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IMPROVING THE RANDOMIZATION STEP IN FEASIBILITY
PUMP∗
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Abstract. Feasibility pump is a successful primal heuristic for mixed-integer linear programs.
The algorithm consists of three main components: rounding fractional solution to a mixed-integer
one, projection of infeasible solutions to the linear programming relaxation, and a randomization
step used when the algorithm stalls. While many generalizations and improvements to the original
Feasibility Pump have been proposed, they mainly focus on the rounding and projection steps. We
start a more in-depth study of the randomization step in Feasibility Pump. For that, we propose
a new randomization step based on the WalkSAT algorithm for solving instances of the Boolean
satisfiability problem. First, we provide theoretical analyses for instances with disjoint equality
constraints that show the potential of this randomization step; to the best of our knowledge, this
is the first time any theoretical analysis of the running-time of Feasibility Pump or its variants has
been conducted, even for a special class of instances. Moreover, we propose a practical version
of a new randomization step, and incorporate it into a state-of-the-art Feasibility Pump code. Our
experiments suggests that this simple-to-implement modification consistently dominates the standard
randomization previously used.
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1. Introduction. Primal heuristics are used within mixed-integer linear pro-
gramming (MILP) solvers for finding good integer feasible solutions quickly [FL11].
Feasibility Pump is a very successful primal heuristic for mixed-binary linear programs
(LPs) that was introduced in [FGL05]. At its core, Feasibility Pump is an alternating
projection method, as described below.

Algorithm 1 Feasibility Pump (näıve version).

1: Input: mixed-binary LP (with binary variables x and continuous variables y)

2: Solve the linear programming relaxation, and let (x̄, ȳ) be an optimal solution
3: while x̄ is not integral do
4: (Round) Round each coordinate of x̄ to the closest integer, call the obtained

vector x̃
5: (Project) Let (x̄, ȳ) be the point in the LP relaxation that minimizes∑

i |xi − x̃i|
6: end while
7: Return (x̄, ȳ)
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The scheme presented above may stall, since the same infeasible integer point may
be visited in step 4 at different iterations. Whenever this happens, the paper [FGL05]
recommends a randomization step, that after step 4 flips the value of some of the
binary variables as follows: Defining the fractionality of variable xi as |x̄i − x̃i| and
letting N be the number of variables with positive fractionality, randomly generate a
positive integer TT and flip min{TT, N} variables with largest fractionality.

Together with a few other tweaks, this surprisingly simple method works very
well. On MIPLIB 2003 instances, Feasibility Pump finds feasible solutions for 96.3%
of the instances in reasonable time [FGL05].

Due to its success, many improvements and generalizations of Feasibility Pump,
both for MILPs and mixed integer nonlinear programs (MINLPs), have been stud-
ied [AB07, BFL07, BCLM09, FS09, SLR13, DFLL10, BEET12, DFLL12, BEE+14].
However, the focus of these improvements has been on the projection and rounding
steps or generalizations for MINLPs; to the best of our knowledge, they use essentially
the same randomization step as proposed in the original algorithm [FGL05] (and its
generalization to the general integer MILP case of [BFL07]). We note that some ap-
proaches avoid the randomization step altogether; see [BCLM09] for convex MINLPs
and [GMSS17] for MILPs.

Moreover, even though Feasibility Pump is so successful and so many variants have
been proposed, there is very limited theoretical analysis of its properties [BEET12].
In particular, to the best of our knowledge there are no known bounds on the expected
running-time of Feasibility Pump.

2. Our contributions. In this paper, we start a more in-depth study of the
randomization step in Feasibility Pump. For that, we propose a new randomization
step RandWalkSAT� and provide both theoretical analysis as well as computational
experiments in a state-of-the-art Feasibility Pump code that show the potential of
this method.

Theoretical justification of RandWalkSAT�. The new randomization step
RandWalkSAT� is inspired by the classical algorithm WalkSAT [Sch99] for solv-
ing instances of the Boolean satisfiability problem (SAT) (see also [Pap91, MJPL92]).
The key idea of RandWalkSAT� is that whenever Feasibility Pump stalls, namely,
an infeasible mixed-binary solution is revisited, it should flip a binary variable that
participates in an infeasible constraint. More precisely, RandWalkSAT� constructs
a minimal (projected) infeasibility certificate for this solution and randomly picks an
� binary variable in it to be flipped (see section 3 for exact definitions).

