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Abstract
We initiate the study of distance-sensitive hashing, a generalization of locality-sensitive hashing
that seeks a family of hash functions such that the probability of two points having the same
hash value is a given function of the distance between them. More precisely, given a distance
space (X,dist) and a “collision probability function” (CPF) f : R→ [0, 1] we seek a distribution
over pairs of functions (h, g) such that for every pair of points x,y ∈ X the collision probability
is Pr[h(x) = g(y)] = f(dist(x,y)). Locality-sensitive hashing is the study of how fast a CPF
can decrease as the distance grows. For many spaces f can be made exponentially decreasing
even if we restrict attention to the symmetric case where g = h. In this paper we study how
asymmetry makes it possible to achieve CPFs that are, for example, increasing or unimodal. Our
original motivation comes from annulus queries where we are interested in searching for points
at distance approximately r from a query point, but we believe that distance-sensitive hashing
is of interest beyond this application.
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1 Introduction

High-dimensional nearest neighbor search in a point set P is a building block in a variety
of applications. A classical application is recommender systems: Suppose you have shown
interest in a particular item, for example a news article x. The semantic meaning of a piece
of text can be represented as a high-dimensional feature vector, for example computed using
latent semantic indexing [16]. In order to recommend other news articles we might search
the set P of article feature vectors for articles that are similar to x. But in general it is
not clear that it is desirable to recommend the most similar articles. Indeed, it might be
desirable to recommend articles that are on the same topic but are not too aligned with x,
and may provide a different perspective.

For many applications of nearest neighbor search it is acceptable to approximate distances
such that the points reported are only approximately as close to x as the true set of closest
points. Locality-sensitive hashing (LSH), first defined by Indyk and Motwani [19], is a
powerful framework for approximate nearest neighbor search (ANN) in high dimensions that
achieves sublinear query time. However, existing LSH techniques do not allow us to search
for points that are “close, but not too close”. In a nutshell: LSH provides a sequence of hash
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functions h1, h2, . . . such that if x and y are close we have hi(x) = hi(y) for some i with
high probability, while if x and y are distant we have that hi(x) 6= hi(y) for all i with high
probability. In this paper we seek techniques that allow us to refine the first requirement: If
x and y are “too close” we would like collisions to occur only with very small probability. At
first sight this seems impossible because we will, by definition, have a collision when x = y.
However, this objection is overcome by switching to an asymmetric setting where we work with
pairs of functions (hi, gi) and are concerned with collisions of the form hi(x) = gi(y). More
generally, we initiate the study of the following question: In the asymmetric setting, what is
the class of functions f for which it is possible to achieve Pr[h(x) = g(y)] = f(dist(x,y)),
where the probability is over the choice of (h, g) and dist(x,y) is the distance between x and
y. We refer to such a function as a collision probability function (CPF). More formally:

I Definition 1. A distribution D over pairs of functions h, g : X → R is called distance-
sensitive for the space (X,dist) with collision probability function (CPF) f : R→ [0, 1] if for
each pair x,y ∈ X and (h, g) sampled according to D we have Pr[h(x) = g(y)] = f(dist(x,y)).

1.1 Our results
On a high level our results go into two different directions. First, we show that distance-
sensitive hash families with certain CPFs allow us to reuse the standard LSH data structure
[19] to solve problems where standard LSH families do not yield satisfactory solutions. Second,
we describe constructions of distance-sensitive hash families that achieve certain CPFs and
study lower bounds on distance-sensitive hash families with monotonically increasing CPFs.

We consider a standard RAM model of computation with word size Θ(logn) bits where
n = |P | is the size of the set of points. For simplicity we also assume that a point in (X,dist)
can be stored using d words and that the time complexity is O(d) for performing distance
computations, as well as sampling and evaluating functions from a distance-sensitive family
(if this is not the case, the space and time bounds can be adjusted accordingly).

Applications. Approximate annulus search is the problem of finding a point in the set
P of data points with distance in an interval [r−, r+] from a query point. Having access to
a distance-sensitive hash family with a CPF that peaks inside [r−, r+] and is significantly
smaller at the ends of the interval gives an LSH-like solution to this problem.

I Theorem 2. Suppose we have a set P of n points, an interval [r−, r+], a distance r ∈
[r−, r+], and assume we are given a distance-sensitive family with CPF f such that f(r′) ≤
1/n for all r′ /∈ [r−, r+]. Then there exists a data structure that, given a query q for
which there exists x ∈ P with dist(q,x) = r, returns x′ ∈ P with dist(q,x′) ∈ [r−, r+] with
probability at least 1/2. The data structure uses space O(n1+ρ∗/f(r) + dn) and has query
time O(dnρ∗), where ρ∗ = log(1/f(r))/ logn.

Obtaining a CPF that peaks inside of [r−, r+] can be achieved by combining a standard
locality-sensitive hash family with a distance-sensitive family that has an increasing CPF.
On the d-dimensional unit sphere under inner product similarity, our strongest construction
for solving the annulus search problem, described in section 2.2, allows us to search a point
set P of unit vectors for a vector approximately orthogonal to a query vector q in time
dnρ

∗+o(1) for ρ∗ = 1−α2

1+α2 , where we guarantee to return a vector x with 〈x,q〉 ∈ [−α, α] if an
orthogonal vector exists (a special case of Theorem 28).

Approximate spherical range reporting [1] aims to report all points in P within distance r
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from a query point. CPFs that have a (roughly) fixed value in [0, r] and then decrease rapidly
to zero yield data structures with good output sensitivity.

I Theorem 3. Suppose we have a set P of n points and two distances r < r+. Assume we
are given a distance-sensitive family with CPF f where f(r′) ≤ 1/n for all r′ ≥ r+, and let
fmin = inft∈[0,r] f(t), fmax = supt∈[0,r] f(t). Then there exists a data structure that, given a
query q, returns S ⊆ {x ∈ P | dist(q,x) ≤ r+} such that for each x ∈ P with dist(q,x) ≤ r,
Pr[x ∈ S] > 1/2. The data structure uses space O(n1+ρ∗ + dn) and the query has expected
running time O(dnρ∗ + d|S|fmax/fmin), where ρ∗ = log(1/fmin)/ log(1/f(r+)).

In particular, if we have a constant bound on fmax/fmin the output sensitivity is optimal
in the sense that the time to report an additional close point is O(d) which is the time it
takes to verify its distance to the query point. CPFs with this property are implicit in the
linear space extremes of the space-time tradeoff techniques for similarity search [4, 13], but a
better value of ρ∗ could possibly be obtained by allowing a higher space usage.

We note that the assumption f(r+) ≤ 1/n in both theorems is not critical: the standard
technique of powering (see Lemma 6) allows us to work with the CPF f(x)k for integer k,
where k is the smallest integer such that f(x)k ≤ 1/n.

The proofs of the theorems, which follow strictly along the lines of proofs for the standard
LSH data structure in [19], are sketched in Appendix A for completeness.

Constructions and lower bound. Section 2 presents our constructions of distance-
sensitive hash families. As a warm-up we consider a simple construction of a distance-sensitive
hash family with an increasing CPF for Hamming space building upon the well-known bit-
sampling approach from [19]. While bit-sampling is in a certain sense optimal [26] as a
locality-sensitive hash family with decreasing CPF w.r.t. the gap of collision probabilities at
distance r and cr, it turns out that it is possible to find distance-sensitive hash families with
CPFs that have a larger gap between the collision probabilities at distances r and r/c.

We describe two such families. The central tool in both constructions is the projection
of vectors x ∈ Rd to R by taking the inner product 〈x, z〉 where z ∼ N d(0, 1). This is a
well-known technique in the locality-sensitive hashing literature and it has been used in many
constructions of locality-sensitive families [15, 4, 13]. In our first construction, we consider an
asymmetric version of the classical E2LSH family [15] for Euclidean space, namely sampling
pairs (h, g) with

h : x 7→
⌊
〈a,x〉+b

w

⌋
, g : x 7→

⌊
〈a,x〉+b

w

⌋
+ k, (1)

where b ∈ [0, w] is uniformly random and a ∼ N d(0, 1) is a d-dimensional random Gaussian
vector. We show that this method, for suitable choice of parameters w ∈ R and k ∈ N, provide
a near-optimal gap of 1/c2 + o(1) in the ratio of the logarithms of collision probabilities
between close points at distance r and very close points at distance r/c. This is surprising,
since the classical E2LSH is not optimal as an LSH for Euclidean space [3].

In order to find a lower bound for the gap in the collision probabilities, we consider
vectors x,y ∈ {0, 1}d that are random and α-correlated, i.e., for each i ∈ {1, . . . , d} we have
Pr[xi = yi] = 1+α

2 independently. The expected Euclidean squared distance is E[||x−y||22] =
(1− α)d/2, and by applying a Chernoff bound we have that for large d the distance is within
a factor 1 + od(1) of the expectation with high probability. We show the following lower
bound:

I Theorem 4. Let D be a distribution over pairs of functions h, g : {0, 1}d → R, and define
f̂ : [−1, 1]→ [0, 1] by f̂(α) = Pr[h(x) = g(y)] where x,y are randomly α-correlated and (h, g)
is sampled according to D. Then for every 0 ≤ α < 1 we have that f̂(α) ≥ f̂(0)

1+α
1−α .
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That is, the collision probability for α-correlated vectors cannot be too much smaller than
the collision probability for random (0-correlated) vectors, a statement dual to standard
(symmetric) LSH lower bounds [22, 6, 26]. Since correlation 0 corresponds to Euclidean
distance r =

√
d/2 and correlation α to Euclidean distance r/c =

√
(1− α)d/2 it follows

that the lower bound on the collision probability can also be stated in terms of Euclidean
distance with approximation factor c = 1/

√
1− α. Then the exponent of the bound is

1+α
1−α = 2−1/c2

1/c2 = 2c2 − 1. This matches the exponent shown for (1) in section 2.1 up to a
constant factor, but a gap remains. Using our second construction that is based on the
recently-discovered concept of locality-sensitive filters [7] and takes ideas from [4] and [13], it
turns out that the lower bound can be matched up to a lower-order term in the exponent on
the unit sphere.

