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HARDY AND UNCERTAINTY INEQUALITIES

ON STRATIFIED LIE GROUPS

PAOLO CIATTI, MICHAEL G. COWLING, AND FULVIO RICCI

Abstract. We prove various Hardy-type and uncertainty inequalities on a stratified
Lie group G. In particular, we show that the operators Tα : f 7→ | · |

−α
L−α/2f , where

| · | is a homogeneous norm, 0 < α < Q/p, and L is the sub-Laplacian, are bounded
on the Lebesgue space Lp(G). As consequences, we estimate the norms of these opera-
tors sufficiently precisely to be able to differentiate and prove a logarithmic uncertainty
inequality. We also deduce a general version of the Heisenberg–Pauli–Weyl inequality,

relating the Lp norm of a function f to the Lq norm of | · |
β
f and the Lr norm of Lδ/2f .

1. Introduction

In 1920, in a paper on Fourier series, Hardy stated the following integral inequality; he
published a proof five years later. Given a nonnegative (measurable) function f on R+,
let F (x) =

∫ x

0
f(t) dt. Then

∫ ∞

0

∣

∣

∣

∣

F (x)

x

∣

∣

∣

∣

p

dx ≤

(

p

p− 1

)p ∫ ∞

0

|f(x)|p dx ,

when p > 1 and the right hand side is finite. See [21, Theorem 327] for the history of this
inequality. Of course, this is much the same as the inequality

∫ ∞

0

∣

∣

∣

∣

f(x)

x

∣

∣

∣

∣

p

dx ≤

(

p

p− 1

)p ∫ ∞

0

∣

∣

∣

∣

df(x)

dx

∣

∣

∣

∣

p

dx .

We might also replace f(x) by xf(x) and interpret this inequality as a statement about
the boundedness of the operator T , given by

Tf(x) =
d(xf(x))

dx
,

or of the dual operator T ∗:

T ∗f(x) = x
df(x)

dx
.

In this paper, we will focus on generalizations of T ∗ rather than of T .
Hardy’s inequality, which is related to inequalities of Rellich and of Sobolev, has been

extended in many ways; for instance, Davies and Hinz [14] showed that
∫

Rn

|f(x)|p

|x|p
dx ≤

(

p

n− p

)p ∫

Rn

|∇f(x)|p dx
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for all f ∈ C∞
c (Rn), when n > p.

In 1927, Heisenberg presented a heuristic argument for his famous uncertain principle;
the mathematical details were provided by Pauli and Weyl. In mathematical language,
this inequality states that, if f is a suitable function on R, then

(1.1)

(
∫

R

|f(x)|2 dx

)2

≤ 2

(
∫

R

|xf(x)|2 dx

)

(

∫

R

∣

∣

∣

∣

df(x)

dx

∣

∣

∣

∣

2

dx

)

.

Many inequalities combining features of both Hardy’s inequality and Heisenberg’s un-
certainty principle are known; for instance,

(1.2)

(
∫

Rn

|f(x)|2 dx

)2

≤ C(n, α)

(
∫

Rn

∣

∣|x|α f(x)
∣

∣

2
dx

)(
∫

Rn

∣

∣Lα/2f(x)
∣

∣

2
dx

)

,

where L is minus the Laplacian. An equivalent form of (1.2) is
(
∫

Rn

|f(x)|2 dx

)2

≤ C(n, α)

(
∫

Rn

∣

∣|x|α f(x)
∣

∣

2
dx

)(
∫

Rn

∣

∣|ξ|α f̂(ξ)
∣

∣

2
dξ

)

(using the factor exp(−ix · ξ) in the definition of the Fourier transform f̂ of f). If C(n, α)
is the best constant in this inequality (see [2]), then C(n, α) → 1 as α → 0+, and C(n, α)
is right differentiable (as a function of α) at 0, with right derivative D(n), say. As a
consequence, by differentiating, we obtain the logarithmic uncertainty inequality

(1.3) −
D(n)

2

∫

Rn

|f(x)|2 dx ≤

∫

Rn

log |x| |f(x)|2 dx+

∫

Rn

log |ξ| |f̂(ξ)|2 dξ .

Alternatively, we could write

(1.4) −
D(n)

2

∫

Rn

|f(x)|2 dx ≤

∫

Rn

log |x| |f(x)|2 dx+

∫

Rn

Re
((

logL1/2f(x)
)

f̄(x)
)

dx .

It is known that the Heisenberg–Pauli–Weyl inequality (1.2) may be recovered from (1.3).
For more on these inequalities, including how to deduce (1.2) from (1.3), generalizations
to Lp spaces, and the best constants therein, see Beckner [2, 3].

These inequalities have been generalized in many ways. Uncertainty inequalities have
been extended to environments such as Lie groups and manifolds; see Folland and Sitaram
[16] for more information about older work. More recent work on the general topic of
uncertainty principles on groups and manifolds includes [10, 37, 38]. Earlier work on the
problems that we treat here includes [1, 19]. Less is known about logarithmic inequalities
in more general contexts, and one of the main aims of our paper is to generalize the
inequality (1.4) to Lp spaces on stratified Lie groups. This entails generalizing (1.2) to
Lp spaces on stratified groups and controlling the constants as α → 0+.

For completeness, we mention that there are two types of logarithmic inequality that
are related to Heisenberg–Pauli–Weyl inequalities. Besides (1.3), there are also inequali-
ties arising from the Hausdorff-Young inequality by differentiating in the Lebesgue index,
which introduces a factor of log |f |. These were apparently first noticed by Hirschman [22];
other important work on the topic includes [4, 29], and, in the context of nilpotent
groups, [7]. In this article, we deal with inequalities where the weight functions are
differentiated, introducing factors such as log |x|.
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In this paper, we take a stratified Lie group G of homogeneous dimension Q, with a
positive hypoelliptic sub-Laplacian L (more on these terms later).