While the vague intuition that such randomization is trying to “fix” the infeasible
constraint is clear, we go further and provide theoretical analyses that formally justify
this and highlight more subtle advantageous properties of RandWalkSAT�.

First, we analyze what happens if we simply repeatedly use only the new proposed
randomization step RandWalkSAT�, which gives a simple primal heuristic that we
denote by mbWalkSAT (where “mb” indicates it is an extension of WalkSAT for
mixed-binary problems). Not only do we show that mbWalkSAT is guaranteed to
find a solution if one exists, but its behavior is related to the (almost) decomposability
and sparsity of the instance. To make this precise, consider a decomposable mixed-
binary set with k blocks:

P I = P I
1 × · · · × P I

k , where for all i ∈ [k] we have

P I
i = Pi ∩ ({0, 1}ni × R

di), Pi = {(xi, yi) ∈ [0, 1]ni × R
di : Aixi +Biyi ≤ ci}.(1)

Let P = P1 × · · · × Pk denote the LP relaxation of P I .
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Note that since we allow k = 1, this also captures a general mixed-binary set. We then
have the following running-time guarantee for the primal heuristic mbWalkSAT.

Theorem 2.1. Consider a feasible decomposable mixed-binary set as in (1). Let
si be such that each constraint in P I

i has at most si binary variables, and define
γi := min{si · (di + 1), ni}. Then with probability at least 1 − δ, mbWalkSAT with
parameter � = 1 returns a feasible solution within ln(k/δ)

∑
i ni 2

ni log γi iterations.
In particular, this bound is at most n̄k 2n̄ log n̄ · ln(k/δ), where n̄ = maxi ni.

There are a few interesting features of this bound that indicate good properties
of the proposed randomization step, apart from the fact that it is already able to find
feasible solutions by itself. Suppose we have a decomposable instance where each of
the k blocks has n/k variables. If we perform total enumeration without the knowl-
edge of decomposability, in the worst case we might end up trying all 2n possible
solutions. In contrast, as we see in Theorem 2.1, even without the knowledge of de-
composability mbWalkSAT takes at most approximately n2(n/k) iterations (which for
larger number of blocks k is significantly better than 2n). The fact the algorithm does
not explicitly use the knowledge of the decomposability of the instances gives some
indication that the proposed randomization could still exhibit good behavior on the
almost decomposable instances often found in practice (see discussion in [DMW16]).
Finally, notice that the running-time of the algorithm depends on the sparsity si of
the blocks, giving slightly better running times on sparser problems.

RandWalkSAT� in conjunction with Feasibility Pump. Next, we analyze
RandWalkSAT� in the context of Feasibility Pump by adding it as a randomization
step to the Näıve Feasibility Pump algorithm (Algorithm 1); we call the resulting
algorithm WFP. This now requires understanding the complicated interplay of the
randomization, rounding, and projection steps: While in practice rounding and pro-
jection greatly help in finding feasible solutions, their worst-case behavior is difficult
to analyze and in fact they could take the iterates far away from feasible solutions.
Although the general case is elusive at this point, we are nonetheless able to analyze
the running-time of WFP for decomposable 1-row mixed-binary programs.

Definition 2.2. A decomposable 1-row set is a decomposable set as in (1) where
each block Pi has a single equality:

Pi = {(xi, yi) ∈ [0, 1]ni × R
di
+ : aixi + biyi = ci}.

In particular, this class of instances includes subset-sum instances (i.e.,
{x ∈ {0, 1}n : ax = c} with nonnegative a, c) and knapsacks in standard form (i.e.,
{(x, y) ∈ {0, 1}n×R+ : ax+by = c} with a, c nonnegative and b ∈ {−1, 1}). While this
may still seem like a simple class of problems, on these instances Feasibility Pump
with the original randomization step from [FGL05] (without the restart operation
that flips all variables with nonzero probability [BFL07]) may not even converge, as
illustrated next.

Remark 2.3. Consider the feasible subset-sum problem

max x2

s.t. 3x1 + x2 = 3,

x1, x2 ∈ {0, 1}.