I Theorem 5. Let ε > 0 be constant. For every t > 0 there exists a family D− of distance-
sensitive functions for (Sd−1, 〈·, ·〉) with CPF f such that for α ∈ [−1 + ε, 1− ε] we have that

ln(1/f(α)) = 1+α
1−α

t2

2 + Θ(log t) (2)

The complexity of sampling, storing, and evaluating (h, g) ∈ D is O(dt4et2/2).

Note that this shows the exponent in Theorem 4 is tight up to an additive ot(1) term.
Finally, in section 2.3 we consider the following natural question: Let P (t) be a polynomial.

Does there exist a distance-sensitive hash family with CPF f(t) = P (t)? We present two
general approaches of constructing CPFs for the unit sphere and Hamming space that cover
a wide range of such polynomials.

1.2 Related work
A substantial literature has been devoted to the study of locality-sensitive hashing (LSH). Here
we review only selected results, and refer to [36] for a comprehensive survey. For simplicity
we consider only LSH constructions that are isometric in the sense that the probability
of a hash collision depends only on the distance dist(x,y). In other words, there exists a
collision probability function (CPF) f : R→ [0, 1] such that Pr[h(x) = h(y)] = f(dist(x,y)).
Almost all LSH constructions whose collision probability has been rigorously analyzed are
isometric. Notable exceptions are recent data dependent LSH methods such as [5] where the
LSH distribution, and thus the collision probabilities, depends on the structure of data.

ρ-values. Much attention has been given to optimal ρ-values of locality-sensitive hash
functions, where we consider non-increasing CPFs. Suppose we are interested in hash
collisions when dist(x,y) = r1 but want to avoid hash collisions when dist(x,y) ≥ r2, for
some r2 > r1. The ρ-value of this setting is the real number in [0, 1] such that f(r1) = f(r2)ρ;
it measures the gap between collision probabilities f(r1) and f(r2). The ρ-value determines
the performance of LSH-based data structures for the (r1, r2)-approximate near neighbor
problem: Assume that it takes O(d) time to sample and evaluate a locality-sensitive hash
function and compute a distance between two points. Then we can preprocess a point set P of
n points in time O(dn1+ρ) such that for a query point q from which there exists a point in P
within distance r1, you can return x ∈ P within distance r2 of q in time O(dnρ). In many
spaces a good upper bound on ρ can be given in terms of the ratio c = r2/r1, but in general
the smallest possible ρ can depend on r1, r2, f(r1), as well as the number of dimensions d.
In this paper we consider collision probabilities of the form Pr[h(x) = g(y)]; as stated
in Theorem 2 and Theorem 3 it remains relevant to compare collision probabilities using
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Figure 1 Composing several unimodal CPFs (left) to form a plateau CPF (red curve on the right)
using Lemma 6. Such a CPF is particularly interesting when applying Theorem 3.

ρ-values, but we are not limited to non-increasing CPFs so the design space is significantly
larger.

LSHable functions. Charikar [10] gave a necessary condition that all CPFs in the
symmetric setting must fulfill, namely, dist(x,y) = 1−Pr[h(x) = h(y)] must be the distance
measure of a metric, and more specifically this metric must be isometrically embeddable
in `1. In the asymmetric setting this condition no longer holds as can be seen, for example,
by noting that we can obtain dist(x,x) = 1− Pr[h(x) = g(x)] > 0.

Chierichetti and Kumar [11, Lemma 7] considered transformations that can be used to
create new CPFs. Though they are considered in a symmetric setting, the same constructions
apply in an asymmetric setting and give the following result:

I Lemma 6. Let {Di}ni=1 be a collection of n distance-sensitive families with CPFs {fi}ni=1.
(a) There exists a distance-sensitive family Dconcat with CPF f(x) =

∏n
i=1 fi(x).

(b) Given a probability distribution {pi}ni=1 over {Di}, there exists a distance-sensitive family
Dp with CPF f(x) =

∑n
i=1 pifi(x).

Figure 1 shows an example application of Lemma 6. For completeness we present a proof of
Lemma 6 in Appendix B.1. Interestingly, at least in the symmetric setting, the application of
this lemma to a single CPF yields all transformations that are guaranteed to map a CPF to
a CPF. Chierichetti et al. [12] recently extended the study of CPFs in the symmetric setting
to allow approximation, i.e., allowing the collision probability to differ from a target function
by a given approximation factor.

Asymmetric locality-sensitive hashing. Motivated by applications in machine learn-
ing, Vijayanarasimhan et al. [35] presented asymmetric LSH methods for Euclidean space
where the collision probability is a decreasing function of |〈x,y〉|. Shrivastava and Li [31] also
explored how asymmetry can be used to achieve new CPFs (increasing), in settings where the
inner product of vectors is used to measure closeness. Neyshabur and Srebro [24] extended
this study by showing that the extra power obtained by asymmetry hinges on restrictions on
the vector pairs for which we consider collisions: If vectors are not restricted to a bounded
region of Rd, no nontrivial CPF (as a function of inner product) is possible. On the other
hand, if one vector is normalized (e.g. a query vector), the performance of known asymmetric
LSH schemes can be matched with a symmetric method. But in the case where vectors are
bounded but not normalized, asymmetric LSH is able to obtain CPFs that are impossible
for symmetric LSH. Ahle et al. [2] showed further impossibility results for asymmetric LSH
applied to inner products, and that symmetric LSH is possible in a bounded domain even
without normalization if we just allow collision probability 1 when vectors coincide.
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In section 3.2 we show that asymmetry does not help us when attempting to distinguish
between random and positively correlated points in the Hamming cube using distance-sensitive
hashing. Stated in terms of the ρ-value we get that ρ ≥ 1/(2c−1)−od(1) for distance-sensitive
hashing, matching tight lower bounds from the symmetric LSH setting [22, 6]. We note that
the asymmetric lower bound also follows implicitly from recent space-time tradeoff lower
bounds [4, 13].

Indyk [17] showed how asymmetry can be used to enable new types of embeddings.
More recently asymmetry has been used in the context of locality-sensitive filters [4, 13]
and maps [14]. The idea is to map each point x to a pair of sets (h(x), g(x)) such that
Pr[h(x) ∩ g(y) 6= ∅] is constant if x and y are close, and very small if x and y are far from
each other. This yields a similarity search data structure that adds for each vector x ∈ P
the elements of h(x) to a hash table; a query for a vector q proceeds by looking up each key
in g(q) in the hash table. One can transform such methods into asymmetric LSH methods
by using min-wise hashing [8, 9] to sample a single element from each of the sets h(x) and
g(x) (see [13, Theorem 1.4]).

Recommender systems. Returning to our motivating example we are not the first to
address the topic of getting “interesting” recommendations using similarity search methods.
Indyk et al. [18] build a similarity search data structure on a core-set of P to guarantee
diverse query results. However, this method effectively discards much of the data set, so may
not be suitable in all settings. Pagh et al. [27] consider the type of annulus queries that is
interesting for recommendation, but their solution does not use the LSH framework and is
limited to Euclidean space.

2 Constructions

Bit sampling [19] is one of the simplest LSH families for Hamming space, yet gives optimal
ρ-values in terms of the approximation factor [26]. Its CPF is f(t) = 1 − t, where t is
the relative Hamming distance. By using a function pair (x 7→ xi,x 7→ 1 − xi) where
i ∈ {1, . . . , d} is random, we get a simple asymmetric distance-sensitive family for Hamming
space whose CPF f(t) = t, is monotonically increasing in the relative Hamming distance. We
refer to increasing CPFs as anti-LSH, and the specific family as anti bit-sampling (because
it gives a collision exactly when bit-sampling would not). Formally we have the family
Hab = {(hi, gi) | 1 ≤ i ≤ d, hi, gi : {0, 1}d → {0, 1}, hi : x 7→ xi, gi : x 7→ 1− xi}, which has
CPF f(t) = t.

Anti-LSH is relevant since by concatenating an anti-LSH with a standard LSH, multiplying
the CPFs (cf. Lemma 6(b)), we get unimodal CPFs that can be used to answer annulus queries.
Let us set r− = r/c and r+ = cr for some r > 0 and c > 1. Let f+ and f− denote the CPFs
of the LSH and anti-LSH families. Then, by Theorem 2, the annulus problem can be solved
with ρ∗ ≤ ρ+ + ρ−, where ρ+ = log(f+(r))/ log(f+(cr)) and ρ− = log(f−(r))/ log(f−(r/c)).
For anti bit-sampling, we get that ρ− = Θ(1/ log c) as soon as r (normalized in [0, 1]) is a
constant factor from 1, and hence ρ∗ = Θ(1/ log c).

Perhaps surprisingly, this anti-LSH approach is not optimal and a better result, with
ρ∗ = O(1/c), follows by using an anti-LSH construction for Euclidean space proposed in
section 2.1 and an anti-LSH based on filters for the unit sphere proposed in section 2.2, both
yielding ρ− = O(1/c2).

It is natural to wonder if more advanced CPFs can be obtained. We provide some results
in this direction by describing in Section 2.3 two constructions yielding a wide class of CPFs.
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2.1 An Anti-LSH construction in Euclidean Space
A simple and elegant distance-sensitive hash family in Euclidean space is given by a natural
extension of the locality-sensitive hash family introduced by Datar et al. [15], where we
project a point onto a line and split this line up into buckets. Let k and w be two suitable
parameters to be chosen below. Consider the family of pairs of functions (h, g) with

h : x 7→
⌊
〈a,x〉+ b

w

⌋
, g : y 7→

⌊
〈a,y〉+ b

w

⌋
+ k,

indexed by a uniform real number b ∈ [0, w] and a d-dimensional random Gaussian vector
a ∼ N d(0, 1). We have the following result:

I Theorem 7. Let r− and r be two real values such that 0 < r− < r, and let c = r/r−. We
have that

ρ− = log(1/f(r))
log(1/f(r−)) = 1

c2 + oc,k(1).