In Rn, the negative fractional powers of the Laplacian are given by convolution with
a negative power of the euclidean norm; in general stratified groups, the situation is
complicated by the fact that each power L−α/2 of the sub-Laplacian involves a different
homogeneous norm | · |α. For the detailed analysis of the behaviour of L−α/2 as α tends
to 0, which we develop in Section 2, it is convenient to use a special homogeneous norm,
written | · |0, which is a limit of the norms | · |α.

In Section 3, we study the Hardy operator Tα associated to a homogeneous norm | · |
by

Tαf = | · |−α L−α/2f

for all f ∈ C∞
c (G). Using the Schur criterion, we derive Theorem 3.1 and Corollary 3.4,

which combine to give the following result.

Theorem A. Suppose that | · | is a homogeneous norm on G, that 1 < p < ∞ and that

0 < α < Q/p. Then the operator Tα extends uniquely to a bounded operator on Lp(G).
For the particular homogeneous norm | · |0, the operator norm |||Tα|||p,p satisfies

|||Tα|||p,p ≤ 1 + Cα+O(α2) .

The next two main results follow from Theorem A. First, we combine Theorem A with
Hölder’s inequality and differentiate to obtain the following statement.

Theorem B. Suppose that | · | is a homogeneous norm on G and 1 < p < ∞. There is a

constant C such that
∫

G

(log |x|) |f(x)|p dx+

∫

G

Re
(

(logL1/2f)(x) f(x)
)

|f(x)|p−2 dx ≥ C ‖f‖pp

for all f ∈ C∞
c (G).

Second, in Sections 5 and 6, we explore Heisenberg–Pauli–Weyl type inequalities. In
Section 5, we take Theorem A as out starting point, while in Section 6, we give an
alternative method of attack. Our main result in this direction is as general as one might
hope for, although we lose control of the constants.

Theorem C. Suppose that | · | is a homogeneous norm, that β > 0, δ > 0, p > 1, s ≥ 1,
r > 1, and that

(1.5)
β + δ

p
=

δ

s
+

β

r
.

Then

(1.6) ‖f‖p ≤ C
∥

∥| · |β f
∥

∥

δ/(β+δ)

s

∥

∥Lδ/2f
∥

∥

β/(β+δ)

r

for all f ∈ C∞
c (G).

A simple dilation and homogeneity argument shows that the only possible indices for
which we could hope to prove an inequality like (1.6) are those which satisfy (1.5).

The proof of Theorem C requires an extension of the classical Landau–Kolmogorov
inequality [26], which may be of independent interest, and so we state it explicitly here.
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Theorem D. Suppose that 0 ≤ θ ≤ 1 and that α ≥ 0. If 1 < p, q, r < ∞, and

1

p
=

θ

q
+

1− θ

r
,

then
∥

∥Lα/2f
∥

∥

p
≤ C

∥

∥Lα/2θf
∥

∥

θ

q
‖f‖1−θ

r

for all f ∈ C∞
c (G).

The proof of Theorem B is given in Section 4. Theorems C and D are proved in Section
5.

Given the very general context in which we work, we do not make any attempt to assign
explicit values to the constants appearing in the above inequalities. We believe that this
is a challenging problem in special cases, and almost impossible in general.

The symbol C will be used throughout to denote an undefined constant which may vary
from one line to the next. When necessary we specify, possibly with a subscript, which
parameters the value of C may depend on.

Any dependence of constants on the group G and the sub-Laplacian L is ignored.

2. Riesz potentials

Consider a connected, simply connected, nilpotent Lie group G of dimension n. As
the exponential map is bijective, we may identify G with its Lie algebra g. With this
identification, the Haar measure of G is given by the Lebesgue measure in the vector
space g. We may define the Schwartz space S(G) on G similarly.

Assume that G is stratified, that is, the Lie algebra g of G has a vector space direct
sum decomposition

g = g1 ⊕ g2 ⊕ · · · ⊕ gm ,

where gj+1 = [g1, gj] for j = 1, . . . , m (we set gm+1 = {0}). For r ∈ R+, the dilation δr is
the automorphism of g given by scalar multiplication by rj on gj for each j. The integer

Q = dim g1 + 2dim g2 + · · ·+m dim gm

is the homogeneous dimension of G.
Fix a basis {X1, . . . , Xl} of g1. The associated sub-Laplacian L is defined by

L = −X2
1 −X2

2 − · · · −X2
l .

It is well known that L is hypoelliptic [23], and positive and essentially self-adjoint on
L2(G) [24].

We now construct kernels corresponding to certain negative powers of the sub-Laplacian,
slightly improving on the results in Folland [15]. By a theorem of G. A. Hunt [25], the
semigroup (e−tL)t>0 generated by L (or more precisely, by its unique self-adoint extension)
consists of convolutions with probability measures. Since L is hypoelliptic, these mea-
sures are absolutely continuous with respect to the Haar measure and have densities in
the Schwartz space [17], which are strictly positive by the maximum principle [6]. Hence
for all t ∈ R

+, there exists pt ∈ S(G) such that

e−tLf(x) = f ∗ pt(x) =

∫

G

f(xy−1) pt(y) dy
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for all x ∈ G and all f ∈ L2(G). The function pt is called the heat kernel of L. By the
homogeneity of L with respect to the dilations δr,

pt(x) = t−Q/2 P(δt−1/2x)

for all x ∈ G, where P = p1; this is a strictly positive function in S(G) and
∫

G

P (x) dx = 1 .

