < max
(r)}. The next computation includes to calculate the probability to take wicket given the number of balls,
which is defined as P(b,) and the probability to take wicket given the number of runs, which is defined as
P(r.). The following formulas have been defined for calculating these probabilities

P(ry) = F(r)=w,+ P(r,.,). 1)

P(by = F(by)=w,+ P(b.)). 2
where P(b,) = 0, Frequency of b, [F(b,)] = number of occurrences of b,among all the values b;, Frequency
of r, [F(r.)] = number of occurrences of r,among all the values r; ( 1 <i<w).

These probability values are calculated independently, considering the effect of only one parameter at a
time. The data that has been used corresponds to ODI cricket statistics, since the maximum number of
permitted balls for a bowler in ODI cricket is 60, so the value of P(b,) is calculated for the domain [0,60],
Assuming that the maximum runs a bowler may concede in a match is 80, the value of P(r,) is calculated
for the domain [0,80]. The value of P(b,) is calculated with respect to the variation in b, neglecting the
effect of r, and vice-versa. To study these observations further, we plotted these values, to understand the
dominance of a bowler provided any one parameter (b, or r,) is considered irrespective of the effect of the
other parameter. Considering two different types of bowlers — Slow-arm spinners and Fast-arm seamers,
we have divided our study in these two categories. The above formula is implemented to calculate the
probabilities of the bowlers in these two categories. As mentioned before, the overs under consideration
are the two sets Set 1 (1-30) and Set 2 (31-50).

3.1 Slow-arm spinners

The bowlers which have been included in the study are as follows :

Bowlers Indicators
Imran Tahir
SP Narine
Shakib Al Hasan
R Ashwin
RA Jadeja

BO0OEE
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Figure 1. and 2. Dominance curve for different bowlers for SET 1 and SET 2 with P(b,) as ordinate and
by as abscissa.

Table 1.a Values of P(by)
b, SET 1 (1-30 overs) SET 2 (31-50 overs)
| Imran Tahir  SP Narine SHasan R Ashwin RAJadeja | Imran Tahir  SP Narine SHasan R Ashwin  RA Jadeja
0 0 0 0 0 0 0 0 0 0 0
10 0.1694 0.2244 | 0.2043 | 0.1194 0.2000 0.4130 0.3265 | 0.2500 | 0.2666 0.3164
20 0.4745 0.4081 | 0.3978 | 0.2537 0.2923 0.6304 0.4693 | 0.4642 | 0.4800 0.4810
30 0.6779 0.5102 = 0.4838 0.3582 0.4153 0.6956 0.6734 | 0.5476 | 0.6400 0.6329
40 0.7796 0.6122 | 0.6344 @ 0.5074 0.5076 0.8043 0.7551 | 0.6190 | 0.8266 0.7468
50 0.8135 0.6938 0.6774 0.6119 0.6307 0.8913 0.7755 | 0.7619 | 0.8800 0.7848
60 0.8474 0.7551 | 0.7419 @ 0.6865 0.6769 0.9347 0.8367 | 0.8452 | 0.9600 0.8860
Table 1.b Values of P(r,)
r, SET 1 (1-30 overs) ‘ SET 2 (31-50 overs)
Imran  SP Narine S Hasan | R Ashwin | RA Jadeja Imran Tahir SP Narine| S Hasan | R Ashwin RA Jadeja
0 0.0338 0.0816 &= 0.1075 0.0298 @ 0.0153 0.1956 0.1020 | 0.0595 | 0.0533 @ 0.1012
10 0.3559 0.4081 | 0.3440 | 0.2089 | 0.2307 0.4565 0.4285 | 0.3214 | 0.3600 | 0.4050
20 0.6610 0.5918 = 0.5591 @ 0.4179  0.4153 0.6521 0.6938 | 0.5000 | 0.5733 | 0.5949
30 0.7796 0.6734 | 0.6666 | 0.5522 @ 0.5384 0.7826 0.7346 | 0.5714 | 0.6666 | 0.7088
40 0.8474 0.7551 | 0.7634 | 0.5970 @ 0.6307 0.8913 0.7959 | 0.7261 | 0.8000 | 0.7594
50 0.8644 0.8571 = 0.8064 @ 0.7611 @ 0.6923 0.9347 0.8979 | 0.8333 | 0.9066 | 0.8354
60 0.9152 0.8775 | 0.8709 | 0.8208 @ 0.7534 0.9347 0.9387 | 0.8809 | 0.9600 & 0.8987
70 0.9152 0.9387 | 0.9247 | 0.8656 | 0.7846 0.9565 0.9795 | 0.9047 0.9733  0.9493
80 0.9322 0.9591 | 0.9354 | 0.8805 & 0.8307 0.9565 0.9795 | 0.9642 0.9999 @ 0.9873
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Figure 3. and 4. Dominance curve for different bowlers for SET 1 and SET 2 with P(r,) as ordinate and r,
as abscissa.

3.2 Fast-arm seamers

The bowlers which have been included in the study are as follows :

Bowlers

MA Starc
TA Boult
DW Steyn
M Morkel
TG Southee

Indicators

L]
|
L
L]

Table 2.a Values of P(r,)

SET 1 (1-30 overs)

SET 2 (31-50 overs)

10
20
30
40
50
60
70
80

MA Starc | TA Boult

0.2156
0.4117
0.5882
0.7058
0.8431
0.8823
0.9411
0.9607
0.9607

0.1794
0.4102
0.5384
0.6666
0.8461
0.9230
0.9230
0.9487
0.9487

D Steyn
0.0405
0.2837
0.5540
0.5945
0.6351
0.7702
0.8513
0.8918
0.9189

Morkel
0.0632
0.3544
0.5189
0.6708
0.7341
0.8101
0.8987
0.8987
0.9113

TG Southee | MA Starc

0.0933
0.3733
0.6400
0.6933
0.7866
0.8400
0.8533
0.8800
0.8933

0.1600
0.5800
0.8400
0.9000
0.9000
0.9400
0.9800
0.9999
0.9999

TA Boult
0.142857
0.5238
0.7619
0.8571
0.9048
0.9048
0.9524
0.9999
0.9999

D Steyn
0.125
0.4167
0.6458
0.7604
0.9063
0.9479
0.9479
0.9688
0.9688

Morkel
0.1000
0.4500
0.6800
0.8300
0.9000
0.9600
0.9800
0.9900
0.9990

TG Southee
0.05556
0.3889
0.537
0.7222
0.8148
0.9259
0.9444
0.9444
0.9441
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be | SET 1 (1-30 overs) SET 2 (31-50 overs) \
MA Starc TA Boult| D Steyn = Morkel | TG Southee 'MA Starc TA Boult| D Steyn  Morkel | TG Southee

0 0 0 0 0 0 0 0 0 0 0

10 0.2941 0.2820 0.1891 0.1645 0.2533 0.4200 0.4671 | 0.3958 @ 0.3800 0.3148

20 0.4705 = 0.4871 0.3918 @ 0.3797 0.4666 0.7200 = 0.7619 | 0.6458 @ 0.6900 0.537

30 0.6078 = 0.6153 0.5270 = 0.4936 0.6133 0.9000 = 0.8095 | 0.7500 = 0.8300 0.7407

40 0.6862 = 0.7435 0.5810 @ 0.5569 0.6800 0.9200 0.8571 | 0.8958 @ 0.9200 0.8333

50 0.7450 = 0.8205 0.6621 = 0.7088 0.7733 0.9999 = 0.9047 | 0.9375 @ 0.9400 0.9444

60 0.7843 = 0.8717 0.6891 @ 0.7721 0.8133 0.9999 = 0.9999 | 0.9479  0.9800 0.9444
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Figure 5. and 6. Dominance curve for different bowlers for SET 1 and SET 2 with P(b,) as ordinate and
by as abscissa.
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Figure 3. and 4. Dominance curve for different bowlers for SET 1 and SET 2 with P(r,) as ordinate and r,
as abscissa.

4 Discussions

We infer from these computations that the probability for a bowler to take a wicket given the number of
balls he can deliver P(b,), or the runs he can concede P(r,) does not entirely support each other. In fact, we
have two independent parameters (b, or r,) to decide which is more required in accordance with the
situation of a match. For instance, Team A is defending a target of 150 runs in a one-day cricket match,
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and the opponent Team B needs just 20 runs in the last 5 overs with 6 wickets remaining, in such case, a
bowler with higher probability (P) to take wicket with respect to b, will be preferred against r, i.e. P(b)
will be preferred over of P(r,). Similarly, there may be other instances where P(r,) will be more optimum
to select the bowler. However there may be instances where an exclusive preference for either of the
parameters does not exists, and there is a need to consider the effect of both of the parameters. Due to this
limitation, that the probability to take a wicket will depend partially on both the parameters, we defined
Striking Score of a bowler which includes the effect of both the parameters b, and r, in line with the
probability of taking wickets. Striking Score is defined in such a manner so that it includes the effect of
by, r. and the probability to take a wicket (P) after delivering b, number of balls. Given by, P is equal to
P(b.), and r, is equal to that value for which P(b,) = P(r,). Thus striking score (Y) as a function of by is,

Y=P+b+r,. ©)]
Where, P = P(b,) = P(r,). The weighted average of striking score (Y) with respect to b, was calculated.
This average is defined as the Dominance Factor.

D.F. = {Y(Y*by) } + {Thi}. 4

Table 3.a Striking score and Dominance factor of Slow-arm spinners for Set 1 (1-30)

| SET1 | STRIKING SCORE (Y) |
b, IMRAN TAHIR SP NARINE | SHASAN | RASHWIN | RJADEJA
10 2.6694 2.7244 2.7043 2.1194 1.3111
20 1.8079 2.6303 1.8264 1.7921 1.9589
30 1.9823 2.5102 2.2485 2.1229 1.9153
40 2.1589 2.5170 2.1158 1.8867 2.0461
50 2.3287 2.2563 2.2903 1.8314 1.9128
60 2.4264 2.4217 2.3208 1.8314 1.9535
D.F. 2.2414 2.4474 2.2353 1.9391 1.9259

Table 3.b Striking score and Dominance factor of Slow-arm spinners for Set 2 (31-50)

SET 2 STRIKING SCORE (Y)

by IMRAN TAHIR | SP NARINE S HASAN R ASHWIN | RJADEJA
10 2.0797 1.5765 1.9166 1.9333 1.5664
20 1.6304 2.1360 1.6407 1.8133 1.8143
30 2.0000 2.4381 1.7476 1.7511 1.8329
40 1.8854 1.9315 1.8311 1.7357 1.7224
50 2.1413 2.2460 1.9814 1.9216 1.9476
60 2.1592 2.3001 1.9773 1.9944 1.9575
D.F. 2.0259 2.1867 1.8826 1.8729 1.8603
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Table 4.a Striking score and Dominance factor of Fast-arm seamers for Set 1 (1-30)

| SET1 | STRIKING SCORE (Y)
by MA STARC | TA BOULT DW STEYN M MORKEL | TG SOUTHEE
10 5.2941 2.7820 2.1891 2.1645 2.2133
20 2.1372 2.0256 1.8204 1.9182 2.2315
30 2.0364 1.9790 2.1936 2.1603 2.1789
40 2.0655 1.8547 2.2477 2.3751 2.2666
50 2.2602 2.1025 1.8526 2.0977 2.1488
60 2.4985 2.0962 2.0528 2.0487 2.2634
D.F. 2.3920 2.0609 2.0467 2.1316 2.2192

Table 4.b Striking score and Dominance factor of Fast-arm seamers for Set 2 (31-50)

| SET2 | STRIKING SCORE (Y) |
by MA STARC | TA BOULT DW STEYN M MORKEL | TG SOUTHEE
10 2.0866 1.4761 1.5069 1.8085 2.8148
20 1.9700 1.8730 1.6984 1.6423 1.5711
30 1.9000 2.2380 1.8214 1.8300 1.7222
40 1.8723 2.2364 1.9484 1.7895 1.8674
50 1.8064 2.1868 1.9579 1.9604 1.9675
60 1.9677 1.6185 2.1479 2.1120 2.0158
D.F. 1.9073 1.9775 1.9447 1.9150 1.9298

Higher the Dominance factor higher will be the chance to take wicket for a bowler, given the number
of balls (here, by ). From these observations it is found that SP Narine has highest Dominance factor
among the considered Slow-arm spinners followed by Imran Tahir though, Imran Tahir is rated better than
SP Narine in ICC ODI bowler rankings as per 2016. Similarly, MA Starc has the highest Dominance
factor among the Fast-arm seamers. Coming to the concept of building of strategy in a particular match, a
noticeable variation is seen in the Dominance factor of the bowlers in the two set of overs. For instance,
TG Southee has a Dominance factor of 2.2192 in Set 1 in contrary to, 1.9298 in Set 2. Therefore his
performance will be comparatively better in overs of Set 1, where he can get early breakthroughs, than in
Set 2. Moreover it is observed that almost every high rated Fast-arm seamers have better Dominance
factor in Set 1 (all values are > 2).

5 Conclusion and Future work

The method that has been developed only provides an alternative approach to represent the bowling
performance of cricket players. This alternative approach is visually and intuitively appealing. The attempt
in this paper is not to arrive at a model to rank the utility of players. Factors like tactical skills, passive
support to the partner bowler, etc. cannot be gauged by looking at the Striking score or the Dominance
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factor. One of the limitations of this paper is that the difference interval in the values of by and r, are
assumed as 10. Lesser the value of this interval, more accurate results will be obtained. Furthermore,
increasing the number of simulations to compute b; and r; will enhance the accuracy as well as the
precision of the various end results like, Probability to take wicket, Striking score and consequently the
Dominance factor.

In a cricket match, the projected score of a team is one of the most discussed topics. While complex
techniques based on dynamic programming such as the Winning and Score Predictor (WASP) Technique
have been used, in its simplest form, the projected score is the product of current run-rate and total number
of overs. If R is the current run-rate, projected score P is given as, P = R x 50. We found that the team
scores more than the projected score. The rate of change of run rate is directly proportional to number of
overs bowled. Hence we categorized bowling strategies in two parts, strategy for first 30 overs and
strategy for final 20 overs. In first 30 overs Batsmen are comparatively defensive while in the later stage
they turn aggressive. Hence perfect bowling strategies is required for these two parts.

Table 5. Rate of change of Run Rate

No. Of over remaining 2>

30-25 25-20 20-15 | 15-10 | 10-5 5-0

0.062 0.078 0.089 | 0.103 | 0.120 | 0.140
0.058 0.075 0.083 | 0.097 | 0.120 | 0.140
0.043 0.062 0.072 | 0.084 | 0.110 | 0.129
0.030 0.053 0.065 | 0.078 | 0.099 | 0.118
0.021 0.042 0.051 | 0.066 | 0.086 | 0.107
-0.024 | 0.007 0.033 | 0.053 | 0.074 | 0.093
-0.037 | -0.026 | 0.012 | 0.037 | 0.049 | 0.076
-0.044 | -0.034 | -0.023 | 0.010 | 0.034 | 0.055
-0.051 | -0.046 | -0.035 | -0.021 | -0.006 | 0.032
-0.064 | -0.585 | -0.047 | -0.036 | -0.024 | -0.02

& UB|[BY SIHIM JO "ON
O|oo(N|OoO| g | W[N| | O

Within the limits of this study, the paper seeks to highlight the tremendous scope that exists to improve
and develop on the measures currently used to describe the performances of cricket players in general, and
bowlers in particular. Dominance factor for a particular bowler is prone to change depending on his
performance in career. The measures used today do not adequately capture the richness of the underlying
data. Similar approach can be adopted to predict the performance of bowlers in T20 (20 over limit)
matches also.

References
[1] D. Attanayake and G. Hunter Probabilistic Modelling of Twenty-Twenty (T20) Cricket : An

Investigation into various Metrics of Player Performance and their Effects on the Resulting Match and
Player Scores, Proceedings of 4™ International Conference on Mathematics in Sport 2015.



MathSport International 2017 Conference Proceedings

Bowling strategy building in limited over cricket match Adhikari, Saraf and Parma

[2] U. Damodaran. Stochastic dominance and analysis of ODI batting performance : The Indian cricket
team 1989-2005. Journal of Sports Science & Medicine, 5:503-508, 2006.

10



MathSport International 2017 Conference Proceedings

Manager's capacity and limit on foreign players:
what influences variation of players in the field?

K.Andreeva*

*Russia, 119049, Moscow, 26 Shabolovka St.,ka.andreeva@hse.ru

Abstract

Limit on foreign players is a common instrument to promote national players in different
sports, including football. It is usually imposed in several forms, such as limit of players in an
application for a season (Portugal, Turkey, Austria), limit of players on the field (Ukraine,
South Korea), stronger requirements for foreigners (England), restrictions on import from a
particular country (Spain, Finland), restrictions on transfer turnover (ltaly), limit of young
players (Netherlands, Norway, Denmark), etc. Sometimes even economic barriers may refer to
regulative policy (the lower wage level is, the less attractive a league becomes for foreign
mature players). The core issue about the limit are uncertain consequences of its
implementation. The purpose of this research is to evaluate the effect of the limit on the
intermediate indicators, such as number of combinations available to team’s manager when
making decisions on particular players on the field. Practical results of this research may be
used in making decision process on regulation mechanisms of the labor market in developing
countries.

1 Limit as a regulation mechanism on the football market

In contrast to traditional microeconomic concepts of quotas reducing surplus on traditional markets,
football is interesting for economists because of government as a specific market player with its own
interest to increase the number of national talents. The main instrument for this type of regulation is
limit on foreign players. However, it is usually a political discussion on the issue of limit, not the
economic one. As a result, more and more ineffective measures are being implemented within the
government policy in the recent years in countries like Russia with high level of social expectation of
results of the national team.

Generally, there are several specific features of the labor market in football that may cause uncertainty
of regulation. First of all, it is differentiated: there are a couple of positions on the field with particular
requirements to players, it may even have sense to analyze markets of these types of players as separate
sub-markets. Secondly, marginal product of players also depends on the field position: forwards are
associated with scored goals, middle players — with goal attacks, goalkeepers — with «saves» (when the
opponent’s goal attack doesn’t lead to the scored goal).

From theoretical point of view it makes an analysis more complicated. However, for simplicity these
specifics are usually not considered and all players are treated as a uniform «product». For example,
when using formal demand and supply models, football labor market is treated as an oligopoly market,
because there are just a few clubs that buy players’ skills, although this number may vary from 9 in
Lithuania to 20 in the Spanish League. While using another approach, for example, maximization of the
objective function, then players’ salaries become clubs’ costs that diminish the function.
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The economic theory deals with the issues of discrimination and quotas on the labor market. Limit on
foreign players is a common instrument to promote national players in different sports, including
football. It is usually imposed in several forms: limit of players in an application for a season (Portugal,
Turkey, Austria); limit of players on the field (Ukraine, South Korea); stronger requirements for
foreigners, for example to the number of games for the national team (in England it is an obligatory to
play not less than 75% of such games); restrictions on import from a particular country (in Spain there
is a discrimination towards South African and Asian players, in Finland — towards Chinese and Japanese
players); restrictions on transfer turnover (Italy), which means that clubs cannot buy more than a
particular number of players at the same time (Italian clubs cannot buy more than two foreigners at the
same transfer period); discrimination towards young foreigners: on their import (Netherlands), on their
representativeness in the core team (according to the UEFA rules in European club tournaments from
the season 2008/2009 there should be more than 8 players who had already played at least four seasons
in the same league in the youth team).

Sometimes even economic barriers may refer to regulative policy (the lower wage level is, the less
attractive a league becomes for foreign mature players). This example reflects the basic model of an
open economy with labor as one of the major factor. There are also several approaches to the term
«foreign players». Sometimes it reflects the fact that a player doesn’t have a passport from a particular
country or from a group of countries (like in Spain, France or Austria), sometimes it refers to the player’s
incapability to play for a certain national team. According to Russian legislation, a foreigner in football
is a player, who doesn’t have Russian passport and doesn’t have Russian nationality. It is important to
emphasize that it is a regulative measure and may vary due to the national goals. For example, in Russia
in 2005 in order to improve the quality of the national league foreigners who played in their national
team were not treated as foreign players.

We can evaluate the consequences of the limit by several ways. First of all, we may look at the
effectiveness of the national team in international tournaments taking into account that limit is aimed at
promoting national players. Secondly, we may look at mean index of time that national players spend
on the field in national leagues (the hypothesis of increasing opportunities of game practice due to the
limit on foreigners). Thirdly, it is possible to analyze sources of new players preferred by clubs (the
hypothesis of a growing interest in young prospective players). Finally, we may simply assess the
dynamic of number of foreigners in clubs before and after the limit’s implementation or observe
improving game indicators or players’ characteristics of new foreigners.

Russian case shows that all these indicators have decreased since the limit was implemented in 2005.
During the whole period the Russian national team has usually reached only group stages of international
tournaments (European Championships 1992, 1996, 2004, 2012, 2016; World Championships 1994,
2002, 2014; bronze medals of European Championship 2008 was rather an exception). From the season
2002 Russian national team players have played from 21 to 24 matches in a season, the median number
of games has not changed either - it varies from 22 to 25 (half of the national team players have played
most of the games in seasons, regardless to the limit on the foreign players, and spent on the field from
75 to 80 minutes). [1]

Since 2002, the leading Russian clubs have not increased their investments in their children's and
youth schools, foreign transfers continue to be the main source of talents in clubs. The transfer activity
of clubs has decreased, teams have become more stable. It disproves the argument of limit’s supporters
that limit leads to the development of children's and youth football in the country. If it was true, then
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clubs would buy less players from the market and pay more attention to transferring players from the
youth team to the main ones (since it is binding investment for clubs).

Russian clubs even did not become more selective when buying foreign players. The level of game
characteristics sufficient to buy a legionnaire of the attacking and middle lines has remained the same:
on average Russian clubs are interested in forwards with the indicators for the previous season of 20-25
matches and the performance of 6-11 goals. The share of foreigners in the Russian Premier League has
also varied only within 15%: from 50% in 2005 to 38% in 2017.

From methodological point of view all these indicators have one disadvantage as they do not allow
to predict consequences of the decision on the level of limit. They give us a retrospective view, but many
football regulators are more interested in prospective view when making decisions. The approach in this
article refers to calculation of possibilities of managers when choosing players on the field which helps
overcome the outlined disadvantage.

2 Combinatorial analysis in assessment of manager’s capacity

Combinatorics helps us to calculate the number of options depending on the importance of order of the
elements in these options. Professional football team managers have a number of players available
during the season and should decide on the combination of players in the particular game. They have to
follow a number of rules, for example that they should choose a number of players for the application
for a particular game and then choose a number of players on the field who start the game - not less than
7 people and not more than 11 people. [2]

The number of combinations depends on several factors, including meaning of number of players
permitted for a game, meaning of number of players permitted for a season and additional constraints
on players like limit on foreign players. All these factors influence the basic formula of combinations
without repetition and the rule of addition and multiplication [3]:

Ck=nl/(n—Kk)k!. ()

How this methodology may be applied in assessing manager’s capacity? Let’s assume that a manger
has several players in a club for a season (designated as a) divided into four types: goalkeepers (ai),
defenders (a2), midfielders (as) and forwards (a4). A manager is able to include in the game list b players,
including not less than b; goalkeepers, b, defenders, bs midfielders and bs forwards. It means that a
number of possibilities to choose players for a game is equal to:

P1 = Cat * C23 * Ca3 * Coit * Co-pi g paba- @)

Then a manager should decide on the game circuit (the number of defenders (c;), midfielders (cs) and
forwards on the field (c4). The number of goalkeepers ci is always 1. If we assume that all players within
one type are unified (there are no right and left forwards, for example), then the number of possibilities
to choose lineup is equal to:

p2 = Cp1 * Cg3 * Cg3 * Cpy. €)
Omitting substitutions, we get p combinations for managers:
P =DP1 * P2 (4)

Generally there are several possible meanings of a, b and c. According to the statistics on the website
http://www.transfermarkt.com/, the most popular game circuits are 1-6-3 (c, = 1; ¢3 = 6; ¢4 = 3), 2—
35(c;=2;¢3=3;¢,=05),334(c; =3;¢c3=3;¢c,=4),343(c; =3;c3 =4; ¢, =3), 3-5-
2(c;=3;¢c3=5;¢c4,=2),36-1(c;=3;¢c3=6;c4,=1),4-2-4 (c;, =4,¢c3=2;¢c, =4), 4-3-3
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(C2 = 4, C3 = 3, Cy = 3), 4-4-2 (Cz = 4‘, C3 = 4; Cy = 2), 4-5-1 (CZ = 4, C3 = 5, Cy = 1), 4-6-0
(c;=4;¢c3=6;¢c,=0),532(c; =5;¢c3=3;¢c4, =2),54-1(c; =5; c3 =4;c4 =1).
Key inequations for a, b and c are listed below:

a=aq+a,+az+ay. (5)

c<b<a. (6)

b= by + by + bz + by. @)

c=c;+cy+c3+cy,=11. (8)
h<b,<a,l<n<4. 9)

For example, if a club has 3 goalkeepers, 7 defenders, 8 midfielders and 7 forwards, and has a right to
apply 16 players for a particular game, then decisions on lineup and game circuit that are made by a
team’s manager lead to the following variation of possible combinations:

Table 1. Combinations for a club with 25 players

ajal|a2|a3| a4 | b |bl|b2|b3|b4| c|cl|c2|c3|c4| pl | p2 p

25/ 3|7 |8|7 |16 2|3 |7 |4 |11 1| 1| 6| 3 |29400| 168 | 4,94*10°
25/ 3| 7|8|7 |16 2|3 |4 |7 |11]1]2]| 3|5 |7350 | 504]| 3,70*10°
25137 |8|7 |16 2|4 |46 |11] 1| 3| 3| 4 |51450] 480| 2,47*10’
25/ 3| 7|87 |16 2|4 |5|5 |11 1] 3] 4| 3 123480 400| 4,94*107
2513|787 |16/ 2|5|6|3|11]1]3]|5]|2 |61740] 360| 2,22*107
25137 /8|7 |16|2 |7 6|1 |11]1|3|6]|1]|588]|70 | 4212*10%

Now let’s add additional restrictions on foreign players I. Let’s look over two possibilities: limit on
the application for a season and limit on the number of players on the field.

First option doesn’t cause any changes: managers just have one more restriction a} + a4 + ay+a} <
l < a, where a! (i = 1...4) refers to the number of foreign goalkeepers, defenders, midfielders and
forwards. However, we do not have any changes in a formula:

p=py*ps = (CLh+ CI3w CL3 » CLEw CRDITRDIbE) « (CE+ CZ+ CER+ CED). (10)

In the second case (I refers to a number of foreigners on the field) the situation is more complicated
and may be presented in the game tree view where ckl-l (1<k<c,1<i<4)meansthatthere are k
foreigners of the it position on the field (1% — goalkeepers, 2" — defenders, 3™ — midfielders, 4" —
forwards):
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Figure 1a. Tree of combinations of foreigners on the field, without forwards
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Figure 1c. Total number of foreigners on the field

The key change caused by the limit refers to one more decision that a manager should make, a decision
on the number of foreigners on the field. Manager has several variations to put foreigners on the field
depending on the game circuit (formula of combinations with repetitions, where k refers to an allowed
number of foreigners on the field, n means possible positions for foreigners on the field; basically n =
4 (goalkeepers, defenders, midfielders, forwards)):
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po=CEk=m+k—11/(n—1k!. (11)

Table 2. Combinations of foreigners on the field

[ | Formula for p, Result for p, [ | Formula for p, Result for p,
1 cl 1+4=5 6| C3+CE 1+5+15+37+83+177+49=367
2| cl+c2 1+5+9=15 7| ¢+l 1+5+15+37+83+177+367+64=749
3| cZ+C3 1+5+15+16=37 |8 | CI+C8 |1+5+15+37+83+177+367+749+81=15
15
4| C3+Ch 1+5+15+37+25=83 | 9| CB+CJ |1+45+15+37+83+177+367+749+1515+
100=3049
5|  CE4CS  |145+15+37+83+36=177(10| 9+ CI0 | 1+5+15+37+83+177+367+749+1515+
3049+121=6119

There is a sum in a formula because there cannot be two goalkeepers on the field, so combinations
should be divided into two parts — when a goalkeeper is a foreigner and when he is not a foreigner. For
example, when [ = 2, a manager may put a foreign goalkeeper and then put a second foreigner on one
of the three left positions (defender, midfielder or forward), Cs, or he may put two foreigners on one of
these three positions, CZ. Moreover, the limit doesn’t make an obligation for managers to choose the
maximum number of foreigners — he may simply choose less number of foreigners and does not
overcome the limit.

It is quite obvious that the stricter the limit is, the less opportunities for coaches are — because without
the limit a  coach has more  «net»  opportunities Ci°=66 and total
1+5+15+37+83+177+367+749+1515+3049+6119+66=12183, which means ten times more
combinations than in case of limit of 8 foreigners, for example.

After a manager chooses a number of cil (a number of foreigners in each line), he makes a decision on
alineup. Let’s distinguish foreigners and national players with index | (for example, there are a} foreign
goalkeepers and manager chooses b} of them to be in a lineup). It should be considered that limit
influences not only p,, but also p; because managers may change their tactics depending on the
possibilities of substitutions and application itself). For example, at [ = 1 the result for p, and p; will
be

P2 = Cfii * C5 * C53 * Chq + Coi * Ci5t = C5F » Cf3 * Chg + Coi + C5 » CE5 » Cf » Chg + Cop +

C55 * C53 = Cial * Chy. 12)
1= Cgit * Cai * Cais * Ca3 * Cap5 * Cg3 * Caly * Cad * CQ-p1=p3—p3—ba- (13)
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Figure 2b. Total number of foreigners on the field at the limit [ = 1

Remark 1. CKl « ck2 < clitkz

Cr’f11 Ckz =nqy!Iny!l/(ng — k) ky!(ng — k)l ky L (14)
CXIENE = (ng + n)!/ (g + np — kg — kp)! (ky + ko). (15)

Let’s implement a recursion approach to prove inequation in the Remark 1:

o ifn, +n,=3; k; =k, =1then CX} « c,’fzz < Cklljf',f%

o letCck «ckZ2 < cktkZ Thenfor ny +1;n, + 1; ky + 1 and k, + 1 we have
Cr’fllﬂ C3H =niiny! (ng + D(ng + 1)/ (g — k) kg (ky + D(ny — k)l (kp + 1) =

Cht * CX% * (ny + Dy + 1)/ (ky + Dk + 1) < Cifing * (ng + D(ng + 1)/ (kg + D(kp +1) =
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my+n)l(ny+ny, + (g +ny +2)/ (g +ny —ky — ko) (ky + k) (ky + D) (ky + 1)

Sy+n)lmy+n,+ Dy +ny, +2)/(ng +ny —ky — k) (kg + k) (kg +ky + D) (ky +ky +2) =

Ck1+k2+2
nil+n2+2-

K1+1 , ~k2+1 K1+k2+2
Thus Cpii7 * Cpzi1 < Criin2is-

Because a manager should make an extra decision on the number of foreigners on the field, the number
of combinations, according to the Remark 1, decreases (as a} < a;, b} < b;, ¢} < ¢;) as well. It means
that implementation of the limit on foreign players worse manager’s capacity of players’ choice.

3 Russian case: national and club manager’s capacity with and
without the limit on foreign players

What does this approach allow? It helps analyze three types of decision: decision on the level of limit,
decision on the number of foreigners in a club and decision on the game circuit. Let’s look over two
seasons — 2003 (before limit’s implementation) and 2007 (after limit’s implementation), both years were
one year before European Championships, and assume that national team managers are interested only
in players who play in the highest division in one of the sixteen teams.

Table 3. Russian players in the Premier League in 2003 and 2007

Number of Russian | Number of Russian | Number of Russian| Number of Russian | Total
goalkeepers defenders midfielders forwards

2003 43 93 130 66 332

2007 41 93 182 80 396

Russian national team played 8 official games within UEFA Euro qualifying stages in both years.
National team managers attracted for these games 33 national players in 2003 (2 goalkeepers, 11
defenders, 15 midfielders and 5 forwards) and 26 players in 2007 (3 goalkeepers, 6 defenders, 12
midfielders, 5 forwards). All the information is taken from the official site of the Russian national team:
http://www.russiateam.com/.

The first decision that national team managers had made was a decision on players that would be
included in the list of 33 and 26 players. The total number of combinations is too big to be presented as
a total number of players with Russian passport is very high. Thus we may assess only the influence of
chosen game circuits and lineups in both cases. In 2003 lineup was all time different from the previous
games, the coincidence of all players in the start team was 0% (it means that managers have tried to
differentiate a number of players in each particular game). Managers used 5 different game circuits in
the official games in 2003, 3 of them were used just once, so a share of unique game circuits was 60%.
In 2007 the situation with lineups was the same (0% of coincidence), while a share of unique game
circuits decreased to 25%. As a result, p, which reflected available combinations of players on the filed,
also decreased three times:

Table 4. Game circuits of the Russian national team in 2003 and 2007

1 2 3 4 5 6 7 8
2003 [4-5-1 |37 361[451|352[442/442[451

(16)
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12007 [352[352 [442[343[442]442][442][433]

Table 5. Possible combinations of Russian national team players in 2003 and 2007

year| a |al (a2 |a3|a4| b |bl|b2|b3|bd|c|cl|c2|c3|cs p2

2003|332| 43|93 (130| 66| 33 | 2 |11 (15| 5 |11] 1 |4| 5 | 1 |9,91*1(¢
332|43|93|130|66| 33 | 2 |11|15| 5 |11] 1 |3| 7 | O |2,12*1(¢
332|43|93|130|66| 33 | 2 |{11|15| 5 |11] 1 |3| 6 | 1 |8,26*10°
332|43|93|130|66| 33 | 2 |{11|15| 5 |11] 1 |4| 5 | 1 |9,91*1(°
332|43|93|130|66| 33 | 2 |{11|15| 5 |11] 1 |3| 5 | 2 |9,91*1(°
332|43|93|130|66| 33 | 2 |11|15| 5 |11] 1 (4| 4 | 2 |9,01*10°
332|43|93|130|66| 33 | 2 |11|15| 5 |11] 1 (4| 4 | 2 |9,01*10°
332\ 43|93 |130|66| 33 | 2 |{11|15| 5 |11] 1 |4| 5 | 1 |9,91*10°

total 68,04*106

396|41[93/182|80| 26 | 3 | 6 (12| 5 |11| 1 |3| 5 | 2 |4,75%10°
396|41[93/182{80| 26 | 3 | 6 12| 5 |11| 1 |3| 5 | 2 |4,75%10°
396|41[93/182|80| 26 | 3 | 6 (12| 5 11| 1 |4| 4 | 2 |2,23*10°
396|41[93/182|80| 26 | 3 | 6 (12| 5 |11| 1 |3| 4 | 3 |2,97*10°
396|41|93(182(80| 26 | 3 | 6 |12| 5 (11| 1 |4]| 4 | 2 |2,23*10°
396|41|93(182(80| 26 | 3 | 6 (12| 5 (11| 1 |4]| 4 | 2 |2,23*10°
396|41[93/182{80| 26 | 3 | 6 (12| 5 11| 1 |4| 4 | 2 |2,23*10°
396|41|93(182(80| 26 | 3 | 6 5 (11| 1 (4| 3 | 3 |0,99*10°
12
total 22,37*10°

Now let’s use the combinatorial approach to analyze manager’s opportunities at club level. The main
hypothesis that has been predicted in the theoretical part, is that limit on foreign players worse manager’s
capacity in preparation for games. One of the Russian clubs, FC Lokomotiv Moscow, played in both
seasons, 2003 and 2007, 30 games in the Premier League and had 25 Russian players and 16 foreign
players in the season 2003 and 28 Russian players and 17 foreign players in 2007. Three types of
decision were made: on the application for a game, on the game circuit and on the particular lineup at
the start. In 2003 application and lineup were mostly all times unique (96,6 % of uniqueness), in 2007
— 93 and 87% respectively. At the same time game circuits were more diversified in 2007 (44% share
of uniqueness) than in 2003 (33% share of uniqueness).