Proof. For the sake of simplicity we assume r = 1 in the analysis (otherwise it is enough to
scale down vectors accordingly). Let x and y be two points in Rd with distance ∆. We know
that for a ∼ N d(0, 1) the inner product 〈a, (x− y)〉 is distributed as N (0,∆). A necessary
but not sufficient condition to have a collision between x and y is that 〈a, (x− y)〉 lies in
the interval [(k − 1)w, (k + 1)w]. Now, if t := 〈a, (x− y)〉 ∈ [(k − 1)w, kw], then the random
offset b must lie in an interval of length t− (k − 1)w, putting 〈a,x〉 and 〈a,y〉 − (k − 1)w
into different buckets. For the interval [kw, (k + 1)w] similar observations show that b has
to be chosen in an interval of length (k + 1)w − t. Let φ(t) = 1/

√
2πe−t2/2 be the density

function of a standard normal random variable. Similarly to the calculations in [15], the
collision probability at distance ∆ can be calculated as follows:

f(∆) = Pr
(⌊
〈a,x〉+ b

w

⌋
−
⌊
〈a,y〉+ b

w

⌋
= k

)
=
∫ kw

(k−1)w

φ(t/∆)
∆

(
t

w
− (k − 1)

)
dt+

∫ (k+1)w

kw

φ(t/∆)
∆

(
k + 1− t

w

)
dt− φ(kw/∆)

∆

= 1√
2π∆

(∫ kw

(k−1)w
e−

t2
2∆2

(
t

w
− (k − 1)

)
dt+

∫ (k+1)w

kw

e−
t2

2∆2

(
k + 1− t

w

)
dt− e−

(kw)2

2∆2

)
.

We now proceed to upper bound ρ− by finding an upper bound on f(1/c) and a lower bound
on f(1). Simple calculations give an upper bound of

f(1/c) ≤ 2wc√
2π
e−(c(k−1)w)2/2. (3)

For the lower bound, we only look at the interval t ∈ [kw, (k + 1/2)w] and obtain the bound:

f(1) ≥ 1√
2π

∫ (k+1/2)w

kw

e−
t2
2

(
k + 1− t

w

)
dt ≥ w

4
√

2π
e−((k+1/2)w)2/2. (4)

Now we multiply the ratio of the logarithms of the right-hand sides of (3) and (4) with c2

and look at the limit behavior for c→∞. We obtain that

lim
c→∞

log
(

w
4
√

2π e
−((k+1/2)w)2/2

)
log
(

2wc√
2π e
−(c(k−1)w)2/2

) c2 = −
2 log

(
w

4
√

2π e
− 1

8 (2kw+w)2)
)

(k − 1)2w2 ,
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Figure 2 Graph depicting differences between the upper and exact bounds on the ρ− value of
the Euclidean space anti-LSH. The ρ− value is depicted on the y-axis, the approximation factor c
on the x-axis. The graph also shows the behavior of f(∆) in the limit when k and w go to ∞, and
the function 1.5/c2. Left: Parameter setting k = 4, w = 1; right: parameter setting k = 9, w = 1.

and notice that the right-hand side goes to 1 for k →∞ and arbitrary w > 0. This shows
the claimed result. J

The result of Theorem 7 only holds for large k. For fixed k, ρ− behaves asymptotically as
(2k+1)2

4c2(k−1)2 + oc,w(1). For example, numerical calculations for k = 9 and w = 1 give an upper
bound on the ρ− value of 1.5

c2 . Figure 2 compares the exact ρ− value and our upper bound
for two choices of parameters.

2.2 Optimal monotonic distance-sensitive hashing for the unit sphere
In this section we will show how to construct distance-sensitive hash families with mono-
tonically increasing and decreasing CPFs for the unit sphere under inner product similarity
that match the lower bounds shown in section 3. In particular we will prove Theorem 5 by
showing the existence of a family D− with a CPF f− : [−1, 1]→ [0, 1] that is monotonically
decreasing in the similarity between points sim(x,y) = 〈x,y〉. The construction of D− follows
as a corollary from the construction of a family D+ with a CPF f+ that is monotonically
increasing in the similarity, and in fact, we have that f+(α) = f−(−α) when D+ and D− are
parameterized in the same way. As an application of these families we show how they can be
combined to yield powerful solutions to the approximate annulus search problem for a large,
natural class of annuli. This application is further described in Appendix D.

The main new contribution compared to existing filter approaches [4, 13] is to make
use of the asymmetry granted by (h, g) ∼ D− to show the existence of a family with a
monotonically decreasing CPF. Furthermore, our analysis makes use of powerful tail bounds
for the bivariate normal distribution [30] that allows us to provide guarantees for D−,D+
that span the entire range of similarities.

The distance-sensitive families. We begin by describing the family D+. The family
takes as parameter a real number t > 0 and an integer m that we will later set as a function
of t. We sample a pair of functions (h, g) from D+ by sampling m vectors z1, . . . , zm where
zi ∼ N d(0, 1). The functions h, g map a point x ∈ Sd−1 to the index i of the first projection
zi where 〈zi,x〉 ≥ t. If no such projection is found, then we ensure that h(x) 6= g(x) by
mapping them to different values. Formally, we set

h+(x) = min({i | 〈zi,x〉 ≥ t} ∪ {m+ 1}),
g+(x) = min({i | 〈zi,x〉 ≥ t} ∪ {m+ 2}).

The collision probability for (h, g) ∼ D+ depends only on the similarity α = 〈x,y〉 between
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the pair of points being evaluated and is given by

f+(α) = Pr[h(x) = g(y)] = Pr[h(x) ≤ m ∧ g(y) ≤ m]Pr[〈z,x〉 ≥ t ∧ 〈z,y〉 ≥ t]
Pr[〈z,x〉 ≥ t ∨ 〈z,y〉 ≥ t] .

The only way the family D− differs from D+ is in the definition of g−(x) where we replace
the condition as follows:

g−(x) = min({i | 〈zi,x〉 ≤ −t} ∪ {m+ 2}).

The collision probability f−(α) ofD− follows analogously. We observe the following connection
between D+ and D−.

I Lemma 8. Given D+ and D− with identical parameters we have that f+(α) = f−(−α).

Proof. A bivariate normally distributed variable with correlation α can be represented as a
pair (X,Y ) with X = Z1 and Y = αZ1 +

√
1− α2Z2 where Z1, Z2 are i.i.d. standard normal.

By the symmetry of the standard normal distribution around zero it is straightforward to
verify that Pr[Z1 ≥ t ∧ αZ1 +

√
1− α2Z2 ≥ t] = Pr[Z1 ≥ t ∧ −αZ1 +

√
1− α2Z2 ≤ −t]. J

Bounding the CPF. We use tail bounds for the standard normal distribution and the
tail bounds by Savage [30] for the bivariate standard normal distribution in order to obtain
the following lemma, the details of which are provided in Appendix C. We remark that this
lemma provides also bounds for f−(α) through the observation in Lemma 8.

I Lemma 9. For every t > 0 and α ∈ (−1, 1) the family D+ satisfies

f+(α) < f̄+(α) := 1√
2π

t+ 1
t2

(1 + α)2
√

1− α2
exp

(
−1− α

1 + α

t2

2

)
,

f+(α) >
(

1− (2− α)(1 + α)
1− α

1
t2

)
t

t+ 1 f̄+(α)− 2 exp(−t3).

The complexity of sampling, storing, and evaluating a pair of functions (h, g) ∈ D+ is
O(dt4et2/2).

Results. Combining the above ingredients show Theorem 5. We also note that a similar
statement holds for D+:

I Corollary 10. Theorem 5 holds for D+ with the CPF bound

ln(1/f(α)) = 1− α
1 + α

t2

2 + Θ(log t).

Results on the unit sphere can be extended to `s-spaces for 0 < s ≤ 2 through the
embedding result by Rahimi and Recht [29] as shown in [13]. A more careful analysis of
the collision probabilities is required in order to combine the families D− and D+ to form
a unimodal family that can be used to solve the annulus search problem, see Theorem 2.
These results are stated in Appendix D.

2.3 General constructions
So far we have focused our attention on anti-LSH constructions, which just represent one
kind of distance-sensitive functions. We now overview general constructions targeting wider
classes of CPFs.
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Angular similarity functions

We say that sim : [−1, 1] → [0, 1] is an LSHable angular similarity function if there exists
a distance-sensitive hash family S with collision probability function sim(〈x,y〉) for each
x,y ∈ Sd−1. For example, the function sim(t) = 1 − arccos(t)/π is LSHable using the
SimHash construction of Charikar [10].

Valiant [34] described a pair of mappings ϕP1 , ϕP2 : Rd → RD, where D = O(dk), such
that ϕP1 (x) · ϕP2 (y) = P (〈x,y〉), for any polynomial P (t) =

∑k
i=0 ait

i. By leveraging this
construction, it is possible to derive the following result (see Appendix B.2 for the proof).

I Theorem 11. Suppose that sim is an LSHable angular similarity function and that the
polynomial P (t) =

∑k
i=0 ait

i satisfies
∑k
i=0 |ai| = 1. Then there exists a distribution over

pairs (h, g) of functions such that for all x,y ∈ Sd−1, Pr[h(x) = g(y)] = sim(P (〈x,y〉)).