The associated heat equation has been extensively studied in the more general contexts
of Lie groups (see, for example [38]) and manifolds (see, for example [20]), and much of
what applies in the case of stratified Lie groups also applies there, but some aspects of
our environment are special; for instance, Schwartz spaces and dilations are not defined
in general.

We define the fractional integral kernel Fα on G \ {0} when Reα < Q by the formula

(2.1) Fα(x) =

∫ ∞

0

tα/2 pt(x)
dt

t
=

∫ ∞

0

t(α−Q)/2 P (δt−1/2x)
dt

t
;

the integral converges absolutely and uniformly on compact subsets of G\{0} to a smooth
function, homogeneous of degree α−Q. Moreover, Fα is positive when α is real, since P
is positive. Hence the function | · |α, given by

(2.2) |x|α =

{

(F0(x))
−1/(Q−α) if x ∈ G \ {0}

0 if x = 0 ,

is nonnegative and homogeneous of degree 1, and vanishes only at the origin, so is a
homogeneous norm in the sense of Folland and Stein [17]. In general, these norms are
all different. Not all homogeneous norms on stratified groups are subadditive, so some
authors use the term gauge, but for some cases where this holds, see [13].

We shall use the norm | · |0. Given any homogeneous norm | · | on G, there are positive
constants A and B such that, for all x ∈ G,

(2.3) A |x|0 ≤ |x| ≤ B |x|0

for all x ∈ G.
Denote the half-plane {α ∈ C : Reα < Q} by HQ. As a function of α, the integral

Fα(x) in (2.1) is holomorphic in HQ, and its derivatives F
(k)
α (x) are given by the absolutely

convergent integrals

F (k)
α (x) =

1

2k

∫ ∞

0

tα/2(log t)k pt(x)
dt

t
.

Lemma 2.1. Let | · | be a homogeneous norm on G. If x 6= 0 and α ∈ HQ, then Fα(x)

and its derivatives F
(k)
α (x) in α satisfy the estimates

∣

∣F (k)
α (x)

∣

∣ ≤ Cα,k |x|
Reα−Q

(

1 +
∣

∣log |x|
∣

∣

k
)

,

where k = 0, 1, . . . , and the constants Cα,k are independent of Imα.
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Proof. This follows immediately from the homogeneity of F
(k)
α (x) in x. Indeed, differen-

tiating the identity

Fα(δrx) = rα−QFα(x)

with respect to α, we see that

F ′
α(δrx) = rα−QF ′

α(x) + (rα−Q log r)Fα(x) ,

and, inductively,

F (k)
α (δrx) = rα−Q

∑

j≤k

ckj(log r)
k−jF (j)

α (x) .

Write x = δ|x|x
′, where |x′| = 1; then this identity yields

F (k)
α (x) = |x|α−Q

∑

j≤k

ckj(log |x|)
k−jF (j)

α (x′) ,

which implies that

∣

∣F (k)
α (x)

∣

∣ ≤

(

sup
|x′|=1

∑

j≤k

|ckj|
∣

∣F (j)
α (x′)

∣

∣

)

|x|Reα−Q
(

1 +
∣

∣log |x|
∣

∣

k
)

,

as required. �

From this, we can estimate the remainder term in the Taylor series in α of Fα(x).

Proposition 2.2. For all α ∈ HQ, there is a constant Cα, independent of Imα, such that

|Fα+τ (x)− Fα(x)| ≤ Cα|τ | |x|
Reα−Q (1 + |log |x||)

(

1 + |x|Re τ
)

|Fα+τ (x)− Fα(x)− τF ′
α(x)| ≤ Cα|τ |

2 |x|Reα−Q (1 + log2 |x|
)

(

1 + |x|Re τ
)

whenever x ∈ G \ {0} and α + τ ∈ HQ. In particular, for α close to 0,

(2.4) Fα(x) = F0(x) + αF ′
0(x) +O(α2) ,

uniformly on compact subsets of G \ {0}.

Proof. To prove the second inequality, we use the identity

Fα+τ (x)− Fα(x)− τF ′
α(x) = τ 2

∫ 1

0

(1− s)F ′′
α+sτ (x) ds ,

and apply Lemma 2.1. The first inequality may be proved similarly. �

Since the functions Fα are smooth and homogeneous of degree α−Q, they are locally
integrable on G when 0 < Reα < Q and thus define distributions by integration:

(2.5)

〈Fα, φ〉 =

∫

G

Fα(x)φ(x) dx

=

∫

G

φ(x)

∫ ∞

0

t(α−Q)/2 P (δt−1/2x)
dt

t
dx

= 2

∫ ∞

0

sα
∫

G

φ(δsx)P (x) dx
ds

s
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for all φ ∈ C∞
c (G). We write Iα for Γ(α/2)−1Fα. From (2.1), we see that Iα is the Riesz

potential of order α, that is, the convolution kernel of L−α/2, a power of the sub-Laplacian,
and

(2.6) L−α/2f = f ∗ Iα .

Note that

(2.7) Iα
∣

∣

α=0
= δ0 .

The family of Riesz potentials may be analytically continued as distributions to the
half-plane HQ by the identity

Iα = L (Iα+2) .

The analytic continuation to the strip {α ∈ C : −1 < Reα < Q} will be enough for our
purposes. An explicit expression is obtained by rewriting (2.5) in the form

(2.8)

〈Iα, φ〉 =
2

Γ(1
2
α)

∫

G

(
∫ 1

0

sα (φ(δsx)− φ(0))
ds

s

)

P (x) dx+
2

αΓ(1
2
α)

φ(0)

+
2

Γ(1
2
α)

∫

G

(
∫ ∞

1

sα φ(δsx)
ds

s

)

P (x) dx ;

the mean value theorem for stratified groups [17] ensures that the first integral converges.
Next, we find the Taylor expansion of Iα around 0.