Table 6. Number of foreigners and Russian players of different positions, FC Lokomotiv Moscow,

2003 and 2007
Number of Number of Number of Number of Total
goalkeepers defenders midfielders forwards
Russian |Foreign| Russian |Foreign | Russian | Foreign | Russian | Foreign |Russian |Foreign
2003 5 0 8 2 8 5 4 9 25 16
2007 3 3 6 8 14 3 5 3 28 17
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Table 7. Number of foreigners and Russian players of different positions for each game, FC
Lokomotiv Moscow, 2003 and 2007

1 2 3 4 5 6 7 8 9 |10 (11 |12 |13 | 14 | 15

2003 | application |6-7-3|6-7-3|4-8-3|5-8-3|6-7-3|5-8-3|5-8-3|5-8-3|6-6-4|5-7-4|6-6-4|6-6-4|6-6-4|6-6-4|6-6-4
game circuit |4-5-1|5-3-2|4-5-1|3-5-2|3-5-2|4-4-2| 4-6 |4-5-1|4-4-2|3-6-1|4-5-1|5-3-2|5-3-2|5-4-1|4-4-2
2007 | application |7-6-3|7-5-4|6-6-4|6-6-4|7-4-5|7-4-5|8-3-5|8-4-4|7-5-4/8-5-37-5-4 |6-6-4 [6-6-4 [6-7-3|6-7-3
game circuit |5-2-3|5-2-3|6-3-1|6-2-2|5-2-3|5-2-3|6-2-2|6-2-2|5-2-3|5-3-2|5-3-2|5-3-2|5-4-1|4-4-2|5-3-2
16 | 17 |18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30

2003 | application [5-6-54-8-4 4-7-4 5-7-45-6-5[5-6-5 5-6-5 6-5-5 [4-8-4 [5-7-4 |6-7-36-6-4 [6-5-5|6-5-5 [5-6-5
game circuit |4-4-2|3-6-1|3-5-2|4-4-2|4-4-2|4-4-2|3-4-3|5-2-3|3-5-2|4-4-2|5-4-1|4-5-1|3-5-2|4-4-2|3-5-2
2007 | application [7-5-4|6-6-4 6-6-4 [7-6-3|6-6-4|6-6-4 [7-5-47-5-4|6-7-3|5-7-4[7-5-4[1-5-4 |7-5-4|7-4-5[7-4-5
game circuit |5-3-2|4-4-2|4-4-2|6-3-1|4-3-3|4-3-3|4-3-3|4-4-2|5-3-2|4-5-1|6-2-2|5-3-2|5-3-2|6-2-2|4-3-3

Calculation of the potential number of combination of players on the field for both seasons enables to
disprove a hypothesis of the negative influence of the limit on the manager’s capacity: in 2003 the total
sum of possible combinations of players was 1,25*10'* and in 2007 — 1,42*10%5. Despite the predictions,
we have ten times more opportunities with the limit than without. It could have happened because of
difference in game circuits, difference in number of players at the start of the season (what influences
p1), Or even because of legislation gap (at club level a player with Russian passport isn’t treated as a
foreigner, even if he is not able to play for a Russian national team; it helps overcome difficulties caused
by limit). All in all, it may be stated that phenomenon of the limit is still not very well known and
requires further analysis.

4 Conclusions

Practical results of this research may be used in making decision process on regulation mechanisms of
the labor market in developing countries. It becomes more and more obvious that the number of foreign
players in the league should be regulated by the market, not government, because clubs have incentives
to attract domestic players even without any limit. This conclusion is very important for those who
protect idea of competitive football market in Russia. Freedom in labor market policy allows clubs to
conduct a more meaningful and independent transfer policy instead of trying to cope with the effects of
restrictions imposed by the Russian Football Union.

The methodology used in this article may be implemented to predict consequences of decision referred
to the level of limit. It may be less sensible to make conclusions regarding to one particular game, but
doubtless becomes more relevant for a long-time period. The main idea of this methodology is to analyze
the potentiality of team managers (no matter club or national team managers) to choose 11 players to
start a game depending on several decisions he should firstly make (on the game circuit, lineup or a
number of foreigners).

Although theoretical conclusions of the worse conditions for managers when they cope with the limit
have been proved only at the national level, we may still continue to gather data and check it not only
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for the Russian case or not only for two-year period. What is more, Russian case gives us one more
proof of the uncertainty of regulation and makes even more relevant researches on this issue.
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Abstract

MOViDA is a software platform focused on analyzing and optimizing movements by ex-
tracting data, trajectories and other measures automatically. The main goal is to evaluate the
performance objectively, by assigning an index to each gesture and monitoring the consistency
of the movement. Studying volleyball serves, restricting to ball flight trajectories, the observed
data are the starting and ending point of the trajectory, the height of the ball over the net, the
velocity during the flight and others. Three different aerodynamic models for the trajectory sim-
ulation are considered: the ball is idealized as spherical in the simplest one, while it has prolate
ellipsoidal shape in the other two. The models simulate float serves, but also overhand serves in
which the ball has an arbitrary spin direction. The most elaborate model takes into account the
viscoelastic deformation that the ball may undergo, due to its compressibility, after the impact
with the server’s hand. After some considerations on the models’ sensitivity analysis, MOViDA
technology is presented and it is highlighted its potential to support the athlete performance
improvement.

1 Introduction

Coaches focus their time on developing players’ skills that have the highest correlation to winning: this
means that every player of the team should be guided and enabled to produce his best performance during
the competition.

Methods to rate players performance are increasingly popular in sports analytics (i.e. [4] and [7]).
MOViIDA (Movement’s Optimization through Video and Data Analysis) is a software platform that helps
the coach to identify the optimal gesture, assuming that each athlete has his proper optimum. It provides an
index in order to evaluate the performance objectively and to improve the gesture on the base of the specific
physical and technical characteristics.

The main aim of this work is presenting a method to rate objectively and automatically the volleyball serve
trajectory, both float and spin, regardless of the reception.

Before starting our work, we have to point out the importance of serving in modern volleyball, hence the
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advantage of controlling and optimizing this athletic performance. The serve is the only skill that the player
can totally control, moreover each rally begins with a serve. In the age of rally point system (since 1998
every action assigns a point) this skill takes greater importance, in fact a bad-executed serve may let the
opposite team to score a direct point.

In the literature many models for volleyball serves suppose that angular velocity is zero, as in the case
of floating serves, or they assume for simplicity that the angular velocity vector has constant direction to
simulate a topspin/backspin serve (i.e. the top/back of the ball is spinning in the same direction as the ball
translational motion). See [6], [10], [13].

The dynamical models of volleyball serve proposed in [1] are adopted in MOViDA. The innovative aspect
is that the ball can take an arbitrary spin: in other words, it is reasonable to admit changes in magnitude,
direction and sense of the angular velocity vector.

Some tests regarding the accuracy of the models and some numerical simulations results will be presented.

2 Dynamical Models of Volleyball Serves

In every application of a mathematical model we must take into account the trade-off between model accu-
racy and computation time required to perform the simulations. With respect to this, the main aim of this
chapter is to expose three models of different complexity to simulate volleyball serves.

The first model is the simplest: it idealizes the ball as a sphere; the particular simmetry of this solid
facilitates the form of the equations of motion, in particular the expression of the inertia tensor.

In the second model the ball is supposed to be a prolate ellipsoid in the attempt to take into account the
deformation of the ball, due to its compressibility, after the impact with the server’s hand. No data has been
found about the compressibility of volleyballs; for this reason it is defined a coefficient equal to the ratio of
the initial lengths of the semi-axes, called aspect ratio, which describes the deformation of the ball during
the flying trajectory. To study this second problem it is introduced the non-inertial frame, whose reference
axes always coincide with the semi-axes of the ellipsoid.

Finally the third model, very similar to the second, takes into account the ball compressibility in flight,
making use of a relaxing viscoelastic deformation function depending on time, on initial lengths of the semi-
axes and initial angular velocity of the ball.

In order to validate the models, some serves of professional players are simulated. In particular the first and
the third model show promising compliance. Starting from this point, in the next chapter, some considera-
tions on this subject will be made and the results of other tests will be showed.

2.1 Framing the Issue

Boundary-layer phenomena provide explanations for the lift and drag characteristics of bodies of various
shapes in high Reynolds numbers flows, including turbulent flows. To deduce the fluid mechanics of sports-
ball trajectories is necessary to make some considerations about this subject.

Let the position of the center of mass, the velocity function and the angular velocity function be denoted by:

r=(xy2)  eR} v= (vx,vy,vz)T eR}, Q= (Qx,Qy,QZ)T eR3.

They all depend on time. It follows a survey of the parameters and boundary values to consider [5]:
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Physical parameters

acceleration of gravity g

density of air p

viscosity of air v Boundary values

width of the boundary layer Op starting position x(0),y(0),z(0)
specific weight of the ball m starting translational velocity  v,(0),vy(0),v;(0)
radius of the spherical ball R starting angular velocity Q,(0),9,(0),€.(0)
semi-axes of the ellipsoidal ball a,b

ellipsoid’s aspect ratio B:=a/b

ellipsoid’s angle of incidence a

Remark 1. The properties of air depend on altitude and they influence the calculation of the Reynolds num-
ber, thus the drag and lift coefficients (below they will be denoted by Cp and Cr).

Let CM be the center of mass of the body, F'”' the total force acting on the system, P the total linear momen-
tum, T, the total torque (moment of external forces), Lay the angular momentum with respect to CM. For
arigid body, that is a system with holonomic smooth constraints moving in any inertial frame of reference,
all the dynamically possible motions are described by the balance laws of linear and angular momentum:

ap

—F ot 1

I ; (D
dLcy tot

= . 2

dt i @

The first three scalar equations hold for the translational velocity of the orbit of the center of mass, while
the second three govern the rotation of the body and can be written in the more convenient form of Euler
Gyroscopic Equations.

2.2 Aerodynamic Forces

To calculate F'” the gravitational force F, = mg and the aerodynamic forces of drag D and lift L must be
taken into account: the first slows down the velocity, the latter causes the curvature of the ball orbit. The
Earth’s Coriolis force will be neglected.

The magnitude of the force can be determined by integrating the local pressure times the surface area around
the entire body. The component of the aerodynamic force that is opposed to the motion is the drag, while the
component perpendicular to the motion is the lift. Drag can be thought as aerodynamic friction drag, which
depends on velocity of the main stream ug, fluid density of the air and kinematic viscosity of the air, and
form drag, which depends on the body shape. By dimensional analysis, using Buckingham theorem:

1
D(ll()) = _ECDPSMOUO- 3)

where:

4 .
Ssphere = ﬂ'Rz, Selli[?soid(a) = 77.'Clb\/COS2 o+ <7l'ﬁ> sin® a.
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On the other hand, the dependence of /ift force on the angular velocity, due to spin, has to be considered.
For this reason, in order to provide a formula for the lift force, more sophisticated tools and fluid dynamics
results are needed.

2.2.1 Lift Force

Many studies have been conducted on the aerodynamics of sports spinning balls including soccer, tennis,
golf and rugby balls [2], [12], [14], [15]. Some consideration about the Magnus and Reverse Magnus Effect
are reported in [1].

The derivation of the lift force on a ball dates back to 1956-1957, 1987 in Auton’s and Lighthill’s works
[31, [8], [9], [11]. These articles allow to calculate the lift force on a sphere in a rotational flow. Thus applying
reciprocity principle, it is found the formula to determine the lift force on spinning spherical volleyballs.

Furthermore, in [1], it is studied the fluid dynamics underlying the models in order to take advantage
of the more recent (1998) paper of Warsi [16]. This work gives the tools to generalize the formula for the
lift force on a sphere to the case of a prolate ellipsoid in a rotational flow, retracing the reasoning made by
Auton. With the same working assumptions on the flow of [3], the modellistic aspect is previleged to derive
a computationally convenient formula for the lift force when the ball is deformed as a prolate ellipsoid of
semi-axes a and b s.t. a > b.

Theorem 1. Let ugy be the velocity far upstream on the stagnation streamline, let wy be the uniform oncoming
vorticity and let Cy be the lift coefficient. Thus the lift force in an arbitrary rotational straining flow is:

1
L= 5chSauoxcof,, 4)

) 4
where. S(a) — nab\/sin2 o+ (717[3) cos? «.

2.3 Spherical Ball

Assumption. In the first model the ball is a rigid sphere of radius R, not subjected to deformation.

First of all, a model to calculate the orbit of a ball, idealized as a sphere flying with generic spin in the
air from a point to another one, is stated. This requires to know the forces and torques operating on the ball,
due to friction with air and gravity. The balance of angular momentum is immediately written, using the
following expression for the angular momentum with respect to CM:

Loy (1) = diag(1,1,1) Q(7) where 1= %mRz. Q)

On the other hand, taking a standard base of unit vectors in spherical coordinates, where T is the normal unit
vector of the surface S and 6, @ generate the tangential vector space at the point (r,0, ¢) on the surface, the
resistance torque is:

dT,(6,¢) = — < [R(6,9)] x [RQxT(6,0)dS(6,9)]

2n pm 8 pVv
— Tr(Q):/O /OdT,(e,¢):—§%hnR4Q.
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2.4 Ellipsoidal Ball

Assumption. In the second model the ball is a rigid prolate ellipsoid of semi-axes a@ and b s.t. a > b.

For a non-spherical body it is also necessary to account for the offset of the center of pressure in relation
to the center of geometry (i.e. center of mass). The pressure distribution on the surface of a body, inclined to
the flow direction, does not follow the simmetry of the body any longer. This gives rise to an additional torque
due to the displacement of the center of pressure x.,. Once the co-rotating frame (x”,y”,z") is introduced,
the torques on the ball are calculated.

e Aerodynamic torque:
Ta(v(1), Q1)) = xepX" (1) x [ D(v(1)) + L(v(1), Q(1)) ].

e Resistance torque:

2
a1,(0.0) = =5 (1) #0.0) <[ (@2(0,9))d5(0.0)
1
2
— T,(Q) = -£Y (a+b> na® [142% | Q.

o 2 a
1
2

2.5 Ellipsoidal Deforming Ball

Assumption. In the third model the ball is a deforming prolate ellipsoid of semi-axes a(r) and b(t) s.t.
Vit a(t) > b(t).

The motion equations are the same of the previous model, it is rather pointed out the construction of a
proper deformation function.

e [tis supposed that, at the moment of the impact with the server’s hand, the volleyball is a prolate ellip-
soid of semi-axes ag = a(0) and by = b(0) (ap > bo); during the flight phase its shape relaxes and tends
to a sphere of radius R (for simplicity it is assumed that there are not oscillations during this action).
The change in the length of the semi-axes implies a variation of the principal moments of inertia.
Since no specific data regarding the compressibility of volleyballs have been found, a negative expo-
nential function to simulate the viscoelastic deformation is used, which obviously depends firstly on
time. The following requires are made:

a(t),b(t) —+ R as t — +oo.

e Besides, it seems reasonable that the deformation depends also on the initial length of semi-axes of
the ball and on the absolute value of the initial angular velocity, associated with the spin given to the
ball. In particular, if the ball has no spin, for every ¢ it remains a sphere:

Q0)=0 = a(t)=R=0b(t) tt = D;=0.
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e [t can be verified that a consistent relaxing viscoelastic deformation function is the following:
_21 9%
Dy = Dy(t, a0, bo, |Q(0)]) = |Q(0)| (ag — bg)*e " ™. (6)

Then, in the co-rotating frame, the values of the semi-axes a(¢), b(¢) and the principal moments of inertia
A(t), B(t) of the prolate ellipsoidal deforming ball at time ¢ become:

a(t) =R(1+kDy), A(t) =1(1—kaDy),

b(t)=R(1—kiDy), B(t) =1(14+k2Dy), @

where 1 is the inertia tensor of a prolate ellipsoid of semi-axes a,b and kj, k; € R™ are chosen in a proper
way: during the flight, the sphere of angular momentum and the volume of the ball change characteristics,
from ellipsoidal to spherical ones.

2.6 Models’ Sensitivity Analysis

Various simulations to test the models by numerical analysis has been performed. The consistency of the
models is verified: firstly, some well-known results of rigid body mechanics are reproduced (i.e. the tenacity
of the gyroscope axis for the models in which the ball has gyroscopic structure); secondly, it is verified that
the first two models are special cases of the third. Then, the models are compared among them, taking into
account trajectories and energy balances. Finally, the paths of some recorded serves, performed by pro-
fessional athletes, are used to assess the validity of the models. The results of these tests show promising
compliance, especially for the first and third models. So, from now on, our analysis will be restricted to
spherical and ellipsoidal deforming models.

TranslationalVelocity VS xEndPoint TranslationalVelocity VS yEndPoint Translational Velocity VS Cpu Times Ratio
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Figure 1: Comparison between spherical and ellipsoidal deforming models.

A couple of tests of models’ sensitivity analysis is done in order to better understand the relationships
between input and output variables, in particular between initial velocities and trajectory’s end point.
Let (x,y,z) = (0,0,0) be the origin of the inertial frame of reference; it is put in the right corner of the vol-
leyball field. The long side of the field grows along the x-axis, while the short side grows along the y-axis.
For semplicity the starting position of the ball is set to (x,y,z) = (0,0,3).
In the following the spherical and ellipsoidal deforming models are compared changing the value of the ini-
tial velocities vector, both translational and angular.

On the one hand, if no spin is supposed and the initial translational velocity of the ball is changed, no
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considerable variation of the end point coordinate is found, as Figure 1 shows. It is more interesting the
plot on the right side, which points out the percentage ratio between cpu timings of spherical and ellipsoidal
deforming model: the spherical model shows evident advantages in terms of calculation times, when the
involved velocities grow; in fact it halves the cpu calculation effort.

On the other hand, if the initial angular velocity is changed, there is a variation of the end point coordi-
nate, as Figure 2 and 3 show. Comparing the deviation of coordinate values at the landing point of the ball

in flight near and over the critical Reynolds regime, the spherical ball tendes to have a smaller deviation than
ellipsoidal ball.
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Figure 2: Comparison between spherical and ellipsoidal deforming models, when initial translational
velocity is 15m/s.
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Figure 3: Comparison between spherical and ellipsoidal deforming models, when initial translational
velocity is 24m/s.

The landing points with an initial velocity of 15 m/s admit the horizontal range (y-axis) of approximately
3cm and the vertical range (x-axis) of approximately 8cm for a spherical ball and 20cm for an ellipsoidal
ball. The landing points when the initial velocity is 24 m/s have the horizontal range of approximately 70cm
and the vertical range of approximately 140cm for a spherical ball and 180cm for an ellipsoidal ball.

It is evident that, as the initial velocity increases and the aerodynamic regime becomes turbulent, the two
models simulate more and more different trajectories: in particular, the aerodynamics of the spherical model
causes the ball to remain in flight for a longer time. In addition, the end point coordinates of the spherical
model are more correlated despite the changing velocities. On the contrary, the end points of the ellipsoidal
balls are more scattered. It is due to the intuitive fact that the aerodynamics of the ellipsoidal ball is more
sensitive to disturbances, being less stable. This implies that, known the trajectory’s starting and ending
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points and the flight time, the third model can be more adaptable in the simulation; in fact, varying the
velocities, it covers the codomain (i.e. the opponents’ side of the volleyball court) in a more wide way.

The plots on the right side point out the percentage ratio between cpu timings of the spherical and the
ellipsoidal deforming model: again, the first model shows evident advantages in terms of calculation times,
when the involved velocities grow. The reason is pretty obvious: the spherical model is simpler in its
construction. Furthermore, thanks to the symmetry of the sphere, the rotation matrix to pass from co-rotating
to inertial frame of reference does not need to be calculated at every step of integration; in fact the inertia
tensor does not depend on time, since every axis is principal.

3 Performance Evaluation with MOViDA

As a result of experiments conducted with the Italian National Men’s Volleyball Team and with the CONI
Institute of Medicine and Sports Science, Moxoff Spa has promoted research in sports science and sport
technology and has developed several innovative tools for the world of sports, especially for volleyball.
Mathematics and sport meet, thanks to Moxoff, both to improve the individual technique and to analyze
the tactic. The growing interest in applied mathematics to sports analytics has led to MATHandSPORT: the
Moxoff’s startup devoted to the world of sport.

3.1 MOYViDA Technology

MOViDA (Movement’s Optimization through Video and Data Analysis) is MATHandSPORT’s software
platform that applies innovative data-driven techniques to evaluate and optimize the individual technical ges-
ture. In a standard MOViDA session, the same athletic movement is repeated several times and recorded by
one or two cameras. Every gesture is classified based on objective criteria and some parts of the body are
analyzed with particular attention, taking trajectories, measures, angles, velocities, relations between move-
ments of various body segments. MOViDA algorithms automatically process a large amount of videos and
extract smart data, in order to develop performance indeces, based on mathematical modeling and advanced
statistical methods, as classification, clustering and functional data analysis. The final goal of MOViDA is to
correlate the gesture to the performance in order to identify the player’s optimal gesture, to describe athlete’s
current session efficiency and to monitor the performance over time. Furthermore, it can help the coach to
evaluate the recovery of an athlete after a possible injury.

3.2 Performance and Consistency Indeces

MOViIDA for volleyball serve focuses on studying wrists and ankles movements during the run-up, analyzing
the ball toss and, at last, correlating these with the flight trajectory. So, at the base of the performance
evaluation, it is essential to simulate the ball trajectory in a trusted way. The dynamical models proposed
above have been developed at this purpose. The carachteristics of the optimal serve have to be preliminarily
identified together with the coach: the initial velocity of the ball, the ball velocity and height over the net,
the end point coordinates. For example, in the case of float serve, it is identified the initial velocity range
that ensures the ball floats after the passage over the net (it depends on the drag coefficient, which is specific
for each type of ball and is affected by altitude). Then MOViIDA uses an appropriate metric to quantify
the difference between the current gesture and the optimal target. Finally it weighs in a proper way all the

29



MathSport International 2017 Conference Proceedings

Performance Evaluation of Volleyball Serve M. Angonese, F. Cardin, P. Ferrandi

analyzed quantities and provides a single performance index for each gesture.

= Medium performance (> median kmih)

Consistency at impact: [| Overall consistency:
52 % 66 %

Figure 4: Trajectories evaluated with MOViDA indeces and grouped by levels of performance.

Differently, the consistency index gives an indication of how much the gesture is regular, in particular it
quantifies the variation range, along the curve, in a objective way; this information is very important for the
coach because it gives a measure of the athlete ability to manage the skill, which is fundamental during the
competition. The consistency index is developed using functional data analysis: it takes into account both
the shape of the curve and the time warping function. As the performance index, it allows to monitor the
athlete’s gesture consistency over time and it underlines the gesture component where there is less regularity.

4 Summary and Conclusions

The purpose of this study is to present the way in which MATHandSPORT’s software platform MOViDA
evaluates a volleyball serve automatically and objectively. To reach this aim, two dynamical models of the
flight trajectory are compared: the first idealizes the ball as a sphere, the second as a prolate ellipsoid which
axes are subjected to a relaxing viscoelastic deformation. Thus, the trajectories’ aerodynamic at the variation
of the ball initial velocities can be examined.

The results may be summarized as follows. Both models have been tested at a preliminary stage and pro-
vide accurate outcomes. At low velocities, the two models simulate very similar trajectories and the only
remarkable difference is the cpu calculation times: the spherical model halves the calculation effort. As
the velocities increase, the aerodynamics of the ellipsoidal model causes the ball to remain in flight for a
shorter time; moreover, the end point coordinates of the ellipsoidal balls are more scattered when the angular
velocity changes; this is due to the less stable aerodynamics of the ellipsoidal ball. The spherical model
calculation times remain significantly more efficient.

Often, in the industrial context, it is good to have the results as soon as possible; but it is also necessary
to be aware of how much you lose in terms of accuracy of the output data. For every simulation, MOViDA’s
platform workflow captures from video, automatically, starting and ending points of the trajectory, then it re-
quires to estimate translational and angular velocities. In this way an approximation of the data is introduced.
In order to use the ellipsoidal model, it is also necessary to estimate the deformation of the ball; this risks to
introduce a greater approximation than supposing the ball to be perfectly spherical. The previous considera-
tion, added to the need to process large amounts of videos and thus to improve the cpu performance, makes
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the spherical model more convenient in this situation.

It is worth pointing out that the ellipsoidal model is built to be more adaptable and it can be applied also to
the simulation of soccer and rugby balls, in contexts where the ball undergoes greater deformation.
MOVIDA was initially developed and tested for volleyball, but today it is a versatile platform that can be
used transversally in different sports, from tennis to football, from golf to rugby, to support the athlete per-
formance improvement.

Acknowledgements

A special thank you to the est. Prof. Edie Miglio and Dr. Matteo Pischiutta (Mathematics department of
Politecnico di Milano), whose preliminary work inspired us and confirmed that it was a reasonable way to
face new scientific challenges.

References

[1] Angonese, M., Cardin, F., Ferrandi, P. (2015) Dynamical Models of Volleyball Serves, Master’s Degree, Univer-
sita degli Studi di Padova, Department of Mathematics “Tullio Levi-Civita”.

[2] Asai, T., Seo, K., Kobayashi, O., Sakashita R. (2007) Fundamental aerodynamics of the soccer ball, Sports
Engineering, 10: 101-110.

[3] Auton, T.R. (1987) The lift force on a spherical body in a rotational flow, Journal of Fluid Mechanics 183:
199-218.

[4] Corley, B., Brett, W. (2017) Bump, Set, Spike: Using Analytics to Rate Volleyball Teams and Players, MIT Sloan
Sports Analytics Conference.

[5] Fuchs, PM. (1991) Physical model, theoretical aspects and applications of the flight of a ball in the atmosphere.
Part I, Mathematical methods in the applied sciences 14.7: 447-460.

[6] Kao, S.S., Sellens, R.W., Stevenson, J.M. (1994) A mathematical model for the trajectory of a spiked volleyball
and its coaching application, Journal of applied biomechanics, 10.

[7] Levin, A. (2017) Ranking the Skills of Golfers on the PGA TOUR using Gradient Boosting Machines and Network
Analysis, MIT Sloan Sports Analytics Conference.

[8] Lighthill, M.J. (1956) The image system of a vortex element in a rigid sphere, Mathematical Proceedings of the
Cambridge Philosophical Society, Vol. 52. No. 02.

[9] Lighthill, M.J. (1956) Drift, Journal of Fluid Mechanics 1.01: 31-53.

[10] Lithio, D., Webb, E. (2006) Optimizing a volleyball serve, Rose Hulman Institute of Technology Undergraduate

Math Journal, 7.

[11] Lighthill, M.J. (1957) Contributions to the theory of the Pitot tube displacement effect, Journal of Fluid Mechan-
ics 2.05: 493-512.

[12] Mehta R.D., Pallis J.M. (2001) The aerodynamics of a tennis ball, Sports Engineering, 4: 177-189.

[13] Ricardo,J. (2014) Modeling the Motion of a Volleyball with Spin, Journal of the Advanced Undergraduate Physics
Laboratory Investigation.

[14] Seo K., Kobayashi O., Murakami M. (2006) Flight dynamics of the screw kick in rugby, Sports Engineering, 9:
49-58.

[15] Smits A.J., Ogg S. (2004) Aerodynamics of the Golf Ball, Biomedical Engineering Principles in Sports.

[16] Warsi, Z.U.A. (1998) Analysis and numerical evaluation of the drift function of Darwin and Lighthill for axisym-
metric flows, Theoretical and computational fluid dynamics 10.1-4: 439-448.

31



MathSport International 2017 Conference Proceedings

Ranking ski courses using permutation methods for
multivariate populations

R. Arboretti*, E. Carrozzo** and L. Salmaso**

*Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova, Italy
email address: rosa.arboretti@unipd.it
** Department of Management and Engineering, University of Padova, Vicenza, Italy
email address: annaeleonora.carrozzo@unipd.it
luigi.salmaso @unipd.it

Abstract

Monitoring perceived performance of sport trainers is usually a difficult task. The Board
of Professional Ski Instructors of the Province of Bolzano and the Ski Schools in ‘Alto Adige’
were interested in investigating the satisfaction of people attending Ski courses in this area.
A specific survey has been planned to investigate different aspects of satisfaction, such as on
course organization, on teaching, on fun etc. The aim of the statistical analysis was multi-
fold (1) to obtain a ranking of the ski courses from the ‘best’ to the ‘worst’, (2) to identify
relevant drivers to differentiate ski instructors/schools and (3) to set up a suitable multivariate
methodology able to test for multiple outcomes with stratified data. Usually such analysis is
performed for each domain of satisfaction and they are kept separate. In the present work we
provide a procedure to compare the performance of ski courses considering simultaneously all
domains of satisfaction/quality and stratifying by covariates e.g. the nationality or the age of the
attendees. This procedure is based on an extension of the Nonparametric Combination (NPC)
of dependent permutation tests (Pesarin and Salmaso, 2010) and it allows us to take into account
several aspects affecting the ski performances.

1 Introduction

Skiing activities are often linked with the winter tourism and so monitoring customer satisfaction about
quality of provided services becomes more and more important for the economy of specific areas. Indeed
many mountain cities in the world which provide skiing resorts, perform customer satisfaction surveys in
order to understand how to become more attractive and competitive.

The Canadian Ski Council for example, thought that a way to continue to flourish was to attract new
people into the sport by identifying potential skiers and converting them from non-skiers to skiers through
specific marketing strategies (Williams and Fidgeon, 2000).

Some studies have shown that some factors specific of the customers, could influence the customer
satisfaction itself and their consequent loyalty with ski resorts (Matzler et al. (2007), Matzler et al. (2008)).
Several authors also studied how the perceived quality influences the tourist’s satisfaction (Alexandris et al.,
2004, Kelley and Turley, 2001; Shonk and Chelladurai, 2008).
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Thus, as Yoon and Uysal (2005) pointed out, in a competitive market environment, a careful analysis of
tourist motivations, customer satisfaction and loyalty can make the difference.

Furthermore requirements for high quality service are also specified by ISO 9001 document (2008). The
European regulation ISO 9001 states that organizations need to show its ability to regularly provide a product
which satisfies customers’ requirements and wishes to increase customers’ satisfaction, the former related to
monitoring of quality, the latter to improvement of quality.

In the present work we want to describe the statistical approach adopted to analyze data from a survey
developed by the Board of Professional Ski Instructors of the Province of Bolzano and the Ski Schools in
‘Alto Adige’ to investigate the satisfaction of people attending Ski courses in this Italian area.

When checking quality of products or services, the research aim is often focused on evaluating the
product/service performances from a multivariate point of view, i.e. investigating more than one aspect
and/or under several conditions. From the statistical point of view, when the response variable of interest is
multivariate in nature, the problem may become quite difficult to cope with, due to the high dimensionality
of the parametric space. In this work we propose an appropriate statistical method based on an extension
of the Nonparametric Combination (NPC) of dependent permutation tests (Pesarin and Salmaso, 2010),
which allows us to compare multivariate performances by considering all aspects of interest separately albeit
simultaneously and taking into account possible confounding factors.

The present paper is organized as follows. Next section introduces and describes the NPC-based method
and the steps to be followed. In Section 3 the case of the ski courses evaluation is introduced and the
application of the proposed method is explained and results presented. Finally in Section 4 we discuss the
results and main advantages of the proposed method.

2 The NPC-based procedure

When developing new products or checking quality of products or services, complex problems of hypothesis
testing arise. The complexity of the study is mainly referred to the presence of mixed variables (ordinal
categorical, binary or continuous), missing values, stratification variables. Surveys performed to evaluate
quality dimensions are often observational studies, where very little is known about the multivariate distri-
bution underlying the observed variables and their possible dependence structure. In such cases conditional
nonparametric methods can represent a reasonable approach. Multivariate permutation tests are conditional
exact nonparametric procedures, where conditioning is on the pooled observed data as a set of sufficient
statistics in the null hypothesis. In this contribution we consider permutation methods for multivariate strati-
fied problems, allowing variables to be of a different nature (continuous, discrete, ordinal etc.). The proposed
approach is based on the Nonpararametric Combination (NPC) methodology (Pesarin and Salmaso, 2010)
to reduce the dimensionality of the problem. Formalizing the problem, suppose to have two populations
represented by two multivariate random variables, say X; and X, and we are interested in testing:

HoixliX2

d (D
H: X1 > Xz

Suppose to have two samples x; from X; and x; from X, respectively. In order to test (2) taking into
account the possible effect of stratification factors, we break down the problem into sub-problems for each
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combination of the levels of factors. Without loss of generality let us assume to have two stratification factors
with §1 and S, levels respectively, then we obtain § = §; x S, systems of hypotheses:

d
HO(S[,Sz) : Xl(s1,sz) j XZ(sl,sz) )
Hy(s1,5) * Xi(s1.5) > Xo(s1,)
where s1 = 1,...,5] and s = 1,...,5;. The idea of the NPC-based procedure for each comparison is to

combine the p-values resulting from each stratum and then further combine the resulting p-values from
different variables to build up the overall test. We briefly report the steps of the procedure:

1. VS] 21,...,51

1.1. Vsp =1,...,8:
1.1.1 Compute a suitable test statistic T(Os, 5y) ON the observed samples.
1.1.2 Perform a random permutation of units between the two samples.

1.1.3 Compute the test statistic on permuted samples obtaining TZ‘AI )"

1.1.4 Repeat steps 1.1.1-1.1.2 a number B of times obtaining T(
null distribution of T

b=1,...,B, the estimated

51,82)7

51,82)°

At the end of the previous step we obtained S; x S, test statistics and the related permutation distribu-
tion.

2. For each test statistic we can compute the related p-value as A, ) =Y5 I (T*b =

s1 5 /B VS] =
1 Sl,and 52 —1 Sz.

slsz)

3. For each level of S| consider a suitable combination function ¢ and combine the p-values related to

different levels of stratum S, obtaining Tf) 5 and the related permuted distribution T( 51,0)°

4. From step (3) compute the estimated p-values as A, ) =yB 1 (T*Y o= (y 9 ) /B,Ns; =1,....8;

5. Combine the p-values related to different levels of stratum S; obtaining T and the related permutation
distribution T7.

6. From step (5) compute the estimated p-values as Ae = Y2_, I(T;®> > TY)/B;

7. Finally combine the p-values related to different variables obtaining T:O and the related permuted
distribution T,*.

8. From step (7) compute the estimated global p-value as A, = Yo 1 (Ti*b > T/,IO) /B;
9. accept the null hypothesis if A, > a.

If we want to compare more than 2 population we can compute this algorithm for each pair of populations
and adjust for multiplicity (Simes, 1986; Hommel, 1988; Shaffer, 1995, Benjamini and Hochberg, 1995).
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3 Survey on ski courses

In the winter season of 2011 a large survey has been conducted in 38 ski schools of Alto Adige (an area
of Italian Alps), in which customers and parents of children, who participated in a ski course, were asked
to answer a questionnaire to express their level of satisfaction about some aspects of the experience. This
study was innovative at a national level: it was the first systematic study performed on different schools,
with quantitative evaluation, using a questionnaire specifically designed to measure satisfaction and quality
perceived by customers. The questionnaire asked for opinions about different aspects of the service, related
to:

Improvement: progress in skiing skills;

Courtesy: courtesy and availability of the instructor;
Resort: satisfaction about ski resort;

Safety: course has been performed in safety;

Fun: fun during the course.

Each dimension was investigated with specific questions reporting the score on a scale 0-10 (O:not satis-
fied, 10: fully satisfied). Arboretti et al. (2014) analyzed the responses of children to this questionnaire
for three aspects of satisfaction and investigating the covariates in a separate phase. NPC-Global ranking
(Bonnini et al., 2006; Corain and Salmaso, 2007), based on the NonParametric Combination methodology
(Pesarin and Salmaso, 2010), considers the problem of finding a global ranking of C populations with re-
spect p variables, as formally represented in a testing-like framework where the hypotheses of interest are
related to the stochastic inferiority or superiority when comparing C populations. The method considers first
nonparametric tests for pairwise comparisons of C x (C — 1) /2 populations of interest for each variable, and
then a combination of directional p-values (through a suitable combining function) in which all variables
are simultaneously considered. On the basis of the NPC score a global ranking of the C populations is de-
rived (see Arboretti Giancristofaro et al. (2014) for more methodological and computational details). In the
present work we consider responses both from the adult and children questionnaire and considering age as
a stratification factor. We also consider the nationality of the attendees as a further stratification factor. For
illustrative purpose five of the 38 schools, selected for marketing reasons, have been codified as A,B,C,D, E.
For each school we selected answers to the questionnaire from Italians and Germans, children and adults
who attendee ski courses. People under 13 years old were considered children, otherwise adult. Thus two
stratification factors, i.e. age class and nationality, have 2 levels respectively. Applying the NPC-procedure
based on B = 10000 permutations we obtain the final global results in Table 1 where numbers represent
global multivariate p-value (adjusted for multiplicity) for each comparison. P-values in table have to be read
as being related to comparison “school in row > school in column”. Thus applying an algorithm based on
the number of significant comparisons, we obtained a ranking of the 5 schools (Table 2).

Note that this ranking is global, in the sense that schools are compared taking into account all aspects of
satisfaction simultaneously stratifying for covariates. Furthermore it is possible to see the partial results, for
example going back of one step in the algorithm we can see the comparisons for each aspect of satisfaction
and also the results of a specific comparison separately for nationality.

Assume for example we are interested in investigate comparison C < D we can see from Table 3, that
School D which is classified better than School C in the global ranking, presents significantly higher evalua-
tions for Improvement and Fun, and also an evidence at 10% significance level for Courtesy.

35



MathSport International 2017 Conference Proceedings

Ranking ski courses Arboretti, Carrozzo and Salmaso

Table 1: Pairwise multivariate comparisons between the five schools.

A B C D E

- 0.461 0.173 0.618 0.994
0.306 - 0.297 0.738 0.992
0.012 0.002 - 0.113  0.695
0.054 0.066 0.036 - 0.928
0.005 0.012 0.003 0.062 -

Mo Q™

Table 2: Global ranking of the five schools.

A B C D E
40 40 30 20 10

Table 3: P-values for each aspect of satisfaction.