The computational cost of a naïve implementation of the proposed scheme may be
prohibitive when dk is large. However, by using the so-called kernel approximation meth-
ods [28], we can in near-linear time compute approximations ϕ̂P1 (x) and ϕ̂P2 (y) that satisfy
ϕ̂P1 (x) · ϕ̂P2 (y) = P (〈x,y〉)± ε with high probability for a given approximation error ε > 0.

Hamming distance functions

For Hamming space, it is natural to wonder which CFPs can be expressed as a function of
the relative Hamming distance dh(x,y). A first positive answer follows by using the anti
bit-sampling approach mentioned at the beginning of this section together with Lemma 6.
This gives a scheme for matching any polynomial P (t) =

∑k
i=0 ait

i that satisfies
∑k
i=0 ai = 1

and ai > 0 for each i.
In this section, we provide another construction that matches, up to a scaling factor ∆, any

polynomial P (t) having no roots with a real part in (0, 1). The scaling factor depends only
on the roots of the polynomial. We have the following result that is proven in Appendix B.3:

I Theorem 12. Let P (t) =
∑k
i=0 ait

i, Z be the multiset of roots of P (t), and ψ ≤ k be the
number of roots with negative real part. Then there exists a distance-sensitive hash family
with collision probability Pr(h(x) = g(y)) = P (dh(x,y)) /∆ with ∆ = ak2ψ

∏
z∈Z,|z|>1 |zi|.

The construction exploits the factorization P (t) = ak
∏
z∈Z(t − z) and consists of a

combination of |Z| variations of bit-sampling and anti bit-sampling. We refer to Theorem 12
in Appendix B.3 for the construction. Although the proposed scheme may not reach the
ρ value given by the polynomial P (t), it can be used for estimating P (dH(x,y)) since the
scaling factor is constant and only depends on the polynomial.

We remark that a scaling factor ∆ is unavoidable in the general case. Otherwise, it
would be possible to match the CFP 1− t2 for Hamming space, which implies ρ ≤ 1/c2 in
contradiction with the lower bound 1/c in [26]. However, it is an open question to provide
better bounds on ∆.

Finally, we observe that our scheme can be used to approximate any function f(t) that
can be represented with a Taylor series: indeed, it is sufficient to truncate the series to
the term that gives the desired approximation, and then to apply our construction to the
resulting truncated polynomial.

3 Lower bound

In this section we will show lower bounds on the CPFs of distance-sensitive families in
Hamming space under relative Hamming distance. These results extend to the unit sphere
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and Euclidean space through standard embeddings. Our primary focus will be to obtain a
lower bound for the case of a CPF that is increasing with the distance, i.e., decreasing in the
similarity. As with our upper bounds for the unit sphere, re-applying the same techniques
also yields a lower bound for the case of an increasing CPF in the similarity.

The proof combines the (reverse) small-set expansion theorem by O’Donnell [25] with
techniques inspired by the LSH lower bound of Motwani et al. [22]. The reverse small-set
expansion theorem lower bounds the probability that random α-correlated points (x,y) end
up in a pair of subsets A,B of the Hamming cube, as a function of the size of the subsets.
The main contribution here is to extend this lower bound for pairs of subsets of Hamming
space to our object of interest: distributions over pairs of functions that partition space. We
begin by introducing the required tools from [25].

I Definition 13. For 0 ≤ α ≤ 1 we say that (x,y) are α-correlated if x is chosen uniformly
at random from {0, 1}d and y is constructed by rerandomizing each bit from x independently
at random with probability 1− α.

In the following we refer to the volume of A ⊂ {0, 1}d as |A|/2d.

I Theorem 14 (Reverse Small-Set Expansion). Let 0 ≤ α ≤ 1. Let A,B ⊆ {0, 1}d have
volumes exp(−a2/2), exp(−b2/2), respectively, where a, b ≥ 0. Then we have that

Pr
(x,y)
α-corr.

[x ∈ A,y ∈ B] ≥ exp
(
−1

2
a2 + 2αab+ b2

1− α2

)
.

We define a probabilistic version of the probability collision function that we will state results
for. Later we will apply concentration bounds on the similarity between α-correlated pairs
of points in order to make statements about the actual CPF. We will use R to denote the
range of a family of functions which, without loss of generality, we can assume to be finite.

I Definition 15 (Probabilistic CPF). Let D be a distribution over pairs h, g : {0, 1}d → R

and 0 ≤ α < 1. Then we define the probabilistic CPF f̂ : [0, 1]→ [0, 1] by

f̂(α) = Pr
(h,g)∼D

(x,y) α-corr.

[h(x) = g(y)].

We are now ready to state our main lemma that lower bounds f̂(α) in terms of f̂(0). This
immediately implies Theorem 4.

I Lemma 16. For every distribution D over pairs of functions h, g : {0, 1}d → R and every
0 ≤ α < 1 we have that f̂(α) ≥ f̂(0)

1+α
1−α .

Proof. For a function h : {0, 1}d → R define its inverse h−1 : R→ 2{0,1}d by h−1(i) = {x ∈
{0, 1}d | h(x) = i}. For a pair of functions (h, g) ∈ D and i ∈ R we define ah,i, bg,i ≥ 0
such that |h−1(i)|/2d = exp(−a2

h,i/2) and |g−1(i)|/2d = exp(−b2
g,i/2). For fixed (h, g) define

f̂h,g(α) = Pr(x,y) α-corr.[h(x) = g(y)]. We obtain a lower bound on f̂(α) in the following
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way:

f̂(α) = E
(h,g)∼D

[∑
i∈R

Pr
(x,y) α-corr.

[h(x) = g(y) = i]
]

≥ E
(h,g)∼D

[∑
i∈R

exp
(
−1

2
a2
h,i + 2αah,ibg,i + b2

g,i

1− α2

)]
(5)

≥ E
(h,g)∼D

[∑
i∈R

exp
(
−1

2
a2
h,i + b2

g,i

1− α

)]
(6)

≥ E
(h,g)∼D

f̂h,g(0)
1+α
1−α (7)

≥
(

E
(h,g)∼D

f̂h,g(0)
) 1+α

1−α

(8)

= f̂(0)
1+α
1−α

Inequality (5) is due to Theorem 14. Inequality (6) follows from the simple fact that
a2 +α(a2 +b2)+b2 ≥ a2 +2αab+b2. Inequality (7) follows from the result of an optimization
problem further described in Appendix E.1. Finally, inequality (8) follows from a standard
application of Jensen’s Inequality. J

3.1 Bounding the CPF
We will use Lemma 16 to a show a lower bound for distance-sensitive families that have the
opposite properties of locality-sensitive hash families. Our lower bound holds for “similarity”-
sensitive hash families, where we replace the distance function in the space (X,dist) in
Definition 1 by a space (X, sim) equipped with similarity measure sim : X ×X → [0, 1]. The
following definition covers both standard locality-sensitive hash families and families having
the opposite behavior from a similarity perspective.

I Definition 17 (Similarity-[in]sensitive hash families). Let D be a similarity-sensitive family
for (X, sim) with CPF f . We say that D is (α−, α+, f−, f+)-[in]sensitive if it satisfies:

For α ≤ α− we have that f(α) ≤ f− [f(α) ≥ f−].
For α ≥ α+ we have that f(α) ≥ f+ [f(α) ≤ f+].

We state our results in the natural similarity-version of Hamming space that also corres-
ponds to embedding Hamming space into the unit sphere, namely the space ({0, 1}d, simH)
where simH(x,y) = 1− 2 ‖x− y‖1 /d. In the following theorem we extend the lower bound
from Lemma 16 that considers the relation between f̂(0) and f̂(α) to a wider range of
parameters 0 < α− < α+ < 1 and we consider the relation between f(α−) and f(α+). The
proof has been deferred to Appendix E.2.

I Theorem 18. Let 0 < α− < α+ < 1 be constants. Then every (α−, α+, f−, f+)-insensitive
family D for ({0, 1}d, simH) must satisfy

log(1/f−)
log(1/f+) ≥

1− α+

1 + α+ − 2α−
−O(

√
log(1/f+)/d).

I Remark. In the statement of Theorem 18 we may replace the properties from Definition 17
that hold for every α ≤ α− and every α ≥ α+ with less restrictive versions that hold in an
ε-interval around α−, α+ for some ε = od(1).
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I Remark. If we rewrite the bound in terms of relative Hamming distances δ and δ/c where
δ, c are constants, we obtain a lower bound of 1/(2c − 1) − od(1) — an expression that is
familiar from known LSH lower bounds [22, 6].

3.2 The other direction
We can re-apply the techniques behind Lemma 16 and Theorem 18 to state similar results
in the other direction where for α− < α+ we are interested in upper bounding f(α+) as a
function of f(α−). This is similar to the well-studied problem of constructing LSH lower
bounds and our results match known LSH bounds [22, 6], indicating that the asymmetry
afforded by D does not help us when we wish to construct similarity-sensitive families with
monotonically increasing CPFs. Implicitly, this result already follows from the space-time
tradeoff lower bounds for similarity search shown independently by Andoni et al. [4] and
Christiani [13]. As with Lemma 16, the following theorem by O’Donnell [25] is the foundation
of our lower bounds.

I Theorem 19 (Generalized Small-Set Expansion). Let 0 ≤ α ≤ 1. Let A,B ⊆ {0, 1}d have
volumes exp(−a2/2), exp(−b2/2) and assume 0 ≤ αb ≤ a ≤ b. Then,

Pr
(x,y)
α-corr.

[x ∈ A,y ∈ B] ≥ exp
(
−1

2
a2 + 2αab+ b2

1− α2

)
.

I Lemma 20. For every distribution D over pairs of functions h, g : {0, 1}d → R and every
0 ≤ α < 1 we have that f̂(α) ≤ f̂(0)

1−α
1+α .

I Remark. The restriction from Theorem 19 that 0 ≤ αb ≤ a ≤ b can be ignored when
attempting to upper bound f̂ in the proof of Lemma 20 as further asymmetry does not
increase the probability of collision. The solution to the optimization problem underlying
the lower bound in Lemma 20 has a = b regardless.
We are now ready to state the corresponding result for similarity-sensitive families.