Proposition 2.3. Let φ in C∞
c (G). For α near 0,

〈Iα, φ〉 = φ(0) + 〈Λ, φ〉α +O(α2) ,(2.9)

where Λ is the distribution defined by

(2.10)

〈Λ, φ〉 =

∫

G

(
∫ 1

0

(φ(δsx)− φ(0))
ds

s

)

P (x) dx+
γ

2
φ(0)

+

∫

G

(
∫ ∞

1

φ(δsx)
ds

s

)

P (x) dx ,

γ being the Euler–Mascheroni constant.

Proof. Clearly, (2.10) defines a distribution. Since Γ′(1) = −γ and hence

(2.11)
1

Γ(t)
=

t

Γ(t + 1)
= t− γt2 +O(t3) as t → 0 ,

and

st = 1 + log s

∫ t

0

su du ,

(2.9) follows from (2.8). �

Note that, in analogy with (2.6),

f ∗ Λ = − logL1/2f .

The next proposition expresses the distribution Λ in terms of the homogeneous norm
| · |0, defined in (2.2).
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Proposition 2.4. There is a positive number a such that

(2.12) 〈Λ, φ〉 =
1

2

∫

{x∈G:|x|
0
<a}

(φ(x)− φ(0)) |x|−Q
0 dx+

1

2

∫

{x∈G:|x|
0
>a}

φ(x) |x|−Q
0 dx ,

for all φ ∈ C∞
c .

Proof. We start from a different expression for the analytic continuation (2.8) of the Riesz
potentials.

Fix a positive number a, to be specified later. If φ ∈ C∞
c (G) and 0 < Reα < Q, then

(2.13)

〈Iα, φ〉 =
1

Γ(1
2
α)

∫

G

φ(x)Fα(x) dx

=
1

Γ(1
2
α)

∫

{x∈G:|x|
0
<a}

(φ(x)− φ(0))Fα(x) dx

+
φ(0)

Γ(1
2
α)

∫

{x∈G:|x|
0
<a}

Fα(x) dx+
1

Γ(1
2
α)

∫

{x∈G:|x|
0
>a}

φ(x)Fα(x) dx

= T1(α) + T2(α) + T3(α) ,

say. Clearly, T1 is defined when −1 < Reα < Q, by the stratified mean value theorem,
and T3 is trivially defined for every α. Moreover T1 and T3 are analytic.

To treat T2, we use polar coordinates. Write x = δrx
′, where |x|0 = r and x′ is in S,

the unit sphere for the norm | · |0,. We denote by σ the unique measure on S (see [17])
such that

∫

{x∈G:|x|
0
<R}

φ(x) dx =

∫ R

0

(
∫

S

φ(δrx
′) dσ(x′)

)

rQ−1 dr .

Since Fα(δrx) = rα−QFα(x), it follows that
∫

{x∈G:|x|
0
<a}

Fα(x) dx =

∫ a

0

(
∫

S

Fα(x
′) dσ(x′)

)

rα−1 dr = cα
aα

α
,

where

cα =

∫

S

Fα(x
′) dσ(x′) .

By (2.4),

Fα(x
′) = 1 + αF ′

0(x
′) +O(α2) ,

for small α, where O(α2) is uniform in x′ in S. This gives

cα = c0 + c′0α +O(α2) ,

where c0 = σ(S) and

c′0 =

∫

S

F ′
0(x

′) dσ(x′) .

Hence, using (2.11),

T2(α) =
cαa

α

αΓ(1
2
α)

φ(0) =
φ(0)

2

(

c0 + (c′0 + c0 log a− c0γ)α +O(α2)
)

.
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Since c0 6= 0, we may choose a so that the linear term in the above formula vanishes.
Plugging this expansion into (2.13), we deduce that

(2.14)

〈Iα, φ〉 =
1

Γ(1
2
α)

∫

{x∈G:|x|
0
<a}

(φ(x)− φ(0))Fα(x) dx

+
(c0
2
+O(α2)

)

φ(0) +
1

Γ(1
2
α)

∫

{x∈G:|x|
0
>a}

φ(x)Fα(x) dx ,

which, compared with (2.7), yields

(2.15) c0 = 2 .

The linear term in α in (2.14) gives 〈Λ, φ〉. The result follows from (2.11). �

When Reα > 0, Re β > 0 and Re(α + β) < Q, the convolution of the Riesz potentials
of orders α and β is defined pointwise by absolutely convergent integrals, and the identity

(2.16) Iα ∗ Iβ = Iα+β

is satisfied pointwise and in the sense of distributions. This is consistent with the func-
tional identity L−α/2L−β/2 = L−(α+β)/2 and can be derived from (2.1) and the properties
of the heat kernel.

We extend this result using analytic continuation.

Proposition 2.5. Let φ ∈ C∞
c (G). The identity

(φ ∗ Iα) ∗ Iβ = φ ∗ Iα+β

holds if Reα > −1, Re β > −1 and Re(α + β) < Q.

Proof. We must show that the left-hand side is well-defined and analytic for α and β in
the given range.