Consider the execution of the original Feasibility Pump algorithm (without restarts).
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The starting point is an optimal LP solution; without loss of generality, suppose it is
the solution (23 , 1). This solution is then rounded to the point (1, 1), which is infeasible.
This point is then �1-projected to the LP, giving back the point (23 , 1), which is then
rounded again to (1, 1). At this point the algorithm has stalled and applies the
randomization step. Since only variable x1 has strictly positive fractionality | 23 − 1| =
1
3 , only the first coordinate of (1, 1) is a candidate to be flipped. So suppose this
coordinate is flipped. The infeasible point (0, 1) obtained is then �1-projected to the
LP, giving again the point (23 , 1). This sequence of iterates repeats indefinitely and
the algorithm does not find the feasible solution (1, 0).

The issue in this example is that the original randomization step never flips a vari-
able with zero fractionality. Moreover, in Appendix A we show that even if such flips
are considered, there is a more complicated subset-sum instance where the algorithm
stalls.

On the other hand, we show that algorithm WFP with the proposed randomiza-
tion step always finds a feasible solution of feasible decomposable 1-row instances and,
moreover, its running-time again depends on the sparsity and the decomposability of
the instance.

Theorem 2.4. Consider a feasible decomposable 1-row set. Then with probability
at least 1− δ, WFP with � = 2 applied to this set returns a feasible solution within

T = �ln(k/δ)�
∑
i

ni(ni + 1) · 22ni logni ≤ �ln(k/δ)� k(n̄+ 1)2 · 22n̄ log n̄

iterations, where n̄ = maxi ni.

This result is proved in section 4.1. To the best of our knowledge this is the
first theoretical analysis of the running-time of a variant of Feasibility Pump algo-
rithm, even for a special class of instances. As in the case of repeatedly using just
RandWalkSAT�, the algorithm WFP essentially works independently on each of
the blocks (inequalities) of the problem, and has reduced running-time on sparser
instances.

The high-level idea of the proof Theorem 2.4 is the following. First, we notice
that the projection, rounding, and perturbation operators used in the algorithm act
independently on each of the blocks of a decomposable instance; this allows us to focus
on analyzing the algorithm on just one of the blocks, namely, a 1-row problem. To
perform this analysis, we (1) show that in these instances there can only be sequences
of at most n + 1 consecutive “projection plus rounding” operations (Corollary 4.8),
after which the algorithm either returns or stalls; (2) show that a round of “random-
ization step plus projection plus rounding” has a nonzero probability of generating
an iterate closer to a coordinatewise maximal feasible solution (Lemma 4.12), so the
algorithm has some chance of “unstalling” to a point closer to a feasible solution.

Computational experiments. While the analyses above give insights on the use-
fulness of using RandWalkSAT� in the randomization step of Feasibility Pump, in
order to attest its practical value it is important to understand how it interacts with
complex engineering components present in current Feasibility Pump codes. To this
end, we considered the state-of-the-art code of [FS09] and modified its randomiza-
tion step based on RandWalkSAT�. While the full details of the experiments are
presented in section 5, we summarize some of the main findings here.

We conducted experiments on MIPLIP 2010 [KAA+11] instances and on ran-
domly generated two-stage stochastic models. In the first testbed there was a small
but consistent improvement in both running-time and number of iterations. More
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importantly, the success rate of the heuristic improved consistently. In the second
testbed, the new algorithm performs even better, according to all measures. It is
somewhat surprising that our small modification of the randomization step could
provide noticeable improvements over the code in [FS09], specially considering that it
already includes several improvements over the original Feasibility Pump (e.g., con-
straint propagation). In addition, the proposed modification is generic and could be
easily incorporated in essentially any Feasibility Pump code. Moreover, for virtually
all the seeds and instances tested the modified algorithm performed better than the
original version in [FS09]; this indicates that, in practice, the modified randomization
step dominates the previous one.

The rest of the paper is organized as follows: In section 3 we discuss and present
our analysis of the proposed randomization scheme RandWalkSAT�; section 4
presents the analysis of the new randomization scheme RandWalkSAT� in con-
junction with feasibility pump, and section 5 describes details of our empirical exper-
iments.