I Theorem 21. Let 0 < α− < α+ < 1 be constants. Then every (α−, α+, f−, f+)-sensitive
family D for ({0, 1}d, simH) must satisfy

log(1/f+)
log(1/f−) ≥

1− α+

1 + α+ − 2α−
−O(

√
log(1/f−)/d).

4 Conclusion

We have initiated the study of distance-sensitive hashing, an asymmetric class of LSH methods
that considerably extend the capabilities of standard LSH. We proposed some applications
and described different constructions of such hash families. Though we settled some basic
questions regarding what is possible using distance-sensitive hashing, many questions remain.
Ultimately, one would like for a given space a complete characterization of the CPFs that
can be achieved, with emphasis on extremal properties. For example: For a CPF that has
f(x) = Θ(ε) for x ∈ [0, r], how small a value ρ(c) = log(f(r))/ log(f(cr)) is possible outside
of this range? Additionally, our solution to the annulus problem works by combining an LSH
and an anti-LSH family to obtain a unimodal family. While we know lower bounds for both,
it is not clear whether combining them yields optimal solutions for this problem. Moreover,
it is also of interest to consider other applications in approximation algorithms. For example,
CPFs appear relevant for efficient kernel density estimation, see, e.g. [20].

Acknowledgement. We thank Thomas D. Ahle for insightful conversations.



XX:14 Distance-sensitive hashing

References
1 Thomas D. Ahle, Martin Aumüller, and Rasmus Pagh. Parameter-free locality sensitive

hashing for spherical range reporting. In Proceedings of 28th Symposium on Discrete Al-
gorithms (SODA), pages 239–256, 2017. doi:10.1137/1.9781611974782.16.

2 Thomas Dybdahl Ahle, Rasmus Pagh, Ilya P. Razenshteyn, and Francesco Silvestri. On
the complexity of inner product similarity join. In Proceedings of 35th ACM Symposium
on Principles of Database Systems (PODS), pages 151–164, 2016. doi:10.1145/2902251.
2902285.

3 Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. In Proceedings of 47th Annual Symposium on Found-
ations of Computer Science (FOCS), pages 459–468, 2006. doi:10.1109/FOCS.2006.49.

4 Alexandr Andoni, Thijs Laarhoven, Ilya P. Razenshteyn, and Erik Waingarten. Optimal
hashing-based time-space trade-offs for approximate near neighbors. In Proceedings of 28th
Annual Symposium on Discrete Algorithms (SODA), pages 47–66, 2017. doi:10.1137/1.
9781611974782.4.

5 Alexandr Andoni and Ilya P. Razenshteyn. Optimal data-dependent hashing for approx-
imate near neighbors. In Proceedings of 47th Annual Symposium on Theory of Computing
(STOC), pages 793–801, 2015. doi:10.1145/2746539.2746553.

6 Alexandr Andoni and Ilya P. Razenshteyn. Tight lower bounds for data-dependent locality-
sensitive hashing. In Proceedings of 32nd International Symposium on Computational Geo-
metry (SoCG), pages 9:1–9:11, 2016. doi:10.4230/LIPIcs.SoCG.2016.9.

7 Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in
nearest neighbor searching with applications to lattice sieving. In Proceedings of the
27th Symposium on Discrete Algorithms (SODA), pages 10–24, 2016. doi:10.1137/1.
9781611974331.ch2.

8 Andrei Z Broder. On the resemblance and containment of documents. In Proceedings of
Compression and Complexity of Sequences, pages 21–29. IEEE, 1997.

9 Andrei Z Broder, Steven C Glassman, Mark S Manasse, and Geoffrey Zweig. Syntactic
clustering of the web. Computer Networks and ISDN Systems, 29(8-13):1157–1166, 1997.

10 Moses Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings
of 34th ACM Symposium on Theory of Computing (STOC), pages 380–388, 2002.

11 Flavio Chierichetti and Ravi Kumar. Lsh-preserving functions and their applications.
Journal of the ACM (JACM), 62(5):33, 2015.

12 Flavio Chierichetti, Alessandro Panconesi, Ravi Kumar, and Erisa Terolli. The distortion of
locality sensitive hashing. In Proceedings of ACM Conference on Innovations in Theoretical
Computer Science (ITCS), 2017.

13 Tobias Christiani. A framework for similarity search with space-time tradeoffs using locality-
sensitive filtering. In Proceedings of 28th Symposium on Discrete Algorithms (SODA), pages
31–46, 2017.

14 Tobias Christiani and Rasmus Pagh. Set similarity search beyond minhash. In Proceedings
of 49th Annual Symposium on Theory of Computing (STOC), to appear, 2017.

15 Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of the 20th Annual Sym-
posium on Computational Geometry (SoCG), pages 253–262. ACM, 2004.

16 Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard
Harshman. Indexing by latent semantic analysis. Journal of the American Society for
Information Science, 41(6):391, 1990.

17 Piotr Indyk. Better algorithms for high-dimensional proximity problems via asymmetric
embeddings. In Proceedings of 14th Symposium on Discrete Algorithms (SODA), pages
539–545, 2003.

http://dx.doi.org/10.1137/1.9781611974782.16
http://dx.doi.org/10.1145/2902251.2902285
http://dx.doi.org/10.1145/2902251.2902285
http://dx.doi.org/10.1109/FOCS.2006.49
http://dx.doi.org/10.1137/1.9781611974782.4
http://dx.doi.org/10.1137/1.9781611974782.4
http://dx.doi.org/10.1145/2746539.2746553
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.9
http://dx.doi.org/10.1137/1.9781611974331.ch2
http://dx.doi.org/10.1137/1.9781611974331.ch2


M. Aumüller, T. Christiani, R. Pagh, and F. Silvestri XX:15

18 Piotr Indyk, Sepideh Mahabadi, Mohammad Mahdian, and Vahab S Mirrokni. Composable
core-sets for diversity and coverage maximization. In Proceedings of 33rd Symposium on
Principles of Database Systems (PODS), pages 100–108. ACM, 2014.

19 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proceedings of 30th Annual ACM Symposium on the Theory of
Computing (STOC), pages 604–613, 1998.

20 C. G. Lambert, S. E. Harrington, C. R. Harvey, and A. Glodjo. Efficient on-line nonparamet-
ric kernel density estimation. Algorithmica, 25(1):37–57, 1999. doi:10.1007/PL00009282.

21 M. Mitzenmacher and E. Upfal. Probability and computing. Cambridge University Press,
New York, NY, 2005.

22 R. Motwani, A. Naor, and R. Panigrahy. Lower bounds on locality sensitive hashing. SIAM
J. Discrete Math., 21(4):930–935, 2007.

23 Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Chapman & Hall/CRC,
2010.

24 Behnam Neyshabur and Nathan Srebro. On symmetric and asymmetric lshs for inner
product search. In Proceedings 32nd Conference on Machine Learning (ICML), pages
1926–1934, 2015.

25 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
26 Ryan O’Donnell, Yi Wu, and Yuan Zhou. Optimal lower bounds for locality-sensitive

hashing (except when q is tiny). ACM Transactions on Computation Theory (TOCT),
6(1):5, 2014.

27 Rasmus Pagh, Francesco Silvestri, Johan Sivertsen, and Matthew Skala. Approximate
furthest neighbor with application to annulus query. Information Systems, 64:152–162,
2017.

28 Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit feature
maps. In Proceedings of 19th International Conference on Knowledge Discovery and Data
Mining (KDD), pages 239–247. ACM, 2013.

29 Ali Rahimi and Benjamin Recht. Random features for large-scale kernel ma-
chines. In Proceedings of 21st Annual Conference on Neural Information Pro-
cessing Systems (NIPS), pages 1177–1184, 2007. URL: http://papers.nips.cc/paper/
3182-random-features-for-large-scale-kernel-machines.

30 I. R. Savage. Mill’s ratio for multivariate normal distributions. Jour. Res. NBS Math. Sci.,
66(3):93–96, 1962.

31 Anshumali Shrivastava and Ping Li. Asymmetric LSH (ALSH) for sublinear time max-
imum inner product search (MIPS). In Proceedings of 27th Annual Conference on Neural
Information Processing Systems (NIPS), pages 2321–2329, 2014.

32 S. J. Szarek and E. Werner. A nonsymmetric correlation inequality for gaussian measure.
Journal of Multivariate Analysis, 68(2):193–211, 1999.

33 F. Topsœ. Some Bounds for the Logarithmic Function, volume 4, pages 137–151. Nova
Science, 2007.

34 Gregory Valiant. Finding correlations in subquadratic time, with applications to learning
parities and the closest pair problem. Journal of the ACM (JACM), 62(2):13, 2015.

35 Sudheendra Vijayanarasimhan, Prateek Jain, and Kristen Grauman. Hashing hyperplane
queries to near points with applications to large-scale active learning. IEEE Trans. Pattern
Anal. Mach. Intell., 36(2):276–288, February 2014. doi:10.1109/TPAMI.2013.121.

36 J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing for similarity search: A survey. CoRR,
abs/1408.2927, 2014. URL: http://arxiv.org/abs/1408.2927.

http://dx.doi.org/10.1007/PL00009282
http://papers.nips.cc/paper/3182-random-features-for-large-scale-kernel-machines
http://papers.nips.cc/paper/3182-random-features-for-large-scale-kernel-machines
http://dx.doi.org/10.1109/TPAMI.2013.121
http://arxiv.org/abs/1408.2927


XX:16 Distance-sensitive hashing

A Applications

A.1 Unimodal CPFs for annulus queries
Suppose we are given a distance-sensitive hash family with CPF f(t). In this section we prove
Theorem 2 by using a simple adaptation of the standard construction of a near neighbor
data structure with LSH. We observe that this data structure improves the trivial scanning
solution when ρ∗ = log(1/f(r))/ log(1/n) < 1, that is when f(r) > f(r−) and f(r) > f(r+).
This is satisfied by unimodal distance-sensitive hash families, that is when the CPF has a
single maximum at t∗ and is decreasing for both t ≤ t∗ and t ≥ t∗: as soon as t∗ lies in the
interval (r−, r+) we obtain a data structure with sublinear query time.