Assume that β 6= 0. The inner convolution is well-defined and produces a smooth
function uα, satisfying uα(x) = O(|x|−Q+Reα

0 ) at infinity. By (2.13),

(φ ∗ Iα) ∗ Iβ(x) = uα ∗ Iβ(x)

=

∫

{y∈G:|y|
0
<a}

(

uα(xy
−1)− uα(x)

)

Iβ(y) dy

+ uα(x)

∫

{y∈G:|y|
0
<a}

Iβ(y) dy +

∫

{y∈G:|y|
0
>a}

uα(xy
−1) I β(y) dy

for all x ∈ G; the integrals are absolutely convergent and each term depends analytically
on α and β. The conclusion follows from (2.16) by analytic continuation. �

3. Hardy inequalities

In this section, we use the distributions discussed above to obtain a family of Hardy-type
inequalities.

Take a homogeneous norm | · | on G. For −1 < Reα < Q, we define the operator Tα

on C∞
c (G) by

Tαf = | · |−α L−α/2f = | · |−α (f ∗ Iα) .
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The operator T ∗
α , given by

T ∗
αg = (| · |−ᾱ g) ∗ Iᾱ ,

satisfies the identity

(3.1) 〈f, T ∗
αg〉 = 〈Tαf, g〉

for all f, g ∈ C∞
c (G). The right-hand side of (3.1) is holomorphic in α and T0 is the

identity.
In this section we prove Theorem A, of which we repeat the statement for the reader’s

convenience.

Theorem. Suppose that | · | is a homogeneous norm on G, that 1 < p < ∞ and that

0 < α < Q/p. Then the operator Tα extends uniquely to a bounded operator on Lp(G).
For the particular homogeneous norm | · |0, the operator norm |||Tα|||p,p satisfies

|||Tα|||p,p ≤ 1 + Cα+O(α2) .

We first prove that Tα is bounded on Lp(G) when 1 < p < ∞ and 0 < α < Q/p.

Theorem 3.1. Let 1 < p < ∞. If 0 < α < Q/p, then the operator Tα extends uniquely

to a bounded operator on Lp(G).

Proof. Fix p and α as enunciated, and let p′ denote the conjugate index to p. Since the
integral kernel of Tα is positive, we can apply Schur’s test [18]. It suffices to exhibit a
positive function u and constants Aα,p and Bα,p such that

(3.2) Tα(u
p′)(x) ≤ Aα,pu

p′(x) and T ∗
α(u

p)(x) ≤ Bα,pu
p(x)

for almost all x ∈ G . It then follows that, for all f ∈ Lp(G),

(3.3) ‖Tαf‖p ≤ A1/p′

α,p B
1/p
α,p ‖f‖p .

For γ > 0, take uγ = | · |γ−Q and consider the convolution integrals

up′

γ ∗ Iα and (| · |−α up
γ) ∗ Iα

involved in the computation of Tα(u
p′

γ ) and T ∗
α(u

p
γ). We set

(3.4) β ′ = Q + (γ −Q)p′ and β = Q− α + (γ −Q)p ,

so up′

γ and | · |−α up
γ have the same homogeneity as Iβ′ and Iβ. As in the proof of (2.16),

the convolution integrals converge absolutely in G \ {0} if and only if 0 < β < Q−α and
0 < β ′ < Q− α, that is, for γ such that

(3.5) max

(

Q

p
,
α

p
+

Q

p′

)

< γ < Q−
α

p′
.

When this condition is satisfied, Tα(u
p′

γ ) and T ∗
α(u

p
γ) are positive functions, continuous

away from 0, and with the same homogeneity as Iβ′ and Iβ . The pointwise estimates (3.2)
follow trivially by homogeneity.

The range (3.5) for γ is nontrivial if and only if 0 < α < Q/p, and the proof is
complete. �
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Note that if α ≥ Q/p, then Tαf can be infinite everywhere; however, if α is complex
and 0 ≤ Reα < Q/p, then Tα is bounded on Lp(G), but it is harder to control the norm.

Corollary 3.2. Let 1 < p < ∞ and 0 < α < Q/p. For all f ∈ C∞
c (G),

∥

∥| · |−α f
∥

∥

p
≤ |||Tα|||p,p

∥

∥Lα/2f
∥

∥

p
.

Proof. We apply Theorem 3.1 to Lα/2f rather than f . �

For the rest of this section, we assume that | · | = | · |0 and Tα is defined using | · |0. The
proof of Theorem 3.1, and especially (3.3), shows that, if

(3.6) 0 < α <
Q

p
and

α

p
+

Q

p′
< γ < Q−

α

p′
,

then

(3.7) |||Tα|||p,p ≤ A1/p′

α,γ,pB
1/p
α,γ,p ,

where

(3.8)

Aα,γ,p = sup
x′∈S

(

| · |(γ−Q) p′

0 ∗ Iα

)

(x′) = sup
x′∈S

(

| · |β
′−Q

0 ∗ Iα

)

(x′) ,

Bα,γ,p = sup
x′∈S

(

| · |(γ−Q) p−α
0 ∗ Iα

)

(x′) = sup
x′∈S

(

| · |β−Q
0 ∗ Iα

)

(x′) .

Estimating these quantities is the focus of our next result. Recall the distribution Λ
introduced in (2.10). We also define the operator T ′

0 by

(3.9) T ′
0f =

( d

dα
Tαf

)
∣

∣

∣

α=0
= − logL1/2f − (log | · |0)f = −f ∗ Λ− (log | · |0)f .

We also look for bounds on the operator norm |||Tα|||p,p, of the form

|||Tα|||p,p ≤ 1 + Cpα ,

for α close to 0. These bounds will lead to our logarithmic uncertainty inequality for T ′
0.

Lemma 3.3. Let 0 < β < Q. If α is small and 0 < α < Q− β, then

sup
x′∈S

(

| · |β−Q
0 ∗ Iα

)

(x′) ≤ 1 + Lβα +O(α2) ,

where

(3.10) Lβ = sup
x′∈S

(

| · |β−Q
0 ∗ Λ(x′)

)

.