Improvement Courtesy Resort Safety Fun

A<B 0.238 0.775 0220 0.586 0.102
A<C 0.862 0.862 0.001  0.009 0.009
A<D 0.015 0.567 0.150 0.174 0.044
A<E 0.107 0.122 0.017 0.052 0.001
B<C 0.619 0.106 0.026  0.000 0.003
B<D 0.107 0.425 0.313  0.013 0.156
B<E 0.219 0.112 0.140  0.026  0.000
C<D 0.002 0.057 0472 0903 0.028
C<E 0.004 0.008 0.675 0.163 0.002
D<E 0.358 0.281 0.247 0.116  0.008

From Table 4 we can see that this difference in satisfaction between the two schools regarding Improve-
ment is specific of Italian customers, whereas about Fun, Germans express a higher satisfaction in favour of
school D. It is also possible to further investigate differences between age classes. Let us see for example
the details for the comparison C < D in Table 5.

From these results we can see that, significant preference of the school D related to Improvement from
Italian customers concerns both adults and children. Whereas preference about Fun from German customers
looks to be more related to children experience.

It is also worth noting that evidence for the variable Courtesy derives mainly from a higher satisfaction
of German children, in fact after combination with other results, related to the same comparison in different
strata becomes non significant (at a a-level of 5%).
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Table 4: P-values of the comparison C < D for Italians and Germans for each aspect of satisfaction.

Improvement Courtesy Resort Safety Fun
Italian 0.003 0.191 0.682 0.628 0.308
German 0.901 0.062 0.257 0974 0.016

Table 5: P-values of the comparison C < D for each aspect of satisfaction for Italian and German adults and
children.

Improvement Courtesy Resort Safety Fun

Italians Adults 0.001 0.491 0.402 0382 0.134
Children 0.018 0.174 0.938 0.852 0.968
Germans Adults 0974 1.000 0.999 0973 1.000
Children 0.645 0.034 0.109 0.897 0.007

4 Conclusions

With this work we aim at presenting a statistical procedure to analyze data from customer satisfaction survey
related to sports teaching/services. The proposed method is based on an extension of the Nonparametric
Combination (NPC) of dependent permutation tests (Pesarin and Salmaso, 2010), which allows to compare
multivariate performances by considering all aspects of interest separately albeit simultaneously and taking
into account possible confounding factors.

In particular we present a real application to a survey carried out for investigating the satisfaction of
people attending ski courses in a specific Italian area. The objective was to compare ski schools on the base
of satisfaction about different aspects (Improvement, Courtesy, Resort, Safety and Fun) considering that
people attending ski courses have different age so that they could have different perception of quality.

We show that with the proposed method we are able to compare and rank different ski schools globally
i.e. considering all domains of satisfaction of interest, taking into account possible confounding factors such
as age classes and/or nationality. It is also possible to investigate each partial aspect related to each level of
the confounding factors considered. We provided an easy algorithm which summarizes the steps to achieve
this useful NPC-based permutation procedure.

References

[1] Alexandris, K., Zahariadis, C., Tsorbatzoudis, C. and Grouios, G. (2004) An empirical investigation of the rela-
tionships among services quality, customer satisfaction and psychological commitment in a health club context.
European Sport Management Quarterly 4, 36-52.

[2] Arboretti Giancristofaro, R., Bonnini, S., Corain, L., and Salmaso, L. (2014). A permutation approach for ranking
of multivariate populations. Journal of Multivariate Analysis, 132, 39-57.

[3] Arboretti, R., Bordignon, P., Carrozzo, E. (2014) Two phase analysis of ski schools customer satisfaction: multi-
variate ranking and cub models. Statistica 74(2), 141-154.

37



MathSport International 2017 Conference Proceedings

Ranking ski courses Arboretti, Carrozzo and Salmaso

[10]

[11]

[12]

[13]
[14]

[15]
[16]

[17]

Benjamini, Y., Hochberg, Y.(1995) Controlling the false discovery rate: a practical and powerful approach to
multiple testing. Journal of the Royal Statistical Society Series B, 57, 289- 300.

Bonnini, S., Corain, L. and Salmaso, L. (2006) A new statistical procedure to support industrial research into
new product development. Quality and Reliability Engineering International, 22(5), 555-566.

Corain, L., Salmaso, L. (2007) A nonparametric method for defining a global preference ranking of industrial
products. Journal of Applied Statistics 34 (2) 203-216.

Hommel, G.(1988) A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika,
75, 383-386.

International Organization for Standardization, International Standard ISO 9001 (2008). Quality management
systems-Requirements.

Kelly, S. W. and Turley, L. W.(2001) Consumer perceptions of services quality attributes at sporting events.
Journal of Business Research 54, 161-166.

Matzler, K., Fiiller, J., Renzl, B., Herting, S., Spith, S. (2008) Customer satisfaction with Alpine ski areas: the
moderating effects of personal, situational, and product factors. Journal of Travel Research 46, 403-413.

Matzler, K., Fiiller, J., Faullant (2007) Customer satisfaction and loyalty to Alpine ski resorts: the moderating
effect of lifestyle, spending and customers’ skiing skills. International Journal of Tourism Research 9(6), 409-421.

Pesarin, F. and Salmaso, L. (2010) Permutation tests for complex data: theory, applications and software, Wiley,
Chichester.

Shaffer, J. P. (1995) Multiple hypothesis testing. Annual review of psychology, 46, 561- 576.

Shonk, D. J. and Chelladurai, P. (2008) Service quality, satisfaction, and intent to return in event sport tourism.
Journal of Sport Management 22, 587-602.

Simes, R. J. (1986) An improved Bonferroni procedure for multiple tests of significance. Biometrika 73, 751-754.

Williams, P. and Fridgeon, P. R. (2000) Addressing participation constraint: A case study of potential skiers.
Tourism Management 21, 379-393.

Yoon,Y. and Uysal, M. (2005) An examination of the effects of motivation and satisfaction on destination loyalty:
A structural model. Tourism Management 26, 45-56.

38



MathSport International 2017 Conference Proceedings

Estimating Margin of Victory in Twenty-20

International Cricket
M. Asif* and |. G. McHale**

*Department of Statistics, University of Malakand, Pakistan. email address: m.asif@uom.edu.pk

** Salford Business School, University of Salford, UK. email address: 1. McHale@salford.ac.uk

Abstract

In this paper we propose a model of the runs remaining to be scored in the second
innings of Twenty-20 International (T20I) Cricket. The proposed model takes account of
overs left and wickets lost. Our model makes it possible to determine the runs differential of
the two competing teams. The runs differential not only gauges the closeness of the game in
terms of uncertainty of outcome, but also makes it possible to estimate ratings of the teams.
Here we use the model to estimate the largest winning margins in T20I cricket history. Sri
Lanka’s 172 run victory over Kenya in 2007 appears to be the biggest margin of victory to
date.

1 Introduction

In sports, the margin of victory is a useful statistic as it not only determines the closeness of a game but
can also play an important role in rating teams, as it is a quantitative measure of the relative performance
of the two teams in a game. The additional information given by margin of victory, compared with
simply knowing which competitor (team, or individual) won, has been acknowledged in other sports. In
football for example, cutting-edge forecasting models make use of score-lines (e.g. 3-1 or 0-2), rather
than simply results (win, draw, loss). In tennis forecasting, leading models now make use of information
on the points, games and sets won, rather than just the binary match result: won, or lost.

In sports like football, tennis, golf and basketball, the margin of victory is easily observable and is
determined simply by the scores/points differential of the two competing players/teams. In contrast,
measuring margin of victory in the game of cricket is not straightforward. This is because if the team
batting second wins, the match is censored in that not all of the overs allotted to the second team are
played: there is no point playing on once the winning target has been reached. As such, the metric for
margin of victory depends on which team, the winner or loser, batted in the first/second innings.

For example, if a team batting in the first innings (team 1) wins a match then the margin of victory is
simply determined by taking the difference of the two innings runs totals. However, if the winning team
bats in the second innings (team 2) then the second innings is typically cut short so that not all of the
allotted overs are played. In such circumstances it is traditional for the margin of victory to be described
by how many wickets that team had remaining, regardless of how fast the target was achieved. Thus, it is
difficult to compare the performances of sides as the margin of victory is measured using different units,
depending on whether the victorious team batted first or second. It is noticeable that team 2’s margin of
victory can be considered as two dimensional, that is the team typically not only has a number of wickets
in hand, but also a number of overs (or balls) remaining.
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As a consequence of complexities in measuring margin of victory in T20l cricket, rating team
performances and forecasting become more complicated. In this paper we present a Generalized Non-
Linear Model (GNLM) that can be used to forecast the second innings total as a function of overs
remaining and wickets lost, and hence we can calculate the margin of victory in T20I cricket. Although
the model can be used for forecasting, here we consider its use when ranking all 556 T20I cricket
matches by the margin of victory. To do so, we effectively convert all results into projected runs
differentials.

Our work, to some extent, relates to the work that is done by Clarke and Allsopp (2001), de Silva
et al. (2001) for One-Day International (ODI), and Allsopp and Clarke (2004) for ODI/Test cricket.
Clarke and Allsopp (2001) used the Duckworth and Lewis (1998) resource table to project the second
innings runs total of an ODI cricket match. Further, they fit a linear model to rate teams’ performances in
the ICC One-Day World Cup Championship held in the year 1999. Likewise, de Silva et al. (2001) used
the same resource table in a different way, doing some ad hoc modification, to project the second innings
runs total in One-Day International Cricket.

2 Projecting Second Innings Runs

Suppose, S; and S, are the total runs scored by team 1 and team 2 respectively. If team 1 wins the
match then margin of victory can simply be determined by the runs differential, RD = S; -S,. However, in
case of team 2’s victory S will be replaced by the projected runs, Syproj). Let there be u overs left and w
wickets lost when team 2 reached to the target, then the projected runs can be determined by the
following relation.

Sz(proj) = SZ(actual)/{l - P(u, W)} (1)

where P(u,w) is the proportion of remaining runs when there are u overs left and when w wickets have
already been lost. Herein and after, this proportion is referred as ‘resources remaining’. Following
Duckworth and Lewis (1998) the remaining resources can be estimated by P(u,w) = Z(u, w)/ Z(N, 0),
where Z(u, w) is expected remaining runs in u overs when w wickets have been lost, and N is the total
pre-allotted overs for each first and second innings. For example, N=20 for T20I Cricket (unless the
match has been shortened due to weather factors).

In regards to the functional form of Z(u, w), various authors have proposed different models with a
specific aim of revising targets for the team batting in the second innings in interrupted matches. For
example, Duckworth and Lewis (1998) proposed an exponential type function, but due to commercial
confidentiality the model fit results and estimation methods were kept hidden. Further, Duckworth and
Lewis (2004) proposed some modification and provided an improved version of the model that can
handle One-Day International Cricket matches in which the scoring rate is well above average. McHale
and Asif (2013) proposed an arc-tangent based model for the expected remaining runs for ODI cricket. In
this paper, a generalized form for Z is proposed. The model is based on certain properties, defined in the
next section. These properties are needed to model the runs scoring patterns observed in all formats of the
Limited Overs International (LOI) cricket.

3 The Generalized Non-Linear Model

The generalized model for the expected remaining runs, Z, as function of u overs remaining and w
wickets lost, should have the following properties.
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i.  For a given number of wickets lost, expected remaining runs should be non-decreasing with

respect to u, overs left.

ii.  Foragiven number of wicket lost, the expected runs on the next ball should be non-increasing
with respect to u, overs left.

iii.  For a given number of overs left, the expected remaining runs should be a non-increasing
function of w, wickets lost.

iv.  For a given number of overs left, the expected runs on the next ball should be non-increasing
function of w, wicket lost.

The above list of the properties can be used as a framework to build a model for expected remaining
runs to be scored by a team with u overs remaining when w wickets have already been lost. A general
form for Z, based on above standard properties, can be written as

Z(u,w) = ZgFW)G(ulow)) + & )

In order to satisfy the above properties, and to make the function more intuitive, some
restrictions on Zo, F(w), and G(u| a(w)) are made. For example, F(w) may be a non-increasing real
valued function with domain [0,10] and range [0,1] such that F(0)=1 and F(10)=0. The function G(u|
o(w)) is also a real valued function defined on u>0 such that the first order derivative is non-negative and
second order derivative is non-positive for all u>0. Further, o(w)>0 is the parameter such that o(w)=
oF(w). Zo is a constant and if the function G ranges from [0,1] such that G(0)=0 and G(0)=1, then Z, can
be interpreted as the asymptotic runs obtainable with ten wickets in hands in an unlimited innings
(infinite overs), but playing under the strategy of the specified format of the game, T201 for example.
Finally, € is an error term with zero mean.

If G(u| o(w)) takes the form of the exponential cumulative distribution function of u and F(w) is
estimated in a non-parametric way for w=0,1,..9 under the constraint that F(0)=1 and F(w)>F(w+1) then
the model reduces to the Duckworth and Lewis (2004) model. However, if the function G(u| a(w)) is
approximated by the Half-Cauchy cumulative distribution function, and F(w) is approximated by the
truncated normal survival function with domain [0,10] and range [0,1] then the model becomes as
proposed by the McHale and Asif (2013). Hence, Duckworth/Lewis and McHale/Asif versions are
special cases of the proposed GNLM.

4 The Model Specification

In this section, we present a generalized functional form for Z. First, a function for F(w) is specified as

—_w\P _1\D PPN
Fon = e () e (30) /11 - (3] ®
where a >0 and b>0 are the parameters to be estimated. The first order derivative of F(w) is negative in
domain [0,10], hence, the function is decreasing with range [0, 1]. Note that F(0)=1 and F(10)=0. Hence,

the above specified function for F(w) is appropriate as it satisfies the desirable properties described in the
previous section.

Second, in regards to the function G(u|o(w)), where o(w)=cF(w), we adopt an arc-tangent type
function as its first order derivative is non-negative and the second order derivative is non-positive, with
respect to u, for all u>0. After specifying the functions for F(.) and G(.), we have a model for Z as
follows

Z(u,w) = ZyF (w) tan Y (u/oF (W) + ¢ ()
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where Zo>0 and ¢ >0 are the parameters to be estimated, and F(w) is defined in Equation (3). Further,
since tan'(.) ranges from [0, n/2], Zox(2/m) is the asymptotic runs to be scored in infinite overs under the
rules and general strategy of the T20I cricket. The model in Equation (4) satisfies the four properties
described above. It is a flexible model and can adapt to particular runs scoring patterns, and provides a
superior fit to data than the Duckworth/Lewis original.

5 Results

We obtained data on all historical T20I Cricket matches, played from February 2005 to September
2016, from the www.espncricinfo.com website in October 2016. During this time, a total of 570 matches
were played though, 14 matches ended with ‘no result’ (due to weather interruptions) and were discarded
from the sample. Non-linear weighted least squares was used to estimate the model parameters, using the
Levenberg-Marquardt algorithm (LMA) provided in R package minpak.Im written by Timur et al. (2016).
The observed and fitted curve is provided in Figure 1.
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Figure 1: Plot of observed and fitted mean remaining runs versus overs left (u) for T20I data. Top
line is for w=0 (no wicket lost), and the bottom line is for w=9 (nine wickets lost).

The model in the equation (4), is suitable in matches when the pattern of scoring is “normal”.
However, for well above average runs scoring matches the relationship between Z and u should tend to
be more linear, in the range [0, 20]. This implies that the over-by-over runs scoring potential tends to
uniformity as the run-rate tends to increase for any given number of wickets lost. Therefore, a new
parameter, A (>1), is introduced in equation (4) that allows the parameters ¢ and Z, to be scaled up, in
order to allow the relationship between Z and u to be more linear in range [0,20]. Hence, introducing the
parameter A, equation (4) is rewritten as follows
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Z(w,w, ) = ZopA"™W*E(w) tan~ (/O W F(w)) + & (5)

The parameter A can be estimated based on the total runs scored by team 2 in 20-u overs at the end of
the T201 match. Therefore, the value of 1 is dynamic and varies from match-to-match. For average or
below average runs scoring matches the values of 4 is equal to 1, otherwise its value will be greater than
1, depending upon how much team 2’s runs are deviating from the average runs in 20-u overs. In our data
the average first innings total runs of the T20I cricket matches is equal to 152.2. Estimation of A, is done
in similar fashion as discussed in McHale and Asif (2013). In the following paragraph, using a real
example, we explain the need of introduction of parameter A.

On January 10, 2016 New Zealand (NZ) were set a target of 142 by Sri Lanka. They reached 147
runs in just 10 overs for the loss of just one wicket. Clearly, NZ scored with an exceptionally high run-
rate (14.7 runs per over) which was well above the average for T20I cricket. If we use equation (4) to
estimate the margin of victory (in runs), then NZ’s expected remaining runs in the remaining 10 overs,
with a loss of one wicket, is 233. That is clearly an unrealistic and over-inflated estimated number of runs
to be scored in the remaining 10 overs. As a consequence, NZ’s estimated runs margin of victory is 238
in a T20I cricket match. In contrast if we use equation (5) then our estimated value for A, based on team
2’s score (S;=147, w=1, and u= 10), is equal to 1.40. Hence, the expected remaining runs based on
model in equation (5) is approximately 150. As a result, New Zealand’s victory was by an estimated
margin of 155 runs, and is the second greatest victory ever in T20I history.

Table 1 presents the top 20 largest winning victories in T20I history. Top of the table is Sri Lanka,
who won against Kenya by a record runs margin of 172 runs at Johannesburg, South Africa. It is the
greatest victory ever (by runs margin) by any team 1 in T20I cricket, and is indeed estimated as the
biggest winning margin ever. In second place is New Zealand, who were victorious versus Sri Lanka.
Since New Zealand batted second, the margin of victory in terms of runs is estimated from our model as
155.
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Table 1: Largest margins of victory in T20 International history: February 2005 to September 2016.

Date First Innings Second Innings Winner Traditional Balls Left Runs Differential
Team 1 Score | Overs | Team 2 Score Overs Margin
14/09/07 | Sri Lanka 260/6 | 20 Kenya 88/10 19.3 Sri Lanka 172 runs 172
10/01/16 Sri Lanka 142/8 | 20 New Zealand 147/1 10 New Zealand 9 wickets 60 -155
14/03/12 | Kenya 71/10 | 19 Ireland 7210 7.2 Ireland 10 wickets 76 -153
24/03/14 Netherlands 39/10 | 10.3 Sri Lanka 40/1 5 Sri Lanka 9 wickets 90 -142
22/03/12 Canada 106/8 | 20 Ireland 109/0 9.3 Ireland 10 wickets 63 -139
03/02/10 | Bangladesh 78/10 | 17.3 New Zealand | 79/0 8.2 New Zealand | 10 wickets 70 -139
12/09/07 | Kenya 73/10 | 16.5 | New Zealand | 74/1 7.4 | New Zealand | 9 wickets 74 -138
07/06/09 | South Africa | 211/5 | 20 Scotland 81/10 15.4 | South Africa | 130 runs 130
09/07/15 | UAE. 109/10 | 18.1 | Scotland 110/1 10 Scotland 9 wickets 60 -124
20/09/07 | Sri Lanka 101/10 | 19.3 | Australia 102/0 10.2 | Australia 10 wickets 58 -117
21/09/12 | England 196/5 | 20 | Afghanistan 80/10 17.2 | England 116 runs 116
02/02/07 | Pakistan 129/8 |20 | South Africa | 132/0 11.3 | South Africa | 10 wickets 51 -113
23/02/10 | West Indies 138/7 |20 | Australia 142/2 11.4 | Australia 8 wickets 50 -110
13/10/08 | Zimbabwe 184/5 | 20 | Canada 75/10 19.2 | Zimbabwe 109 runs 109
30/09/13 | Afghanistan | 162/6 | 20 | Kenya 56/10 18.4 | Afghanistan 106 runs 106
03/03/16 | U.AE. 81/9 |20 | India 82/1 10.1 | India 9 wickets 59 -105
30/12/10 | Pakistan 183/6 | 20 | New Zealand | 80/10 155 | Pakistan 103 runs 103
01/07/15 | Netherlands | 172/4 | 20 | Nepal 69/10 17.4 | Netherlands 103 runs 103
20/04/08 | Pakistan 203/5 | 20 | Bangladesh 101/10 16 | Pakistan 102 runs 102
13/06/05 | England 179/8 | 20 | Australia 79/10 14.3 | England 100 runs 100
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6 Conclusion

The margin of victory is an important statistic in sport as it reflects not only the relative team
performances in any one game but can also be used as the basis of forecasting models for future match
results. In cricket the measuring margin of victory is not straightforward as the available information at
the end of the match depends on whether the winning team batted in the first or in the second innings.
However, the problem can be resolved if the number of runs team 2 would have achieved, had they
continued batting are estimated. For this purpose, a Generalized Non-Linear forecasting model is
proposed to project the expected runs to be scored in the remaining u overs such that w is lost. Some
properties are associated to the model that are essential for the runs scoring in the Limited Overs
International (LOI), for example T20I.

The proposed model does not directly estimate the runs margin of team 2’s victory, but can be used
to project the second innings runs total. In future work we plan to assess the goodness-of-fit of the model
and develop a team ratings model which takes account of margin of victory. Here, we use the model to
shed light on the largest margins of victory in T20I cricket history. To date, it appears that Sri Lanka’s
172 run victory over Kenya in 2007 is indeed the biggest win ever.
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Abstract

The aim of this paper is to study and simulate a classical Darts-501 match using Markov
chains to describe score evolution. The Markovian approach, indeed, fits the problem since
the probability of obtaining a certain score at each step depends only on the result of the last
throw and on the score at the previous step. We first study the single dart throw, in order to
determine the probability distribution on the dartboard and calculate the probability of hitting
each score region, fixed an aiming point; these preliminary results have already been studied in
other works. Then, we determine the best strategy the player would choose at each step and we
construct the transition matrix of the Markovian process describing the score. We simulate the
whole match obtaining results about the average number of steps needed to win it and about the
chosen strategies at each step, that both depend on player skill. It is interesting to observe the
influence the variance on the player throws has on these data.

1 Introduction and game rules

In this paper we construct a model that describes a whole dart match of a single player and then any
chosen number of players. After a first part in which we describe the probabilistic model we will construct
the transition matrix of the closing part of a match depending on the initial variance of the player studied, in
order to simulate many matches and then study results such as average duration in terms of throws and stra-
tegies more suitable for each player. To solve this problem we have to make a choice of best strategies that
takes in account all possible evolutions of the match in order to construct the transition matrix. This gives us,
in the end of our simulation, knowledge of the best strategy given the initial variance on the player’s throws.

Darts game consists of throwing little darts at a dartboard, scoring an amount of points that depends on
where the player hits the target. The regular dartboard is circular, with a diameter of 453 mm and its center
is 173 cm above the ground. The player stands at a distance of 237 cm from the dartboard plane. At each
round of the match, the player throws a series of 3 darts and subtracts the scores obtained from the initial
total of 501 points, then the match ends when someone gets to 0 points, with a double score at the last throw
(see explanation later). The dartboard is divided in 20 slices of equal area, numbered from 1 to 20, as in the
figure below, and the center has a central spot called inner bullseye and a small ring around it which is the
outer bullseye. There are two more rings at a certain distance from the center that double or triple the score.
Let’s see how the player scores:

*Universita degli Studi di Padova
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* hitting a slice, neither the center nor one of the additional rings, scores the slice number;

* hitting the double ring (outer ring), at a distance from the centre from 162 mm to 170 mm, scores twice
the slice number;

* hitting the inner ring, or triple ring, at a distance from 99 mm to 107 mm from the center, scores three
times the slice number. Notice that triple 20 is the highest possible score;

* the outer bullseye gives 25 points; and the inner bullseye gives 50 points counted as double (diameter
12,7 mm);

* no score is given if the dart misses the dartboard and throws that lead to negative total score, 0 points
without a final double score and 1 point.

Double ring
) _Triple ring

Using darts-501 rules all dartboard regions are always allowed and no maximum throws number is set.
The match must end with a double score that leads one of the player to O points. At each round the player
does not have to throw all the 3 darts in his hand, so that at the end he could win at the first or second round
throw.

2 Distribution function of a single throw

Since our final aim is to study the evolution of a whole match, we firstly need to examine what happens
during a single throw. The purpose of this section is to find a probability distribution on the dartboard,
which is function of the target point chosen. This will be useful in order to describe our method in the next
section and to obtain results from simulations. We can describe the dart throw with the laws of parabolic
motion; we choose a Cartesian coordinate system such that the x axis is orthogonal to the dartboard plane
and the y and z axes are parallel to the target. Let the initial point of the dart in player’s hand be the origin
of such coordinate system, so that the target stays at a distance x = d, where d = 237cm. Hence, the y and
z coordinates represent the position on the dartboard and they describe what we will call from now on the
target point (d,y,z). Let V = (vy,vy,v;) be the starting velocity; then the intersection of dart’s trajectory with
the plane x = d gives the hit point on the target (or out of it if the player misses the throw). From Physics we
have the following equations:
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d=vt

y:vyt (1)
2

z=vi— 51

Hereafter we assume that the velocity component v, is fixed; in our single throw simulation we choose
the value v* = 17882mm/s ( source: [1]), the average speed of a dart along the shooting line. From the
system (1) we can find the hit point:

2
Vy Vg gd
xy,2)=\d,—d,—d—=—|.
(7y7) ( ’Vx 7VX 2‘)-%)
To model the single throw we want to decide a target point, based on the score that the player wants to
achieve. This information gives an associated target speed v, i.e. the speed at which we should throw the dart
to hit precisely the target point.

We calculated also the same results using spherical coordinates; it is indeed useful a spherical approach
during simulation to obtain an easy description of target regions.

Notice that the simulation uses two more assumptions: we decided that a player always shoot at the
barycenter of the chosen score region and if there is not a unique region which gives a certain score the
player will choose the one with greater area (easier to hit).

Now that we have a correspondence between initial velocity and achieved score we can construct the
density as a function of the target point. We suppose that the components of the velocity, that will contain
an error, have a normal distribution. Hence, we suppose that the shooting effective speed is V = (vy,vy,v;) ~
</V3(_V', Y), where ¥ = diag (GXZ, Gf, Gzz) is the covariance matrix, as we can assume that velocity errors are
independent. ¥ depends on the ability of the player. To dramatically simplify the density function, i.e. to
make the numerical integration much easier, we can assume, as mentioned previously, v, to be fixed and
condition on the speed v,. Moreover, as the velocity components are independent we obtain:

fﬁ(an Vy, Vz) = fW(VX)fW(Vy)fW(VZ>-

Based on the assumptions we have made and taking advantage of the previous equality we want to write a
density function of (y,z) conditioning on v,. We notice that the coordinates y, z that are hit at each shooting
have normal distribution, in particular:

— 252
y~ N (wt,i*0;)
z~/<ﬁt—§t2,t26§).

This allows us to write the joint density function of y and z as a bivariate normal. And we should rewrite this
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funcion in polar coordinates (p, 6):

f58(P.0)=f5:(v(p.0).2(p,0))p

1 (p cosO —vj,t)2 (psin® —v;t + %IZ)Z @
210,027 21262 267 .

=p

2.1 Score optimization on a single throw

The most convenient strategy during the first part of the match consists of trying to decrease the score
as fast as possible until 170 points are reached. Here we enter the final part of the match which we will
examine later. So, at first, we want to get a high average score, and we have to find what is the most suitable
target region depending on the player variance. We maximize the expected value, varying the target region,
in order to find which sector gives the best strategy for the player. Hence, we can use the density function,
that we have found in the previous section, to calculate the expected value as a function of the target point
region. We use the following integral:

Ensc)= [ 5(0,0)fu(p,0)dpd6 =
R1U...URg3
83
=Y [ S(p.0)(p.0)dp 6 =
i—17/Ri

83
=Y'S R | fu:(p,0)dpd6
i=1 |R’ R;

where s is the target score, the function S gives the score correspondent to the hit point (p, 6) on the dartboard
and f is the density function (2). Notice that the integral splits in a sum of integrals over the 83 possible
score regions R; and that the function S is constant when restricted to each of them.

3 Construction of the closing process

At 170 points we enter the final part of the match, when it is possible to win the game using at most 3
darts. There are just a few cases (e.g., 159, 169, ...) for which this is not possible and we will see later how
to deal with them. As we are interested in studying the closing strategies and the average time duration of
the game, we decided to model this part of the match with a stochastic process.

o Let E={0,2,3,4,...170} be the state space, containing all the possibile total scores up to 170. Notice
that 1 is excluded, because rules cancel scores that lead to 1, state which make it impossible winning
with a double score.

o LetS={1,2,3,...,20}U{2,4,6,...,40} U{3,6,9,...,60} U{25,50} be the set of all the total scores
achievable with a single throw.

* Let {X,},~( be the stochastic process that describes the total score achieved after the n-th throw and
such that X is the maximum of the total scores s reached during the match such that s < 170.
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The process {Xn}n20 is a discrete time Markov chain with state space E. Indeed, the probability of reaching
the state j € E after the (n+ 1)-th throw depends only on the total score at the n-th one and on the last throw’s
score; as we can see the Markov condition is verified:

IP>[Xn+1 = ]|Xn =05,Xp—1=ln-1,---,X0 = iO] = P[XnJrl = ]|Xn = i]-
Indeed, defined the random variable L; of the score achieved at the i-th throw, we get

* IED[XnJrl = J|Xn = i] ]P[Xn _Xn+l = i_j’Xn = i]

— IP[LHI - i_j‘Xn - i]
:P[LnJrl = i_ﬂ;
PX,o1=j,X, =i, X,—1 = ipn-1,...,X0 = I
C P[Xo1 = X = i, Xt = in 1o Xo = o) = Dt =Xy = X =, X0 = i)

PX, =i,X, 1 =in1,...,Xo0 = io]
CPlLuyi=i— . Xe =0, Xp-1 = in—1,...,Xo = o)
N PX, =i,X, 1 =in_1,...,Xo = io]
Pl =i— jIPXy =i, X1 = in1,...,Xo = io]
- PX, =i, Xy 1 =in_1,...,X0 = i)
=P[L,=i—j].

The state 0 is an absorbing state and marks the end of every match. We now need to study the transition
matrix of the process.

3.1 Transition matrix

In order to construct the transition matrix of the closing process, we have to notice that the transition
probability between states in E depends on the chosen strategy, or in other words on the target score decided
for the next step. We will chose an optimal strategy associated with each state i € E, so that is now possible
contructing, one row at a time, the transition matrix P. It has the following structure:

* poj = &y since 0 is an absorbing state;

* pij > 0if and only if it exists s € S such that j =i — s and the states are not (i, j) with i odd and j = 0.
Transition probability is non zero if the player can move from i total score to j with a single throw
(double score if we are going towards the absorbing state);

* pij =0 when i < j as follows from the previous point. Notice that P is a lower triangular matrix;

* given i € E and the next target score s € S, we find p;; integrating the density function (2) relative to s
on the regions that give i — j score. Thus, we say when i > j that:

pij:/ f5.6(p,0)dpd6.
Riij)

Here p, 6 is the target point correspondent to the optimal strategy and R(;_j) is the union of all regions
that allow to score as wanted. Notice also that when we consider p;y integration area must not contain
all score regions that give i points not double.

we are interested in studying absorbing properties in 0.
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3.2 Choice of strategies

We want, hence, to choose a unique optimal strategy (or better target score) for each total score in the state
space. We suppose that the player will find the best strategy taking on account sequences of 3 consecutive
throws, as happens during a multi-player match. We decided to make the following hypotesis:

* if a certain state admits a single-throw closing strategy we choose that one as optimal. We decide
to always prefer these ones to other strategies with 2 or 3 throws since more throws give more error
possibilities. Moreover if the player does not win the match he has 2 more steps to do it before moving
to other player’s rounds. States that allow a single-throw strategy are i € {2,4,6,...,40,50};

* if we cannot win with at most 3 thorws we just maximize the average score as seen in (2.1); e.g.
i=169,159,..;

* otherwise we choose as optimal startegy a 2 or 3 throws one that generates the i-th row in the transition
matrix, such that gives the minimum average absorbing time ki{o} in {0}, starting from i. We construct
the set 7" := {h € S : exixts strategy from score i with / as first target score} and we want to find a
solution of the following linear system of equations:

JEE VYhe', 1=0,1,....i 3)
K=o

where kl{o}’h is the average absorbing time in {0} starting from i and chosen the strategy /; pf’j is the
transition probability between [ and j supposed # as target score. When we know the solutions relative
to every strategy we can choose the strategy with target score h € ¢ such that:

kfo}’ﬁ _ hrgrfl, {k;{O},h} _

as optimal.

Notice that there exists a solution of the linear systems (3) since the transition matrix is lower triangular;
thus we can construct optimal strategies beginning at i = 2.
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Algorithm Construction of transition matrix.

1. Let the first row p;j—og = 0
2. Fori=2,...,170:

(a) Find, if any exists, the 1-throws strategy and use it to compute the vector of
probabilities p; equal to the i —th row of the transition matrix.

(b) If 1-thrown strategy does not exist, find the n 2-throws and 3-throws strate-
gies.

(¢) Forj=1,...,n:

i. Compute the vector of probabilities p{ for the i-th row of transition
matrix.

ii. Compute the mean absorption time from state i to 0.

(d) Choose the strategy j which plj produces the minimum mean absorption time
from state i to 0. Let p; = p] .

(e) If n =0, compute p; choosing bestdown as strategy.

3.2.1 Multi-player hypotesis

We can also consider a match between two players. In this case, a player that has positive probability to
end the match in his round could choose a strategy that allows him to do it, even if it is not the best strategy
considering the average absorbing time. If a player has still two darts available, he chooses a good two-
throws strategy rather than the best three-throws strategy that increases the possibilities for an other player
to play his round and maybe to win the match.

Taking account of this possibility means changing the transition matrix: we triple each state that from
now on will be a couple (i, j), with i the total score and j the remaining darts of the current round. So the
states are now E = (2,1)(2,2)(2,3)(3,1)...(170,1)(170,2)(170,3)) and the transition matrix has 508 states
(we do not triple the first one since it is an absorbing state). When a player has a single throw left the next
state will have second component 3.

Notice that we have positive transition probability between two states only if remaining darts decrease.
Formally if a := (i, j), B := (I, h) are two states the transition probability pg is non zero if and only if we
have same conditions as before on the first component about the score and also 2 = j—1 or h = 3 if j was
1. Thus it is possible to construct iteratively the transition matrix by inserting blocks of three lines such that
they get a minimal solution to the linear system for absorbing times. In the place of each equation of the
single-player system we have now:
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with notation as in the previous case of single player. It can be easily seen that the system has still a
solution, as the transition matrix is nearly lower triangular. In this way it is possible to compare all different
combinations of three strategies (one for each number of remaining darts) that allow to end a match at a given
score. In order to satisfy the initial condition of this paragraph, we imposed that a player in a state of the form
(i,2) chooses only one-throw or two-throws strategies (if any exists). The choice among the combination of
strategies is made by comparing the average of the three absorbing times, because the problem is symmetric
on the number of darts in hand. This definition of the problem allows us to extend the modelling of a match
to any number of players.

4 Simulation results

We supposed in the previous sections the distribution of the single throw to be normal. As it is known the
equidensity curves of a normal distribution are circumferences when variances of both components of the
aleatory vector coincide. If the components are on a certain ratio we can find other curves such as ellipsis.

Equidensity Circolar Curves Equidensity Elliptical Curves

Thus we simulated both situations, studying at first the symmetric hypothesis. On the other hand, when
considering asymmetric case we supposed variances to be such that O'Z2 = 30‘3, which means a higher error
on the vertical component of velocity. Notice that the images above show that the asymmetry is not really
pronounced and this is a reason that explains why the two cases give slightly equal results during simulation.

We used Monte Carlo method to simulate the matches, on a basis of 10.000 matches and testing 8
different dispersion radii for both density functions, symmetric and not. So we simulated a total amount of
160.000 matches. We define the dispersion radius as the radius that cuts a circular region on the dartboard
which the 95 percent of the player’s throws hit; so this parameter is a valid precision indicator, that helps

studying how results vary at different player’s skills. Precisely dispersion radii are 20, with ¢ being the
common standard deviation in the symmetric case. In the other setting we use: 0, = 1/36% ¢ 0, =
VV/362. We implemented a script that using our model simulates the whole match and constructs the

transition matrix as explained. There are some data that are interesting and were studied after simulation:

* Bestdown: target score of the first part of the match, that gives the maximum average score at each
throw;
* Pbullseye: probability of hitting the inner bullseye aiming at it;
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* Peye probability of hitting the inner or outer bullseye aiming at the inner bullseye.
* Kmax, Kmin, Kmean: maximum, minimum and mean of the mean absorbing times of the transition
matrix, respectively.

As noticed before we find similar results in both the different settings and this is due on one hand to ap-
proximation errors and on the other to the slightly small asymmetry of the variance. Moreover variances
were chosen such that the level curves of the bivariate normal distribution define the same area in both
corresponding circular or elliptic shapes, in order to better compare results.

Closing mean times for players Closing mean times for players
with symmetrical variances with asymmetrical variances
o ¢ Mean - * Mean
9 7| + Confint 9 7| * Corfint
® Std Dev. * Std. Dev

200
1
200
1

Closing mean times
150
|
Closing mean times

100
I

50

0 20 40 60 80 0 20 40 60 80

Initial Std. Dev. Initial Std. Dev.
Figure 1: Average match duration

Results are reasonable since it is evident that the higher player’s precision (or equivalently the smaller dis-
persion radius) the less steps are needed to end a match, as expected; we see that also standard deviation
associated to the average duration of a match drops. That behaviour is evident in graphs of Figure (1).