Proof of Theorem 2. The data structure is a straight-forward adaptation of the construction
of a near neighbor data structure using LSH. Associate with each data point x and query
point y the hash values h(x) and g(y), where (h, g) are independently sampled from the
distance-sensitive family. Store all points x ∈ S according to h(x) in a hash table. Let y
be the query point and let x be a point at distance r. Compute g(y) and retrieve all the
points from S that have the same hash value. If a point within distance [r−, r+] is among
the points, output one such point. We expect max{f(r−)n, f(r+)n} ≤ 1 collisions with
points at distance at most r− or at least r+. The probability of finding x is at least f(r).
Thus, L = 1/f(r) ≤ nρ

∗ repetitions suffice to retrieve x with constant probability 1/e. If
the algorithm retrieves more than 8L points, none of which is in the interval [r−, r+], the
algorithm terminates. By Markov’s inequality, the probability that the algorithm retrieves
8L points, none of which is in the interval [r−, r+], is at most 1/8. J

A.2 Plateau CPFs for spherical range reporting
A common problem with LSH-based solutions for reporting all close points is that the CPF
is monotonically decreasing starting with collision probability very close to 1 for points that
are very close to the query point. On the other hand, many repetitions are necessary to find
points at the target distance r. This means that the algorithm retrieves many duplicates for
solving range reporting problems. The state-of-the-art data structure for range reporting
queries [1] requires O ((1 + |S∗|)(n/|S∗|)ρ), where S∗ is the set of points at distance at most
r+. The following Theorem 3 provides a better analysis of the performance of a standard
LSH data structure that takes into account the gap between fmin and fmax.

Proof of Theorem 3. We assume that we build a standard LSH data structure as in the
proof of Theorem 2 above. We use 1/fmin repetitions such that each point within distance r
is found with constant probability. Each repetition will contribute O (1 + |S∗|fmax) points in
expectation. Thus, the total cost will be O ((1 + |S∗|fmax)/fmin) from which the statement
follows. J

In particular, if we have a constant bound on fmax/fmin the output sensitivity is optimal.
A technique for getting a CPF with a small fmax/fmin gap is to average several unimodal
functions: given k such families, we randomly select one of them with probability 1/k. A
graphical example is given in Figure 1. For a more concrete example in Hamming space,
consider the scheme given by selecting with probability 1/2 a standard bit-sampling (f1(t) =
1− t), and with probability 1/2 a scheme consisting of bit-sampling and anti bit-sampling
(f2(t) = t(1− t)). The resulting CPF is f(t) = (1− t2)/2, the gap is fmax/fmin = 1/(1− t2).
CPFs with constant bounds are implicit in the linear space extremes of the time-space
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Figure 3 Examples of collision probability functions obtained using Theorem 11. The polynomials
used are t2, −t2, (−t3 + t2 − t)/3 (left), and (2t2 − 1)/3, (4t3 − 3t)/7, (8t4 − 8t2 + 1)/17, (16t5 −
20t3 + 5t)/41 (right).

trade-off-aware techniques for similarity search [14], but a better value of ρ∗ could possibly
be obtained by allowing a higher space usage.

Since we use a standard LSH data structure for spherical range reporting, we get the
following adaptive variant by using Algorithm 1 from [1].

I Corollary 22. Suppose we have a set P of n points and two distances r < r+. Assume we
have access to a distance-sensitive hash family with CPF f with fmin = inft∈[0,r] f(t). Then
Theorem 5.1 from [1] holds for

Wsingle = min
0≤k≤K

[
f−kmin(1 +

∑
x∈S

f(dist(q, x))
]
.

B Distance-sensitive constructions

B.1 Proof of Lemma 6
Proof. Let x,y be two arbitrary points from X. Part (a): Sample a pair (hi, gi) from Di
for each i ∈ {1, . . . , n} and set h(x) = (h1(x), . . . , hn(x)) and g(y) = (g1(y), . . . , gn(y)). We
observe that

Pr(h(x) = g(y)) =
n∏
i=1

Pr(hi(x) = gi(y)) =
n∏
i=1

fi(dist(x,y)).

Part (b): Pick an integer i ∈ {1, . . . , n} according to {pi} at random. Then sample a pair
(hi, gi) from Di. The hash function pair (h, g) is given by (i, hi(x)) and (i, gi(y)). We observe
that

Pr(h(x) = g(y)) =
n∑
i=1

pi Pr
(h,g)∼Di

(h(x) = g(y)) =
n∑
i=1

pifi(dist(x,y)).

J

B.2 Angular similarity function
This section shows how to derive a distance sensitive scheme with collision probability
sim(P (〈x,y〉)), when

∑k
i=0 |ai| = 1. Figure 3 gives some examples of functions that can be

obtained from Theorem 11 using SimHash [10].
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Proof of Theorem 11. Valiant [34] has shown how, for any real degree-k polynomial p, to
construct a pair of mappings ϕp1, ϕ

p
2 : Rd → RD, where D = O(dk), such that ϕp1(x) ·ϕp2(y) =

P (〈x,y〉). For completeness we outline the argument here: First consider the monomial
P (t) = akt

k. For x ∈ Rd, let x(k) denote the vector of dimension dk indexed by vectors
i = (i1, . . . , ik) ∈ [d]k, where x(k)

i =
∏k
j=1 xij . It is easy to verify that 〈x(k),y(k)〉 = (〈x,y〉)k

for all x,y ∈ Rd. With this notation in place we can define ϕp1(x) =
√
|ai|x(k) and

ϕp2(y) = (ai/
√
|ai|) y(k) which satisfy ϕp1(x) · ϕp2(x) = ai(〈x,y, )〉k. The asymmetry of the

mapping is essential to allow a negative coefficient ak. To handle an arbitrary real polynomial
P (t) =

∑k
i=0 ait

i we simply concatenate vectors corresponding to each monomial, obtaining
a vector of dimension

∑k
i=0 d

i = O(dk).
Observe that ||x(k)||22 = 〈x(k),x(k)〉 = (〈x,x, )〉k = ||x||2k2 . This means that for ||x||22 = 1

we have ||ϕp1(x)||2 =
∑k
i=0
√
|ai|

2 = 1, using the assumption
∑k
i=0 |ai| = 1. Similarly, for

||y||22 = 1 we have ||ϕp2(y)||2 =
∑k
i=0(ai/

√
|ai|)2 =

∑k
i=0 |ai| = 1. Thus, ϕp1 and ϕp2 map

Sd−1 to SD−1.
Our family F samples a function s from the distribution S corresponding to sim and

constructs the function pair (h, g) with h(x) = s(ϕp1(x)), g(y) = s(ϕp2(y)). Using the
properties of the functions involved we have

Pr[h(x) = g(y)] = sim(〈ϕp1(x), ϕp2(y)〉) = sim(P (〈x,y〉)) .

J

B.3 Hamming distance functions
Proof of Theorem 12. We initially assume that a0 6= 0 (i.e., 0 is not a root of P (t)), and
then remove this assumption at the end of the proof. We recall that a root of P (t) can appear
with multiplicity larger than 1 and that, by the complex conjugate root theorem, if z = a+ bi

is a complex root then so is its conjugate z′ = a− bi. We let Z be the multiset containing
the k roots of P (t), with Zr+ and Zr− being the multiset of positive and negative real roots,
respectively, and with Zc being the multiset consisting of pairs of conjugate complex roots.
By factoring P (t), we get:

P (t) = ak
∏
z∈Z

(t− z) = |ak|
∏

z∈Zr+

(z − t)
∏

z∈Zr−

(t+ |z|)
∏

z=a+bi∈Zc

(t2 − 2at+ a2 + b2), (9)

where in the last step we exploited that ak
∏
z∈Zr+(z − t) = |ak|

∏
z∈Zr+(t− z) > 0. Indeed,

P (t) is positive in (0, 1) and the multiplicative terms associated with complex and negative
real roots are positive in this range; this implies that the remaining terms are positive as
well.

We need to introduce scaled and biased variations of bit-sampling or anti bit-sampling.
Anti-bit sampling with scaling factor α ∈ [0, 1] and bias β ∈ [0, 1] has the CPF f(t) =
β/2 + αt/2 and is given by randomly selecting one of following two schemes: (1) with
probability 1/2, the scheme is a standard hashing that maps data and query points to 0 with
probability β, and otherwise to 0 and 1 respectively; (2) with probability 1/2, the scheme
is anti bit-sampling where the sampled bit is set to 0 with probability 1− α on both data
and query points, or kept unchanged otherwise. Similarly, bit-sampling with scaling factor
α ∈ [0, 1] has the CPF f(t) = (1−αt) and is given by using bit-sampling, where the sampled
bit is set to 0 with probability 1 − α on both data and query points. (We do not need a
biased version of bit-sampling.)

We now assign to each multiplicative term of (9) a scaled and biased version of bit-sampling
or anti bit-sampling as follows:
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z is real and z < −1. We assign to z an anti bit-sampling with bias 1 and scaling factor
1/|z| ≤ 1: the CPF is S1(t, z) = (1/2 + t/(2|z|)), and we have (t+ |z|) = 2|z|S1(t, z).
z is real and −1 ≤ z < 0. We assign to z an anti bit-sampling with bias |z| ≤ 1 and
scaling factor 1: the CPF is S2(t, z) = |z|/2 + t/2, and we have (t+ |z|) = 2S2(t, z).
z is real and z ≥ 1. We assign to z a bit-sampling with scaling factor 1/z ≤ 1: the CPF
is S3(t, z) = (1− t/z), and we have (t− z) = zS3(t, z).
(z, z′) are conjugate complex roots and Real(z) < −1. Let z = a+bi and z′ = a−bi.