Notation. We use R+ to denote the nonnegative reals, and [k] := {1, 2, . . . , k}.
For a vector v ∈ R

n, we use supp(v) ⊆ [n] to denote its support, namely, the set of
coordinates i where vi �= 0. We also use ‖v‖0 = |supp(v)|, and ‖v‖1 =

∑
i |vi| to

denote the �1 norm. Finally, we use ei ∈ R
n to denote the ith canonical basis vector.

3. New randomization step RandWalkSAT�.

3.1. Description of the randomization step. We start by describing the
WalkSAT algorithm [Sch99], that serves as the inspiration for the proposed ran-
domization step RandWalkSAT�, in the context of pure-binary linear programs.
The vanilla version of WalkSAT starts with a random point x̄ ∈ {0, 1}n; if this
point is feasible, the algorithm returns it, and otherwise selects any constraint vio-
lated by it. The algorithm then selects a random index i from the support of the
selected constraint and flips the value of the entry x̄i of the solution. This process is
repeated until a feasible solution is obtained. It is known that this simple algorithm
finds a feasible solution in expected time at most 2n (see [MU05] for a proof for 3-SAT
instances), and Schöning [Sch99] showed that if the algorithm is restarted at every 3n
iterations, a feasible solution is found in expected time at most a polynomial factor
from (2(1− 1

s ))
n, where s is the largest support size of the constraints.

Based on this WalkSAT algorithm, to obtain a randomization step for mixed-
binary problems we are going to work on the projection onto the binary variables, so
instead of looking for violated constraints we look for a certificate of infeasibility in the
space of binary variables. Importantly, we use a minimal certificate, which makes sure
that for decomposable instances the certificate does not “mix” the different blocks of
the problem.

Now we proceed with a formal description of the proposed randomization step
RandWalkSAT�. Consider a mixed-binary set

P I = P ∩ ({0, 1}n × R
d), where P = {(x, y) ∈ [0, 1]n × R

d : Ax +By ≤ c}.(2)

We use projbin P to denote the projection of P onto the binary variables x.

Definition 3.1 (projected certificates). Given a mixed-binary set P I as in (2)
and a point (x̄, ȳ) ∈ {0, 1}n × R

d such that x̄ /∈ projbin P , a projected certificate for
x̄ is an inequality λAx + λBy ≤ λb with λ ∈ R

m
+ such that (i) x̄ does not satisfy

this inequality; (ii) λB = 0. A minimal projected certificate is one where the support
of the vector λ is minimal (i.e., the certificate uses a minimal set of the original
inequalities).
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Standard Fourier–Motzkin theory guarantees us that projected certificates always
exist and, furthermore, Carathéodory’s theorem [Sch86] guarantees that minimal pro-
jected certificates use at most d + 1 inequalities. Together these give the following
lemma.

Lemma 3.2. Consider a mixed-binary set P I as in (2) and a point (x̄, ȳ) ∈
{0, 1}n × R

d such that x̄ /∈ projbin P . There exists a vector λ ∈ R
m
+ with support

of size at most d+ 1 such that λAx+ λBy ≤ λb is a minimal projected certificate for
x̄. Moreover, this minimal projected certificate can be obtained in polynomial time (by
solving a suitable LP).

Now we can formally define the randomization stepRandWalkSAT� (notice that
the condition λB = 0 guarantees that a projected certificate has the form πx ≤ π0).

Algorithm 2 RandWalkSAT�(x̄).

1: //Assumes that x̄ does not belong to projbin P
2: Let πx ≤ π0 be a minimal projected certificate for x̄
3: Sample � indices from the support supp(π) uniformly and independently, let I be

the set of indices obtained
4: (Flip coordinates) For all i ∈ I, set x̄i ← 1− x̄i

Note that in the pure-binary case and � = 1, this reduces to the main step executed
during WalkSAT. We remark that the flexibility of introducing the parameter � will
be needed in section 4.

3.2. Analyzing the behavior of RandWalkSAT�. In this section we consider
the behavior of the algorithm mbWalkSAT that tries to find a feasible mixed-binary
solution by just repeatedly applying the randomization step RandWalkSAT�.

Algorithm 3 mbWalkSAT.