Looking at Bestdown values (see tables at the end), we can understand how heavily the initial variance
of a player influences the strategy, also during the first part of the match. Each player will choose, in our
hypotesis, a constant strategy until they get 170 points or less for the first time. In particular, we see that
if r < 31.875 mm the best average score is obtained aiming at triple 20. Otherwise for player’s who have a
high dispersion radius the best average score is achieved aiming at the bullseye in order to be quite certain at
least of hitting the dartboard. Between these particular cases there are a lot of intermediate data which can
be seen in the table (2) at the end of this paper.

An idea of the evolution of the whole match in our simulation is given by graphs of Figure (2) that are
respectively referred to players with dispersion radii 25 mm and 50 mm. Here the two different parts of a
match are evident; indeed in the first part of the graphs the target score is constant and so the strategy, which
is the one that leads as fast as possible to reach 170 points or less. Then the strategy varies depending also
on mistakes occurred and this happens in the ending part. Since we have avoided the trivial case of a very
precise player there is sometimes a gap between target score and hit region.

It is interesting saying something else on the relation between average match duration and player’s dis-
persion radius. We would like to see what distribution have the number of throws needed to win the match,
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Figure 2: Evolution of the whole match

varying the player’s ability. As we know the higher the dispersion radius the higher number of steps will last
a match. We could also expect that the average duration range widens when there are a lot of independent
repeated trials. Indeed looking at the graphs in Figure (3), we see that the empiric frequencies converge at
a continuous curve when the player in not precise, while they keep discrete for good players. The reason is
that the last ones win the match with always nearly the same number of throws.

Histogram: Number of shots to close the match Histogram: Number of shots to close the match
r=25mm r=50mm
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—— Mean — Mean
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Figure 3: Histograms of number of throws

Finally, we can see a comparison between the different curves that approximately fit the histograms:
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Figure 4: Non parametric kernel density estimation of number of throws

4.1 A simulation with empirical data

The aim of the paper was to prove how the Markovian approach to darts increases the performances
choosing the best possible strategy in every round of the match. Thus, in this section, we show an example
of how our algorithm works if the probability matrix that describes the distribution on the dartboard for every
possible target is known. Our data were collected by the repetition of one hundred throws for every target on
the dartboard. Hence, we compare the performances of two virtual players with the same probability matrix,
that means the same precision on the single throw, with a Monte Carlo simulation of 10000 matches for both
of them. The only difference between the two players is the choice of strategies for every dart throw: the
first player (Smart Player) takes advantage of the Markovian approach, whereas the second player (Naive
player) uses a more intuitive and naive strategies in this order:

* if any 1-throw strategies exists, player chooses it;

* if any 2-throws strategies exists, player chooses one of them;
« if any 3-throws strategies exists, player chooses one of them;
 otherwise player targets T20.

The outcome, presented in table 1, shows a remarkable difference in closing time, shorter and less variable
for Smart Player. This result could make the difference between winning or losing a real match. Thus, we
are able to assert that the approach explained in this paper can give an actual competitive advantage to the
player, whatever will be his single-throw distribution if it allows to define probabilities on the dartboards
sectors for every target region.
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M 95% CI for M sd P 95% CI for P
throws throws throws

Smart Player 32.19  (32.03; 32.35) 7.98
Naive Player 36.38  (36.20; 32.56) 9.01

0.623  (0.614; 0.632)

Table 1: Comparison of results in a simulation with real data.
M: average of number of throws to close the match.
P: probability of winning for Smart player versus Naive player

5 Conclusions

We tested our model and it proved to work and produce reasonable data. We studied empirically how
the initial variance influences the choice of strategies during a dart match and average duration of a match.
It is important to notice that once we have constructed the transition matrix of a player we can know exactly
what his best strategy should be, varying how the match goes on. In our paper we have chosen as reasonable
optimization criterion the mean time of absorption, but we have not given a proof that it is the best criterion
among the several indexes of the distribution of times absorption. These may be investigated in future.
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Score Sym Variance Player Asym Variance Player
1-throw str.  2-throw str.  3-throw str. \ 1-throw str.  2-throw str.  3-throw str.

48 16 16 16 16 16 16

49 T 14 T11 T 14 T 14 17 T 14
50 D25 D 25 D25 D 25 D 25 D25
51 19 19 19 19 19 19

52 T 16 T 16 T 16 T 16 T 16 T 16
53 T 17 T17 T17 T17 T 17 T17
54 T 14 T 14 T 14 T11 T 14 T11
55 T 17 T17 T17 19 19 19

56 T 16 T 16 T 16 20 20 20

57 T17 T17 T17 T17 T17 T17
58 T 18 T18 T 18 T 18 T 18 T 18
59 T19 T19 T19 T19 T19 T19
60 T 16 T 16 20 T8 T8 T8
61 T19 T19 T19 T19 T19 T19
62 T14 T14 T14 T 14 T14 T14
63 T 14 T11 D25 T 14 T11 T 14
64 T 16 T 16 T16 T8 T8 T8
65 T19 T19 T19 T 14 T11 T 14
66 T 16 T 16 T 16 T 16 T 16 T 16
67 T 14 T11 T 14 T11 T11 T11
68 T 14 T14 T9 T 14 T 14 T 14
69 T7 T19 T7 T11 T11 T11
70 T 14 T 14 T 14 T11 T 14 T11
71 T7 T7 T7 T7 T7 T7
72 T 16 T 16 T 16 T8 T 16 T8
73 T19 T19 T19 T 14 T11 T 14
74 T7 T 16 T7 T7 T 14 T7
75 T7 T19 T7 T8 T19 T8
76 T 20 T 20 T 20 T 20 T 20 T 20
77 T7 T19 T7 T11 T19 T11
78 T19 T 14 T19 T11 T 14 T11

Table 3: Comparison between the optimal strategies of two players with a dispersion radius of 70mm for some scores.
We can notice that asymmetric player prefers to target the more vertically elongated sectors (e.g. T11 rather than T14)
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Abstract

A framework for quantifying the influence of an individual competing in a limited overs game of cricket is
outlined. Using ball-by-ball data, a resource model is constructed using an isotonic regression and MCMC
Gibbs sampling procedure. As a consequence, the impact of an action relative to the current match state
can be evaluated. This comparison of observed outcome to an expected outcome on a ball-by-ball basis
enables real time player tracking. The cumulative impact of these batsmen-bowler interactions allows
individual influence in a match to be quantified. The developed finalized model is validated through live
and static application.

1 Introduction

Cricket is a team game based on the balance of two key resources: 1) balls and 2) wickets. Simply, the
batting team that utilizes these two resources most effectively will win the match. As an inning progresses,
the total number of resources allocated to the batting team decreases. The batting team aims to score as
many runs as possible given an allocated number of resources (balls and wickets), while the bowling
teams aims to restrict the total number of runs conceded, by taking wickets. The bowling teams overall
goal is to deplete the batting team resources as quickly as possible for the least number of runs. This is
evident in limited overs matches, where each team bats only once with a maximum number of overs
specified.

The first innings batting team is assigned the task of optimizing the total number of runs scored given
two resource constraints: 1) balls and 2) wickets. As wickets are lost batsmen value decreases as they go
down the batting order after the initial 4-5 batsmen (Duckworth & Lewis, 1998). The team batting second
is assigned the task of outscoring the first batting team, given the allocated resources. The first innings
reaches completion when all resources have been depleted, while the second innings reaches completion
when all resources are depleted or the team batting second has achieved the target score. “The
optimisation exercise in either team’s task involves choosing some compromise between scoring fast and
hence taking higher risks of losing wickets, and playing carefully and hence risking making insufficient
runs” (Duckworth & Lewis, 1998, pg. 220).

The core of cricket is intertwined with numerical values that ultimately translate to a match result.
However, given its numerical depth there is scarce academic and commercial literature regarding the
application of analytical techniques within cricket, relative to other sports. The most notable application of
analytics within cricket is the Duckworth Lewis (1998) resource allocation method. Duckworth and Lewis
(1998) developed a framework which mathematically allocates resources, balls and wickets, in order to
appropriately reset or recalculate target scores during interrupted one-day cricket matches. Generally, this
framework is currently implemented by the International Cricket Council (ICC) as the primary method to
recalculate the target score during an interrupted limited overs cricket match.
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2 Literature Review

Although there are a small number of published articles on the application of analytics within cricket,
there is increasing analytical literature and the adoption of predictive methodologies at the professional
level. It has been noted that “during the past decade a large number of academic papers have been
published on cricket performance measures and predictive methods” (Lemmer, 2011, pg. 1).

Critically, there remains an academic and commercial gap surrounding real-time or dynamic predictive
rating systems. Proceeding is a review of the most notable academic literature outlining the application of
statistical techniques to ball-by-ball cricketing data:

Clarke (1988) applied a dynamic programming model to one-day cricket to: 1) calculate the optimal
scoring rate, 2) estimate the total number of runs to be scored in the first innings and 3) estimate the
probability of winning in the second innings. These estimates are derived during any stage of an innings.
The first innings formulation allowed the development an ‘optimal scoring model’ outlining a team’s
optimal scoring rate (i.e. runs per over) to obtain a given expected total, for any given number of wickets
in hand and balls remaining. The second innings formulation enabled the development of a ‘probability
scoring table’ outlining the probability of the second innings batting team scoring the target total, for any
given number of wickets in hand and balls remaining.

Similarly, Davis, Perera and Swartz (2015) developed a T20 simulator that calculated the probability of
a first-innings batting outcomes dependent on batsmen, bowler, and number of overs consumed and total
wickets lost. These probabilities were based on an amalgamation of standard classical estimation
techniques and a hierarchical empirical Bayes approach, where the probabilities of batting outcomes
borrow information from related scenarios (Davis et al., 2015). Simulation suggested that batting teams
were not incrementally increasing aggressiveness when falling behind the required run rate.

Swartz, Gill and Muthukumarana (2009) developed a discrete generator simulator for one-day cricket.
Applying a Bayesian Latent model, ball-by-ball outcome probabilities were estimated using historical ODI
data and were dependent on batsmen, bowler, total wickets lost, total balls bowled and current match
score. It was found that the proposed simulator produced reasonably realistic results, with the actual runs
and simulated runs revealing an excellent agreement. Moreover comparing wickets taken, the actual
results compared favorably with simulated results.

Duckworth & Lewis (2005) developed real time player metrics, using the Duckworth-Lewis
methodology, to evaluate player contribution at any given stage of an innings, producing context based
measures. The developed metrics were 1) Batsmen average run contribution per unit of resources
consumed and 2) Bowlers’ average runs contribution per unit resources consumed. Applying these
measures to the 2003 VB series final (Australia vs. England) it was shown that the Duckworth-Lewis
based contribution measure were less susceptible to distortions compared to traditional performance
metrics.

Brown, Patel and Bracewell (2016) investigated the likelihood of an opening batsman surviving (i.e.
not being dismissed) each ball faced over the course of an innings. Using model formulation and selection
techniques, Brown et al. (2016) developed a contextually and statistically significant Cox proportional
hazard model that was capable of predicting the probability of survival for any opening batsmen (i.e.
opener), given certain model conditions. Practically and statistically significant predictors were: 1)
cumulative number of runs scored, 2) cumulative number of consecutive dot balls faced and 3) cumulative
number of balls faced in which less than two runs in four balls had been scored. The results illustrated that
as the magnitude of the three predictors increased for a given opener, the associated survival probabilities
for the batsman either remained constant or decrease on a ball-by-ball basis.
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3 Research Question

The objective of this research was to develop a real-time predictive system that measures the amount of
influence a player exerts on a T20 match during any stage of an innings. The development of this real-time
system has considerable implications for a variety of stakeholders, such as players, coaches, managers and
franchise owners. Addressing this research question players can isolate specific match scenarios in which
individual performance drops or increases, indicated through match influence score. Moreover coaches
and managers can apply the model results to create effective, player specific training regimes, determine
optimal batting line-ups, player-selection decisions and in-game strategies. The goal of this research was
to develop a real-time predictive system that focused on measuring a player’s T20 influence within the
team context.

4 Research Methodologies

4.1 Influence Definition

To identify a player’s influence during any stage of a match, performance metrics that affect match
outcome needed to be established. The type of performance metrics needed to accurately calculate players
match influence were identified through expert opinions. Expert referral suggested three key dimensions
in order to identify influence: 1) volume of contribution, 2) efficiency of contribution and 3) contribution
under pressure.

5.2 Research Methodologies

To effectively measure a player’s ball-by-ball influence a number of conventional performance metrics
were not applicable, as many are undefined during a match, while others rely on the occurrence of a
particular event in order to be defined. Moreover performance metrics that are utilized in cricket are not
considered ‘advanced’ metrics; primary metrics are very traditional and are unobservable on a ball-by-ball
basis. Therefore the main challenge facing the success of this research was the creation and
implementation of features which were: 1) observable on a ball-by-ball basis and 2) defined during
various stages of an inning. Appendix A lists performance metrics and associated definitions.

5 Data

The model development process implemented ball-by-ball observations from the Indian Premier League
(2014, 2015, and 2016), Caribbean Premier League (2014/2015, 2015/2016), English NatWest T20 Blast
(2015/2016) and Australian Big Bash League (2014, 2015). These are T20 tournaments, where each team
can bat a maximum of 20 overs. The commentary logs for matches were programmatically extracted;
approximately 95,000 observations. Ball-by-ball data was extracted from ESPNCricinfo
(http://www.espncricinfo.com/). An automated scripting process was developed to extract and parse the
commentary log, and provide a more convenient data structure. The process extracted relevant details on a
ball-by-ball basis and stored the data in a tabular form for easy access; appendix B illustrates data structure
post extraction. Rain interrupted and abandoned matches were removed from the dataset. Moreover, the
models outlined throughout section 6.1-6.4 were built using 50% of the data for training and 50% for
testing.

6 Feature Creation Methodologies

This section outlines the methodologies implemented to extract features on a ball-by-ball basis. This
section contains the following subsection: Subsection 6.1 develops a T20 ball-by-ball resource table using
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the methodology outlined in Bhattacharya, Gill & Swartz (2011). Subsection 6.2 outlines a novel
method to calculate the expected number of runs scored by the batting team. Subsection 6.3 applies and
extends the survival analysis methodology, described in Brown et al. (2016), to second innings and non-
opening batsmen, generating survival probabilities for all batting positions. Subsection 6.4 outlines, the
method to derive an individual’s match influence.

The resources available during any stage of an innings was calculated using a modified Duckworth-Lewis
system developed by Bhattacharya, Gill & Swartz (2011), because the Duckworth & Lewis (1998)
resource allocation method was originally designed for one-day (50-over) cricket. Bhattacharya, Gill &
Swartz (2011) applied a Gibbs sampling scheme relating to isotonic regression to observed scoring rates to
produce a non-parametric ball-by-ball resource table. Over-by-over resource table results were
interpolated on a ball-by-ball basis. Isotonic regression is a technique to deal with such constraints. The
following minimization equation was considered:

F= minyuw 212121 23\1:0 Guw (Tuw — yuw)zﬂ 1)

where 1, is the estimated percentage of resources remaining where u overs are available and w wickets

have been lost:
_ mean[x(uw)]

Tuw = mean[x(20,0)]’ )
x(u, w) represents the runs scored from the stage in the first innings where u are overs available and w(u)
wickets have been taken until end of the first innings. The optimization is with respect to matrix y,,,,,
where the double summation correspondstou = 1, ...,20 and w = 0, ...,9 and q,,,, are weights.
The optimization problem is subject corresponds to the following constraints:

L Yuw Z Yuw+1

Yuw = yu+1w

Y100 = 100; forw=0,...,9
Yow = 0

Yu10 = 0;foru=1,...,20

gk~

A minimization with squared error discrepancy corresponds to the method of constrained maximum
likelihood estimation where the data 7, are independently normally distributed with means y,,, and

sample varlance—1 The results of the isotonic regression revealed a few limitations: 1. many adjacent

entries had the same value, due to the various fitted y’s occur on the boundaries imposed by the
monotocity constraint. 2. The resultant resource table suffered from incompleteness, missing values
corresponding to match situations where data are unavailable. Recognizing that the optimisation problem
arises from a normal likelihood, a Bayesian model, with y’s as unknown parameters was adopted.
Assigning a flat default prior to the y’s subject to the monotocity constraints. A posterior density with
form:

exp {_ %letgl Yv=0 Guw (Tuw — Yuw)z}; (3)

and Gibbs sampling can be carried out via sampling from the full conditional distributions:

1
' — =T \where n = sample size

qQuw
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1
[yuw I ]NNOTmal (ruwr m): (4)

subject to the local constraints on 1y, in the given iteration of the algorithm. In the spirit of Bayesian
statistics prior information is applied to import missing data by imputing missing y’s with Duckworth-
Lewis table entries. Knowing [ball-by-ball] resource availability allows the calculation of resources based
metrics, incorporating a ‘time’ factor and reveals how players are performing during various stage of an
inning and varying resource constraints. Resource availability will be a heavily used metric throughout the

paper.

To understand the ball-by-ball contribution an individual player creates, each ball outcome affected the
overall [expected] total was measured. For example, calculating the difference between the
expected total; and expected total;_q, ball-by-ball contribution measurements can be evaulated. For
example, if the current ball expected total = 129, and batsmen A hits a boundary four off the following
delivery, increasing the expected total to 135, the batsmen runs contributed = 6 (135 -129), while the
bowlers runs contributed = -6. Such performance metrics indicate player contribution at a team-level as
oppose to an individual level; explained by metrics such as batsmen strike rate, bowlers’ and economy rate
etc.

To generate contribution metrics, a [ball-by-ball] expected runs model was developed. Applying a
gradient boosted machine (GBM) algorithm with a Poisson distribution and 25,000 iterations, two separate
models (first and second innings) predicting the expected runs on a ball-by-ball basis were developed:

1. Model 1 utilized first innings data, total wickets, total balls, team strike rate, projected total, team
percentage boundaries, team runs, current run rate and resources remaining.

2. Model 2 utilized second innings data, team runs, total wickets, team strike rate, resources
available, projected total, team percentage dots, current run rate and team percentage boundaries.

Actual innings total results were benchmarked against predicted total. Table 1 outlines accuracy
measurements across the models.

Model | Accuracy Measurements

=z | Correlation | Adjusted-R*> | RMSE | MAE
=1

o 0.73 0.53 18.6 14.6
=

s

= 0.57 0.33 20.1 16.6
N

Applying and extending the methodology outlined in Brown et al. (2016) to second innings and non-
opening batsmen (i.e. top, middle, lower and tail), a batsmen’s survival probability (i.e. probability of
dismissal) for any given ball of an innings can be calculated. Brown et al. (2016) established 3 criteria
during the model development process: 1) Estimated model coefficients had to make practical sense, 2)
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decrease in resources availability leads to a decrease in the likelihood of a batsman surviving the next ball.
(As resources decrease, pressure increase causing greater risk to be taken on a ball-by-ball basis leading to
lower levels of survival), and 3) Probability of batsman survival decreased on a ball-by-ball basis as
resources are monotonically decreasing.

Models that complied with these criteria were kept in the candidate set. Table 2 outlines the metrics
that met the three requirements, and were statistically significant, across each of the five batting positions
(opener, top, middle, lower and tail), for the first and second innings.

Utilising a Cox proportional hazard modeling technique, the time taken to dismissal for a given
batsmen was implemented to represent the response variable. The total number of balls faced by a given
batsmen represented the time till failure (i.e. dismissal). The Cox proportional hazard model has the
following form:

Batsman Type

Innings
Opener Top Middle Lower Tail
71 | Contribution Strike rate Strike rate Strike rate Dots faced
=
§ Less than 2 in 4 total | Dots faced Dots faced Dots faced %Dots
>
&‘3 %Dots %Dots %Dots %Dots %Boundaries

Total contribution

Total contribution

Total contribution

Total contribution

Total contribution

Absolute Pressure Contribution %Boundaries %Boundaries Runs
0 Contribution Runs Contribution Contribution Strike rate
S
§_ Consecdottotal Contribution Strike rate Strike rate Dots faced
g' %Dots Strike rate Dots faced Dots faced Runs
} Absolute pressure Dots faced %Dots %Dots %Dots
Strike rate %Dots Total contribution | Total contribution | Total contribution

Table 2 List of 5 most statistically significant metrics across different batting types, across innings 1 and 2

h(t, X) = ho(t, a)eB'X), (5)

where hy(t, @) represents the hazard function at baseline levels of covariates, and varies over time, and a
is a vector of parameters influencing the baseline hazard function. The Cox model has the following
survival function:

S(t,X) = So(t, X, B)eX), (6)

where S,(t, X, B) represents the survival function at baseline levels of covariates. A right censoring
methodology was adopted as observations occurring at particular times but finish before the outcome of
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interest occurs are referred to as right censored observations (i.e. a batsman may not necessarily be
dismissed).

The validity of the Cox model relies on two assumptions: 1) the effect of each covariate is linear in the
log hazard function, and 2) The ratio of the hazard function for two individuals with different sets of
covariates do not depend on time. Both assumptions were met across all models.

To identify the optimal model for each batsmen type (i.e. open, top, middle, lower and tail) across the
two innings the study implemented the gimulti R package. The models implemented an exhaustive genetic
algorithm to explore the candidate set in conjunction with an AIC criterion to dictate model selection.
Genetic algorithms are very efficient at exploring highly discrete spaces, and have been used successfully
in related optimisation problems (Calcagno & Mazancourt, 2010). No interactions were considered and a
model with a minimum set of 3 and maximum set of 5 predictors were required. Final models declared
convergence.

A batsmen’s ball-by-ball survival probability was cumulatively aggregated to generate an area under
the curve (AUC) measure, indicating a batsmen’s overall match contribution (i.e. volume of contribution).
Brown et al. (2016) found that the AUC metric suitably measured a batsmen’s in-game contribution.

Given a player’s match influence is measured through their ability to effect match outcome (i.e. win or
lose), individual influence is dictated by match outcome. Each ball-by-ball observation was allocated a
‘first-inning match outcome’ and ‘second-inning match outcome’ indicator, indicating whether the first or
second inning batting team won or lost. A logistic regression and naive Bayes technique was applied to
identify the predictors that had a significant effect on match outcome, among batsmen and bowlers,
respectively. Four different models were developed: 1) 1% inning batting logistic regression model, 2) 1%
inning bowling naive Bayes model, 3) 2™ inning batting logistic regression model, and 4) 2™ inning
bowling naive Bayes model. Performance metrics that had statistical and practical significance on match
outcome are indicated in appendix A with and *. Examining the significant predictors it can be observed
that the created features have a statistical and practical effect on player influence score, validating the
hypothesis that the created features provide sufficient information relating to match outcome.

Given that the dependent variable, match outcome, is a binary variable, the model predicts a probability
of winning given a players current performance metric. The influence score is multiplied by 100 to
generate a dynamic [real-time] influence score, with higher values indicating better performance. The
influence models incorporate the 3 key contribution metrics: 1) volume, 2) efficiency, and 3) pressure.

Given the influence score represents a player’s propensity to influence match outcome, the average
[match] influence score, for each batsmen and bowler, across both the winning and losing teams, and
across innings 1 and 2 were compared. Conducting an ANOVA analysis on the different groups found
statistically significant differences among the average influence score across the eight groups (table 3).
Transforming the influence scores into binary variables (i.e. influence scores > 50, then influence score =
1, otherwise 0), the overall classification rate = 57% and Gini coefficient = 0.2, indicating limited
discrimination.

Match Result

Win Loss

sbuluuy

Batting | Bowling | p-value | Batting | Bowling p-value
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T
= 56.5 47.5 <0.002 52.6 47.6 <0.002
@
§ 58.4 45.6 <0.002 52.1 425 <0.002
o

Consequently, an examination of the time (i.e. over) during an inning in which a player’s influence score
begins to significantly (i.e. statistically) affect [final] match outcome was carried out. Because a players
match influence is generated from balll (i.e. balls faced or balls bowled), it is assumed that earlier inning
scores are not indicative of actual outcome, as a player would exhaust few deliveries to exert significant
match influence. Therefore, an ANOVA analysis was conducted influence scores occurring after the 5"
over. These results showed an increase in overall classification rate = 60% and Gini coefficient = 0.3
(AUC = 0.65), revealing the model results become increasingly accurate as the number of balls faced
(batsmen), and number of balls bowled (bowler), increases. This is an intuitive result.

These results show that the influence scores are indicative an individual’s ability to influence match
outcome, and capable of producing [dynamic] predictive player ratings. Moreover, the influence
methodology is currently being applied and evaluated in real-time, to the 2017 Indian Premier League
(IPL), by DOT loves data®. If the application of the models is deemed successful, the models will become
a coaching, player recruitment and risk-management product®.

Given that a player’s influence score is an indication of current match influence, it was assumed that the
average match influence and average season influence provides an indication of a players overall influence
rating. To test this hypothesis, the authors participated in the 2016/2017 BBL fantasy league competition.
Prior to competition commencement the average influence scores for all players participating in the
2016/2017 Big Bash competition were calculated®. These ratings were utilized to select the optimal team
(Patel & Bracewell, 2016) for round 1 of the competition, the rating were updated at the completion of
each round and the suggested changes, as recommend by the optimisation system, were implemented. The
competition consisted of 8 rounds and 35 matches. This methodology for team selection was carried out
throughout the entire competition; overall the author’s account finished in the top 1%. These results
validated the hypothesis revealing that the model can be used in a static manner to aggregate player
ratings, generate a players overall value, and applied to recruit players.

7 Discussion and Conclusion

Through the model development of a model capable of calculating the ball by ball match influence of a
batsman and bowlers, a novel perspective of assessing dynamic player contribution to match outcome was
established. Applying the model to ball-by-ball data it was established that the model possessed the
capability to [dynamically] evaluate a players ability to influence match outcome. Moreover model results
could be aggregated to produce static measures, allowing the quantification of a players match or seasonal
value. These match or seasonal influence scores were used to participate in Australia’s 2016 BBL fantasy

% A New Zealand based data science company
* Model results will be presented during the conference
* This was accomplished by running the influence model on various domestic and international T20 competitions.
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league competition, overall finishing in the top 1%. This rating statistic extends understanding of player
performance from conventional metrics to encapsulate the risk and in-game strategies adopted by player
and teams. As this is inherently linked the manner in which a player approaches an innings, it is suitable
for further research for optimizing team selection, scouting youth talent, and player development. The
availability of machine readable access of ball-by-ball data enables deeper understanding and derivation of
in-game strategies. This research has highlighted the use of advanced in-game metrics for investigating
live player contribution and identified areas of future research.

8 Appendix A

Performance Metric Definitions Type
Batsmen Contribution Batsmen Runs/ Team Total Volume
Batsmen Runs Total Number of runs a has contributed to the batting side total Volume
Batsmen Strike Rate Batsmen Runs/ Balls Faced Efficiency
Runs Contributed expected runs; — expected runs;_, > 0 Volume
Batsmen percentage boundaries | Total Boundaries hit by batsmen / Total Balls faced Efficiency
Batsmen percentage dots Total dots faced by batsmen / Total Balls faced Efficiency
Consecutive dot balls Cumulative number of consecutive dot balls faced by batsmen Efficiency
Less than 2 in 4 total Cumulative number of balls faced with less than 2 runs in 4 balls Efficiency
Batsmen Total Contribution Summation of batsmen runs contributed Volume
Absolute pressure Summation of pressure by individual batsmen Pressure
Pressure (1/(resources available))"0.4 Pressure
Runs saved expected runs;_, — expected runs; < 0 Efficiency
Bowler Total contribution Summation of batsmen runs saved Volume
Balls bowled Total deliveries bowled by a bowler Volume
Runs Conceded Total number of balls in which at least 1 run was conceded Volume
Bowler Percentage dots Total Bowler dots / Total balls bowled by bowler Efficiency
Bowler Percentage boundaries Total boundary balls / Total balls bowled by bowler Efficiency
Economy Rate Bowler runs conceded / total balls bowled by bowler Efficiency
Total Wickets Total batsmen dismissed by a team Volume
current run rate Total team runs / total team balls faced Efficiency
Team percentage boundaries Total Team boundaries / Total team balls faced Efficiency
Team Dots Total balls bowled by team in which no runs were scored Volume
Team dot percentage Total Team dots / Total team balls faced Efficiency

Projected total

(Current Total)/(Resource Available)

Volume/ pressure

Area under the curve (AUC)

A running aggregation of a batsmen’s survival probability

Volume
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Abstract

Several within game metrics exist to summarise individual batting performances in cricket. However,
these metrics summarise individual performance and do not account for real time nor partnership
performance. Previous research has successfully formulated models capable of calculating how likely
a partnership is to survive each ball, for different partnerships based on within-game events. Those
results are extended to optimise batting order. An expectation of how likely a batting partnership is to
survive each ball within an innings can aid the development of more effective partnership strategies to
optimise a team's final total. Using Cox proportional hazard models, each New Zealand partnership
was assigned a measure of effectiveness. This measure of effectiveness was used to optimally position
New Zealand batsmen. New Zealand captain, KS Williamson, is suggested as the optimal batsman to
bat in position three regardless of which opener is dismissed. Reviewing New Zealand's loss against
Australia on 4" December 2016, indicates a suboptimal order was used with JDS Neesham and BJ
Watling batting at four and five respectively. Given the circumstances, C Munro and C de
Grandhomme were quantified as a more optimal order.

1. Introduction

In cricket, the better an individual batsman or batting partnership performs, the more likely the team is
to win. Quantifying batting performance is therefore fundamental to help with in-game decisions, to
optimise team performance and maximise chances of winning. Several within-game metrics exist to
summarise individual batting performances in cricket. However, these metrics summarise individual
performance and do not account for partnership performance. An expectation of how likely a batting
partnership is to survive each ball within an innings can enable more effective partnership strategies to
optimise a team's final total.

Swartz, Gill, Beaudoin and De Silva (2006) used a combination of simulation, Bayesian log-linear
modelling and simulated annealing to determine two potentially optimal batting orders in the Indian
national cricket team. Based on a comparison with the Indian batting order adopted in the 2003 World
Cup final, these batting order suggestions were found to potentially improve One-Day International
(ODI) performance by approximately six runs.

Kachoyan and West (2016) applied Kaplan-Meier estimation techniques (Kaplan and Meier
(1958)) to show how batting careers can be illustrated using survival functions. The batsman's innings
was described as a lifespan with a ‘death’ referring to a dismissal, as suggested by Ibrahim (2005).
Observations during which players were not dismissed were referred to as censored observations. This
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methodology was used to construct distinct survival probability curves to illustrate the completed
career performance of cricketers SR Waugh and SR Tendulkar.

Brown, Patel and Bracewell (2017) formulated a predictive model capable of calculating the ball-
by-ball probability of a batting partnership being dismissed in the first innings of a limited overs
cricket game. Cox proportional hazard models were implemented to consider the potential effect of
eight batting partnership performance predictor variables on the ball-by-ball probability of a batting
partnership facing the next ball without being dismissed. Some of these variables are modifications to
those used in previous work involving cricket analytics (e.g Patel, Bracewell and Rooney (2016),
Bracewell et al. (2016), Brown, Patel and Bracewell (2016) and Bracewell and Ruggiero (2009)).

Data were split according to the wicket at which the partnership was played. In each subset, a
pragmatic model selection methodology was utilised to find an appropriate set of candidate models.
Firstly, the estimated Cox model coefficients had to be practical according to whether they were
expected to increase or decrease the ball-by-ball likelihood of survival. The predictors were also
required to be statistically significant. The ball-by-ball survival probabilities for all partnerships
considered were calculated using

lug(ﬁ) = exp(Byx1 + faxz + -+ Bukn), )

where p represented the probability of survival and f4, 82 ,...,5, represented the weights for each
attribute, x4,x,...,%,, respectively. These probabilities were used to calculate the Area Under the
Curve (AUC) for each partnership. The AUC was implemented as a performance measure used to rank
the batting partnerships. Based on ODI games played between 26 December 2013 and 14™ February
2016, the model for opening batting partnerships ranked Pakistani's A Ali and S Aslam as the optimal
opening batting partnership. This method of calculating batting partnership rankings was also
positively correlated with typical measures of success: average runs scored, proportion of team runs
scored and winning. South African's, HM Amla and AB de Villiers were ranked as the optimal
partnership at wicket two. As at 28" February 2016, these batsmen were rated 6™ equal and 2" in the
world, respectively. More importantly, these results highlighted that this pair enable South Africa to
maximise South Africa's chances of winning, by setting a total in an optimal manner.

In the work by Brown, Patel and Bracewell (2016), survival analysis methodology was successfully
applied to investigate the effect of within-game events on the ball-by-ball likelihood of an opening
batsman being dismissed in the first innings of a limited overs cricket game. In the work by Brown,
Bracewell and Patel (2017), this framework was extended to non-opening batsmen and batting
partnerships. The objective of that work was to develop an original approach capable of optimising
batting partnership strategy in the first innings of a limited overs cricket match, in an attempt to
increase a team's scoring rate and chances of winning. The objective of this work was to demonstrate
the practical application of the framework developed by Brown, Bracewell and Patel (2017), through a
case study involving optimising the New Zealand batting order.

2. Methods

2.1 Data Collection

Ball-by-ball data was extracted from Cricinfo commentary (www.espncricinfo.com) for ODI cricket
matches contested between 26" December 2013 and 29" October 2016. For each ball faced, data
consisting of a number of variables were collected. These included the match, innings and player
identifiers, over and ball numbers, bowler and batsman-facing metrics and outcomes from that ball.
Those outcomes included if there was a dismissal, number of runs scored and number of extras (only
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wides and no balls are considered due to the audit trail within the data extract). Matching this
transactional information with the scorecard data enabled batting position to be established. Data
collection was restricted to within-game events.

2.2 Data Manipulation

For ODI data, variables that potentially have an effect on the probability of a batsman, or a batting
partnership, being dismissed and could be derived from the estimates of the ball-by-ball data were then
calculated. These metrics were identified leveraging expert opinion from current and former
international first class players and coaches. At both the batsman and partnership level, the cumulative
number of runs scored was included. Other factors included dot ball and consecutive dot ball effects.
Another factor was the number of balls faced by the batsman or partnership in which less than two
runs in four balls had been scored. Contribution to the team total and boundaries scored were also
considered. Calculation and incorporation of these variables followed on from data collection.

The data were split into multiple subsets as shown in Table 1. Each set consisted of data associated

with the first innings of games.
Table 1: Categorised Batsman

Batsman class Batting positions
Openers land?2

Top order 3and 4

Middle order 5,6and 7

Low order 8and9

Tail 10 and 11

The data were split into further subsets defined by the wicket that each partnership was played.
This resulted in ten further datasets, one associated with each wicket.

3. Results

Using Cox models and the optimisation framework developed by Brown, Bracewell and Patel (2017),
this research investigated the optimal batting partnership strategy in the New Zealand team at a deeper
level. For each partnership at each wicket, the average AUC, average number of runs scored, average
proportion of team runs scored and win percentage were combined into an overall measure of
effectiveness, used to determine the most effective (optimal) partnerships. Figure 1 shows a decision
tree illustrating the optimal partnership strategy, for New Zealand at each wicket, depending on which
batsman in the partnership is dismissed.
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Optimal Partnership

Figure 1: Decision tree illustrating optimal New Zealand batting partnership strategy

Table 2 describes the partnerships, denoted as letters, in the decision tree in Figure 1.

Table 2: Partnership correspondence

Diagram notation Batting partnership
P1 P2

A MJ Guptill DG Brownlie
B MJ Guptill KS Williamson
C DG Brownlie KS Williamson
D MJ Guptill LRPL Taylor
E KS Williamson LRPL Taylor
F DG Brownlie BB McCullum
G MJ Guptill CJ Anderson
H LRPL Taylor GD Elliott

| KS Williamson GD Elliott

J BB McCullum LRPL Taylor
K MJ Guptill GD Elliott

L CJ Anderson HM Nichols
M GD Elliott CJ Anderson
N LRPL Taylor JDS Neesham
0] KS Williamson TWM Latham
P BB McCullum CJ Anderson
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Figure 1 shows that MJ Guptill and DG Brownlie are the optimal opening partnership. MJ Guptill
and DG Brownlie had a 100% win percentage when batting together as openers. In the event that
either of these opening batsmen are dismissed, KS Williamson is suggested as the optimal batsman to
bat in position three. DG Brownlie and KS Williamson had a 100% win percentage when batting
together at second wicket. MJ Guptill and KS Williamson had a 70% win percentage when batting
together at second wicket. Together with the fact that KS Williamson is the current New Zealand
captain and was ranked as number five in the ICC ODI player rankings on 8" February 2016, these
results suggest that the approach developed by Brown, Bracewell and Patel (2017) to optimise batting
partnership strategy is valid.