Proof. The integrals in (2.12) converge absolutely when φ is replaced by |x′·|β−Q
0 for any

x′ ∈ S, and so (2.9) also extends, that is,

| · |β−Q
0 ∗ Iα(x

′) = 1 + α | · |β−Q
0 ∗ Λ(x′) +O(α2) ;

the O(α2) term is uniform in x′ ∈ S. Taking the supremum over x′ yields the result. �

We repeat that we are now specializing to the particular homogeneous norm | · |0.
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Corollary 3.4. Let 1 < p < ∞. There is a constant Cp, such that, for all sufficiently

small positive α,

|||Tαf |||p,p ≤
(

1 + Cp α +O(α2)
)

.(3.11)

Proof. Fix γ satisfying Q/p′ < γ < Q. Then (3.6) holds for α in a right neighborhood
of 0. With β and β ′ as in (3.4), the constants Aα,γ,p and Bα,γ,p in (3.8) are bounded by
1 + Lβ′α +O(α2) and 1 + Lβα+O(α2). By (3.7),

|||Tα|||p,p ≤ 1 +

(

Lβ′

p′
+

Lβ

p

)

α+O(α2) ,

as required. �

Note that Λ is not a positive distribution, hence the constants Lβ in (3.10) and Cp in
(3.11) need not be positive.

4. A logarithmic uncertainty inequality

In this section, we find logarithmic versions of the Heisenberg uncertainty principle.
We were inspired by the work of W. Beckner [2, 3], but unlike Beckner, we do not look
for sharp constants. The following statement is Theorem B of the Introduction.

Theorem. Let 1 < p < ∞. Then, for all f ∈ C∞
c (G),

(4.1)

∫

G

(log |x|) |f(x)|p dx+

∫

G

Re
(

(logL1/2f)(x) f(x)
)

|f(x)|p−2 dx ≥ C ‖f‖pp .

Proof. First, we consider the particular homogeneous norm | · |0. Taking f ∈ C∞
c (G) with

‖f‖p = 1 and restricting ourselves to positive values of α for which (3.11) holds and
1 + Cpα > 0, we consider the function

Φǫ(α) = (1 + (Cp + ǫ)α)p − ‖Tαf‖
p
p ,

where ǫ ≥ 0. The expression ‖Tαf‖
p
p can be differentiated in α at 0, and

d

dα

(

‖Tαf‖
p
p

)
∣

∣

∣

α=0
= p

∫

G

Re
(

T ′
0f(x) f(x)

)

|f(x)|p−2 dx .

Hence Φǫ is differentiable at 0. Now Φǫ(0) = 0 and Φǫ(α) ≥ 0 for all sufficiently small
α, by (3.11), and so Φ′

ǫ(0) ≥ 0. Now we let ǫ tend to 0, and deduce that Φ′
0(0) ≥ 0. It

follows from (3.9) that
∫

G

(log |x|) |f(x)|p dx+

∫

G

Re
(

(logL1/2f)(x) f(x)
)

|f(x)|p−2 dx ≥ −Cp ‖f‖
p
p .

For general homogeneous norms, the results follows using the equivalence (2.3). �

Remark 4.1. When ‖f‖p = 1, Jensen’s inequality coupled with inequality (4.1) yield

1

r
log

∫

G

|x|r |f(x)|p dx+

∫

G

Re
(

(logL1/2f)(x) f(x)
)

|f(x)|p−2 dx ≥ C ,

for every r > 0. If we could find a similar way to move the logarithm outside the second
integral, then we would be able to derive a version of Corollary 3.4 for an arbitrary
homogeneous norm. It is not clear to us whether this is possible.
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5. Uncertainty inequalities

In [10], a general Heisenberg–Pauli–Weyl uncertainty inequality was proved, in a broad
setting that includes the case of a homogenous sub-Laplacian L on a stratified group G.
It follows that

‖f‖2 ≤ Cβ,γ

∥

∥| · |β f
∥

∥

γ/(β+γ)

2

∥

∥Lγ/2f
∥

∥

β/(β+γ)

2

for all positive β and γ and all f ∈ C∞
c (G).

In this section, we extend this inequality to more general Lp-norms. To do this, we
recall a weighted version of Hölder’s inequality, then prove a corollary. Next, we extend
the Landau–Kolmogorov inequality, and finally we prove another corollary. These results
actually hold in more general contexts than stratified groups.

Lemma 5.1. Suppose that | · | is a homogeneous norm on G, that 0 ≤ θ ≤ 1 and α ≥ 0.
If 1 ≤ p, q, r ≤ ∞, and

1

p
=

θ

q
+

1− θ

r
,

then

‖| · |α f‖p ≤
∥

∥| · |α/θ f
∥

∥

θ

q

∥

∥f
∥

∥

1−θ

r

for all f ∈ C∞
c (G).

Proof. Write

(| · |α |f |)
p
=
(

| · |α |f |θ
)p (

|f |1−θ
)p

,

then apply Hölder’s inequality with index s and take pth roots to get
(
∫

G

(|x|α |f(x)|)
p
dx

)1/p

≤

(
∫

G

(

|x|α |f(x)|θ
)ps

dx

)1/ps(∫

G

(

|f(x)|1−θ
)ps′

dx

)1/ps′

.

If s is chosen so that q = θps, then r = (1− θ)ps′, and we are done. �

Of course, it is routine to extend this result to more general measurable functions.

Corollary 5.2. Suppose that β > 0, γ > 0, p > 1, q ≥ 1, r > 1, and that

γ <
Q

r
and

β + γ

p
=

γ

q
+

β

r
.