The assigned scheme has CPF S4(t, z) =
(

b2

4(a2+b2) + a2

a2+b2

(
x

2|a| + 1
2

)2
)

and is obtained

as follows: with probability b2/(a2 + b2), the scheme maps data and query points to 0 and
0 with probability 1/4, or to 0 and 1 with probability 3/4; with probability a2/(a2 + b2),
the schemes consists of the concatenation of two anti bit-sampling with bias 1 and scaling
factor 1/|a|. Note that t2 − 2at+ a2 + b2 = 4(a2 + b2)S4(t, z).
(z, z′) are conjugate complex roots and Real(z) ≥ 1. The scheme is similar to
the previous one where we use two bit-sampling with scaling factor 1/a instead of
the anti bit-sampling. The CPF is S5(t, z) =

(
b2

a2+b2 + a2

a2+b2
(
1− x

a

)2
)
, and we get

t2 − 2at+ a2 + b2 = (a2 + b2)S5(t, z).
(z, z′) are conjugate complex roots, −1 ≤ Real(z) ≤ 0, and |z| = a2 + b2 ≥ 1.
We assign the following scheme with CPF S6(t, z) =

(
x2

4(a2+b2) + |a|x
2(a2+b2) + 1

4

)
: with

probability 1/4 the scheme maps data and query points to 0; with probability 1/2, the
scheme consists of anti bit-sampling with bias 0 and scaling factor |a|/(a2 + b2) ≤ 1; with
probability 1/4 the scheme consists of two anti bit-sampling with bias 0 and scaling factor√
a2 + b2 each. We have t2 − 2at+ a2 + b2 = 4(a2 + b2)S6(t, z).

(z, z′) are conjugate complex roots, −1 ≤ Real(z) ≤ 0, and |z| = a2 + b2 < 1. We
use the scheme of the previous point with different parameters, giving CPF S7(t, z) =(
x2

4 + |a|x
2 + a2+b2

4

)
. The scheme is the following: with probability 1/4, the scheme is a

standard hashing scheme where data points are always mapped to 0 and where a query
point is mapped to 0 with probability a2 + b2 and to 1 with probability 1− a2 + b2; with
probability 1/2, the scheme consists of anti bit-sampling with bias 0 and scaling factor
|a| ≤ 1; with probability 1/4, the scheme consists of two anti bit-sampling with bias 0
and scaling factor 1 each. We have t2 − 2at+ a2 + b2 = 4S7(t, z).

Consider the scheme obtained by concatenating the above ones for each real root and
each pair of conjugate roots. Its CPF is S(t) =

∏6
i=1
∏
z∈Zi Si(t, z), where Zi contains root

with CPF Si. Then, by letting ψ denote the number of roots with negative real part, we get
from Equation 9:

P (t) =

2ψ|ak|
∏

z∈Z,|Real(z)|>1

|z|

S(t) = ∆S(t).

Consider now ak = 0 and let ` be the largest value such that P (t) = t`P ′ (x) with
P ′ (0) 6= 0. We get the claimed result by concatenating ` anti bit-sampling, which gives a
CPF of x`, and the scheme for P ′ (t) obtained by the procedure described above. J

C CPF bounds for the unit sphere

Gaussian tail bounds. We will make use the following tail bounds for the univariate and
bivariate normal distribution.
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I Lemma 23 (Follows Szarek & Werner [32]). Let Z be a standard normal random variable.
Then, for every t ≥ 0 we have that

1√
2π

1
t+ 1e

−t2/2 ≤ Pr[Z ≥ t] ≤ 1√
2π

1
t
e−t

2/2.

I Lemma 24 (Savage [30]). Let α ∈ (−1, 1) and let Z1, Z2 ∼ N (0, 1). Define X1 = Z1 and
X2 = αZ1 + (1− α2)Z2. Then, for every t > 0 we have that

Pr[X1 ≥ t ∧X2 ≥ t] <
1

2πt2
(1 + α)2
√

1− α2
exp

(
− t2

1 + α

)
,

Pr[X1 ≥ t ∧X2 ≥ t] >
(

1− (2− α)(1 + α)
1− α

1
t2

)
1

2πt2
(1 + α)2
√

1− α2
exp

(
− t2

1 + α

)
.

I Corollary 25. The above bounds apply to Pr[X1 ≥ t∧X2 ≤ −t] if we replace all occurrences
of α with −α.

Bounding the CPF. We proceed by deriving upper and lower bounds on the collision
probability.

f+(α) ≤ Pr[〈z,x〉 ≥ t ∧ 〈z,y〉 ≥ t]
Pr[〈z,x〉 ≥ t]

≤ 1√
2π

t+ 1
t2

(1 + α)2
√

1− α2
exp

(
−1− α

1 + α

t2

2

)
.

We derive the lower bound in stages.

Pr[h(x) = g(y)] ≥ Pr[〈z,x〉 ≥ t ∧ 〈z,y〉 ≥ t]
2 Pr[〈z,x〉 ≥ t] − Pr[h(x) > m ∨ g(y) > m].

The first part is lower bounded by

Pr[〈z,x〉 ≥ t ∧ 〈z,y〉 ≥ t]
2 Pr[〈z,x〉 ≥ t] ≥(
1− (2− α)(1 + α)

1− α
1
t2

)
1

2
√

2π
1
t

(1 + α)2
√

1− α2
exp

(
−1− α

1 + α

t2

2

)
.

The probability of not being captured by a projection depends on the number of projections
m. In order to make this probability negligible we can set m = dt3/p′e where p′ denotes the
lower bound from Lemma 23.

Pr[h(x) > m ∨ g(y) > m] ≤ 2(1− Pr[〈z,x〉 ≥ t])m

≤ 2(1− p′)t
3/p′

≤ 2e−t
3
.

D Annulus search on the unit sphere

We will construct a distance sensitive family D for solving the approximate annulus search
problem. Let D+ be parameterized by t+ and let D− be parameterized by t−. To sample
a pair of functions (h, g) from D we independently sample a pair (h+, g+) from D+ and
(h−, g−) from D− and define (h, g) by h(x) = (h+(x), h−(x)) and g(x) = (g+(x), g−(x)).

Let f(α) denote the CPF of D. We would like to be able to parameterize D such that
f(α) is somewhat symmetric around a unique maximum value of α. It can be verified from
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the definition of D+ that p+(−1) = 0 which implies that f(−1) = f(1) = 0. If we ignore
lower order terms and define γ > 0 by t− = γt+, then we can see that

ln(1/f(α)) ≈ 1− α
1 + α

t2+
2 + 1 + α

1− α
γ2t2+

2 .

For simplicity, temporarily define a(α) = (1− α)/(1 + α) > 0. Given a fixed γ, the equation
a + γ2/a is minimized (corresponding to approximately maximizing f(α)) when setting
a = γ. Let αmax ∈ (−1, 1) and set γ = amax = (1 − αmax)/(1 + αmax). To find values
α− < αmax < α+ where ln(1/f(α−)) ≈ ln(1/f(α+)) note that this condition holds for every
s > 1 when we set a− = samax and a+ = (1/s)amax. We therefore parameterize D by
αmax ∈ (−1, 1) and t > 0 and set t+ = t and t− = (1− αmax)/(1 + αmax)t+. By combining
our bounds from Lemma 9 with the above observations we are able to obtain the following
theorem which immediately yields a solution to the approximate annulus search problem.

I Theorem 26. For every choice of t > 0 and constant αmax ∈ (−1, 1) the family D satisfies
the following: For every choice of constant s > 1 consider the interval [α−, α+] defined to
contain every α such that 1

s
1−αmax
1+αmax

≤ 1−α
1+α ≤ s

1−αmax
1+αmax

, then
For α ∈ [α−, α+] we have that f(α) = Ω((1/t2) exp(−(s+ 1/s) 1−αmax

1+αmax
t2

2 )).
For α /∈ [α−, α+] we have that f(α) = O((1/t2) exp(−(s+ 1/s) 1−αmax

1+αmax
t2

2 )).
The complexity of sampling, storing, and evaluating a pair of functions (h, g) ∈ D is
O(dt4et2/2).

See Figure 4 for a visual representation of the annulus for given parameters αmax and s.
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Figure 4 Annuli as defined in Theorem 26 for every value of αmax and s = 2, 3, 4.

We define an approximate annulus search problem for similarity spaces and proceed by
applying Theorem 26 to provide a solution for the unit sphere, resulting in Theorem 28.
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I Definition 27. Let β− < α− ≤ α+ < β+ be given real numbers. For a set P of n points
in a similarity space (X, sim) a solution to the ((α−, α+), (β−, β+))-annulus search problem
is a data structure that supports a query operation that takes as input a point x ∈ X and if
there exists a point y ∈ P such that α− ≤ sim(x,y) ≤ α+ then it returns a point y′ ∈ P
such that β− ≤ sim(x,y′) ≤ β+.

I Theorem 28. For every choice of constants −1 < β− < α− < α+ < β+ < 1 such
that 1−α−

1+α−
1−α+
1+α+

= 1−β−
1+β−

1−β+
1+β+

we can solve the ((α+, α−), (β+, β−))-annulus problem for
(Sd−1, 〈·, ·〉) with space usage dn+ n1+ρ+o(1) words and query time dnρ+o(1) where

ρ = cα + 1/cα
cβ + 1/cβ

≤ 2
c+ 1/c

and we define 1 < cα < cβ by cα =
√

1−α−
1+α−

/ 1−α+
1+α+

, cβ =
√

1−β−
1+β−

/ 1−β+
1+β+

, and c = cβ/cα.