In addition, KS Williamson was acknowledged as “the most important player to his team in the
world” with the biggest contribution to success in test cricket, spanning the last three years (retrieved
from http://www.foxsports.com.au/cricket/
by-the-numbers-why-new-zealand-superstar-kane-williamson-is-crickets-most-valuable-
batsman/news-story/241fh534736¢1d475d3c28fe053d9754). KS Williamson is the third top century
scorer of any batsman over the last three years, while he is only one of two players to score over 30%
of his team's hundreds. Further, KS Williamson has scored 3011 runs in the last three years,
considerably higher than the next best New Zealand batsman, TWM Latham, with 2031. This further
highlights the validity of the optimisation procedure.

Based on the optimal partnership strategy illustrated in Figure 1, an optimal top six New Zealand
batting line up is suggested in Table 3.

Table 3: Optimal New Zealand top six batsmen

Batting position Batsman
MJ Guptill
DG Brownlie
KS Williamson
LRPL Taylor
GD Elliott
JDS Neesham

OO BWIN|F-

3.1 Optimisation Case Study

On 4" December 2016, New Zealand played Australia in a ODI and lost by 68 runs. Former Black
Caps all-rounder and Auckland A cricket coach, AR Adams, criticised the New Zealand coaching staff
for their batting order changes in that game (retrieved from
http://www.nzherald.co.nz/sport/news/article.cfm?c_id=4&objectid=11760500). AR Adams
questioned the choice of JDS Neesham as number four. C Munro batted as number six and C de
Grandhomme batted as number eight. Given how successfully Aucklanders, C Munro and C de
Grandhomme, batted in domestic cricket in 2016, AR Adams suggested that C Munro and C de
Grandhomme should have been played in positions four and five, followed by BJ Watling and JDS
Neesham.

The objective of this case study was to determine the optimal New Zealand batting order for the
game against Australia to assess whether it aligns with AR Adams's suggestions, and demonstrate the
practical application of the work developed by Brown, Bracewell and Patel (2017).

The final models developed by Brown, Bracewell and Patel (2017) were fitted to data from the first
innings of limited overs cricket games. In the ODI between Australia and New Zealand, New Zealand
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batted in the second innings. To account for this, the models were applied to data from the most recent
ODI game prior to 4" December 2016, in which New Zealand batted in the first innings. New
Zealand’s opponents in this game were India, with the game contested on 26" October 2016. The
intent was to use the performance of batsmen in the ODI against India as an indication of how these
batsmen would have performed in the ODI against Australia. As such, the optimal New Zealand
batting order against India could be used as an indicator to suggest the order that would have likely
optimised the scoring rates and chances of winning against Australia.

Each batsman was assigned a measure of effectiveness based on the average AUC, total number of
runs scored, proportion of team runs scored and strike rate.

3.2 Bootstrapping

Bootstrapping is a technique used to re-sample data without replacement and allows estimation of the
sampling distribution of a statistic (Mooney, Duval and Duval, 1993). As the analysis in this case
study was based on one game, bootstrapping was used to generate 1000 bootstrapped samples of
batsman effectiveness.

To determine the optimal batting order, the process was repeated with a different batsman removed
for each iteration. Table 4 illustrates the New Zealand batting order used in the ODI game against
India.

Table 4: New Zealand batting order against India 26™ October

Batting position Batsman
MJ Guptill
TWM Latham
KS Williamson
LRPL Taylor
JDS Neesham
BJ Watling
AP Devcich
MJ Santner
TG Southee

OIO|IN|O |0 B(WIN|-

Each bootstrapped sample consisted of the effectiveness of each batsman from Table 4, with one
batsman removed. In this particular game, New Zealand only used nine batsmen. As such, each
bootstrapped sample contained eight observations. The bootstrapping procedure was repeated to give
1000 samples. The mean effectiveness for the team was calculated for each sample. The mean of those
means was used as a rating of effectiveness for the team with the batsman excluded from analysis. The
rating was then used to determine where that batsman was positioned in the optimal batting order. The
optimal batting order is the order that would have maximised the team's final score and chances of
winning. The smaller the rating associated with each batsman, the less effective the team would have
been without the batsman and the higher the batsman was optimally positioned.

3.3 Optimal New Zealand Order Against India 26" October 2016

Table 5 illustrates New Zealand batsmen based on their position in the optimal order, compared with
where they were actually positioned in the ODI against India.
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Table 5: Suggested New Zealand order compared with actual New Zealand order against India 26™

October

Batting position Optimal batsman Actual batsman
1 MJ Guptill MJ Guptill
2 TWM Latham TWM Latham
3 KS Williamson KS Williamson
4 LRPL Taylor LRPL Taylor
5 BJ Watling JDS Neesham
6 AP Devcich BJ Watling
7 JDS Neesham AP Devcich
8 MJ Santner MJ Santner
9 TG Southee TG Southee

Table 5 illustrates that optimally, JDS Neesham should have been positioned as number seven,
behind both BJ Watling and AP Devcich.

3.4 Optimal New Zealand Order Against Australia 4" December 2016

The optimal order suggested in Table 5 was used to optimally position New Zealand batsmen in the
primary ODI of interest against Australia.

Given that C Munro and C de Grandhomme were not involved in the ODI between India and New
Zealand or any previous ODI contested in 2016, a rating of effectiveness from the optimisation
procedure could not be derived for these batsmen.

As such, a different approach was taken to determine the optimal position for C Munro and C de
Grandhomme, relative to BJ Watling and JDS Neesham. The Plunket Shield is New Zealand’s
domestic first-class cricket competition. The 2016-2017 season is the most recent competition in
which C Munro, C de Grandhomme and JDS Neesham had all batted. As such, in order to compare
these batsmen, this research investigated their domestic performances in the Plunket Shield. However,
the Plunket Shield does not categorise as limited overs cricket. Consequently, the final models and
optimisation procedure could not be applied to games from this competition. The optimisation
procedure used to rate the New Zealand batsmen against India accounted for AUC, total runs scored,
proportion of team runs scored and strike rate. Given this, batting averages in the 2016-2017 Plunket
Shield competition were used to compare the effectiveness of C Munro and C de Grandhomme with
that of BJ Watling and JDS Neesham. The intent was to compare the most recent performance of these
batsmen prior to the ODI between Australia and New Zealand, within the same competition for the
same period. This is likely to have been indicative of where to position these batsmen, relative to each
other, in the optimal New Zealand order against Australia. Despite being from different competitions
and formats, these performances are an adequate proxy of batting performance, primarily due to the
timeliness of observations.

During the period of the 2016-2017 Plunket Shield season prior to New Zealand's ODI on 4"
December, C Munro and C de Grandhomme were scoring at a considerably higher rate compared with
JDS Neesham. C Munro was averaging 84.50, while C de Grandhomme was averaging 54.00
(retrieved  from  http://www.foxsports.com.au/cricket/what-were-they-thinking-andre-adams-left-
dazed-and-confused-by-new-zealands-tactics/news-story/d9e119fe95695102d0b6c9b38102¢187). JDS
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Neesham averaged 8.00 in the same competition for the same period (retrieved from
http://www.stats.espncricinfo.com/plunket-shield-2016-
17/engine/records/batting/highest_career_batting_average.html?id=11507;team=2621;type=tournamen
t). BJ Watling had not played any domestic cricket during the 2016-2017 season prior to 4™ December
2016. However, in ODIs, BJ Watling was averaging 26.09 compared with 21.75 for JDS Neesham. As
such, comparative ratings of effectiveness for C Munro and C de Grandhomme would likely have been
higher than the actual ratings calculated for BJ Watling and JDS Neesham, based on the optimisation
procedure. This supports AR Adams's suggestion to play C Munro and C de Grandhomme as humber
four and five, respectively, with BJ Watling and JDS Neesham as number six and seven, respectively.

Similarly, lower order batsmen, MJ Santner, MJ Henry, LH Ferguson and TA Boult did not bat in
the ODI between India and New Zealand on 26" October. With the exception of LH Ferguson, the
other eight batsmen from Table 5 batted in the previous game between India and New Zealand on 23
October 2016. As such, the final models were applied to this game and a measure of effectiveness was
assigned to each batsman. The bootstrapping procedure, was applied to rate each batsman. The rating
was then used to position each batsman in the optimal order. LH Ferguson completed his ODI debut
against Australia. Given his lack of ODI experience, LH Ferguson is positioned as number eleven in
the optimal order.

Table 6 illustrates the New Zealand order that would have likely optimised the scoring rates and
chances of winning against Australia. This is compared with the actual batting order.

Table 6: Optimal New Zealand order compared with actual New Zealand order against Australia 4™

December

Batting position Optimal batsman Actual batsman
1 MJ Guptill MJ Guptill
2 TWM Latham TWM Latham
3 KS Williamson KS Williamson
4 C Munro JDS Neesham
5 C de Grandhomme BJ Watling
6 BJ Watling C Munro
7 JDS Neesham MJ Santner
8 MJ Henry C de Grandhomme
9 MJ Santner MJ Henry
10 TA Boult LH Ferguson
11 LH Ferguson TA Boult

Based on the findings in Table 6, New Zealand appear to have utilised a suboptimal order with JDS
Neesham and BJ Watling batting at four and five respectively. Given the circumstances, C Munro and
C de Grandhomme were quantified as a more optimal order.

In the ODI between New Zealand and Australia, BJ Watling struggled, only scoring 6 from 13
before being dismissed. JDS Neesham scored 34 from 62. C Munro recorded the highest score, 49
from 59, of the three batsmen. The optimal batting order is consistent with this, suggesting C Munro
should have batted before BJ Watling and JDS Neesham, as number four. This would have improved
New Zealand’s chances of winning, based on previously observed individual batting strategies.
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4. Discussion and Conclusion

Reviewing New Zealand's loss against Australia on 4" December 2016, indicates a suboptimal order
was used, with JDS Neesham and BJ Watling batting at four and five respectively. Given the
circumstances, C Munro and C de Grandhomme were quantified as a more optimal order. This
supported the batting order suggestions made by former Black caps all-rounder and Auckland A
coach, AR Adams. This demonstrates a practical application of the framework developed by Brown,
Bracewell and Patel (2017).

To ensure complete case analysis, performance from other competitions was used. This
demonstrated the wider applicability and usefulness of the methodology developed by Brown,
Bracewell and Patel (2017) and for scouting and selection purposes.

Given the increased interest in short forms of the game, particularly T20, extending this research to
T20 matches is clearly of interest. Applying the final models to T20 data from the 2016 Indian Premier
League (IPL) may provide a suitable technique to validate the final models. It is expected that the
survival probabilities for ODI batting partnerships would be higher than those calculated for batting
partnerships contesting IPL games.

The developed models were fitted to data from the first innings of a selection of ODI games. The
emphasis on first innings was due to the lack of previous research into what a match winning total
should be. Another area of future work could involve extending the framework developed by Brown,
Bracewell and Patel (2017) and the techniques applied in this research, to investigate the performance
of batsmen and partnerships participating in the second innings of limited overs cricket games.
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Abstract

Sports team coaches’ main concern is forming the best team to win the upcoming match. Even if a
team squad is comprised of limited number of players, the combination of them makes out a
complicated problem with huge number of possible line-ups. Academic researches on this subject
increase in the last decade since this decision became important financially and solvable as the
parameters are reachable. There are many aspects that define the best team such as team harmony,
player performance, team strategy, opponent suitability etc. This research proposes a new mathematical
model which aims to form the best team with respect to team harmony.

1 Introduction

Team formation problem for sports clubs is an assignment problem that the team coach tries to form
the best team by assigning the players in the squat to the identified positions to win the match (Boon
and Sierksma, 2003). The identification of the positions differs from one sport branch to other and is
made according to the responsibilities and/or locations of the players in the game field (Budak et al.,
2017; Ben Abdelkrim et al., 2010). For the decision makers, the most important question to be
answered is that “what is the best team”.

The best team can be formed with respect to different perspectives which are total performance,
team and player harmony, suitability of coach’s strategy, opponent team suitability and other
dimensions. These perspectives are also affected by uncontrollable factors such as home/away court
advantages and disadvantages (Anderson et al., 2012), psychological and physical status of players
(Nippert and Smith, 2008), audience affect (Laviers and Sukthankar, 2014) etc.

Team formation problem and player selection has been handled by many academic researchers in
last decades since the industrialized sport sector extremely grew financially and international and
national player databases are established on player performances. For example, Boon and Sierksma
(2003) proposed an assignment based mathematical model which maximizes the assigned players’
total performance. Tavana et al. (2013) assembled a two-phase fuzzy inference system that ranks and
selects the alternative players in the first phase and then locates them in-field positions. Dadelo et al.
(2014) used Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to find out the
best players by using the data of players’ physical measurements. Ahmet et al. (2013) developed a
multi-objective genetic algorithm for skills to find out the best team before the season stage on cricket
sport. Chen et al. (2014) applied Analytical Hierarchy Process (AHP) and TOPSIS for selecting the
best pitcher for the team. There are other researches that support the combination selection and player
selection in sports clubs (for further information see Winter et al. (2006), Caro (2012), Villa and
Lozano (2016) and Lorains et al. (2013)).
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Considering the previous researches and techniques used, this paper develops a new mathematical
model for team formation problem of sports clubs. The proposed model considers player preferences
that constructs team and player harmony dimension of the team formation problem. This research
initializes this consideration in the decision making process. To achieve this, team harmony is initially
quantified by questionnaires to understand player preferences. The player preferences became
programmable as it became quantifiable.

2 Searching the Best Team: Team and Player Harmony

The decision makers of the team formation problem should also concern the formed team’s harmony.
Team harmony and harmony between players have not been considered by previous researches on this
problem. This component of the problem affects the players’ performance and accordingly to match
result (Stevents and Bloom, 2003; Saavedra, 2013).

On the other hand, team harmony issue are studied by several researches such as Yukelson (1997),
Murray and Chao (2005), Hinsz et al. (1997), Hutchins (1991) and Levine et al. (1993). Yukelson
(1997) output psychological aspects which are common purpose, communication skills, trust and
friendship define the team harmony which. In addition to this, during the season the responsibility and
role sharing in the field must be made clearly and effectively (Yukelson, 1997). Murray and Chao
(2005) defined team harmony as whole of the pairwise relationships with each of the players. A team
with excellent relationships with each other skill and emotion wisely creates a harmonic team (Murray
and Chao, 2005). Hinsz et al. (1997), Hutchins (1991) and Levine et al. (1993) proposed that the team
coordination, responsibility and skill sharing during the game show how the team harmony is.

To recap the topic, team coach’s assigned players’ satisfaction level based on the role sharing and
the preferences on each position summation gives the team harmony level. As these factors are related
with the preferences of players, these data should be obtained by questionnaires to the players.

?él bA New Formulation for Team Formation Problem of Sports
ubs

In this section, a new mathematical model for team formation before the match is introduced. This
model considers team and player harmony dimensions of the problem. This proposed mathematical
model aims to form the best team by maximizing the total of the satisfaction level of the players from
the formed team. Coach’s strategy is also going to be provided by the constraints of player-position
capabilities and skill level thresholds.

There are three sets in this problem which are player set, position set and skill set. Player set is
comprised of the players in the squad which are decided before the season stage and can be shown as
P={1,2,3...n}.

Position set is constituted depending on the sport and positions differentiate with each other on
responsibilities and location in the field. This set can be found by the handbooks of each team sport
branch from the international federations and can be shown as
R={1,2,3...m}.

The last set is skills set of the sport and consists of the special movements and activities that typical
to the sport branch. These movements and activities are determined according to the necessities of
accomplishing the positions’ responsibilities. Skill set can be shown as
S=1{1,2,3...k}.

The main parameters of proposed model are importance levels of positions, player-position
capabilities, and coach’s thresholds on each positions skill, player gladness among other player and
team and players’ performance forecasts on each skill for the upcoming match.
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Importance levels of position are found by objectively as it depends on many qualitative aspects so
that using the experts’ opinions is going to avoid subjectivity (Eckenrode, 1965). AHP is one of the
best techniques to obtain these weights since the properties of AHP are suitable (Saaty, 1990). There
are also other methodologies that could help the decision maker to obtain these parameters such as
SMART, point allocation, DELPHI method etc. Importance level of j" position on the match result is
represented as PR;. They are valued between 0 and 1 and their total for all j is equal to one.

The parameters that the coach is going to compose according to his/her preferences are player-
position capabilities and skill level thresholds. Player-position capabilities parameter is for each player
and position and identified by the coach that whether a player can play in that particular position. This
parameter is symbolized as PP;. It is valued 1 if the i" player is able to play on j position and it is
valued 0 for the other case. Thresholds for each position’s skill level are identified by the coach
according to his/her strategic mentality. This parameter is represented with HT;, which shows the
minimum expectation of the team coach on j™ position’s y" skill and valued between 0 and 100.

The parameters that the players are going to identify are the gladness level from the other players
and gladness from the formed team. Gladness level of a player shows how much a player is glad from
the other player and this parameter is valued between 0 and 1. i" player’s gladness level for p" player
is shown as PHj,. Second parameter that players define is team harmony level according to their wish
list on other positions. Each player forms a team according to their preferences and this parameter is
shown as THiy;. If i" player assigned p™ player to the j" position the THi; is equal to 1 and other cases
THig; is valued 0.

Players’ performance forecasts on each skill for the upcoming match are symbolized as P;, which
represents the i" player’s y" skill forecast and they must be valued between 0-100 as percentage ratios.

The decision variable of team formation problem before the match stage is represented with X;;
binary variable that shows whether i player is assigned to position j or not. If i player assigned to j"
position, x; is equal to 1 and other case it equals to 0. Another decision variable in this proposed
model is y; which is a dependent binary variable that shows if i player is assigned to a position or not.
q; is a dependent decision variable that is defined as the gladness level of player i if i player is
assigned to j™ position. Total team harmony of the players related to positions is defined as a
dependent decision variable and symbolized with TM.

The following model is proposed for the team formation problem before the match stage by aiming
to maximize the total harmony among the players:

Obijective function;
m n

Max z = z q,PR;+TM 0
ij
Subject to;
n
le} S 1’ i = 1l "'lm (2)
j=1
m
zxij=1, j=1,..,n 3)
i=1
m
Z Piyxij = Hij:j = 1: Ny = 1, ,k (4)
i
xij < PPj,i=1,...mj=1..,n )
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n
inj =Y l=1, v, m (6)
j=1
m
ZPHl'pyp xij = qij' i= 1,...,m, ]:1, e, n, (7)
p=1
p#i
m m n
i=1p=1 j
p#l
yixij€{0,1},i=1,...,mj=1,..,n 9

Obijective function of the proposed model (1) is maximizing the total team harmony. Constraint (2)
guarantees that a player could be assigned to one position as a player cannot play in more than one
position. There must not be an unassigned position so that constraint (3) establishes each position has
an assignment. An assigned player’s skill level cannot be less than the thresholds that team coach
identified for the assigned position and constraint (4) is added to the model. Constraint (5) provides
that the players could only be assigned to the positions that they are capable to play. As defined, y; is a
dependent decision variable which is obtained with constraint (6). Constraint (8) obtains the total
gladness of the players from the formed team position-wisely. Constraint (9) defines the binary
decision variables.

Constraint (7) obtains each assigned player’s gladness level from the formed team; however, it is
structured as non-linear. To use linear programming literature and knowledge this constraint must be
linearized for this reason McCormick Envelopment is a useful tool for linearization (McCormick,
1976). By using this technique, constraint (7) is going to be excluded from the model and the
following constraints (7a, 7b, 7c and 7d) shown below is going to be included to the mathematical
model:

q;j =0, i=1,..,m, j=1,..,n (7a)

m m m
qij = ZPHipxi,-+ zPHipyp - ZPHip,i =1,...mj=1,..,n (7b)
D D p
m
qij < ZPHipxij; i=1,..,m, j=1,..,n (7¢)
14

m
qij < ZPHipyp, i=1,..,m, j=1,..,n (7d)
P

The total number of decision variables in this mathematical model is (2mn + n (m? - m) + 2m+ 1)
and total number of constraints is (mn + nk + 2m + n +3). Therefore, assuming m>n and m>k the
model greatness is O(m?).

4 Conclusion

Team formation problem for the sports clubs before the match stage is crucial problem for the team
coaches. This paper achieves the quantification of the team harmony concept by considering the
psychological aspect of team players. Team harmony is defined as the players’ preference in field and
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positions. By assuming this definition, player’s performances are dependent on the team harmony
expression is regarded.

This paper initializes a novel approach to solve the team formation problems with a harmony based
mathematical model which also integrates the coach’s strategy, mentality and expectations to the
decision process. This model is a useful tool for the team coaches to observe the team with the best
harmony which is over the thresholds determined by the team coach.
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Abstract

In this paper we aim at describing the Formula 1 team and driver performances, during a
particular race, using a suitable generalized additive model for the representation of lap time
evolution. Although the modeling of Formula 1 races is an extremely complicated task, our
model gives a rather flexible specification of the lap times as a function of some relevant numeric
and categorical predictor variables. We fit the model using the freely available data regarding
the Formula 1 season 2015 and we find that, for a grand prix without unpredictable events such
as safety car, virtual safety car or race suspension, the model provides an accurate description of
the race development. Moreover, it can be fruitfully considered for specifying alternative race
strategies, with particular regard to the pit stop choices.

1 Introduction

The modeling of Formula 1 races is an extremely complicated task, since car and driver performances depend
on a number of mutually interacting explicative variables and on the occurrence of unpredictable events such
as safety car or virtual safety car, driver’s error, breakdown or car crash. In this paper we define a fairly simple
semiparametric regression model with the aim of describing team and driver performances by considering
the driver’s lap time as response variable. More precisely, the logarithmic transformation of the lap time is
modeled as a function of each lap of the race, taking into account also tyre degradation, type and age of the
tyres, fuel consumption, team and driver, traffic and interactions between drivers, pit stop and first lap after
pit stop, occurrence of the safety car. In order to provide a flexible specification of the dependence of the
response on the numeric and the categorical predictor variables, we consider a suitable generalized additive
mixed model, where the linear predictor involves also smooth functions of some covariates. A random effect
is introduced in order to account for the random variability observed from driver to driver and to describe the
general effect of the remaining explanatory variables on the response.

We fit the model using the freely available data regarding the Formula 1 season 2015 and we find that, for
a grand prix without unpredictable events such as safety car, virtual safety car or race suspension, the model
provides an accurate description of the race development. Moreover, the estimated model may be fruitfully
considered also for evaluating and simulating alternative race strategies, with particular regard to the pit stop
choices. A suitable extension of the model is defined in order to describe the more challenging situation of a
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race with safety car deployment, since it is well-known that the safety car could be an extremely important
factor for deciding pit stop strategies.

The paper is organized as follows. Section 2 briefly reviews the main features of the generalized additive
(mixed) models. Indeed, a model is specified by considering numeric and categorical explanatory variables,
potentially useful for describing the log transformed lap times without the safety car occurrence. In Section 3
we fit the models by considering Formula 1 data related to some races of the season 2015 and we discuss the
relevance of the estimated model for both inference and prediction purposes. An further model is specified
for considering also the lap times observed in the safety car regime. Finally, we conclude in Section 4 with
a short discussion, highlighting some further research lines.

2 A generalized additive model for lap time description

Generalized additive models (GAMs) were originally defined by Hastie and Tibshirani (1986, 1990) as semi-
parametric regression models where the relationship between the dependent and the explanatory variables
may follow smooth nonlinear patterns. They can be viewed as suitable extensions of generalized linear mod-
els where the linear predictor involve also a sum of smooth functions of the covariates. In general the model
structure can be described as

g(u) =PBo+Pixi+Poxa+--- +ﬁjxj +S1(Xj+1) +S2(xj+2) +53(xj+37xj+4) + -

where Y is the response variable, following an exponential family distribution, x1,x,, ... are the explanatory
variables, By, B1, ... are unknown scalar parameter and s,, r = 1,2, ... are smooth functions of the covariates.
Indeed, g is the link function which describes the relationship between the expected response y = E(Y) and
the explanatory variables (see also Wood, 2006, for a general introduction to GAMs).

Since Formula 1 data, such as telemetry information, are usually not publicly available, we specify and
fit our model by considering only freely available data on lap by lap drivers performance and car status with
regard to some Formula 1 races. We consider also information on relevant events such as pit stop occurrence
and safety car deployment. The response variable is the logarithmic transformation of the lap time (Time) in
seconds, namely the time taken by the driver to cover the current lap, while the explanatory variables are:

e Lap, discrete-valued variable indicating the lap of the race, measured by considering the fraction of
laps already covered for a given race;

e Team, categorical variable indicating the constructor of the car;

e Driver, categorical variable indicating the pilot of the car;

e Compound, categorical variable indicating the compound of the tyres used in the current lap (supersoft,
soft, medium, hard);

e TyreLaps, discrete-valued variable giving the portion of race completed by the current set of tyres;

e TyreState, categorical variable indicating the tyre condition when they have been installed (new or
used);

e Pit, a dummy variable indicating whether the pit stop was carried out in the current lap;

e FollowingPit, a dummy variable indicating whether the pit stop was carried out during the previous
lap;

e SC, a dummy variable indicating whether the safety car is on the track in the current lap;
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e Distance, continuous variable indicating the gap in seconds from the car that precedes at the end of
the current lap;
e Circuit, categorical variable indicating where the grand prix takes place.

With regard to the observed values for the response variable Time, we take into account only lap times
under a given threshold, since high values are usually related to unpredictable events, such as driver’s error,
car breakdown or car crash, and they can be interpreted as outliers which could generate a distortion in the
model fitting procedure. Moreover, we do not consider as well the time of the first lap of the race since it can
be viewed as a further outlier, strongly related to the qualifying position, and not particularly relevant for the
specification of a good pit stop strategy.

Concerning the covariates, we underline that the explanatory variable Lap is measured by evaluating
the fraction of laps already covered by a particular driver in a specific grand prix. In this way, we can
consider data from different races. A further useful explanatory variable could be the quantity of fuel on
board, but unfortunately this information is not available and it can not be inferred using variables such as
traffic, driving strategy of the pilot, engine and car features. We account indirectly for the modification of the
quantity of fuel on board by considering the covariate Lap, since the percentage of fuel on board decreases
as the race lap number increases. Moreover, the covariate Distance is considered since the traffic could be
a problem for drivers. We have empirically noticed that this effect is detectable only for distances in seconds
less than a suitable value and then we decide to use this value also for greater distances, assuming that this
is substantially equivalent to a clear track state.

We aim at specifying a model for describing a race without safety car deployment and, for this reason,
in the model fitting procedure, we omit all data related to laps completed under safety car regime. Indeed,
since the influence of the covariate Driver on the response variable is characterized by a random variability
observed from driver to driver, we do not consider this effect as a fixed systematic effect, as for the other
covariates. Then, for this purpose, we define a Generalized Additive Mixed Model (GAMM) with a random
intercept term describing the driver effect. More precisely, the model structure is defined as

g(up) = b+ PBiTeam+ ByPit*Circuit + B3FollowingPit * Circuit
+s1(Lap) + s2(TyreLaps; Compound, TyreState) + s3(Distance), (1)

where by is the random effect of the k-th driver, k = 1,...,K, modelled as a normal distributed random
variable with mean 0 and variance 3. The random intercepts are independent and identically distributed
and the conditional distribution of the response Y given by, k = 1,...,K, is defined within the exponential
family class, with w, = E(Y |by,k = 1,...,K). Moreover, with the symbol * we highlight that we consider
both the main effects and the interaction effects of the covariates taken into account, with 3 ; the vector of
the associated regression parameters.

The effects of the non-categorical covariates Lap, TyreLaps and Distance are estimated as smooth
curves, while the other terms in the model formula are defined by considering linear functions of the explana-
tory variables, admitting also interaction effects. In principle, all the covariates can interact and influence
each other, but some of them are more strongly related. For example, in order to evaluate the degradation of
a set of tyres, it is indispensable to know not only the number of laps completed by the current set of tyres
during the race, but also the compound and whether the tyres are new or already used. For this reason, dif-
ferent smooth functions of the same covariate TyreLaps are defined for each level of the factors Compound
and TyreState. Similarly, if we are interested in the time lost during the pit stop or during the lap after
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the pit stop, it is fundamental to consider the information on the particular circuit where the race is running.
Moreover, the introduction of the variable indicating the lap after the pit stop is due to the fact that a pit
stop modifies significantly the times registered during both the lap of the pit stop and the one that follows,
because the pit lane is always crossed by the finish line.

At the end of the following section, we attempt to specify a further model, describing also the lap times
under the safety car regime. The aim is to evaluate how this condition can modify the time lost during a pit
stop; although the model requires a substantial improvement, this aspect could be very important from the
race strategy point of view.

3 An application to Formula 1 data season 2015

3.1 Model fitting

We estimate the proposed models using the statistical software R (R Core Team, 2017) and in particu-
lar the add-on package mgcv (see Wood, 2006). The data are obtained from the Ergast Developer API
(www.ergast.com/mrd), which is an experimental web service providing motor racing data, and from the
Pirelli web page (www.pirelli.com).

At first we fit and analyse model (1) using data of five races of the Formula 1 season 2015; namely,
Australia, Malaysia, Italy, Russia and United Arab Emirates. Ignoring all the laps completed under the
safety car regime, we consider 4053 laps and we assume that the response variable, namely the logarithmic
transformation of the lap time, follows a Gaussian distribution with the canonical link function. The spec-
ification of the GAMM model in the final form (1) has required a considerable effort. The parametric and
the smooth regression terms, which are finally considered, assure a satisfactory description of the response,
avoiding an excessive overfitting. The model is estimated following a penalized likelihood approach, where
the smoothing parameters are selected using the Generalized Cross Validation (GCV) criterion, and we find
that the significance of the individual regression parameters of the parametric terms and of the smooth terms
is substantial. With regard to the smooth terms, we consider thin plate regression splines and the estimated
degrees of freedom of s|(Lap), s2(TyreLaps;Compound, TyreState) and s3(Distance) are 8.13, 24.92
and 3.26, respectively. Thus, the total number of the effective degrees of freedom used in model (1) is
60.31, indicating that a relatively complex regression function has been estimated. Simpler model structures
may achieve a more parsimonious fit, but they usually provide an unsatisfactory description of the response
variable. Notice that we have six different smooth functions for the covariate TyreLaps, according to the
six combinations of the observed values new and used of the factor TyreState and supersoft, soft and
medium of the factor Compound (in the five races taken into account the hard compound tyres have never
been used). Finally, with regard to the random intercept term, corresponding to the driver effect, we find that
the common variance parameter 63 is significantly different from zero.

Model checking is performed by considering the model residuals. In particular, the Q-Q plot of the
standardized residuals shows a significant skewness and an heavy right tail in the distribution, and this is
confirmed by the associated histogram (see Figure 1). The right tail represents the laps that are sensibly
slower than expected, due to lapped cars or small driver errors; the slowest laps, caused by crashes and
breakdowns, have already been deleted from the dataset imposing an upper threshold, as mentioned in Sec-
tion 2. In order to mitigate these difficulties, we may consider as response variable an alternative Box-Cox
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type transformation of the response Time, instead of log(Time).
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Figure 1: The Q-Q plot and the histogram of the standardized residuals relative to model (1).

Furthermore, in Figure 2 we show also the estimated residuals plotted against the fitted values and we
observe that their variance is almost constant, as it should be. Moreover, the existence of clusters is a
consequence of the fact that in the dataset we consider data from five different races and then the time for
completing a single lap is not necessarily the same for all of them. Indeed, the small cluster on the right hand
side is relative to some laps in which a pit stop is carried out and the predicted time turns out to be extremely
high.

0.02 0.04

Residuals

-0.02

Fitted Values

Figure 2: Estimated residuals versus fitted values relative to model (1).

It can be instructive to represent the partial effect of all the estimated smooth terms considered in the
fitted the model. The six panels of Figure 3 show the smooth estimated effect of the covariate TyreLaps,
with the 95% confidence limits, for the six different values observed for the pairs of factors Compound and
TyreState. The range on the x-axis roughly corresponds to the observed values for the covariate, in order
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Figure 3: Estimated smooth functions of the covariate TyreLaps for the fitted model (1), without the
observed values of the partial residuals; the 95% confidence limits are represented as dashed lines.

to avoid unreliable extrapolations. We observe that the estimated function tends to increase as TyreLaps
increases, for each type of compound and tyre state. This provides a clear description of the effect of tyre
degradation on the lap time. In particular, for a set of supersoft used tyres or soft used tyres, a sudden
worsening of performance occurs whenever TyreLaps reaches half of the race. For the other types of tyres
this effect does not usually appear, since the Formula 1 teams may guess more easily the critical degradation
point and they usually change the tyres before reaching it. With regard to the supersoft compound, the
use for more than 50% of the grand prix can be seen as quite unexpected. However, this circumstance has
been observed only in the Russian grand prix, where the circuit has a peculiar type of asphalt, which causes
areduced tyre degradation effect. Moreover, also the fact that the smooth functions may sometimes present
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a slight decrease, as TyreLaps increases, can be explained by recalling that we consider the overall effect of
TyreLaps and we do not account for the particular effect that a specific circuit may have on tyre duration.

Two further plots are given in Figure 4 and they describe the estimated smooth effect due to the covariates
Lap and Distance. The number of covered laps gives an indirect information about the amount of fuel
on board, which conditions the weight of the car. Since function s(Lap) decreases as Lap increases, we
obviously conclude that a lighter car is usually faster. However, we notice that at the end of the race the values
tend to increase. Perhaps, this can be explained as a confounding phenomenon with the tyre deterioration
effect, which can be substantial in the final part of the race. Furthermore, it may simply describe that the
drivers push less in the last laps, especially when it is not possible to improve the final rank position. Finally,
regarding the effect of the covariate Distance, it is possible to observe that being too close to the driver
that precedes leads to a lap time increase. This can be due to aerodynamics reasons or to the fact that the
car ahead is slower than the one behind and the overtake is not easy. In addition, we mention the fact that
battling with another car always causes a waste of time. This traffic effect decreases as the distance increases,
reaching its minimum at 3.7 seconds, as already explained in Section 2.

|
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Figure 4: Estimated smooth functions of the covariates Lap (left) and Distance (right) for the fitted model
(1), without the observed values of the partial residuals; the 95% confidence limits are represented as
dashed lines.

3.2 Prediction

By considering the fitted model presented above, it is possible to make predictions on the random intercept
terms, which describe the specific effect of each driver on the lap time evolution. In particular, we consider
as point predictor for by, k = 1,..., K, the estimated conditional expectation by = E (b;|Y). Using these pre-
dicted values, we may conclude, for example, that the difference between the expected log(Time) values for
the Ferrari’s drivers, Raikkonen and Vettel, is 1.8 - 1073, This means that, given the same observed values
for the covariates, the lap times recorded by Raikkonen are approximately 1.002 times higher than those
recorded by Vettel; that is, Raikkonen is expected to lose about 0.1 seconds per minute with respect to Vettel.
In Figure 5 are represented both the times recorded by Vettel (in black) and Raikkonen (in purple) in the first
24 laps of the 2015 Italian grand prix and the corresponding predicted times in red and blue, respectively.
Concerning the difference between the red and the blue lines, we emphasize that the two predicted patterns
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Figure 5: Times recorded by Vettel (black) and Raikkonen (purple) in the first 24 laps of the 2015 Italian
grand prix and the predicted times for Vettel (red) and Raikkonen (blue).

present the same distance whenever the corresponding covariates have the same values, and then the dif-
ference is only due to the driver effect. The peaks observed for Raikkonen correspond to situations with a
presence of traffic, so that the observed values for the covariate Distance differ significantly.

The GAMM model (1) could be usefully considered also for making predictions on the lap times, by
assuming different values for the covariates. This can be crucial for evaluating and simulating alternative
race strategies, with particular regard to the pit stop choices. Let us consider again the 2015 Italian grand
prix, where almost all the drivers carried out only one pit stop. Then, we implicitly assume that this is the
common decision for the teams, but we want to find which is the best lap for making the pit stop, taking also
into account the 2015 Formula 1 rules. In that specific grand prix, the available compounds were the soft
and the medium and each driver had to use both of them; moreover, by regulation, the first ten drivers on the
grid had to start the race with the tyres used in the Q2 qualifying session, namely the soft compound. This
is the case, for example, of the Williams’ driver Massa, who started the race with soft used tyres and pitted
at the 19th lap installing medium new tyres. In order to make predictions for the lap times of Massa, we fit
model (1) deleting all the Williams’ lap time data relative to 2015 Italian grand prix. We adopt the same
basic principle underlying cross-validation procedures, in order avoid overfitting problems that may occur
when we make predictions on data values already used for estimating the predictive model.

The total time spent by Massa to complete the race was 4728.323 seconds and the predicted total time
given by the fitted model, imposing the pit stop at the 19th lap, turns out to be 4734.983 seconds. By
simulating 52 different races, changing the lap in which the pit stop is carried out, we find out that the
best choice is to stop at the 23rd lap, thus completing the whole race in 4732.81 seconds: more than two
seconds can be gained, in the predicted total time, if the pit stop is postponed from the 19th to the 23rd lap.
The estimated standard deviation for the predicted log time per lap is lower than 0.002 seconds. However,
adopting this best strategy wouldn’t change the race final outcome, since Massa arrived 3rd with a gap of 22
seconds from the 2nd. In Figure 6 we represent the real lap times recorded by Massa (in black), the lap times
prediction with a pit stop at the 19th lap (in red) and the lap times prediction with a pit stop at the 23rd lap
(in blue).