Then

(5.1) ‖f‖p ≤ C
∥

∥| · |β f
∥

∥

γ/(β+γ)

q

∥

∥Lγ/2f
∥

∥

β/(β+γ)

r

for all f ∈ C∞
c (G).

Proof. Use Hölder’s inequality, as in the proof of Lemma 5.1, Corollary 3.2 with the
estimate (3.11):

‖f‖p ≤
∥

∥| · |β f
∥

∥

γ/(β+γ)

q

∥

∥| · |−γ f
∥

∥

β/(β+γ)

r

≤ C
∥

∥| · |β f
∥

∥

γ/(β+γ)

q

∥

∥Lγ/2f
∥

∥

β/(β+γ)

r
,

as required. �
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If we use the homogeneous norm | · |0, then we can show that the constant C in (5.2)
may be taken to be 1 + Cr min{β, γ} + O ((min{β, γ}2), with Cr as in (3.11). Since we
can control the constants, we can differentiate the inequality of Corollary 5.2 to obtain a
logarithmic version. At the cost of losing control of the constants, and hence the possibility
of differentiating, we can treat higher powers of the sub-Laplacian and obtain Theorem D
of the Introduction.

Theorem. Suppose that L is a sub-Laplacian on G, that 0 ≤ θ ≤ 1, and that α ≥ 0. If

1 < p, q, r < ∞, and

1

p
=

θ

q
+

1− θ

r
,

then
∥

∥Lα/2f
∥

∥

p
≤ C

∥

∥Lα/2θf
∥

∥

θ

q
‖f‖1−θ

r

for all f ∈ C∞
c (G).

Proof. We use the arguments of complex interpolation (see [5, 33]). To do this, we need
to know that the operators Liy, where y ∈ R, are bounded on the Lebesgue spaces Ls(G)
when 1 < s < ∞, and that |||Liy/2||| s,s ≤ C(s)φ(y), where φ(y) = eγ|y|. For stratified

groups, this follows from the Mihlin–Hörmander multiplier theorem (see, for instance,
[9, 28]). In more general cases, such estimates follow from versions of this theorem for
semigroups, see [8, 11, 35].

We write S for the strip

S =
{

z ∈ C : 0 ≤ Re z ≤
α

θ

}

.

Take an arbitrary compactly supported simple function g ∈ Lp′(G), and for z in S,
define gz : G → C by

gz(x) = ‖g‖az+b
p′ g(x) |g(x)|cz+d

for all x ∈ G, where

a =
θp′

α

(

1

q
−

1

p

)

, b = −
p′

r′
, c =

θp′

α

(

1

p
−

1

q

)

and d =
p′

r′
− 1 .

When Re z = η and

1

s
=

1

r
−

θη

α

(

1

p
−

1

q

)

,

it follows readily that

‖gz‖
s′

s′ =

∫

G

|gz(x)|
s′ dx = ‖g‖

s′(aη+b)+p′

p′ = 1 .

Now we fix f ∈ C∞
c (G) and consider the analytic function h : S → C, defined by

h(z) = ez
2

∫

G

Lz/2f(x) gz(x) dx .
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By our assumptions on f , for each z ∈ S, the function Lz/2f on G is smooth, while gz
is a simple function with compact support, and so h(z) is defined; moreover, if z = η+ iy,
then

|h(z)| ≤ eη
2−y2

∥

∥Lz/2f
∥

∥

s
‖gz‖s′ = eη

2−y2
∥

∥Liy/2Lη/2f
∥

∥

s
≤ Ce−y2φ(y)

∥

∥Lη/2f
∥

∥

s
,

whence |h(η + iy)| ≤ C
∥

∥Lη/2f
∥

∥

s
. Further, if Re z = 0, then |h(z)| ≤ C ‖f‖r, while if

Re z = α/θ, then |h(z)| ≤ C
∥

∥Lα/2θf
∥

∥

q
. By the Phragmén–Lindelöf theorem, it follows

that

|h(α)| ≤ C
∥

∥Lα/2θf
∥

∥

θ

q
‖f‖1−θ

r .

Since

h(α) =

∫

G

Lα/2f(x) gα(x) dx ,

and gα is an arbitrary simple function on G with compact support and Lp′(G)-norm equal
to 1, the desired estimate follows. �

It is more complicated to extend this inequality to more general functions, and we leave
this to the interested reader. See [5, 36] for more on the necessary technology. Now we
apply these interpolation results to extend our uncertainty inequalities to a wider range
of Lebesgue indices and powers of the homogenous norm and sub-Laplacian, to obtain
the following statement, which is Theorem C of the Introduction.

Theorem. Suppose that β > 0, δ > 0, p > 1, s ≥ 1, r > 1, and that

β + δ

p
=

δ

s
+

β

r
.

Then

‖f‖p ≤ C
∥

∥| · |β0 f
∥

∥

δ/(β+δ)

s

∥

∥Lδ/2f
∥

∥

β/(β+δ)

r

for all f ∈ C∞
c (G).

Proof. If δ < Q/r, there is nothing to do. Otherwise, we begin with the estimate from
Corollary 5.2, and apply our version of the Landau–Kolmogorov inequality (Theorem D).
Take θ between 0 and Q/(rδ)), and let γ = θδ. Corollary 5.2 shows that

‖f‖p ≤ C
∥

∥| · |β0 f
∥

∥

γ/(β+γ)

q

∥

∥Lγ/2f
∥

∥

β/(β+γ)

r

for all f ∈ C∞
c (G). By Theorem 5, with r, s and p in place of p, q, and r,

∥

∥Lγ/2f
∥

∥

r
≤ C

∥

∥Lδ/2f
∥

∥

θ

s
‖f‖1−θ

p ,

and so

‖f‖p ≤ C
∥

∥| · |β0 f
∥

∥

γ/(β+γ)

q

∥

∥Lδ/2f
∥

∥

θβ/(β+γ)

s
‖f‖((1−θ)β/(β+γ)

p ,

and reorganizing this expression, we obtain the desired estimate. �
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6. An alternative approach to uncertainty inequalities

We can use a real interpolation argument to give a simpler proof of an uncertainty
inequality involving different Lebesgue indices; however the range of powers of the ho-
mogenous norm and of the sub-Laplacian that appear is limited. Of course, we can always
extend these using the arguments used in the previous section.