E Details of the lower bound

E.1 Optimal partition pair problem

The lower bound in Lemma 16 relies on the following lemma which we prove by showing that
the pair of partitions induced by (h, g) ∈ D minimizes a convex function of the probability of
the parts, under the additional constraint that Pr[h(x) = g(y)] = p, when all parts are of
equal volume and as small as possible.

I Lemma 29. For every 0 ≤ α < 1, every pair of functions h, g : {0, 1}d → R must satisfy

∑
i∈R

 Pr
(x,y)

0-corr.

[h(x) = g(y) = i]

 1
1−α

≥

∑
i∈R

Pr
(x,y)

0-corr.

[h(x) = g(y) = i]


1+α
1−α

.

Proof. For i ∈ R define Ai = |h−1(i)|/2d and Bi = |g−1(i)|/2d. Given some value of
p =

∑
iAiBi we would like to choose the partition to minimize

∑
i (AiBi)

1
1−α . In order to

avoid complications due to integrality constraints on the number of partitions, we define a
weighted version of the problem with the property that its solution never exceeds the solution
of the original problem.

minimize
wi,Ai,Bi

∑
i

wi (AiBi)
1

1−α

subject to
∑
i

wiAiBi = p,∑
i

wiAi = 1,
∑
i

wiBi = 1.

To ease notation and due to symmetry we will suppress different values i, i′ ∈ R in what
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follows. The Lagrangian for this problem and its first order partial derivatives are given by

L(wi, Ai, Bi, λA, λB , λp) =
∑
i

wi (AiBi)
1

1−α − λA(
∑
i

wiAi − 1)

− λB(
∑
i

wiBi − 1)− λp(
∑
i

wiAiBi − p),

∂L

∂wi
= (AiBi)

1
1−α − λAAi − λBBi − λpAiBi,

∂L

∂Ai
= wi

(
1

1− α (AiBi)
α

1−αBi − λA − λpBi
)
,

∂L

∂Bi
= wi

(
1

1− α (AiBi)
α

1−αAi − λA − λpAi
)
,

∂L

∂λA
=
∑
i

wiAi − 1,

∂L

∂λB
=
∑
i

wiBi − 1,

∂L

∂λp
=
∑
i

wiAiBi − p.

We will proceed by deriving necessary conditions for a solution by manipulating the first
order conditions that all the partial derivatives are equal to zero. Consider the following
sum:∑

i

(
∂L

∂Ai

)
Ai = 1

1− α
∑
i

wi (AiBi)− λA
∑
i

wiAi − λp
∑
i

wiAiBi.

Setting this equal to the corresponding sum for Bi allows us to conclude that λA = λB .

Setting ∂L
∂Ai

Ai = ∂L
∂Bi

Bi allows us to conclude that wiAi = wiBi. Consider now an i for
which wi 6= 0 which implies that Ai = Bi. Further assume that Ai 6= 0 since the case of
Ai = Bi = 0 will not affect the problem. Setting the first order conditions ∂L

∂wi
= 0 and

∂L
∂Ai

= 0 equal to each other we get

A
2

1−α
i − 2λAAi − λpA2

i = 1
1− αA

1+α
1−α
i − λA − λpAi.

This allows us to conclude that

λA = − α

1− αA
1+α
1−α
i , λp = 1 + α

1− αA
2α

1−α
i .

Because the same derivation holds for every i, for i 6= j and under the assumptions that
wi, Ai 6= 0 and wj , Aj 6= 0 it must hold that Ai = Aj . We can therefore restrict our attention
to the case of a single wi and Ai = Bi since all other solutions will result in the same value
in the optimum. From the first order conditions we have that wiAi = 1 and wiA2

i = p and it
is therefore easy to see that an optimal solution is

w1 = 1/p, A1 = B1 = p

with everything else set to zero. In the unweighted, original formulation of the problem, this
corresponds to the partitions induced by h, g each consisting of 1/p equal parts of volume
p. J
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E.2 Lower bounding the CPF in Hamming space
Here we prove Theorem 18 for Hamming space, using the concept of a (r, c, p, q)-insensitive
family.

I Definition 30 (Anti Locality-Sensitive Hashing). A distribution A over pairs of functions
h, g : X → R is (r, c, p, q)-insensitive for (X,dist) if for all pairs of points x,y and (h, g)
sampled randomly from A we have that:

If dist(x,y) ≥ r then Pr[h(x) = g(y)] ≥ p.
If dist(x,y) ≤ r/c then Pr[h(x) = g(y)] ≤ q.

We prove the following theorem, which can easily be converted to Theorem 18 in the main
text.

I Theorem 31. For every constant ε > 0, every (r, c, p, q)-insensitive family A for {0, 1}d
under Hamming distance with r ≤ (1− ε)d/2 must satisfy

ρ(A) = log 1/p
log 1/q ≥

1
2c− 1 −O(

√
(c/r) log(1/q)).

Proof. Given A we define a distribution Â over pairs of functions ĥ, ĝ : {0, 1}d̂ → R where
d̂ ≤ d remains to be determined. We sample a pair of functions (ĥ, ĝ) from Â by sampling
(h, g) from H and setting ĥ(x) = h(x ◦ 1) and similarly ĝ(x) = g(x ◦ 1) where 1 denotes the
(d− d̂)-dimensional all-ones vector. We will now turn to the process of relating p to p̂ = f̂(0)
and q to q̂ = f̂(α) for Â.

Let 0 < εp < 1 and set d̂ = d2r/(1− εp)e. Then by applying standard Chernoff bounds
we get

Pr
(x,y) 0-corr.

[dist(x,y) ≤ r] ≤ exp
(
−

ε2
p

1− εp
r

2

)
.

For convenience, define δp = exp
(
− ε2p

1−εp
r
2

)
. We now have p̂ ≥ (1− δp)p.

In order to tie q̂ to q we consider the probability of α-correlated points having distance
greater than r/c. The expected Hamming distance of α-correlated (x,y) in d̂ dimensions is
d̂(1− α)/2. We would like to set α such that the probability of the distance exceeding r/c is
small. Let X denote dist(x,y), then the standard Chernoff bound states that:

Pr[X ≥ (1 + ε)µ] ≤ e−ε
2µ/3.

For a parameter 0 < εq < 1 we set α such that the following is satisfied:

(1 + εq)µ ≥ (1 + εq)
2r

1− εp
1− α

2 ≥ r/c.

This results in a value of α = 1− 1−εp
1+εq

1
c and we observe that

δq ≤ exp(−ε2
qµ/3) ≤ exp(−

ε2
q

1 + εq

r

3c ).

It follows that

q̂ ≤ (1− δq)q + δq.
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Let us summarize what we know so far:

p̂ ≥ (1− δp)p
q̂ ≤ (1− δq)q + δq ≤ q(1 + δq/q)
0 < εp, εq < 1

δp ≤ exp
(
−

ε2
p

1− εp
r

2

)

δq ≤ exp
(
−

ε2
q

1 + εq

r

3c

)

α = 1− 1− εp
1 + εq

1
c

q̂ ≥ p̂
1+α
1−α .

We assume that 0 < q < p < 1 and furthermore, without loss of generality we can assume that
q ≤ 1/e due to the powering technique. In our derivations we also assume that δp ≤ 1/2 and
δq ≤ 1/(2e) such that δq/q ≤ 1/2. This will later be implicit in the statement of the result
in big-Oh notation. From our assumptions and standard bounds on the natural logarithm
we are able to derive the following:

ln(1/p)
ln(1/q) ≥

ln(1− δp) ln(1/p̂)
ln(1/q)

≥ ln(1/p̂)
ln(1/q) − 2δp

≥ ln(1/p̂)
ln(1 + δq/q) + ln(1/q̂) − 2δp

≥ ln(1/p̂)
ln(1/q̂)

(
1− ln(1 + δq/q)

ln(1/q̂)

)
− 2δp

≥ ln(1/p̂)
ln(1/q̂) −

ln(1 + δq/q)
ln(1/(1 + δq/q)q)

− 2δp (10)

≥ ln(1/p̂)
ln(1/q̂) − 2δq/q − 2δp.

In equation (10) we use the statement itself combined with our assumptions on p and q to
deduce that

1 > ln(1/p)
ln(1/q) ≥

ln(1/p̂)
ln(1/q̂) .

We proceed by lower bounding ρ̂. Temporarily define 1− ε′ = 1−εp
1+εq and observe that

ln(1/p̂)
ln(1/q̂) ≥

1− α
1 + α

= (1− ε′)/c
2− (1− ε′)/c

≥ 1
2c− 1 −

ε′

(2c− 1)2 −
ε′

2c− 1 .

We have that

ε′ = 1− 1− εp
1 + εq

= 1 + εq − (1− εp)
1 + εq

≤ εq + εp,
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and combining these bounds results in

ln(1/p)
ln(1/q) ≥

1
2c− 1 − 2(εq + εp − δq/q − δp).

We can now set εq = εp = K ·
√

(c/r) ln(1/q) for some universal constant K to obtain
Theorem 18. J

E.3 Tools
For completeness we here state some standard technical lemmas used in our derivation of
the lower bound.

I Lemma 32 (Chernoff [21, Theorems 4.4 and 4.5]). Let X1, . . . , Xn be independent Poisson
trials and define X =

∑n
i=1 Xi and µ = E[X]. Then, for 0 < ε < 1 we have

- Pr[X ≥ (1 + ε)µ] ≤ e−ε2µ/3.
- Pr[X ≤ (1− ε)µ] ≤ e−ε2µ/2.

Bounding the natural logarithm and approximating the exponential function:

I Lemma 33 ([33]). For x > −1 we have that x
1+x ≤ ln(1 + x) ≤ x.

I Lemma 34 ([23, Prop. B.3]). For all t, n ∈ R with |t| ≤ n we have that et(1 − t2

n ) ≤
(1 + t

n )n ≤ et.
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