94



MathSport International 2017 Conference Proceedings

Formula 1 lap time modeling using GAMs Casella and Vidoni

o
3 >
Yo}
8 —

o 8 4

£

l_
g —
2 Ll —

T T T T T

0 10 20 30 40 50

Lap

Figure 6: Lap times recorded by Massa in the 2015 Italian grand prix (black) and lap times prediction with
a pit stop at the 19th lap (red) and at the 23rd lap (blue).

3.3 Extension to the safety car regime

The GAMM model (1) may be extended for describing also the lap times under the safety car regime. As
emphasized before, this aspect is very important from the race strategy point of view. The model structure
is necessarily more complex and it involves at least two additional model terms: the first one describing the
combined effect of SC and Pit and the second one describing the combined effect of SC and FollowingPit.
The model is estimated using also the lap times completed under the safety car regime, except the first one.
Since the moment in which the safety car enters the track is completely random, the first lap in the safety
car regime could be almost as fast as a normal lap, whenever it enters in the latest turns, or strongly slower,
whenever it enters in the first turns. Then we consider 4211 lap times.

It is well-known that the teams usually carry out the pit stop when the safety car enters the track and
this fact makes challenging the evaluation of the actual effect of the safety car presence on the lap time.
Moreover, we usually observe an increase in the number of unexpected lap time data, indicating that the
race is in a completely different regime. This is confirmed by the histogram of the standardized residuals
and, in particular, by the graph with the estimated residuals plotted against the fitted values, where we
observe that the variability of the lap times completed with the safety car (corresponding to the cluster in the
right hand side) is significantly higher than that of the normal ones (see Figure (7)). As a consequence of
this unsatisfactory model fitting, the lap times prediction specified under safety car deployment are usually
characterized by a substantial error.
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Figure 7: Histogram of the standardized residuals (left) and plot of the estimated residuals versus the fitted
values (right) relative to the model describing also the lap times under the safety car regime.

4 Conclusions

Although the GAMM model (1) provides a satisfactory description of the lap time pattern of a Formula
1 grand prix, and it may be effective for prediction purposes, it can be further improved by considering
the following potential developments. In particular, in order to deal with the asymmetry and the kurtosis
observed in the distribution of the standardized residuals, we may consider a flexible extension of the GAM
models, where also the scale and the shape of the distribution depend on suitable predictor variables (see,
for example, Rigby and Stasinopoulos, 2005, and Kneib, 2013). Moreover, the goodness of the model may
be increased by considering additional covariates, even if a potential problem with a more complex model
can be related to the large number of main and interaction fixed effects. This may lead to overfitting, thus
reducing the predictive ability of the estimated model. In order to mitigate this problem, a suitable covariate
selection procedure has to be considered. One possibility is to use a boosting algorithm such as that one
defined by Tutz and Binder (2006). Finally, with regard to the challenging situation with the safety car
deployment, we empathize that an alternative model has to be defined, since the presence of the safety car
determines a different race regime, which is not adequately described by the models presented in this paper.
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Abstract

In this paper we compare the performance of a generalized version of Google’s PageR-
ank(GeM) ranking system on predicting outcomes in the NCAA Basketball tournament over
the years from 2010 to 2016 to other popular ranking systems, namely Colley, Massey, and
Keener. We use both raw and weighted versions of these rankings. We use the score obtained
by a ranking method for the ESPN Tournament Challenge in each year as a measure of its
effectiveness. The results show that although the GeM algorithm outdoes the other systems
for 2015, its scores on the challenges are not significantly different from those obtained by al-
gorithms based on the Massey and Colley methods. On the other hand, algorithms based on
Keener’s method show significantly lower scores than those based on other methods. There is
also significant variation in results from year to year, with some years showing significantly
lower or higher scores across methods than other years.

1 Introduction

The challenge of predicting the outcomes of all of the games in the NCAA Division I Basketball Tournament
each March is a popular but difficult challenge. After many attempts to use ranking systems from linear
algebra to predict the winners, we noticed that there is much variation in the performance of the different
ranking systems in any given year. There is also much variation in the performance of a given system from
year to year; frequently a system that excels in one year does badly in the next or vice versa. This sparked
our curiosity and led us to examine the variation in the performance of four main ranking systems over a
period of seven years.

Each March thousands of pools are created on ESPN before the tournament begins. Each pool member
fills out their predictions and then watches the story unfold over the subsequent weeks, during what is com-
monly known as March Madness. Since there are sixty four teams in this knockout tournament (after the
round involving the eight play-in teams, four of which make it into the tournament), it is clearly impossible
to fill out a bracket for each possible scenario. It is also highly unlikely that even the most ardent basketball
fans will be familiar with the strengths and weaknesses of all 64 teams, making it necessary to employ an
algorithm in order to reasonably attempt a prediction of the tournament’s outcomes.

In the ESPN Tournament Challenge, points are awarded to a bracket if it has predicted the correct winner
for a game. There are six rounds in the tournament. Ten points are awarded for each correct prediction of
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a game winner in round 1. The number of points awarded for a correct prediction doubles as the rounds
progress, ending with an award of 320 points for correctly predicting the winner of the final game. Clearly,
maximizing the number of points gained for such a bracket depends on many factors. An upset in the first
round that takes out a strong team can easily take a large toll on the points gained from a quarter of a bracket,
and the elimination of strong teams in the final three rounds can render one’s bracket completely void for
those rounds. Because one must predict the winners of all games before the tournament begins, a method of
prediction that is 70% accurate on predicting the outcomes of the games that are actually played can have a
greatly reduced level of accuracy overall.

In this paper, we compare the performance of some popular computer ranking models in the ESPN
Tournament Challenge, using the points gained in the challenge as a measure of the effectiveness of each
system. Each computer ranking model creates a rating for each NCAA Division I team, and each such rating
can be used to rank the teams. We assign number 1 to the team with the highest rating, number 2 to the team
with the second highest rating, etc. The ranking systems considered are based on algorithms developed by W.
Colley (Colley (2002)), J.P. Keener (Keener (1993)) and K. Massey (Massey (1997)), and on an adaptation
of Google’s PageRank algorithm (Brin and Page (1998)) developed by A. Govan, C. Meyer and R. Albright
(Govan et al. (2008)) to rank sports teams. We compared the performance of the basic ranking methods
along with the performance of the ranking methods with various weighting systems. The methods were
implemented using R from the CRAN website.

In Section 2 we describe our working example and where to find the relevant game data. In Section 3
we present a brief introduction to the ranking systems and demonstrate their implementation on the working
example. In Section 4 we present and analyze the results of the study for the NCAA tournament.

Remark 1. Hyperlinks appear in blue throughout.

2  Our Working Example

For our working example, we have chosen the games played in the Big 12 conference in 2015 prior to
the conference tournament. The teams, along with their win loss record and total point differential for
these conference games, are shown in Table 1. We also assign an index to each team, which are shown in
alphabetical order in the table. The assigned indices are shown in the left hand column of Table 1.
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Index Team W-L  PD
1 Baylor 11-7 91
2 Towa State 12-6 85
3 Kansas 13-5 123
4 Kansas State 8-10  -78
5 Oklahoma 12-6 106
6 Oklahoma State  8-10 -3
7 TCU 4-14 92
8 Texas 8-10 16
9 Texas Tech 3-15 -243
10 West Virginia ~ 11-7 -5

Table 1: Win-loss record, point differential and assigned index of Big 12 conference teams for games
played prior to 2015’s conference tournament.

Our data for this study was obtained from the website http://masseyratings.com/, maintained by
K. Massey. Under Information/Data, one can currently obtain archived records of games played in many
sports leagues, dating back to the late 1990’s. You can find a list of the games played in our working example
under College basketball 2015/NCAA/NCAAI/Big 12/A11/Intra.

3 The Ranking Systems

3.1 Colley’s Method

Colley’s method (Colley (2002) , Langville and Meyer (2012)) of ranking is based only on the ratings for the
teams derived from Laplace’s rule of succession:

4w
N 2+t

ri

where w; is the number of wins for team i and ¢; is the number of games played by team i. Colley makes the
observation that the Laplace ratings derived from this rule for a team’s set of opponents, O;, should average to
roughly 1/2. Thust; /2~ Y jeo, I'j- Colley then cleverly manipulates wins to get the following approximation
for w;:
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where /; denotes the number of losses for team i. He then substitutes this approximation for w; into the right
hand side of the ratings from Laplace’s rule to derive the following system of linear equations:

I
{(2—|—li)i’i =Y nijri=1+ W’Z ’ }
J#i 1<i<n

where n;; denotes the number of times team i has played team j. There is one linear equation in this system
for each team where the teams are assigned an index in the set {1,...,n}. Colley’s ratings for the teams are
the solutions to the above system of linear equations.

For our running example, the resulting system of equations Cr = B (to be solved for Colley’s ratings) is
shown below:

r20 -2 -2 -2 -2 -2 -2 =2 =2 =277 rn ] [ 3
-2 20 -2 -2 -2 -2 -2 -2 =2 =2 &) 4
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-2 -2 -2 -2 -2 =2 =2 =2 20 -2 79 =5

| 2 -2 -2 -2 -2 =2 =2 =2 =2 20 ] [ ro | L 3

One can solve these equations in R! to get the ratings for the teams, which are rounded off and shown
with the corresponding rankings in Table 2.

Team Rank Rating
Kansas 1 0.68
Iowa State 2 0.64
Oklahoma 3 0.64
Baylor 4 0.59
West Virginia 5 0.59
Kansas State 6 0.45
Oklahoma State 7 0.45
Texas 8 0.45
TCU 9 0.27
Texas Tech 10 0.23

Table 2: Rankings for the Big 12 teams, 2015, using Colley’s method.

0ne can solve the system Cr=B in R with the command solve (C,B)
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Remark 2. One sees that when we have the full results of a round robin tournament, the rankings derived
from Colley’s system will coincide with those derived from the statistic wins minus losses. We let e denote a
column vector of 1’s with dimension equal to n, where n is the number of teams in the tournament. We then
see that B-e and e are both eigenvectors of C, with eigenvalues 2 4+ and 2 respectively. This follows easily
from the fact that the sum of wins minus losses for all teams must be 0. Thus we see that the the solution to

n (B—e)+ e which gives the same ranking as wins minus losses. Excepting
n

an analysis of a single or double round robin tournament’s results, Colley’s rankings can and most often do
give a different hierarchy than wins minus losses.

the system of equations is >

3.2 Massey’s Method

Massey’s method of ranking is based on the idea that with a perfect set of ratings for the teams r;, the
difference in the ratings for two teams would equal the point differential for each game played between
them. This gives us a system of equations r; —r; = pi, one for each game. It should not be a surprise that,
with this approach the probability of getting a system of equations that is inconsistent is very high. However,
Massey takes the least squares solution to this system to derive a system of equations with infinitely many
solutions. He then replaces the last equation by the condition that the sum of the associated ratings adds to 0
to get a unique solution, which gives us the Massey ratings. The result is is the system of equations

{tii’i - Znijrj =P, er = 0}
J# Y I<i<n—1, 1<j<n
for the n teams in the tournament. For this system #; and n;; have the same meaning as in the previous section,
P, is the total point differential for team i, and its solution gives us Massey’s ratings.
When applied to our working example, we get the following matrix equation Mr = P:

18 -2 -2 -2 -2 -2 -2 -2 -2 =27~ 1 [ 91
2 18 -2 -2 -2 -2 -2 -2 -2 -2 " 85
2 -2 18 -2 -2 -2 -2 -2 -2 -2 s 123
2 -2 -2 18 -2 -2 -2 -2 -2 -2 7 —78
2 -2 -2 -2 18 -2 -2 -2 -2 -2 rs | | 106
2 -2 -2 -2 -2 18 -2 -2 -2 -2 e | | -3
2 -2 -2 -2 -2 -2 18 -2 -2 -2 r —92
2 -2 -2 -2 -2 -2 -2 18 -2 -2 rs 16
2 -2 -2 -2 -2 -2 -2 -2 18 =2 ro —243
1 1 1 1 1 1 1 1 1 14 lmd L ol

We can solve for Massey’s ratings in R. The resulting ratings, with corresponding rankings, are given in
Table 3.
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Team Rank Rating
Kansas 1 6.15
Oklahoma 2 5.30
Baylor 3 4.55
Iowa State 4 4.30
Texas 5 0.80
Oklahoma State 6 -0.15
West Virginia 7 -0.30
Kansas State 8 -3.90
TCU 9 -4.60
Texas Tech 10 -12.15

Table 3: Rankings for the Big 12 teams, 2015, using Massey’s method.

Remark 3. Massey’s method gives the same ranking as the point differential when applied to the full results
of a round robin tournament. Since the point differentials for all of the teams must add to 0, it is not difficult
to see that a constant multiple of the vector of point differentials is a solution to the above system Mr = P. As
with Colley’s method, if we do not have the full results of a round robin tournament, the rankings obtained
will most likely deviate from those obtained via the point differential.

3.3 Keener’s Method

Keener’s method is based on the existence of a unique eigenvector (up to multiplication by a constant)
associated to the dominant eigenvalue for a non-negative, irreducible matrix K as guaranteed by the Perron-
Frobenius Theorem (Meyer (2005), Section 8.3). Here non-negative implies that K;; > 0 for all i and j,
and irreducible implies that for each pair of indices (i, j), there is a sequence of entries in K such that
KijK;,j, -..Kj,j # 0. The matrix K is created using any non-negative game statistic, such as points scored.
We let s;; be the value of the statistic for team i, for the game played between team i and team j. Keener then
applies a smoothing function, 4(x), to avoid having the ratings influenced by outliers and manipulation. The
matrix K is given by:

)

K — h (S”i’r’;i» if team i has played team j
ij = .
0 otherwise

where h(x) = % + sen(x—1/2)/12¢— 1] . If team 7 has played team j more than once, then s;; is the sum of
the values of the relevant statistics for team i over all games played between the teams. The Keener ratings
are given by the eigenvector associated to the dominant eigenvalue of K.

When we apply Keener’s method, using the statistic "points scored", to our working example, we get the

following matrix:
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0 059 040 066 053 036 0.66 0.64 0.59 0.66
041 0 042 057 044 0.58 0.65 0.59 0.67 0.64
0.60 058 0 056 056 0.57 0.60 0.63 0.73 0.57
034 043 044 0 058 043 040 036 039 040
047 056 044 042 0 0.65 0.64 0.65 0.71 0.46
0.64 042 043 057 035 0 045 0.61 064 0.37
0.34 035 040 060 036 055 0 029 0.70 0.40
0.36 041 037 064 035 039 071 0 0.66 0.64
0.41 033 027 061 029 036 030 034 0 034
0.34 036 043 060 0.54 0.63 0.60 036 066 O

We can find the eigenvalues and eigenvectors of this matrix in R>. Then picking out the largest eigenvalue
and the corresponding eigenvector, we get the ratings and corresponding rankings of the teams shown in
Table 4.

Team Rank Rating
Kansas 1 0.3735
Baylor 2 0.3518

Oklahoma 3 0.3455
Towa_St 4 0.3428
Oklahoma_St 5 0.3136
Texas 6 0.3132
West_Virginia 7 0.3111
TCU 8 0.2776
Kansas_St 9 0.2740
Texas_Tech 10 0.2333

Table 4: Rankings for the Big 12 teams, 2015, using Keener’s method.

Remark 4. The irreducibility of the matrix K depends on the number of games played in the league and
the interconnectivity of the associated graph. If the matrix is not irreducible, one can always add a small
perturbation matrix to it (as we do in the GeM model below) to force irreducibility.

3.4 Generalized Page Rank (GeM)

The original PageRank algorithm (Brin and Page (1998)) used by Google was based on the theory of Markov
Chains. If a matrix G is stochastic (rows add to 1), is irreducible and has at least one positive diagonal entry,
then it has a unique eigenvector with eigenvalue 1 and norm 1. This is a special case of the Perron Frobenius
theorem. The method normalizes the adjacency matrix of the directed graph of web page links to get a
hyperlink matrix H. The method then adjusts H by adding a rank 1 matrix to deal with dangling nodes

2To create a table of eigenvalues and eigenvectors for a matrix K using R, we use the command eigen (K)
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(nodes with no arrows pointing outwards, which represent pages with no links ) and a small perturbation
matrix to ensure irreducibility and positive diagonals. The associated rating vector for the webpages (the
Perron vector) can be computed as an eigenvalue of the transpose matrix or by repeatedly applying the
matrix to an initial probability distribution vector (using the theory of Markov chains) to get the required
vector as the stable vector of the system.

We apply an adaptation of Google’s Page ranking system introduced by Meyer, Albright and Govan for
sports leagues. The method (GeM) is described in detail in Govan et al. (2008). These researchers represent
a sport season by a weighted directed graph with n nodes, where n is the number of sports teams involved.
The teams correspond to the nodes, and each game is represented by an arrow from the loser to the winner,
with weight w;; equal to the absolute value of the point differential. The basic steps to constructing the
stochastic matrix G are:

e Form the n X n adjacency matrix A of the graph of web pages :

A Wi if team i lost to team j
0  otherwise

e Form the stochastic "hyperlink" matrix H where

o {A,-j/ZZIAik if there is a link between i and j
ij —

0 otherwise

e Make an adjustment to H for the dangling nodes (rows of zeros corresponding to unbeaten teams) by

T

1 1
adding —ae to get H+ —ae’ . Here a is an n x 1 column matrix with 1’s in the j position if j is
n

n
unbeaten and O’s elsewhere, and e is an n X 1 column matrix of 1°’s.

e Finally the adjustment to ensure irreducibility and primitivity is made to get the basic version of the
GeM (Generalized Markov Chain) matrix G, given by:

(1-a)

1
G=a[H+ ~ae'] + eel
n

where o is a chosen scaling parameter which ensures that the resulting matrix is stochastic. It can
be set at any value between 0 and 1 and allows us to adjust the size of the perturbation matrix %eeT.

Smaller values of & give a larger perturbation of the GeM matrix.

For our running example with @ = 0.85 , the matrix H looks like:

0 0  11/45 2/45  2/9  4/9 0 2/45 0 0
1/4 0  13/40 1/40 11/40 0 0 0 1/8 0
0 1/4 0 7/20  1/10  1/4 0 0 0 1/20
27/116  3/58 11/116 0 0 7/58  7/58 17/116 17/116 5/58
g | /22 1/52 0 326 0 0 0 0 0 21/5
- 0 7/87 10/87 10/87 25/87 0 5/29 0 1/87  19/87
27/158 15/79  6/79  5/158 19/158 6/79 0 41/158 0 6/79
23/95 11/95 1895 0 23/95 13/95 0 0 0 7/95

4/133 37/266 27/133 1/38  7/38 10/133 37/266 12/133 015/133

2/7  22/105 1/15 019/105 0 0 9/35 0 0

104



MathSport International 2017 Conference Proceedings

A Comparison of Computer Rankings for NCAA Basketball Coletti, Pilkington

No adjustment for unbeaten teams is necessary, and the matrix G is the above matrix with (1 —0.85)/10 =
3/200 added to each entry:

o 3/200 3/200  401/1800  19/360  367/1800 707/1800  3/200  19/360 3/200 3/200 7
91,/400 3/200  233/800  29/800  199/800  3/200  3/200  3/200 97/800 3/200
3/200 91,400 3/200 5/16 1/10 91/400  3/200  3/200 3/200 23/400
2469/11600 171/2900 1109/11600  3/200 3/200  341/2900 341/2900 1619/11600 1619/11600  64/725
G | 1013/5200 406/3137  406/3137  147/1300  3/200 3/200  3/200  3/200 3/200  977/2727
T | 3/200  1451/17400 1961/17400 1961/17400 4511/17400  3/200  937/5800  3/200  431/17400 3491/17400
633/3950 2787/15800 1257/15800 331/7900 463/3950 1257/15800 3/200 1861/7900  3/200  1257/15800
839/3800 431/3800 669/3800  3/200  839/3800 499/3800  3/200  3/200 3/200 59/760
1079/26600 443/3325 4989/26600 71/1900  163/950 2099,/26600 443/3325 2439/26600  3/200 294926600
| 361/1400 811/4200  43/600 3/200  709/4200  3/200  3/200  327/1400  3/200 3/200

The ratings and rankings produced are shown in Table 5.

Team Rank Rating
Oklahoma 1 0.148
Kansas 2 0.136
Baylor 3 0.132
Oklahoma_St 4 0.117

Towa_St 5 0.1114

West_Virginia 6 0.1110
Kansas_St 7 0.091
Texas 8 0.069
TCU 9 0.046
Texas_Tech 10 0.039

Table 5: Rankings for the Big 12 teams, 2015, using the GeM method.

4 Performance of Ranking systems on NCAA tournament

We look at the performance of the above four ranking systems in the yearly ESPN Tournament Challenge
from the 2009-2010 season to the 2015-2016 season. As mentioned in the introduction, points are awarded to
a bracket if you have predicted the correct winner for a game, with 320 points awarded in each round. There
are six rounds in the (single-elimination) tournament. Ten points are awarded for each correct prediction
of a game winner in round one and the number of points awarded for a correct prediction doubles as the
rounds progress. Thus the tournament challenge ends with an award of 320 points for correctly predicting
the winner of the final game. The total number of points possible is 1,920.

We applied the ranking systems described above to the games played in each season prior to the tourna-
ment. We also applied weighted versions of the ranking systems. The weights, chosen based on experimenta-
tion, are described below. In developing these weights, we note that early season games are important in that
they are the only source of interaction between the conferences. On the other hand, the early season is a time
of experimentation for many teams, so their play may not be representative of their best performances. We
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chose to weight the early season games highly with a uniform weight. We then weighted the in-conference
games later in the season more highly than earlier ones since a team’s performance in the tournament is
likely to be similar to that at the end of its own conference games. Since the home team has a home team
advantage, away wins/home losses were weighted higher than home/neutral wins. In summary we used the
following rules to weight games in our weighted rankings:

e We assigned a weight of 10 to out-of-conference, early season games.

e For conference season games, we increased the weight from 1 to 10 in 10 steps over the course of the
season, having carved the season into 10 time intervals of equal length.

e Away wins were weighted as twice the weight previously assigned.

The ratings vectors were created prior to the start of the tournament and the corresponding rankings used
to decide the winner of each game before the tournament began.

4.1 Results

The results in Table 6 below show the total score of a bracket by year and the ranking method used. The
results of a number of statistical tests run on the data are discussed in this section. In Figures 1 and 2, we
show summary statistics and boxplots for all methods.

Year | Massey Weighted Colley Weighted Keener Weighted PageRank Weighted
Massey Colley Keener PageRank

2010 810 790 660 860 400 400 770 670
2011 480 490 520 480 300 300 550 540
2012 1340 1270 850 870 540 550 600 620
2013 850 850 600 1050 360 360 590 570
2014 570 590 680 690 560 560 580 620
2015 1060 1100 840 800 750 740 1300 1230
2016 750 680 860 610 730 750 730 650

Table 6: Bracket scores by year and method (2016 marks end of 2015/2016 season).
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Percentiles
Std. 50th
N Mean Deviation Minimum | Maximum 25th (Median) 75th

WeightedColley 7 | 765.71 188.579 480 1050 | 610.00 800.00 | 870.00
WeightedMassey 7 | 824.29 278.080 490 1270 | 590.00 790.00 | 1100.00
WeightedGooglePR 7 | 701.43 241.622 540 1240 | 570.00 620.00 | 670.00
WeightedKeener 7 | 522.86 178.952 300 750 | 360.00 550.00 | 740.00
Colley 7 | 715.71 135.629 520 860 | 600.00 680.00 | 850.00
Massey 7 | 837.14 291.531 480 1340 | 570.00 810.00 | 1060.00
GooglePR 7 | 731.43 263.908 550 1300 | 580.00 600.00 | 770.00
Keener 7 | 520.00 176.730 300 750 | 360.00 540.00 | 730.00

Figure 1: Summary statistics for ranking methods by method.

[ )
g . _ _
g e Sl e  —
T T T T T T T T
Massey W..Massey Colley W.Colley Keener W.keener PageRank W.PageRank

Figure 2: Boxplots for ranking methods (using yearly data).

The heat map in Figure 3 below uses Pearson’s method to show pairwise correlations between ranking
methods, colored and ordered according to the strength of the correlation. This shows some surprising
results. Three out of the four ranking systems are strongly correlated with their weighted version, whereas
Colley’s method has a weak correlation with its weighted version. In fact, the weighted Colley method
is very weakly correlated with everything, except both the Massey and weighted Massey methods; it even
has a very weak negative correlation with both versions of Keener’s method. On the other hand, Colley’s
method without the weighting is strongly correlated with both versions of Keener’s method. Less notable but
strong correlations also exist between the PageRank methods and the Keener methods, and between Colley’s
method and both versions of Massey’s method.

We also looked at pairwise differences in performance of methods, using a T-test for paired data (paired
by year). The p-values resulting from these tests are shown in Table 7, with an asterisk next to those p-
vlaues that fall below an o = 0.05 level of significance. We see that both the Keener and weighted Keener
methods have significantly lower scores than the regular and weighted versions of Massey’s method and the
GeM(PageRank) method.

A Friedman test also showed significant differences in scores depending on which type of method was
used, resulting in values of ¥?(7) = 19.274 and p = 0.007. In addition, follow up Wilcoxon signed-rank tests
were carried out. We give a summary of the results of these Wilcoxon tests in Table 8. The lower triangle
of the table gives the Wilcoxon p-value of the difference between the results of the row method and those
of the column method. The upper triangle gives the number of years (out of 7) in which the row method
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Figure 3: Heat map showing pairwise correlations (Pearson) between ranking methods.

gave a score larger than the column method. Although the effect from the Wilcoxon results is cancelled by
a Bonferroni adjustment (used in testing the hypothesis that all means are the same) because of the number
of comparisons, we see again that there is a significant difference between the Keener and weighted Keener
methods in a number of pairwise comparisons to other methods. As with the T-tests for paired data, we
see no significant differences between the methods based on Colley’s method, Massey’s method, and the
PageRank method.
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Massey W.Massey Colley W.Colley Keener W.Keener PageRank
W.Massey | 0.45995 - - - - - -
Colley 0.19825  0.23360 - - - - -
W.Colley 0.45063  0.50439  0.57016 - - - -
Keener 0.02438*  0.02475* 0.00077*  0.05328 - - -
W.Keener | 0.02552* 0.02646* 0.00077* 0.05730  0.45705 - -
PageRank 0.41106  0.42859  0.86141 0.77764 0.03271*  0.03920* -
W.PageRank | 0.26784  0.26451 0.84605  0.56668 0.03831* 0.04753*  0.16806
Table 7: p-values from paired t-tests comparing methods two at a time.
A * indicates a p-value below the 0.05 level of significance.
W.Colley W.Massey W.PageRank W.Keener Colley Massey PageRank Keener
W.Colley - 3 4 6 4 4(1) 4 6
W.Massey 0.672 - 4 6 4 4(1) 4 6
W.PageRank 0.398 0.446 - 6 3 3 2 6
W.Keener 0.063 0.043* 0.063 . 0 (1) 1 6(4)
Colley 0.866 0.237 0.499 0.018* - 3 4 7
Massey 0.463 0.527 0.310 0.028* 0.176 - 4 7
PageRank 0.735 0.735 0.204 0.034* 0.866 0.499 - (1)
Keener 0.043* 0.043* 0.051 0.414 0.018* 0.018* 0.028* -

Table 8: Results of signed rank Wilcoxon test applied to methods in pairs. p-values appear in the lower triangle. Number of years

for which (row method score - col. method score) > 0 appears in upper triangle. Number of ties (if relevant) in brackets.

As mentioned in the introduction, part of the motivation for studying these results was because we noticed

large fluctuations in the performance of ranking methods based on linear algebra from year to year. In Figure
4 we show summary statistics for the scores by year.

Percentiles
Std. 50th
N Mean Deviation Minimum | Maximum 25th (Median) 75th
Y2010 8 670.00 179.682 400 860 465.00 720.00 805.00
Y2011 8 457.50 100.676 300 550 345.00 485.00 535.00
Y2012 8 830.00 319.643 540 1340 562.50 735.00 | 1170.00
Y2013 8 653.75 245.120 360 1050 412.50 595.00 850.00
Y2014 8 606.25 52.355 560 690 562.50 585.00 665.00
Y2015 8 978.75 224.654 740 1300 762.50 950.00 | 1205.00
Y2016 8 720.00 75.782 610 860 657.50 730.00 750.00

Figure 4: Summary statistics for ranking methods by year.

In Table 9 below, we show the p-values from T-tests for paired data comparing the results of the set of
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methods between two years. We see that the scores for 2011 are significantly different from those in other
years when compared using the paired T-tests. Furthermore the scores for 2015 are significantly different
from other years, with the exception of the scores for 2012.

We also applied a Friedman test to the data in Table 6, which showed significant differences in the
scores depending on which year the methods were applied. This test resulted in values of y%(6) = 27.04
and p = 0.000. We show the results (without adjustment) of follow up Wilcoxon tests in Table 10, with
the number of methods for which the row year had a score greater than or equal to that of the column year
in the upper triangle (and the number of draws in brackets if relevant). In the lower triangle, we recorded
the p-value for the Wilcoxon test comparing both years. As we saw with the paired T-tests, the year 2011
has significantly different scores than all of the other years, and the scores in the year 2015 are significantly
different than all other years except 2012. One interesting feature of the table is that, with the exception of
2013 and 2014, each year has significantly different scores on the ranking methods than adjacent years.

2010 2011 2012 2013 2014 2015
2011 | 0.0010* - - - - -
2012 | 0.1058 0.0098* - - - -
2013 | 0.6947 0.0314*  0.0565 -
2014 | 0.3030 0.0019*  0.0885 0.5650 - -
2015 | 0.0031* 4.1e—05* 0.2779 0.0182* 0.0031* -
2016 | 0.5366 0.0008*  0.3768 0.5358 0.0121* 0.0229*

Table 9: p-values from paired t-tests comparing years two at a time with no adjustment.
A * indicates a p-value below the 0.05 level of significance.

2010 2011 2012 2013 2014 2015 2016

2010 - 8 2 5 5 1 5
2011 | 0.012* - 0 0 0 0 0
2012 | 0.123  0.012* - 7 6(1) 4 3
2013 | 0.622 0.012* 0.042* - 4 1 3
2014 | 0.161 0.012* 0.075  0.575 - 0 1
2015 | 0.017 0.012* 0.401 0.042* 0.012* - 6
2016 | 0.779 0.012* 0.674 0.575 0.025* 0.042*

Table 10: Results of signed rank Wilcoxon test applied to years in pairs. p-values appear in the lower
triangle. Number of methods for which (row method score - col. method score) > 0 appears in upper
triangle. Number of ties (if relevant) in brackets.
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5 Conclusion

Our results indicate that our weighting of the ranking systems did not produce a significant change in perfor-
mance. Although our research showed that this weighting system was one of the better ones among those we
studied, further research is necessary in order to find an optimal weighting system for each method. In ret-
rospect, it might be best to either ignore early season games, when teams are experimenting with strategies,
or give them less weight than games played near the start of the in-conference games.

We see that, when compared pairwise, the ranking methods based on Keener’s method have significantly
smaller scores than those based on the other methods. By contrast, although each of the other methods had
good years and bad years, there was no significant difference between the other methods when compared
pairwise. It is conceivable that a different combination of game statistics used in Keener’s method would
yield better results. The generalized PageRank model allows for much greater flexibility in the choice and
use of game statistics, a combination of which may yield better results than the version we used. It is also
possible that different values of the scaling parameter ¢ in the generalized PageRank model would yield
better results.

We saw that, in a pairwise comparison, the results for 2011 were significantly lower than those for
other years and with the exception of 2012, the results for 2015 were significantly higher than those for
other years. The Wilcoxon signed rank test also revealed an interesting pattern of significant differences in
results between consecutive years, with the exception of 2013 and 2014. The fluctuations in performance of
the ranking systems may be reflective of the cyclic nature of college basketball teams’ prowess, due to the
graduation of senior players, the loss of players leaving early to join the NBA, and the influx of freshmen
who have no experience in the tournament. Whatever the reason, this data suggests that it might be wise
to supplement linear models with other methods such as regression analysis of team/game statistics when
making predictions for the tournament.

References

[1] Colley, W. N. (2002) Colley’s Bias Free College Football Ranking Method.

[2] Brin, Sergey and Page, Lawrence (1998) The Anatomy of a Large Scale Hypertextual Web Search Engine.
Computer Networks and ISDN Systems, 33: 107-17.

[3] Govan, Anjela Y., Meyer, Carl D. and Albright, Russell (2008) Generalizing Google’s PageRank to Rank Na-
tional Football League Teams. SAS Global Forum 2008, Paper 151.

[4] Keener, James P. (1993) The Perron-Frobenius Theorem and The Ranking of Football Teams. SIAM Review,
Vol. 35, No. 1 (Mar. 1993), pp 80-93.

[5] Langville, Amy M. and Meyer, Carl D. (2006) Google’s Page Rank and Beyond: The Science of Search Engine
Rankings. Princeton University Press.

[6] Langville, Amy M. and Meyer, Carl D. (2012) Who’s # 1?: The Science of Rating and Ranking. Princeton
University Press.

[7] Massey, Kenneth (1997) Statistical Models Applied to The Rating of Sports Teams. Bluefield College.
[8] Meyer, Carl D. (2005) Matrix Analysis and Applied Linear Algebra. STAM, Philadelphia.
[9]1 The Comprehensive R Archive Network. https://cran.r-project.org/

111



MathSport International 2017 Conference Proceedings

Bayesian hierarchical models for predicting individual
performance in football (soccer)

L. Egidi* and J. S. Gabry**

*Dipartimento di Scienze Statistiche, Universita degli Studi di Padova, email address: egidi @stat.unipd.it
** Department of Statistics, Columbia University, New York, email address: jgabry @gmail.com

Abstract

The task of predicting the performance of football (soccer) players is gaining increasing
attention in the sports and statistical communities. We discuss the merits and flaws of a variety
of hierarchical Bayesian models for detecting factors relevant to player performance in the
presence of noisy data, and we compare the models on their predictive accuracy on hold-out
data. We apply our analyses to the 2015-2016 season in the top Italian league, Serie A, and use
the player ratings provided by a popular Italian fantasy football game as a motivating example.
Our central goals are to explore what can be accomplished with a simple freely available dataset
and to focus on a small number of interesting modeling and prediction questions that arise. We
validate our models through graphical posterior predictive checks and we provide out-of-sample
predictions for the second half of the season, using the first one as training set.

1 Introduction

In most of the published statistical research on football — Baio and Blangiardo (2010), Dixon and Coles
(1997), Karlis and Ntzoufras (2009) — the authors primarily focus on modeling some aspect of the global
result of a match between opposing teams (e.g., goal differential), or on predicting the order of the league
table at the end of a season, and rarely on the performance of individual players over the course of a season.
One reason for not focusing on predictions at the individual player level is that the performance of individual
football players is noisy and hard to predict. The dimensions of the pitch combined with the number of
players, the difficulty of controlling the ball without the use of hands, and many other factors all contribute
to the predictive challenge. In fact, as far as well can tell from reviewing the current literature, there have
been no published attempts to use a hierarchical Bayesian framework to address the challenges of modeling
this kind of data.

Nevertheless, we suspect that even in football —in fantasy football at least (Bonomo et al., 2014)— a
prediction task for individual performance could be well posed. In this paper we present and critique several
Bayesian hierarchical models (Gelman et al., 2013, Gelman and Hill, 2006) designed to predict the results of
an Italian fantasy football game with players nested within position and team. All models are estimated via
Markov chain Monte Carlo using RStan, the R (R Core Team, 2016) interface to the Stan C++ library (Stan
Development Team, 2016a).

The outcome of interest is the fantasy rating of each player in Italy’s top league, Serie A, for each match
of the 2015-2016 season. In some sense, we are using these data with a dual purpose: we would like to
provide estimates and predictions both for the fantasy game and for the sport itself. That is, we use the fantasy

112



MathSport International 2017 Conference Proceedings

Bayesian hierarchical models for performance in football (soccer) L. Egidi, J.S. Gabry

ratings as both an outcome of interest and also as a (crude) proxy for the quality of a player’s performance.
Although we take Fantacalcio, an Italian fantasy football product, as our example, the process of developing
these models and comparing them on predictive performance does not depend on the idiosyncrasies of this
particular fantasy system and is applicable more broadly.

Our central goals are to explore what can be accomplished with a simple freely available dataset (com-
prising only a few variables) and to focus on a small number of interesting modeling and prediction questions
that arise. For this reason we also gloss over many issues that we believe should be of interest in subsequent
research, for instance variable selection, additional temporal correlation structures, and the possibility of
constructing more informative prior distributions.

The rest of the paper is structured as follows. In Section 2 we briefly introduce the Italian fantasy football
game Fantacalcio. We then describe our dataset and present the models we fit in Section 3, where a mixture
model (Section 3.3) is explained in detail and the other models derived as consequence. Preliminary results
are presented in Section 4, along with a variety of posterior predictive checks as well as out-of-sample
prediction tasks. Section 5 concludes.