Theorem 6.1. Suppose that 1 < p, q, r < ∞, that 0 < α < Q/q′, and that 0 < β < Q/r,
and take s and t such that

1

s
=

1

q
+

α

Q
and

1

t
=

1

r
−

β

Q
.

Suppose also that either

s 6= t and
1

p
=

θ

s
+

1− θ

t
,

or

s = t and θ ≤ θ0 =
β

α+ β
.

If f ∈ C∞
c (G), then

‖f‖p ≤ C ‖| · |α f‖
θ
q

∥

∥Lβ/2f
∥

∥

1−θ

r
.

Proof. We use Lorentz spaces and real interpolation [5]. Recall that the nondecreasing
rearrangement f ∗ : R+ → [0,∞) of a function f on G satisfies

∣

∣{t ∈ R
+ : f ∗(t) > λ}

∣

∣ = |{x ∈ G : |f(x)| > λ}|

for all λ ∈ R+; the measures are Lebesgue measure on R+ and the Haar measure on G.
The Lorentz space Lp,q(G) is the set of all functions f on G such that ‖f‖p,q is finite,
where

‖f‖p,q =

(
∫ ∞

0

∣

∣t1/pf ∗(t)
∣

∣

q dt

t

)1/q

,

with the obvious modification if q = ∞. The space Lp(G) coincides with Lp,p(G). In
general, ‖·‖p,q is a quasi-norm, not a norm. Mostly there is an equivalent norm, though

in some cases, Lp,q(G) is not normable.
First, we observe that f = | · |−α | · |α f , and study the operator M of pointwise multipli-

cation by | · |−α. This function lies in LQ/α,∞(G), and so M takes L(Q/α)′,∞(G) to L1,∞(G)
and L∞(G) to LQ/α,∞(G). By the real interpolation theorem, if (Q/α)′ < q < ∞, then
M also maps Lq,q(G) to Ls,q(G), and

∥

∥| · |−α g
∥

∥

s,q
≤ Cα,q ‖g‖q,q .

It follows that

‖f‖s,q ≤ Cα,q ‖| · |
α f‖q .

Second, we observe that f = L−β/2Lβ/2f , and consider the convolution operator L−β/2.
The kernel of this operator, Iβ, lies in LQ/(Q−β),∞(G), and so the operator L−β/2 takes
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L1(G) to LQ/(Q−β),∞(G) and L(Q/(Q−β))′,1(G) to L∞(G). By the real interpolation theorem,
if 1 < r < (Q/(Q− β))′, then L−β/2 also maps Lr,r(G) to Lt,r(G), and

∥

∥L−β/2g
∥

∥

t,r
≤ Cβ,r ‖g‖r,r .

Returning to our problem, it follows that

‖f‖t,r ≤ Cβ,r

∥

∥Lβ/2f
∥

∥

r
.

To conclude, there are two cases to consider. If s 6= t, then p lies between these indices,
and by hypothesis, 1/p = θ/s+ (1− θ)/t. By the real interpolation theorem,

‖f‖p ≤ C ‖f‖θs,q ‖f‖
1−θ
t,r ≤ C ‖| · |α f‖

θ
q

∥

∥Lβ/2f
∥

∥

1−θ

r
.

If s = t, then p lies between the indices q and r, and p ≥ u, where 1/u = θ/q+(1−θ)/r.
By complex interpolation between the Lp,q and Lp,r quasinorms,

‖f‖p ≤ ‖f‖p,u ≤ C ‖f‖θp,q ‖f‖
1−θ
p,r ≤ C ‖| · |α f‖

θ
q

∥

∥Lβ/2f
∥

∥

1−θ

r
,

and we are done. �

Remark 6.2. We have focussed on a priori inequalities here. The reader who wishes
to prove more general inequalities will be able to do this by using the techniques of [12],
coupled with the generalization to the stratified group setting in [31] of the Landau–
Pollak–Slepian theorem (see [27, 30, 32]) used in [12].
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[23] L. Hörmander, ‘Hypoelliptic second order differential equations’, Acta Math. 119 (1967), 147–171.
[24] A. Hulanicki, J. Jenkins and J. Ludwig, ‘Minimal eigenvalues for positive Rockland operators’, Proc.

Amer. Math. Soc. 94 (1985), 718–720.
[25] G. A. Hunt, ‘Semigroups of measures on Lie groups’, Trans. Amer. Math. Soc. 81 (1956), 264–293.
[26] A. Kolmogoroff, ‘On inequalities between upper bounds of consecutive derivatives of an arbitrary

function defined on an infinite interval’ (Russian), Uchenye Zapiski Moskov. Gos. Univ. Matematika
30 (1939), 3–16.

[27] H. J. Landau and H. O. Pollak, ‘Prolate spheroidal wave functions, Fourier analysis and uncertainty
(2)’, Bell System Tech. J. 40 (1961), 65–84.

[28] G. Mauceri and S. Meda, ‘Vector-valued multipliers on stratified groups’, Rev. Mat. Iberoamer. 6
(1990), 141–154.
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