2 Overview of the game

Fantasy sports games typically involve roster selection and match-by-match challenges against other partic-
ipants with the results determined by the collective performance of the players on the fantasy rosters. In
Italy, fantasy football was popularized by the brand Fantacalcio edited by Riccardo Albini in the 1990s (see
http://www.fantacalcio.it for further details) and in the rest of the paper we use the original denomi-
nation for referring at the Italian game.

At the beginning of the season, the virtual managers are allocated a limited amount of virtual money
with which to buy the players that will comprise their roster. Each player in the Italian Serie A league has an
associated price determined by various factors including past performance and forecasts for the upcoming
season. After every match in Serie A, the prominent Italian sports periodicals assign each player a rating,
a so-called raw score, on a scale from one to ten. In practice there is not much variability in these scores;
they typically range from four to eight, with the majority between five and seven. These raw scores are
very general and largely subjective performance ratings that do not account for significant individual events
(goals, assists, yellow and red cards, etc.) in a consistent way.

As a means of systematically including specific in-game events in the ratings, Fantacalcio provides the
so-called point scoring system. Points are added or deducted from a player’s initial raw score for specific
positive or negative events during the match. The point scores are more variable than the raw scores, espe-
cially across positions (e.g., when comparing defending and attacking players). Goalkeepers suffer the most
from the point scoring system, as they are deducted a point for every goal conceded. On the other extreme,
forwards (attacking players) typically receive the highest point scores because every goal scored is worth
three points.

For player i in match ¢ the total rating y;; is

vir = Rit + Pz, (1

where R is the raw score and P is the point score. Table 1 lists the game features that contribute to a player’s
point score P;, for a given match.
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Event Points

Goal +3

Assist +1

Penality saved* +3

Yellow card -0.5

Red Card -1

Goal conceded* -1

Own Goal -2

Missed penality -3

Table 1: Bonus/Malus points in Fantacalcio. The symbol * denotes an event only applicable to goalkeepers.

Importantly, there are two general ways we observe an outcome of y; = 0. First, player i’s rating for
match ¢ will be zero if the player does not play in the match — because of injury, disqualification, coach’s
decision, or some other reason — or he does not participate in the match for long enough for their impact to
be judged by those tasked with assigning the subjective raw score (R; = 0). We will refer to this first type
of zero as a missing observation because the player did not enter the match. Second, due to the nature of the
Fantacalcio scoring system, a player can also receive a score of zero even if he does play in the match. For
example, a goalkeeper who receives a raw score of four and concedes four goals will have a score of zero for
the match. We will refer to this second type of zero — quite uncommon — as an observed zero.

One of the main aims of this paper is the attempt to model the missing values which naturally arise over
the season.

3 Data and models

3.1 Data

All data for this paper are from the 2015-2016 season of the Italian Serie A and were collected from the
Italian publication La Gazzetta dello Sport ( http://www.gazzetta.it). We decided to select those play-
ers which participated in at least a third of matches during the andata (the first half of the season); this
results in a dataset containing ratings for 237 players (18 goalkeepers, 90 defenders, 78 midfielders, and 51
forwards). For illustration purposes of the data at hand, Figure 1 displays the average ratings for the players
of our dataset plotted against the initial standardized prices for each player, discussed in Section 2. For a
wider overview on the data we used, see http://www.gazzetta.it/calcio/fantanews/statistiche/
serie-a-2015-16/.

There are N = 237 players and T = 38 matches in the dataset. When fitting our models we use only
the 71 = 19 matches from the first half of the 2015-2016 Serie A season. The remaining matches are used
later for predictive checks. The players are grouped into J = 4 positions (forward, midfielder, defender, goal-
keeper) and K =5 team clusters. The five clusters (not listed here) were determined using the official Serie A
rankings at the midpoint of the season. The purpose of the team clustering is both to use a grouping structure
that has some practical meaning in this context and also to reduce the computational burden somewhat by
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Figure 1: Average ratings plotted against the initial standardized prices for each of the 237 players of the
dataset, taking into account the four different positions.

including cluster-specific parameters rather than team-specific parameters.

3.2 General framework and notation

The notation we use for data and parameters is similar to the convention adopted by Gelman and Hill (2006)
for multilevel models. For match r € {1,...,T}, let y;j, denote the value of the total rating for player
i € {1,...,N}, with position (role on the team) j € {1,...,J}, on a team in team-cluster k € {1,...,K}. To
ease the notational burden, throughout the rest of the paper the subscripts j and k will often be implicit and
we will use y; in place of y;j;,.We denote by Z the N x T binary matrix in which each element z; is 1 if
player i’s team plays match ¢ at its home stadium and O otherwise. And let ¢; denote the initial standardized
price for player i. These values are assigned by experts and journalists at the beginning of the season based
on their personal judgement and then updated throughout the season to reflect each player’s performance.

Let o; denote the individual intercept for each player, with i = 1,...,N. We denote with ¥;(; the team-
cluster intercept and with Bk[,-]y, the team-cluster of the opponent in match ¢, with k=1, ..., K. In our simplified
framework we set the number of team-clusters K =5. p;y; is the position intercept, with j=1,...,J and J = 4.
The standardized prices are multiplied by a coefficient §;;), which also varies over the J positions. Because
we are interested in detecting trends in player ratings, we also incorporate the average rating up to the game
t —1, s;;—1, multiplied by a factor lj[,-] estimated from the data. For the mixture model in Section 3.3,
the same average rating s;;_1 is also multiplied by a coefficient C ji) in order to model the probability of
participating in the match z.

For illustration purpose, here we present in detail the mixture model (hereafter, MIX), and we gloss
over the technical details for the other two models we fit, which may be conceptually derived from the
first one: the hierarchical autoregressive model (HAr), whose estimates are carried out by replacing all
the missing values (see Section 2) with some zeros; and the hierarchical autoregressive missing model (HAr-
mis), which actually treats the unobserved ratings as modeled parameters — we wrote a simple Stan program
implementing the joint model for the observed and missing observations —. It is worth noticing that the MIX
and the HAr-mis model are actual attempts for modeling the missingness in our dataset.
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3.3 Mixture model (MIX)

Even if we found that some players have a tendency to be ejected from matches due to red cards, for instance,
or tend to suffer injuries at a high rate, it would still be very challenging to arrive at sufficiently informative
probability distributions for these events. Even with detailed player histories over many seasons, it would be
hard to predict the number of missing matches in the current season. Nevertheless, we can try to incorporate
the missingness behavior intrinsic to the game into our models. Assuming that it is very rare for a player to
play in every match during a season, we can try to model the overall propensity for missingness. A general
way of doing this entails introducing a latent variable, which we denote V;; and define as

v { 1, if player i participates in match ¢,
it =

0, otherwise.

If for each player i we let ; = Pr(V;, = 1), then we can specify a mixture of a Gaussian distribution and
a point mass at 0 (Gottardo and Raftery, 2008)

p ()’it | Mt Gf) = m; Normal (}’it | Mt Gy2) + (1 —m;) do, (2)

where & is the Dirac mass at zero, 63 is the variance of the error in predicting the outcome and 1;; is the
linear predictor
Nir = &+ Buji s + Y + Pjli) + 6jy i + 0z + AjjiySie—1- (3)

The probability 7; is modeled using a logit regression,
7ty = logit™" (po + &jpsia-1) “)

which takes into account predictors that are likely to correlate with player participation. s;,_1 is the average
rating for player 7 up to match r — 1 and py is the intercept for the logit model.
For the new parameters introduced in (4) we use the weakly informative priors

(po, ) % Normal(0,52).

The models for the group-level and individual parameters are

a; ~ Normal(ug, 62), i=1,...,N (5)
ykNNormaI(O,G}%), k=1,....K 6)
Bi ~ Normal(0, 5), k=1,....K (7
pj ~Normal(u,, 07), j=1,....J ®)

with weakly informative prior distributions for the remaining parameters and hyperparameters.

In this formulation, the parameters g and (i, are the prior means of the individual intercepts and of the
position-specific intercepts.

The HAr and the HAr-mis models — which differ only concerning how they use and code the missing
values — may be easily defined through the distribution Normal (y,-t | Nit, Gyz), with the same 7);; as in (3).
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4 Preliminary results, posterior predictive checks and predictions

4.1 Results

We fit the models via Markov chain Monte Carlo using RStan, the R interface to the Stan C++ library
(Stan Development Team, 2016a), and monitored convergence as recommended in Stan Development Team
(2016b). Figure 2 shows the parameter estimates for the HAr, the HAr-mis and the MIX model. At a first
glance, the magnitude and the sign of the parameters for the MIX model and the HAr-mis are quite close.
According to all the models, the beta’s, gamma’s and delta’s coefficients are almost all shrunk towards their
grand mean 0, with a low variability.

As it is evident, the largest source of variation for the three models is represented by the position. For
what concerns the lambda’s, the estimates obtained through the HAr model are greater than those obtained
under the HAr-mis and the MIX model. We recall that, for every ¢, these coefficients are multiplied by the
lagged average rating s;;_1; then, we strongly believe that the greater HAr values are mainly due to coding
the missing values as zeros, instead of modeling as parameters, as for the HAr-mis model. All the models
recognize a slight advantage due to playing at home (6 > 0).

4.2 Posterior predictive checks

Now that we have estimated all of the models, we turn our attention to evaluating the fit of the models to the
observed data. We use the 19 match days comprising the first half of the Serie A season — the andata — as
training data, and for every player we make in-sample predictions for those 19 matches.

Figure 3 shows an example of a graphical posterior predictive check focusing on the cumulative ratings
for each player over the matches in the training data. For illustration purposes, here we only show the results
for one team, Napoli: the dashed black lines represent the observed values, while the red, green, blue lines
represent predictions from the HAr, MIX and HAr-mis models, respectively. HAr and MIX models make
predictions quite close to the observed values for many of the players. In correspondence of players with a
non-trivial amount of missing (here zero) values, these models result to be preferable to the HAr-mis (see
the plots for El Kaddouri, for instance).

We are also interested in the calibration of the model. In Figure 4 we display the median predictions and
50% posterior predictive intervals under the MIX for our selected team Napoli, overlaying the observed data
points. In a well-calibrated model we expect half of the observed values to lie outside the corresponding
50% intervals. By this measure the MIX model has decent but not excellent calibration, since for most of
the players — especially for the goalkeeper and the defenders— the 50% intervals cover more than 50% of
the observed (blue) points. Conversely, for the volatile superstar Higuain (an outlier even among forwards)
a few points fall inside the intervals.

4.3 Out of sample predictions

As usual in a Bayesian framework, the prediction for a new dataset may be directly performed via the
posterior predictive distribution for our unknown set of observable values. Following the same notation of
Gelman et al. (2013), let us denote with ¥ a generic unknown observable. Its distribution is then conditional
on the observed y,
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Figure 2: Posterior summary statistics for the HAr, HAR-mis and MIX model. B¢, k=1,...,5 are the
coefficients for the clusters opponent team (5=good, 4 = quite good, 3= medium, 2=low, 1=very low);
Y, k=1,...,5 are the coefficients for the clusters own team, same classification as before; §;, j=1,...,J

are the coefficients for the initial prices of the players; A;, j = 1,...,J are the coefficients of the lagged

observed average rating; p;, j = 1,...,J are the positions parameters (1 = Forward, 2=Midfield,
3=Defender, 4=Goalkeeper); 0 is the coefficient for the home/away predictor; oy is the individual standard
deviation; Oy, is the standard deviation for the individual intercepts ¢;, i = 1,...,N; 0 is the position’s
parameters standard deviation; oy is the clusters own teams standard deviation; op is the clusters opponent
teams standard deviation. The further set of parameters for the MIX model, represented by {;, j=1,...,J
and py, is not shown here.

pGly) = /@ p(5,0]y)d6 = /@ p(81y)p(516)d6

where the conditional independence of y and ¥ given 0 is assumed. We fit the models over the T = 19
matches in the first half of the season and then generate predictions for the 7% = 19 matches in the second
half of the season.

Based on average predicted ratings for the held-out data from the second half of the 2015-2016 Serie A
season, Figure 5 displays the best teams of eleven players that can be assembled from the available players
according to each of the models. Also shown is the best team assembled using the observed ratings from
the same set of matches. As is evident at a first glance, the predictions obtained through the HAr model are
quite inefficient: this model tends to overestimate the players’ rating, which are quite far from the observed
ratings of the second part of the season. The team created based on the predictions from the HAr-mis and
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Observed vs predicted cumulative ratings
for selected team Napoli
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Figure 3: Posterior predictive validation of the HAr model against MIX and HAr-mis models for selected
team Napoli, throughout the first half of the 2015-2016 Serie A season. The dashed black line represents
the observed cumulative ratings, while the red, green, and blue lines show the medians of the predictions
from the HAr, MIX and HAr-mis models, respectively.

the MIX model include four of the eleven players (Acerbi, Pogba, Hamsik, Higuain) from the team based
on the actual ratings. Dybala, who is the third best forward according to these models, is also rated highly
(fifth best forward) according the observed ratings. And Rudiger, the second best defender according to the
models, is also rated highly (eighth best defender).

Informally, the teams selected by the MIX and the HAr-mis models appear to be quite competitive: from
this section, it is evident that modeling the missingness allows to obtain better predictions.

5 Discussion

The recent successes of so-called football (soccer) analytics are due in large part to the increasing num-
ber of available metrics for analyzing and describing the game. According to our current knowledge, the
only attempt to using these and many other metrics for measuring player performance is the OPTA index.
Compared to attempts like the OPTA index, our ratings may seem like very crude approximations to player
performance —and they are— since they gloss over many games events. But the formulation of an index
based on as many variables as possible has not been the aim of this paper. The attractiveness of our general
approach is that it is based on a coherent statistical framework: we have an outcome variable y (the player
rating) that is actually available, probability models relating the outcome to predictors, the ability to add
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Calibration for the MIX model
for selected team Napoli
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Figure 4: Calibration check for the MIX model for selected team Napoli . Blue points are observed values,
red points are the zeros (missing values). The light gray ribbons represent 50% posterior predictive intervals
and the dark gray lines are the median predictions. The dashed vertical blue line delimits the in-sample

predictions from the out-of sample predictions.

prior information into an analysis in a principled way, and the ability to propagate our uncertainty into the
predictions by drawing from the posterior predictive distribution.

We proposed some hierarchical models for predicting player ratings, taking care of the missingness as
a part of the models. As expected, we preliminarily found that a player’s position is, in most cases, an im-
portant factor for predicting performance (as measured by the Fantacalcio ratings). However, it is somewhat
counterintuitive that the inferences from these models suggest that the quality of a player’s team and the
opposing team and the initial price of the players do not account for much of the variation in player ratings.
It is also notable that the association between the current and lagged performance ratings —expressed by the
average lagged rating—- is slightly different from zero after accounting for the other inputs into the models.
Future research should consider whether other functional forms for describing associations over time are
more appropriate, to what extent the inclusion of other variables in the models could improve the predictive
performance, and if more informative priors can be developed at the position and team levels of the models.
Another future issue should concern the choice of the training and the test set: for simplicity, in this paper we
considered only the fist part of the season as training set and the second one as test set; however, we strongly
believe that our models may be used in a dynamic way, using data at match day ¢ for predicting the players’
performances at match day ¢ + 1.
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(a) Observed

(c) MIX (d) HAr-mis

Figure 5: Best teams according to out-of-sample prediction of average player ratings for the HAr, MIX and
HAr-mis model compared to the observed best team for the second part of the season. The averaged ratings
are computed for those players who played at least 15 matches in the second half of the season.
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Abstract

In this paper we present a generalisation of previously considered Markovian models for
Tennis that overcome the assumption that the points played are i.i.d and includes the time into
the model. Firstly we postulate that in any game there are two different situations: the first 6
points and the, possible, additional points after the first deuce, with different winning probabil-
ities. Then we assume that the duration of any point is distributed with an exponential random
time. We are able to compute the law of the (random) duration of a game in this more general
setting.

1 Introduction

Markovian framework is particularly suitable to describe the evolution of a tennis match. The usual assump-
tion is that the probability that a player wins one point is independent of the previous points and constant
during the match. Under these hypotheses the score of a game, set and match can be described by a set of
nested homogeneous Markov chains. Hence, theoretical results concerning winning probabilities and mean
duration of a game, set and match can be easily obtained. A complete account on this approach can be found
in Klaassen and Magnus (2014).

Anyway, some authors criticise the assumption that the point winning probability is constant along the
match and independent of the previous points played, see e.g. Klaassen and Magnus (2001). In particular, it
is pointed out that playing decisive points, i.e. points after a deuce score, modifies players attitude and this
reflects heavily on the probability to win these points.

In Carrari et al. (2017), we propose a modification of the model at the game’s level. Indeed, we assume
that during any game there are two different situations: the first points and the, possible, additional points
played after the (30,30) score that in our model coincide with the “Deuce”. Under this hypothesis, following
the approach used in Ferrante and Fonseca (2014), we computed the winning probabilities and the expected
number of points played in a game.

In the present work we include in the model the time needed to play a single point. The aim of such a
modification is to obtain the computation of the expected length of a match in terms of actual time and not just
as number of points. Indeed there is a concern about the length of tennis matches and several modification
to the game rules are nowadays proposed in order to fix the length of a match or at least to avoid too long
matches. In Section 2. we present the model, in Section 3. we compute the game winning probabilities and
in Section 4. we obtain the expected length of a game.
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2 The continuous time model

In this paper we model the tennis game as a continuous-time Markov chain (see Norris (1998) for a complete
account on this topic). We define the state space S of the chain, which collects all the possible scores in the
game, and the generator matrix Q on S. In order to determine the matrix Q, we define independently the
transition matrix of the associated Jump chain, which is a discrete-time Markov chain, and the exponential
holding times.

The transition matrix of the associated Jump chain follows the model defined in Carrari et al. (2017) for
a discrete-time Markov chain of the tennis. The classical assumptions previously considered in the literature
(see e.g Newton and Keller (2005)) were that the probability to win any point by the player on service was
independent of the previous points and constant during the game. In Carrari et al. (2017) we assume that
p, the probability to win a point, does not remain the same during the game. As empirical data on the
matches confirm, the estimated winning probability of the first 6 points of a game is different from that of
the additional played points from the “Deuce” on. For this reason, we consider a second parameter p, that
describe this part of the game and, to avoid trivial cases, we assume that both p and p belong to (0, 1).

Regarding the holding times, it is not easy to find in the literature data sets to test different scenarios that
better describe the true course of a tennis game (see Morante and Brotherhooc (2007) for some statistics on
the duration). For this reason in this paper we assume that all the holding times have the same distribution,
i.e. share the same rate A of their Exponential Laws.

Let us now define precisely our model: the state space is the set S = {1,2,...,17} which describes the
score of a game as defined in Table 1.

Score (0,0) (15,00 (0,15) (30,00 (15,15) (0,30) (40,0) (30,15) (15,30)

State 1 2 3 4 5 6 7 8 9
Score (0,40) (40,15) (15,40) Deuce Advy Advg  Wing Wing
State 10 11 12 13 14 15 16 17

Table 1: Scores and corresponding states used in equations

Note that in the present model the scores (30,30) and Deuce are represented by the single state 13, since they
share the same mathematical properties, as it happens to the pairs (40,30)-Adv4 and (30,40)-Advg. The
graph representing the transition probabilities of the Jump process is presented in Fig. 1, where g =1—p
andg=1-—p.

By our construction, we define the transition rates in the generator matrix Q by A; = Ap and A, = Aq
(see Norris (1998)) and in Fig. 2 we present the graph of the continuous time Markov chain describing a
tennis game. Note that the expected length of a point is equal to 1/A and it does not depend on who is the
winner of the point.

From the graph it is immediate to write down the generator matrix Q = (g;;); jes and to prove that the states
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Figure 1: Graph of the Jump Markov chain
16 and 17 are absorbing, while all the other states are transient.
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In order to compute the winning probabilities, we need to determine the absorption probabilities in states
16 and 17 for the transition matrix of the Jump process, while to investigate the distribution of the expected
length of a game, we need to evaluate the exponential matrix of Q, which is in general not very simple.
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Figure 2: Graph of the continuous time Markov chain describing a tennis game, with its transition rates.

3 Winning probabilities

In this section we recall some of the result proved in Carrari e al. (2017). The transition matrix of the Jump
process is
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The winning probability of the game for the player A on service, denoted by /4, coincides with the absorption
probability in the state 16 of the previous Markov chain starting from 1, which can be obtained (see e.g.
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Norris (1998)) as the minimal, non negative solution of the linear system
hi=Y pijh; for 1 <i<15,hig=1, h;7=0.
j€s
The solution can be easily calculated and we obtain that

2(p—1)?p*(p(4p—2) —2j—3)
2p*—2p+1

hi = p* |5p* —4p* +4(p—1)*pp—

Denoting by G(p,p) = hi, by A and B the two players, and by Pg the probability that the player Y wins a
game when X serves, thanks to the symmetry of the model we obtain that:

PG = G(pa,pa)

PG = G(1—pa,1—pa) (1)
Py =G(ps. pB)

Pg =G(1—pp,1— pp)

Note that, since P§, +PS =1, G(1 — px,1 — px) = 1 — G(px, px) and that for py = py, the previous
probabilities coincides with those well known in the literature (see e.g. Newton and Keller (2005)). In Table
2 we report the values of G for increasing p and p.

i

p 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.001 0.004 0.011 0.021 0.034 0.049 0.062 0.071 0.078 0.081
0.2 0.011 0.022 0.043 0.076 0.119 0.165 0.204 0.233 0.252 0.263
0.3 0.040 0.061 0.099 0.158 0.234 0312 0.378 0425 0455 0472
0.4 0.102 0.132 0.185 0.264 0.363 0464 0549 0.607 0.643 0.663
0.5 0.206 0242 0302 0.391 0.500 0.609 0.697 0.758 0.794 0.812
0.6 0.357 0392 0451 0535 0.636 0.736 0.815 0.868 0.898 0.913
0.7 0.545 0575 0.622 0.688 0.766 0.842 0901 0.939 0.960 0.969
0.8 0.748 0.767 0.795 0.835 0.881 0.924 0.957 0978 0.989 0.993
09 0922 0929 0938 0951 0965 0979 0989 0.995 0.998 0.999
1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 2: Winning probabilities of a game

4 Duration of a game

In this section we evaluate the duration of a game and of a game given that the player on serve wins the
game. By the Markovian structure of the present model, the problem we face is equivalent to evaluate
the distribution of the absorption time to one of the states 16 and 17. These distributions are called in the
literature Phase-type distributions (see e.g. Neuts (1981)) and we have explicit formulas for their densities
and moments. The only drawback is that the computation of the density passes through the evaluation of the
matrix exponential of a 16 x 16 matrix, which is usually not feasible. On the contrary, for the moments we
only need to be able to evaluate the inverse of the same matrix and its powers.
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4.1 The unconditioned case

Due to the difficulties described above, in this section we consider only the case where p = p. Starting
from Q, the generator matrix defined above, we can compute the distribution of the duration time of a game.
Indeed, let T be equal to the matrix Q where the last two rows and two columns have been erased, that is

r-A 4 A% 0 0 0 0 0O 0 0 0 0 0 0 0
0 -2 0 A4 A% O O 0O 0 O O 0 0 0 0
0 0 -A 0 A A& O O O O O 0 0 0 O
0o 0 0 -A 0 0 A4 A O O O 0 0 0 0
o 0 0 0 -2 0 0 A A& O O 0 0 0 O
o 0 0 0 0 -A 0 0 A 2 O 0 0 0 0
o 0 0 0O 0O 0 -A 0 0 0 A 0 0 0 0
T=| 0 o0 0o 0 O 0O 0 -A 0 0 A4 0 A& 0 0
o 0 0 0 0 0 0 0 -1 0 A A 0 0
o o 0 o0 O O O O 0 -A 0 A O 0 O
o 0o 0 O O 0 O 0O 0 0 -4 0 0 A ©
o o 0 O O O O 0O O 0 0 -4 0 0 XA
o 0 0 0O 0 O 0 0 0 0 0 0 A A XL
o o 0 O O O O O 0 0 0 0 A -A 0
L o o o O O O O O O O O 0 A 0 -2

and let T° be a vector of length 15 where each entries is equal to the jumping time needed for each state
(excluding Win, and Wing) to reach one of the two absorbing states, that is

T° = (0,0,0,0,0,0,11,0,0,A2, 11, 42,0,1,42) " .
Then, if a = (1,0,...,0), the density function of the duration time, denoted by f, ;, can be computed as
foa =ae'T°
(see Neuts (1981) for the simple proof). Therefore, if we set
A, () ==322p P (At —4)+6A%p 1> (At —4) — p* (4171 —21A%7 +30) + p (A1 — 942> +30) — 15+ A%
and

B, (t) = 15V2(2p* —2p+1) (ewm_ 1) ’

the time distribution is given by

— A —At{14+4/2(1=p)p t 1-p)p
130 = 3= (VA02) (B, 1)+ (420 TT= ppe VT 77) 4,5 0))

In Figure 3. we plot the density f, ; in the cases p =0.5,0.65 and 0.9, while A=2.
We are also able to evaluate the moments of these random times. Indeed, the expected time u needed to
win a game can be computed as a(—T)~'e, where e = (1,...,1)7. Therefore, the average time is given by
4(—6p°+18p°> —18p* +6p> + p> —p+1)

A(2p2—2p+1)
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Figure 3: Graph of the distribution of a game duration time for three different values of p, and for A = 2.

Finally the moment of order two, computed as u? = 2c(—T) e, allows us to obtain the variance

4

2 12 11 10 9 8 7 ($}

6’ = —144p"% +-864p'" —2160p'° +2880p° — 2232p% +1152p” —618p
A2(2p2—2p+1)? (

+414p° —197p* +40p> +3p* —2p+1) .

4.2 The conditioned case

Let us now compute the expected duration of a game given that the player on serve wins the game. In this
case it is easy to prove that the Jump chain of the conditioned chain is the matrix P’ on the state space
{1,...,16} given by:

h.
]

where the A; are the absorption probabilities in 16. Moreover, the conditional generator matrix is the matrix
Q' obtained from P’ and the original exponential holding times of parameter A. The mean and variance
computed above are now

 4(20p° —84p*+148p* — 143p” +79p —21)
A (2p2—2p+1)(8p3 —28p2+34p—15)

4
%= . 5 (320p'0 —2880p° + 11616p° — 27744p’
A2(2p2 —2p+1)°(—8p3+28p% —34p+15)

+43608p° — 47460p° +36746p* — 20540p° + 8287p* — 2288p +336) .
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In Table 3 we show the Mean & StandardDeviation of the actual time of a game when the point winning
probabilities for the serving player are p and p = p (the rate A is set arbitrarily equal to 2 for ease of
exposition). For different values of p (recall that we have set p = p) the first row shows the (mean +
StandardDeviation) time distribution for finishing a game when the player with probability of winning a
point equal to p is serving. The second row shows (mean + StandardDeviation) when the distribution is
conditioned to the winning of the player that is serving. Note that, due to symmetry of the problem, when
p < 0.5 and the model is conditioned as above, the results represent both the average time for the player
(characterized by p < 0.5) to win a game on his turn of serving, and the average time to win a game for the
player with same p when the other player is serving. The same empirical quantities are derived in Morante
and Brotherhooc (2007). This is one of the few quantitative studies about the duration of points and games
in Tennis, although they are more interested in relating playing time with performance indicators. They
compute the average duration using a sample of Grand Slam matches for both male and female professional
players.

p=09 p=0.38 p=07 p=06 p=05 p=04 p=03 p=02 p=0.1
2234+1.13 | 2.544+1.34 | 2.92+£1.60 | 3.24+1.82 | 3.37+£1.90 | 3.244+1.82 | 2.924+1.60 | 2.54+1.34 | 2.23+1.13
2.23+1.13 | 2.53+1.33 | 2.87£1.58 | 3.18+£1.80 | 3.37+1.90 | 3.40+1.86 | 3.30+1.71 | 3.13£1.52 | 2.96+1.35

Table 3: (mean + StandardDeviation) time for finishing a game (first row) and for winning a game while
serving.

5 Conclusions

In this paper we present a model for Tennis including non i.i.d. point winning probabilities and the time of
play. Indeed, we allow winning point probabilities to change depending on the score of the game. Moreover,
we are interested in describing the time of play since there is some concerns about the excessive length
of matches, especially in male Grand Slam competitions. In particular, in the present work, we obtain the
distribution of the actual time of a game.
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Abstract

In this paper we conduct an equilibrium analysis of the 2015/16 NBA season culminating in the dramatic
final series upset produced by the Cleveland Cavaliers (CLE) over the Golden State Warriors (GSW). The
constant mixed equilibrium strategy for shot selection is constructed for each pair of NBA teams. This
strategy jointly optimizes offense and defense defined over a mutually exclusive set of eleven shot location
zones. This strategy prescribes what proportion of attempted shots is taken from each of the eleven shot
zones. Aggregate results predict a higher proportion of 3-point (0.379) than actual 2015/16 season and
playoff proportions (0.286 and 0.309) respectively, suggesting that NBA 3-point averages are still
increasing. At the individual team level, the results highlight the importance of a team’s defensive strengths
because variation in predicted strategies is contingent upon the opposing team. In the final playoff series
GSW started close to their predicted optimal strategy and then almost monotonically shifted further away
whereas CLE drifted closer to their predicted optimal strategy. Final outcomes were consistent with these
equilibrium predictions.

1 Introduction

Recently a high school team grabbed headlines in the Wall Street Journal:

“The NBA’s most efficient offenses seek out layups and threes. A high school in Minnesota takes the idea
to the extreme.” (Cohen, (2017))

Although the trends in high school basketball have significant implications for the future of basketball,
similar strategic trends have been observed in NBA basketball since the introduction of the 3-point shot in
1979. The 2015-16 NBA season was notable for the fact that the Golden State Warriors (GSW) produced
a record breaking 89% regular season win percentage only to lose a dramatic 7-game final series against the
Cleveland Cavaliers (CLE). Understanding the underlying strategies may have profound implications for
the future of basketball coaching. The objective of this paper is to conduct an equilibrium analysis of the
2015-16 season by constructing the optimal offensive/defensive constant mixed strategy defined over a set
of eleven mutually exclusive shot location zones. A strategy is defined as the set of relative proportions of
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shots taken in a game from each shot location zone. For example, dropping mid-range shots and only taking
layups and 3-pointers is an example of a constant mixed strategy where the mid-range zones’ relative
proportions are zero. The results of this analysis are then used to predict post season results and analyze the

final 7-game series.

This paper is organized as follows. In section 2 we develop the theory behind constructing the efficient
constant mixed strategies. In this paper we solve for the optimal constant mixed equilibrium strategy for
each pair of teams assuming each team wants to win their matches. In section 3 our 2015/16 season database
is introduced and used to conduct the equilibrium analysis. In section 4 the results from our analysis are
summarized and applied to predicting post season playoff game outcomes. Finally, in section 5 the
individual team results are used to interpret the results from the championship series between CLE and GSW
followed by a short discussion and conclusion.

2 Efficient Constant Mixed Basketball Strategies

The game of basketball has two simple objectives for any team. Each team wants to score points (offense)
and prevent their opponent from scoring points (defense). The team that scores the most points wins the
game. Strategically, the court can be viewed as a set of shot locations, which vary in terms of their risk and
expected points from shots taken by location. A coach faces a pair of problems; designing and implementing
a mixed strategy of shots taken from different parts of the court and defending against the opposing team’s
mixed strategy of shots. In this paper we solve this problem for the set of shot locations identified in figure
1.
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Figure 1: Court shot locations

There are two equilibrium mixed strategies associated with each pair of teams with the property that
points generated from Team A’s offensive equilibrium strategy equals the points given up by Team B’s
defensive equilibrium and vice versa. To solve this problem, we build upon the work of Fichman and
O’Brien (2016), to construct a Nash Equilibrium for every pair of team’s offense versus defense by finding
the mixed strategy that maximizes the difference between the natural log of the offensive and defensive
Sharpe Ratios. Using the natural logarithm has two major advantages. First, the problem when viewed
from an expected utility perspective is a member of the class of iso-elastic utility functions, Norstad (2011),
which permits solving for the constant mixed strategy. Second, this problem is equivalent to maximizing
the growth rate of point production per unit of risk taken by the offensive team net of the opposing team
defense's attempt’s to minimize point production. Our results generate a predicted outcome for the game
from the difference between the pair of equilibria; a positive difference is a predicted win, negative a loss

and zero a draw.

2.1 ldentifying the Equilibrium Mixed Strategy
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The maximization problem is an extension of modern portfolio theory, Elton and Gruber (1995) adapted to

basketball as follows:

Maximize
In (“Offense) — In(EReLensey 1)
w.or.t. w O0ffense ODefense

Subjectto: ¥ = 1

@ =0
Where o = a vector of eleven shot location weights (figure 1), p the probability of success from each shot

location, and s' the possible points from each location. Expected points from the mixed strategy is defined

as: u = sTa'p, and the variance covariance matrix for different shot locations is: o = &'3,0 , Z.
Similarly, the maximization problem for defense follows by changing the subscript “o” for offense to “d”

for defense.

We solve for the constant mixed strategy that maximizes the growth rate in generating points per unit of
risk from the offense net of defense. This problem is solved by setting the problem up as a standard
Lagrange problem with the inequality constraints handled as Kuhn-Tucker constraints.  First order
conditions for the regular Lagrange problem ignoring the Kuhn-Tucker constraints imply that the Lagrange
multiplier is zero which follows by multiplying equation 2 by " which implies that A = 0.

1

Ts _ 1 _ 1 T= _ 1 _
(wTSTﬁO S Po wTZo_wZO(D) (—wTsTﬁd S Pa P Zd(o) = A1. )

Second, the optimal solution must also satisfy the complementary slackness condition which implies for
each shot zone either the multiplier is either non negative or zero if the shot zone has slack (e.g., Bryson
and Ho (1975)). This implies there are three possible Nash Equilibria solutions: interior mixed strategy
solution where shot zone weights are all greater than zero (e.g., shots are taken from every shot zone), mixed
strategy solution with some shot zone weights equaling zero (e.g., drop mid-range shots and only take layups
and 3-pointers) and a pure strategy solution with a single shot zone (e.g., 100% 3-points shots from a single
location). Each equilibrium strategy prescribes the proportion of shots taken from each zone relative to the
total number of shots in a game. Two equilibria are associated with each pair of teams with the following
interpretation. Team A’s offensive equilibrium is Team B’s defensive equilibrium and vice versa Team B’s

offensive equilibrium is Team A’s defensive equilibrium when playing each other. Finally, in section 4 we
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solve this problem numerically for every pair of NBA teams and all solutions are mixed strategies with a

combination of zero and interior weights.

2.2 Example: Applying the Theory to Conference Extremes 2015/16

During the regular 2015 season the Cleveland Cavaliers and the Golden State Warriors clinched their
respective Eastern and Western conferences. The Warriors had a record breaking win percentage of 89.5%
whilst the Cavaliers had a very respectable 69.5% win percentage. At the other end of their conference
tables the Lakers could only manage 20.9% and the 76ers 12.2% regular season win percentages. It is
instructive to compare equilibrium predictions for these extreme performances. In table 1 below, the
equilibrium value for the pair CLE offense and PHI defense is 0.376, which is greater than 0.209, the
equilibrium for CLE defense and PHI offense. This implies that CLE is predicted to defeat PHI. For the
case of GSW and LAL this difference is much greater 0.709 versus 0.311. In both cases the conference
leaders are predicted to beat the weakest same conference team, but for the case of GSW versus LAK the
game is more likely hinge upon GSW’s offensive performance because of the larger difference between

offensive and defensive equilibria than is the case for CLE versus PHI.

Offensive  Defensive
Equilibrium Equilibrium
Eastern Conference
Cleveland Cavaliers 0.376 0.209
Philadelphia 76ers 0.209 0.376

Western Conference
Golden State Warriors 0.709 0.311
Los Angeles Lakers 0.311 0.709

Table 1: Equilibrium Analysis of the Top versus Bottom Teams in each Conference

3 Data

The data used is play-by-play log data from nbastuffer.com. This database provides plays tagged by game
clock time, 24-second clock time elapsed, play descriptions, shot types, and shot location for every regular
season and playoff game for 2015/16. We preprocessed this data by shot location to calculate the statistical
distributions by shot location (see figure 1 for shot locations) for every team separately for the regular season
and the playoffs. This provided the input data for optimization problem (1). This optimization problem
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was analyzed and solved for every pair of teams (30x29) for the regular season. This provided the base set
of results used to analyze and predict post season performance.

4 Equilibrium Results

The results reveal that the aggregate predicted proportions of 2- and 3-point shots for the NBA as a whole
are 0.621 and 0.379. The actual proportions for 2015/16 regular season were 0.714 and 0.286. This suggests
that the NBA is still headed higher with future 3-point shot proportions and in the playoffs teams did shoot
higher proportions of 3-point shots respectively at 0.691 (2-points) and 0.309 (3-point shots). Figure 2,

below provides a summary of the average equilibrium weights by the shot zones defined in figure 1.

Average Equilibrium Proportions by Zone
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0.16
0.14
0.12
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Figure 2: Equilibrium Proportions by Shot Zones

Using regular season data, a pair of regressions were run to predict winning points spread per regular
season game from the eleven shot zones. Regression 1 (significant at p < 0.0000) predicted points spread
(winner minus loser) from the average points given up per zone by the winning team’s defense, against the
losing team’s offense. Regression 2 (significant at p < 0.015) changed the predictor variable to average
points made per zone by the winning team’s offense, against the losing team’s defense. Regression 1 results
indicate that the losing team’s offense takes more shots in the 2-point zones, especially the 2-point left center
box, zone 3 (positive coefficient, p < 0.001), cutting off the higher payoff from the 3-point left center box,
zone 5. The other significant zone was driving to the posts, zone 1 (positive coefficient, p < 0.10). Results
from regression 2 suggest that the winning team takes less shots from the 2-point circle box, zone 6 (negative
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coefficient, p < 0.01), and instead shoots more 3-point shots from the right hand top center, zone 11 (positive
coefficient, p<0.05)). Within season there is a highly significant relationship (p < 0.0001) between the
predicted winning equilibrium difference and the realized winning margin in points. The question is, does
this relationship forecast out of sample post season results? To answer this question, we test the null
hypothesis of no relationship between realized points spread (winning score minus the losing score) and the
winning team’s equilibrium score minus the losing team’s equilibrium score. To test this hypothesis, we
tested for the significance of the product moment correlation coefficient between these two difference scores
in a one-tail test against the alternative hypothesis that predicts a positive relationship. The results reveal
that the correlation coefficient is r = 0.20 (p = 0.033). Next we focus on our major objective of interpreting
the final series in the playoffs between the Warriors and the Cavaliers using results from our equilibrium

analysis.

5 2016 Final Series: GSW versus CLE

As is well known in the final series CLE upset the favorite, GSW. GSW were predicted to win and this was
reinforced by the equilibrium analysis. The difference between GSW’s offensive equilibrium (0.362) and
CLE’s offensive equilibrium (0.277) favors GSW for the win. In addition, both CLE and GSW when
playing each other’s defense lowers their average payoff per unit of risk from their respective averages
against the NBA as a whole (e.g., 0.471 to 0.277 for CLE and 0.496 to 0.362 for GSW). This is expected
because both teams are clearly above average but a curious feature is revealed. To support the 0.362
prediction, the equilibrium analysis implies a significant shift in the 2- and 3-point strategy for GSW that is
much larger than what is predicted for CLE. The average predicted proportion of 3-point shots for GSW
taken over the NBA as a whole is 0.743 but when playing against CLE this needs to drop to 0.212 from our
mixed strategy analysis. In other words, the ability of CLE to defend against the 3-point shot is very strong
when playing against GSW and this impacts GSW’s optimal strategy. That is, GSW when playing CLE
should shift towards a much higher proportion of two point shots. For CLE, the equilibrium analysis calls
for 0.547 2-point shots versus their average across NBA teams of 0.474 2-point shots. If our analysis is
correct, then GSW moving in the direction of our equilibrium strategy should increase their chances of
winning while not changing or increasing the number of 3 point shots attempted should reduce their chance
of winning. So the above raises the interesting question regarding to what degree adjustments actually took

place in this series?
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We conduct a Chi Square analysis of each team’s actual versus predicted 2- and 3-point strategy
employed in the final playoff series. The Chi square test is calculated with the Yates correction for continuity
from the difference between the observed frequency of 2- and 3-point shots minus the frequency of 2- and
3-point shots that are predicted from equilibrium offensive mixed strategy for each team. In Game 1 GSW’s
observed deviation from the equilibrium strategy is not significant at the 5% level (Chi square = 3.43)
whereas CLE’s deviation is significant (13.184, p <0.01). The results for this game and the remaining games

are provided in figure 3 below.

Deviation from Predicted Equilibrium Strategy
(Chi Square) by Game

s CLE GSW

Figure 3: Deviation from Predicted Equilibrium Strategy

However, it is interesting to observe that for the case of GSW the Warriors moved almost monotonically
away from the predicted equilibrium as the series unfolded. As noted earlier GSW commenced the series
relatively close to their predicted equilibrium but then subsequently moved further and further away from
this outcome. On the other hand, Cleveland gradually moved closer to the predicted equilibrium strategy.
If we compute a product moment correlation coefficient between each team’s deviation from the predicted
strategy (as measured from the Chi square statistic) and the points spread (CLE — GSW), r = 0.50 for GSW
and r=0.02 for CLE. That is, GSW’s deviation is positively correlated with CLE’s success (0.50).

6 Conclusion

The objective of this paper was to conduct an equilibrium analysis of the 2015/16 season that was marked

by the record breaking season by the Golden State Warriors and the major upset in the final series by the
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Cleveland Cavaliers. As a result, this season has some potentially important strategic implications that
warrant closer attention in an attempt to understand this season. The analysis was conducted by
decomposing the basketball court into a set of eleven shot location areas and compiling the risk and average
payoff statistics associated with each location for every team in the NBA. The constant mixed shot location
equilibrium strategy was e9stimated for every pair of teams in the NBA and then the properties from this

equilibrium analysis were estimated.

This analysis generated some interesting insights into the season. First basketball is embracing, as
predicted, the increasing use of the 3-point shot. The current results of actual versus predicted for 2- and 3-
point shots suggest that the percentage of 3-point shots will continue to trend even higher in the NBA to the
current predicted equilibrium levels of 37.9% compared to the 2015/16 season average of 28.6% and the
post season average of 30.9%. Second, the court location analysis by game realization yielded some equally
interesting insights into the importance of defense. A significant difference in performance was observed
for teams whose defense could force the offensive team into taking shots in the 2-point locations away from
zones 4 and 5 (figure 1). Similarly, for the successful offense they were able to take their shots from the 3-
point zones 9, 10 and 11 (figure 1) as opposed to being forced into the 2-point zones. In other words, at the
margin a successful defense is shifting shot rate from 3-point to 2-point zones in a few key areas of the

court.

Analyzing the final series also yielded some important strategic insights. The takeaways from the Wall
Street Journal article referred to in the introduction, which is what Daryl Morey is doing with the Houston
Rockets, is to drop mid-range shots and only take layups and 3-pointers. The shot zone analysis at the
margin lent support to this by associating it with teams that win. A second idea in the article was that the

optimal offensive strategy is constant:

“Pine City takes 59% of its shots from behind the 3-point line because it makes sense statistically ...”

The results from our equilibrium analysis do not support this type of assertion. To the contrary the results
suggest that a team’s offensive strategy is very much dependent upon the team they are playing. For
example, GSW have the highest predicted relative frequency of 3-point shots compared to any other team
in the NBA, a predicted average of 74.3%. This high predicted percentage is consistent with their within
season performance because they could generally come out shooting threes and make the other team try to
match their point production. But if GSW is playing CLE this predicted average dropped to 21.1% for 3-

point shots. In the final series GSW started near the predicted equilibrium when playing against CLE with
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68.5% 2-point shots but then almost monotonically GSW moved in the direction away from the equilibrium
prediction towards their predicted average percentages. On the other hand, over the series CLE drifted
closer to their predicted equilibrium. These results support the conclusion that these different strategic
choices had a major impact on the final series outcome and thus reinforce the idea that the relative proportion

of 2- and 3-point shots taken in a game is strongly influenced by the opposing team’s defense.
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Abstract

The effect of playing “home” or “away” and many other factors, such as batting first or
second, winning or losing the toss, have been hypothesised as influencing the outcome of
major cricket matches. Anecdotally, it has often been noted that Subcontinental sides (India,
Pakistan, Sri Lanka and Bangladesh) tend to perform much better on the Subcontinent than
away from it, whilst England do better in Australia during cooler, damper Australian
Summers than during hotter, drier ones. In this paper, focusing on results of men’s One Day
International (ODI) matches involving England, we investigate the extent to which a number
of factors — including playing home or away (or the continent of the venue), batting or
fielding first, winning or losing the toss, the weather conditions during the game, the
condition of the pitch, and the strength of each team’s top batting and bowling resources —
influence the outcome of matches. By employing a variety of Statistical techniques, we find
that the continent of the venue does appear to be a major factor affecting the result, but
winning the toss does not. We then use the factors identified as significant in an attempt to
build a Binary Logistic Regression Model that will estimate the probability of England
winning at various stages of a game. Finally, we use this model to predict the results of some
England ODI games not used in training the model.

1 Introduction

For many years, people have speculated over the optimal strategy to win a cricket match, given a
particular team make-up and similarly for the opposition. Does winning the toss make a significant
difference and if so, should one opt to bat or bowl first ? Do the pitch and/or weather conditions play
an influential role ? However, until relatively recently, very few quantitative analyses had been
carried out to try to answer questions.

Joshi (2009) studied the effect of prevailing weather conditions on England’s performance in Ashes
test series in Australia, concluding that England teams performed much better during “La Nifia”
(cooler, damper) Australian Summers than in “El Nifo” (hotter, drier) ones, an observation which
attracted considerable attention in the press after England’s 2010-11 Ashes series victory in Australia
— their first there since 1986-87 (Alleyne 2011). It would appear that England players performed much
better in conditions closer to those with which they were more familiar when playing in England.
Conversely, touring teams from tropical countries tend not to perform well when playing in England
during a cool damp May. These observations prompted us to ask whether weather conditions and/or
the nature of the pitches might be more influential on the outcome than the actual quality of the
players in the teams.
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With this in mind, we decided to perform a quantitative statistical investigation, using data from
real matches, to study factors which seem to affect England’s performances in One Day International
(ODI) matches. The decision was made to focus on ODIs since many of them have been played since
the first in 1971, but (unlike Test matches) very few (less than 1%) end without a decisive result.
Furthermore, the shorter Twenty-Twenty (T20) format can be dominated by good performances by
just one or two players and are widely considered to be very unpredictable. Although detailed match
by match data can be obtained from internet sites such as wwww.cricinfo.com, a set of readily
formatted data was kindly provided by Professor Steven Stern of Queensland University of
Technology. We investigated whether playing home or away, and the continent on which the match
was played, winning or losing the toss, and batting first or second made a difference to the probability
of England winning the match. Preliminary investigation indicated that the continent of the match
venue did appear to be a significant factor, with England tending to perform particularly poorly on the
Indian subcontinent (in India, Pakistan, Sri Lanka or Bangladesh) compared to elsewhere in the World.
We followed this up by creating logistic regression models for the probability of an England win based
on various factors, applying these models to matches not used in training, and testing whether using
them with various gambling strategies to place “virtual bets”, studying whether each of these could
lead to a net profit when used over a series of matches.

The remainder of the paper is structured as follows. A review of relevant related work is presented
in section 2, followed by details of the data we used, including the variables we are taking into account.
The results of our exploratory data analysis including descriptive statistics, are given in section 4, and
a description of how we produced our logistic regression models, and their success in predicting match
strategies, are given in section 5. Finally, in section 6 we discuss our findings, draw our conclusions
and suggest possible future work.

2 Related Previous Work

Modelling of One-Day cricket scores has extensively been carried out by Duckworth (2001),
Duckworth & Lewis (2012), Schall & Weatherall (2013), and latterly Stern (2016). The primary
purposes of these studies was to develop and improve a fair method of deciding which side should win
a match in the case it should be interrupted by rain or a similar disruption, or to set fair modified
targets should it be possible to continue with a (shortened) match following such an interruption, based
on the state of the game at the enforced break point. The methods they developed were not designed to
predict or explain the outcomes of matches based on factors known before the start of the match.

The role of home advantage has been discussed in the general context of sports matches by Stefani
(2008), and specifically in relation to English one day cricket by Morley & Thomas (2005). The factor
of travel fatigue noted by Stefani is probably not a major factor in ODI cricket, since teams tend to
travel to the match venue a day or two before each match, whilst the factor of larger attendance by
home team fans was deemed to be rather unimportant by Morley & Thomas. Nevertheless, the fact
that, when playing away abroad, teams may find themselves playing in somewhat unfamiliar
conditions, with very different weather and pitches of different nature to those which they are used to
experiencing when playing at home may lead to the visiting team being at a disadvantage. For
example, on average, runs are scored at 5.24 per over in Lahore, Pakistan, but only at 4.84 per over at
the Oval, London. Similarly, many pitches in England and New Zealand are quite grassy (i.e. have a
layer of fresh grass on the top, and are colloquially known as “green tops”) except during very long
dry periods, and those, particularly in overcast conditions, tend to favour fast or fast-medium seam and
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swing bowling. This contrasts with the very dry dusty wickets particularly common on the
subcontinent, which tend to favour batsmen early in the match, but spin bowlers later in the game.
These may also prove to be factors affecting whether the home team has an advantage over the visitors.

In most formats of cricket, the team winning a toss of a coin immediately before the start of the
match have the choice of whether to bowl or bat first. This might be considered to be an important
factor influencing the final result, since damp or overcast conditions early in a game might favour the
side bowling first, whilst having to chase a known total might assist the team batting second. However,
poorer light or a pitch becoming dusty and/or cracked later in the game would again tend to help the
side bowling at the end. The issue of what benefit winning the toss gives has been discussed by de
Silva & Swartz (1997) and by Ishan Mukherjee (2014), but the latter study suggested that winning the
toss was of little if any value in terms of giving a team a better chance of winning the game.

Attanayake & Hunter (2015) used data-driven Monte Carlo simulations, based on actual batting
and bowling statistics of cricketers playing in the international teams at that time, to model team
scores in international Twenty-Twenty (T20) cricket. Swartz et al (2009) have applied conditional
Bayesian models to investigate the ball by ball progression of one day cricket matches based on the
current state of the game. However, it is believed that the previously mentioned paper by Joshi (2009)
is the one attempt to include weather conditions into a model for match or series outcomes. In that
paper, the author took an “El Nifio” index (essentially measuring how hot and dry a given Australian
Summer was) as the only independent variable, and had the test series margin of victory (matches won
less matches lost) for England as the dependent variable. Thus, he did not attempt to predict the results
on individual matches, not take any other factors, such as the perceived qualities of the teams, “spin-
friendliness” of the pitches, nor state of play (e.g. runs scored or wickets lost by one particular side) at
any point in a match.

With these issues in mind, in this paper we try to create and test a model which can predict the
results of a One Day International cricket match, in which England are one team, based on factors
known prior to the match or measurable during the early to middle stages of the match. The
methodology should be easily generalisable to model other teams and/or other formats of cricket for
which sufficient data on previous matches is available.

3 Data Used in this Study, and Hypotheses to be Investigated

We have used data on 120 ODI matches involving England as one team from the period 1% January
2005 to 31 December 2016. Of these, 40 were the most recent “home” games for England (played in
England and Wales, from 2012), 40 were from England’s last 40 matches played on the Indian
subcontinent (since 2005, not including games against Pakistan played in the UAE) and the remainder
the most recent “away” matches for England played elsewhere in the World. Only matches against the
“major” (i.e. the nine other Test-playing) nations were included, and World Cup, ICC Champions
Trophy and other matches at “neutral” venues were excluded. Equal numbers of matches of each of
the three categories were used in order to facilitate a set of Analysis of Variance (ANOVA)
calculations. Although all the data were available on www.cricinfo.com, we were kindly provided
with a set of pre-formatted data by Professor Steven Stern. Only matches which reached a result were
considered — matches abandoned due to bad weather were excluded. The data for each match noted the
team totals, wickets lost and overs bowled for each innings, which team batted first, the venue of the
game, and which team won the toss.
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For each match considered, a margin of victory (MOV) was computed, treating an England win as a
positive score and one won by their opponents as negative. If the team batting first won the game, the
MOV was calculated as :

Winning team runs — Losing team runs

MOV = -
Aggregate runs scored in game

whereas for a match won by the team batting second, the MOV was taken as :

Overs remaining in winning team's innings

MOV = - —
Total overs allocation of winning team

unless the match was won on the last scheduled ball of the match, in which case the first formula was
used. Whilst this latter formula does not take account of the number of wickets left intact at the end of
either team’s innings, it does emphasis that using the available overs appropriately is more important
than retaining a large number of wickets, especially towards the end of an ODI innings. Trying to
incorporate wickets left in hand would considerably complicate the calculations, although this is
carried out by the Duckworth-Lewis and Duckworth-Lewis-Stern approaches (Stern, 2016). Using an
ANOVA approach in SPSS, we test the following hypotheses, inspired by previous work by other
authors discussed in sections 1 and 2 above, recalling that the MOV would be negative for matches
which England lose :

Hypothesis 1 : “Winning the toss will significantly increase the Margin of Victory (MOV).”
Hypothesis 2 : “Choosing to bat first will not significantly affect the Margin of Victory (MOV).”

Hypothesis 3a : “England perform significantly better (i.e. tend to have higher MOVS) when playing at
home, compared to playing anywhere else.”

Hypothesis 3b : “England perform significantly worse (i.e. tend to have lower MOVs) when playing
on the Indian subcontinent.”

The match venues were grouped into three categories : “Home” (i.e. played in England or Wales),
“Away — Subcontinent” (i.e. played against India, Pakistan, Sri Lanka or Bangladesh, where the
opposition were at home), and “Away — Rest of the World” (i.e. played against Australia, South Africa,
West Indies, New Zealand or Zimbabwe, with England’s opponents being at home).

4 Descriptive Statistics, Exploratory Data Analysis and ANOVA

Summary information on the distribution of England’s MOVs relative to winning or losing the toss,
batting or bowling first, and the category of the match venue can be seen in figures 1, 2 and 3 below.
Further details of the analyses can be found in Frankland (2017).
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Figure 1. Distribution of England’s Margins of Victory (here recorded as “win_or_lose margin), with
a positive score indicating an England win, relative to whether they won or lost the toss of the coin
before the match. England won the toss in very close to 50% of games, as expected : 59 out of 120.

It can be observed that, in line with the findings of the previous study on ODIs by de Silva & Swartz
(1997), winning the toss (Figure 1) does not appear to have much effect on England’s margin of
victory (or defeat), nor does choosing to bowl or bat first (Figure 2).
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Figure 2. Distribution of England’s Margins of Victory (here recorded as “win_or_lose margin), with
a positive score indicating an England win, relative to whether they batted or bowled first. The
interquartile range of the MOV was a little higher when England bowled first and the distribution of
outliers is rather different between the two situations, but the median values are almost identical.

In their last 40 home matches, England have won the toss 19 times, but of those occasions have only
chosen to bat first 6 times. At home, England captains may prefer to chase a total. In contrast, when
playing on the subcontinent, England have lost the toss 18 times in the last 40 games, but of those they
have been require to bowl first 13 times. Subcontinental captains may believe that England are
vulnerable when chasing a total, particularly against high quality spin bowling on deteriorating dry
dusty wickets.
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The trends shown in the distributions of Margins of Victory with respect to the venues of the matches
are rather different (see Figure 3). Although the distribution of England’s margins of victory is
somewhat wider when playing at home than elsewhere in the World, the median values are similar
except for matches on the subcontinent, where the median is negative, indicating that England tend to
lose matches there. This is also born out by a direct comparison of the proportions of matches England
win at home and away against the various subcontinental teams (see Figure 4).
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Figure 3 : The distributions of England’s Margins of Victory (here recorded as “win_or _lose_margin),
with a positive score indicating an England win, relative to the venue of the match. It appears they
tend to perform rather worse on the Indian subcontinent than elsewhere in the World, home or away.

The observations made by visual inspection of the box plots in Figures 1, 2 and 3 are confirmed by the
ANOVA analysis. Treating the MOV as the dependent variable, and proposing the result of the toss,
home or away, batting or bowling first, and pairwise interactions between these as the independent
variables, the overall “corrected model” proved to be significant (p = 0.032) at the 5% level, but the
intercept did not (p = 0.191), indicating that there was no statistically significant “offset” from zero to
England’s Margin of Victory, if all the independent variables take their default values. The only factor
which did have a statistically significant impact on the MOV was whether the match was played at
home or away (p = 0.014). This is broadly in agreement with the findings of de Silva & Swartz (1997).
A Tukey HSD multiple comparisons post-hoc test was carried out on the influence of this variable
which, as noted previously, could take three possible values. It was found that the mean MOV was
significantly different for matches played on the subcontinent relative to either matches played at
home or elsewhere in the World. However, no significant difference was found between the MOV for
home matches and those played elsewhere in the World (i.e. neither in England or Wales, nor on the
subcontinent) - see Table 1 below.
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Home Subcontinent Rest of World
Home - 0.1183+0.0403 (p = 0.011) | -0.0052+0.0403 (p = 0.991)
Subcontinent | -0.1183+0.0403 (p = 0.011) - -0.1235+0.0403 (p = 0.008)
Rest of World | 0.0052+0.0403 (p =0.991) | 0.1235+0.0403 (p = 0.008) -

Table 1: Results of a Tukey HSD multiple comparisons post-hoc test on how the match venue affects
England’s margin of victory. The values is each cell indicate the mean difference (row — column) %
standard error, with the statistical significance value in parentheses. It can be seen that significant
differences (at 2% level or better) occur between the categories for games played on the subcontinent
and those at home or in the rest of the World, but not between home games and those played in the rest
of the World (excluding the subcontinent).

Figure 4. Proportion (as percentages) of ODI matches won by England at home or away against each
of the subcontinental sides. It can be observed that in all cases, England perform better at home against
each of these teams, with the difference between home and away results being particularly marked for
matches against India or Sri Lanka.

These results confirm the anecdotal wisdom that England tend to underperform when playing on the
Indian subcontinent, and further evidence is shown by comparing how they perform at home and away
against each subcontinental side (see figure 4). Although England tend to win most of their matches
against Bangladesh, their record playing in Bangladesh is inferior to playing Bangladesh in England.
This underperformance on the subcontinent may be due to a number of factors, such as nature of the
pitches, quality of spin bowling, hot or humid weather, to be investigated in the next section.

5 Logistic Regression Model for England Winning or Losing

Since it was found that only one categorical variable, namely the venue, significantly affected
England’s Margin of Victory, it was decided that it was not appropriate to create a predictive
regression model for this quantity. However, as noted previously, a very low proportion (less than 1%)
of ODIs which run to completion end in a tie, so effectively the result of a completed ODI match is a
binary outcome. For the purposes of our study which focuses on England’s results, we will treat the
outcome as either a win or a loss for England. We can therefore create a logistic regression model, to
calculate the log odds of England winning a given match as a linear function of various factors relating
to that match, ideally factors which would be known ideally in advance of the match, or at least during
the early stages of the match. Further details of the models and calculations are given in Frankland
(2017).
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If the probability of the team of interest (in this case, England) winning a given match is p, then we
can model the log odds of that team winning, based on the values of various “predictor” variables Xj,
X, ..., Xy as follows :

l"(l fp) = Byt Byxa+Boxa+ o+ By

where each of the p; is a parameter associated with the corresponding predictor x; and p, is a
constant. The values of the { £ } can be estimated from evidence in given data by maximum
likelihood estimation. In our case, we carried out this procedure using the SAS system. Our proposed
predictor variables were chosen based on the results of our ANOVA analysis described in section 4
above. For simplicity, it was decided to focus only on games between England and subcontinental
sides, namely India, Pakistan, Sri Lanka and Bangladesh. The first proposed predictor variable was
therefore taken to represent the venue, where 0 meant the game took place on the subcontinent and 1
meant it was held in England or Wales. Another proposed factor, due to subcontinental sides tending
to have a large number of high quality spin bowlers, was the “spin friendliness” of pitches at that
venue, defined as a fraction between 0 and 1, computed by

_ Number of wickets taken by spin bowlers
P~ (Total number of wickets — Run outs)

at that venue over the three previous matches at that venue. Since England cricketers would not be so
used to playing in hot or humid conditions, it was anticipated that England would perform less well
when it was hot and humid than when it was cooler and drier. (Many matches in India are played
between October and February, during which time Northern India at least does experience something
of a “Winter” in relative terms, when the weather tends to be more like an English Spring or Autumn
than tropical conditions.) Data on mean temperature and humidity at each venue for each match date
was obtained from the website Wunderground.com. Initially, these were tested as separate
independent variables, but it became clear that England performed worse when both temperature and
humidity were high, so it was decided to combine them into a single predictor by multiplying the
temperature in °C by the relative humidity (expressed as a percentage). In order to take account of the
quality or strength of the actual teams playing in that particular game, noting that this could vary
considerably from match to match due to injuries or players being unavailable for various other
reasons, the ICC ranking points for the top three bowlers in each team were summed to give a bowling
strength score, and similarly for the ICC ranking points for the top three batsmen in each team. These
were computed in this manner, since the ICC team rankings are based on a long term weighted moving
average for each international team, and do not take account of the precise set of individual players
participating in each game. Although the ICC player rankings are also based on long-term weighted
moving averages, these will make some allowance for relatively radical changes to a team’s
composition, such as occurred when several England players refused to tour Bangladesh during the
Autumn of 2016. The difference in total ICC ranking points of the top three bowlers between the sides,
and similarly for the top three batsmen in each side, were calculated for use as “relative bowling
strength” and “relative batting strength” respectively. Only the top three players were included for
each team, since the ICC published rankings, updated each month, only list 100 bowlers and 100
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batsmen from across the cricketing World at any one time, so not all players are included. The final
predictor included is one not known prior to the start of the match, namely the relative positions of the
two teams after 30 overs of their innings. Over recent years, ODIs have been consistently limited to a
maximum of 50 overs per side, and it is relatively rare for a side to be bowled out, or for a team
batting second to achieve their target, in less than 30 overs. The relative state of play 30 overs into
each innings, calculated as

( EngRuns after N overs ) ( OppRuns after N overs )
EngWickets after N overs + 1 OppWickets after N overs + 1

where EngRuns is the total number of runs scored by England, EngWickets is the number of wickets
lost by England, both up to that point (N overs of the innings completed), etc., and here N = 30, should
provide a useful predictor of the outcome of the match. Furthermore, with many bookmakers and
betting exchanges now allowing in-play gambling, making a prediction after 30 overs of the second
innings could still be useful to gamblers seeking to place a good bet.

The optimal parameters for the model was computed using a backwards stepwise selection
procedure in SAS, where initially all proposed predictor variables were included, then least significant
variable removed at each stage until all remaining variables were statistically significant at the 10%
level. The final overall model was found to be highly statistically significant (p < 0.0001), but only the
intercept and the influence of four predictor variables were found to be statistically significant. The
final logistic regression model was found to be

p
In <1 — p) = 1.47523 — 0.83202x; + 0.00326x; + 0.00099843x3 — 0.00043326x,

where Xx; is the proportion of wickets that have fallen to spin bowlers at that venue (p = 0.0202), x,
the relative difference in scores between England and the opposition after 30 overs of each innings (p
= 0.0040), x; the difference in the total ICC ranking scores of the top three bowlers in each side
between England and the opposition prior to the match (p = 0.0128), and X, the product of the mean
temperature (in °C) and the relative humidity (as a percentage) during the match (p = 0.0006).

The model was then tested on data not used in the calculation of its parameters by predicting the
probabilities of England winning each of the ODIs they played in India in early 2013. (The series in
India in early 2017 was not used, since bookmakers’ odds for that series were not publically available
at the time of writing.) One match from the 2013 series (that held on 19" January 2013) was excluded
since it was won within the first 30 overs of the second innings (and hence x, would not be defined),
but our regression model successfully predicted the results of all the four other games in that series.
Backing the bookmaker’s favorites (using odds from Bet365.com given at the 30™ over of the second
innings of each match) would have predicted the correct winner in 3 out of 4 cases.

6 Conclusions and Future Work

Our investigations relating to factors affecting England’s performance in ODI cricket matches has
indicated that neither winning the toss nor batting or bowling first has any significant effect on match
outcomes. However, the venue of a match — in particular, whether England is playing on the Indian
subcontinent — does affect England’s chances of winning. These findings are consistent with those of
de Silva & Swartz (1997). Building a logistic regression model enables us to predict the results of
matches better (on the matches used here for testing) than following the bookmakers’ favorite each
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time. Our final model did not explicitly include the continent of the venue, but the “spin friendliness”
of the pitch and the (temperature times humidity) variable would both, at least in part, act as proxies
for that. The final model also did not include the “relative team batting strength” variable, although it
did include the corresponding relative bowling strength. This is possibly because only the ICC points
scores of the top three ranked players of either type in each team were included in these. Typically,
each specialist bowler will bowl 10 overs in a 50 over ODI innings, so the top three bowlers will
deliver 30 out of 50 overs, or 60% of the ball bowled. In contrast, all eleven players may be required
to bat, and the top three rated batsmen are less likely to score 60% or more of the team’s total, which
may explain that observation.

Work on applying our model to betting strategies (Norton et al, 2015), and investigating whether it
could be used to generate a profit (which use of the bookmakers’ favorite each time is unlikely to do)
is currently in progress. Future work could include further refining the model, incorporating additional
factors, or generalising it to apply to matches involving any two specified times, to different formats of
cricket, or even to other sports involving two players or teams in direct competition.
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Abstract

Some important sequencing decisions in sports are made by a coin toss. While that
constitutes ex-ante fairness, it can generate ex-post unfairness, which is undesirable. We
propose a scheme where the teams bid by degree of difficulty of their attempt for place in the
sequence. In American football that would be relevant to which team starts an overtime period
and from where. In soccer, it would be relevant to order of penalty shots in tied games, when a
winner has to be determined, and the degree of difficulty is the distance from which shot is
attempted. We propose and analyze an auction for order of penalty shots in soccer where the
bids are distances. We address both discrete and continuous ability distributions. In our scheme,
the higher bidder attempts to score first from a distance which is a weighted average of the bids,
and the lower bidder attempts either from 11m (“Rule 1), or from a distance that is also a
weighted average of the bids (“Rule 2”).

1 Introduction

Many sports include a phase where teams or athletes take turns performing a task and the winner is the
one who has the most successes. Examples include penalty shots where a soccer game results in a tie
and a winner has to be declared, playoff series in various sports where a "turn" is a home game, as well
as the manner of playing an overtime period in a tied American Football game. The sequence in which
the attempts are played in many of these tie-breakers has a real or perceived effect on the outcome.

A common way to determine the order or sequence in such situations is by coin-toss. However, while
that constitutes ex-ante fairness, it does not generate ex-post fairness, and it is considered rather
undesirable to allow a coin-toss to significantly affect the outcome of a match (Brams and Sanderson
2013). The question thus is: Is there a better way to do that?

In tied soccer games that require a clear winner, teams typically take turns shooting a total of 5
penalty shots each from a distance of 11m: ABABABABAB. Similar tie breakers are now used in the
NHL in every tied game. Many fans and sports reporters believe team A to have a "psychological
advantage" in this shoot-out and there is some empirical research supporting that (Palacio-Huerta et al.,
2010). Other empirical research, however, refutes those findings (Kocher et al., 2012).

An interesting idea is bidding for the place in the sequence by the difficulty of the task. For example,
in NFL overtimes if team A bids "75 yard line" (i.e., to start from its own 25 yard line) and team B bids
"70 yard line", team A would start on offence from, say, (75 + 70)/2 = 72.5 (or a different weighted
average) yards away from team B's end zone. A kickoff spot may be adjusted accordingly (Granot and
Gerchak, 2014). That is an auction with positive externality, since the team with losing bid is still
influenced (positively) by the magnitude of the winning bid. In soccer, assuming for simplicity that each
team is allowed only one attempt (kick), the bid could be for the distance of its kicking point from the
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goal. If A bids 12.5m and B 11.5m then A would kick first, from a distance of some average of 12.5m
and 11.5m, while B would kick second from either 11m ("Rule 1) or from an average of 11.5m and
12.5m ("Rule 2").

We analyze the resulting games for both rules, for discrete and continuous ability distributions. We
then compare the bids resulting from each rule.

2 Bidding for Kicking First in Soccer

Suppose the teams are evenly matched, risk neutral and characterized by their abilities to score on a
penalty kick. Such abilities are denoted by x for A and y for B, x,y € [0, ). Each team knows its own
ability and forms a probability distribution function, F(+), over the other team’s ability. Assume that if
both attempts are from 11m, the following success probabilities for a team with ability y are known to
be:

p(y) — the probability that the first attempt is successful;

q(y) — the probability that the second attempt is successful if the first attempt by the other team was
successful;

r(y) — the probability that the second attempt is successful if the first attempt by the other team failed.

One would expect that p(y) >r(y) > q(y) Vy. Q)

It could also be the case that »(y) > p(y). If so, r(y) should be closer to p(y) than q(y), so the
team kicking first will have an advantage. The probabilities decrease with the kick distance. If a team
with ability y attempts from a distance (11+z)m, then we assume that the probability of success is
p(y)e~9% where 6 > 0 is given. The other probabilities, g (y) and r(y) change similarly.

Suppose the teams follow a symmetric strategy that determines the bid a team submits given its
ability, B(y), B: [0, ) — [0, o). The “infinite” distance could be, for example, the length of the field.
We seek a monotone increasing strategy S (y), which maximizes the expected probability that A wins
(or its expected utility if we normalize the utility of win to 1 and of a loss or a tie to 0). Note that we
focus on an outright win — a tie is given no value.

We denote the bids of teams A and B by a and b, respectively, and assume that if a > b, then team
A attempts first from a distance of aa + (1 — a)b, 1/2 < a < 1, where «a is fixed by the organizers
and known to the teams. The two alternative rules discussed below determine the sequence of the kicks
and the kicks’ distances. As far as the team with a lower bid is concerned, Rule 1 has it attempting a
shot from 11m (i.e., zero extra distance), while Rule 2 requires it to attempt its shot from a distance of
ab + (1 — a)a, with the same « as used for the team attempting first. If a < b the roles of the teams
are reversed. Note that the assumption that @ > 1/2 guarantees that the higher bidder kicks from farther
than the other.

2.1 Rulel

The objective of team A is to maximize its expected probability of winning,

max | = [ p(e P DBM)(1 - q(1))f ()dy

+J, (1= p()e @O+ A=DBEN)r(x) f(y)dy . ?

152



MathSport International 2017 Conference Proceedings

On Reducing Sequence Effects in Competitions Gerchak and Khmelnitsky

2.1.1 Two values distribution of abilities

Suppose that

¢ with probability ¢

XY= {d with probability 1 — ¢

0<e<1, (©)]
and without loss of generality ¢ > d. We first note that if condition (1) holds, then the theory that the
team attempting first has an advantage is correct. This is proven in the next lemma.

Lemma 1. If (1) holds then the expected probability of success of a team attempting first is greater than
the expected probability of a team attempting second.

Proof. The lemma states that
ep(c) + (1 — &)p(d) > g[q(c)(ep(c) + (1 — &)p(d)) + r(c)(1 — ep(c) — (1 — &)p(d))]
+(1 - )[q(@)(ep(e) + (1 = )p(d)) +(d)(1 - ep(e) = (1 — )p(d))] -
Equivalently,
[£(r(c) — q(0)) + (1 = &)(r(d) — q(d))][ep(c) + (1 — E)p(d)] > £(r(c) — p(c))
+(1 —&)(r(d) —p)) .

If (1) holds, then the left-hand side of the latter inequality is positive, while the right-hand side is
negative. This proves the lemma. [

Suppose that in case of ties, which are quite likely here, the winner is selected randomly. Suppose
first that x = ¢, i.e., B(c) = a, then,

] =5p(@e™%(1 - 4() +57(©)(1 ~ p(e)e ™)

+(1 = &)p(c)e~0@a+A-DB@)(1 — q(d)). @)
Since J decreases in B(d) for each a, then the value of 8(d) that maximizes J is f(d) = 0. This
satisfies the assumption made with respect to the monotonicity of B(-), here B(d) < B(c). After
substituting B(d) = 0 in (4), the maximization of J

J= ;P(c)e‘ga(l —q(0) + ;T(c)(1 —p()e™™)

+(1 - &)p(c)e™ (1 - q(d))
w.r.t. parameter a, is carried out by solving the equation dj/da = 0. The result is,

1 e(q(c)+r(c)-1)
a=16001-a) 2a(1-£)(1-q(d)’
0, otherwise

2a(1-¢)(1-q(ad))
£

if qo)+r()>1+ 5)

Suppose now that x = d, i.e., B(d) = a, then,

1-—
—r(@(1 - p(d)e)

+e(1 — p(c)e 0@O+(1-0a))p(g),
Since J increases in B(c) for each a, then the value of 8(c) that maximizes J is f(c) = co. Again, this
satisfies the monotonicity assumption, as B(d) < B(c). Substituting, the bid a that maximizes the
objective J,

] = ?p(d)e‘ea(l —q(d) +
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_1-¢ —0a 1+¢
J =="p(d)e (1 — q(d) — 7(d)) + —-r(d),

(6)

This result is independent of a and of the high ability parameters. The bid a obtained in (5) and (6) for
the two-value ability distribution leads to the following strategy:

- the team whose ability is at least as high as of the other team (case x = c), submits either zero bid
(112m kick), or the bid determined in the first line of (5).

- the team whose ability is at most as high as of the other team (case x = d) submits either zero bid, or
an “infinity” bid. The team which submits an “infinity” bid has a positive probability of success in the
scenario where the ability of the other team turns out to be also d, i.e., y = d, as it then submits the
“infinity” bid as well, and, if it is selected to kick first, it fails for sure.

{oo, if qd)+r@d>1
a= .
0, otherwise

2.1.2 Asymmetric beliefs of the teams

Suppose that

¥ = {c with probability & _ {c wit