1: input parameter: Integer � ≥ 1
2: (Starting solution) Consider any mixed-binary point (x̄, ȳ) ∈ {0, 1}n × R

d

3: loop
4: if x̄ does not belong to projbin P then
5: RandWalkSAT�(x̄)
6: else
7: (Output feasible lift of x̄) Find ȳ ∈ R

d such that (x̄, ȳ) ∈ P , return (x̄, ȳ)
8: end if
9: end loop

As mentioned in the introduction, we show that this algorithm find a feasible so-
lution if such exists, and the running-time improves with the sparsity and decompos-
ability of the instance. Recall the definition of a decomposable mixed-binary problem
from (1), and let certSuppi denote the maximum support size of a minimal projected
certificate for the instance P I

i which consists only of the ith block.

Theorem 3.3 (Theorem 2.1 restated). Consider a feasible decomposable mixed-
binary set as in (1). Then with probability at least 1−δ, mbWalkSAT with parameter
� = 1 returns a feasible solution within T = �ln(k/δ)� ∑i ni 2

ni log certSuppi iterations.

In light of Lemma 3.2, if each constraint in Pi has at most si integer variables,
we have certSuppi ≤ min{si · (di + 1), ni}, and thus this statement indeed implies



IMPROVING THE RANDOMIZATION IN FEASIBILITY PUMP 361

Theorem 2.1 stated in the introduction. We remark that similar guarantees can be
obtained for general �, but we focus on the case � = 1 to simplify the exposition.

The high-level idea of the proof of Theorem 3.3 is the following:
1. First we show that if we run mbWalkSAT over a single block P I

i ,
then with high probability the algorithm returns a feasible solution within
ni 2ni log certSuppi · ln(1/δ) iterations. This analysis is inspired by the one
given by Schöning [Sch99] and argues that with a small, but nonzero, proba-
bility the iteration of the algorithm makes the iterate x̄ closer (in Hamming
distance) to a fixed solution x∗ for the instance.

2. Next, we show that when running mbWalkSAT over the whole decompos-
able instance each iteration only depends on one of the blocks P I

i ; this uses
the minimality of the certificates. So in effect the execution of mbWalkSAT

can be split up into independent executions over each block, and thus we can
put together the analysis from item 1 for all blocks with a union bound to
obtain the result.

For the remainder of the section we prove Theorem 3.3. We start by consid-
ering a general mixed-binary set as in (2). Given such a mixed-binary set P I , we
use certSupp = certSupp(P I) to denote the maximum support size of all minimal
projected certificates.

Theorem 3.4. Consider the execution of mbWalkSAT over a feasible mixed-
binary program as in (2). The probability that mbWalkSAT does not find a feasible
solution within the first T iterations is at most (1 − p)�T/n�, where p = certSupp−n.
In particular, for T = n · 2n log(certSupp) · �ln(1/δ)� this probability is at most δ (this
follows from the inequality (1− x) ≤ e−x valid for x ≥ 0).

Proof. Consider a fixed solution x∗ ∈ projbin P . To analyze mbWalkSAT, we
only keep track of the Hamming distance of the (random) iterate x̄ to x∗; let Xt

denote this (random) distance at iteration t for t ≥ 1. If at some point this distance
vanishes, i.e., Xt = 0, we know that x̄ = x∗ and thus x̄ ∈ projbin P ; at this point the
algorithm returns a feasible solution for P I .

Fix an iteration t. To understand the probability that Xt = 0, suppose that
in this iteration x̄ does not belong to projbin P , and let πx ≤ π0 be the minimal
projected certificate for it used in RandWalkSAT1. Since the feasible point x∗

satisfies the inequality πx ≤ π0 but x̄ does not, there must be at least one index i∗ in
the support of π such where x∗ and x̄ differ. Then if algorithm mbWalkSAT makes
a “lucky move” and chooses I = {i∗} in line 3, the modified solution after flipping
this coordinate (the next line of the algorithm) is one unit closer to x∗ in Hamming
distance, hence, Xt+1 = Xt−1. Moreover, since I is independent of i, the probability
of choosing I = {i∗} is 1/|supp(π)| ≥ 1/certSupp.

Therefore, if we start at iteration t and for all the next Xt iterations either the
iterate belongs to projbin P or the algorithm makes a lucky move, it terminates by
time t+Xt. Thus, with probability at least (1/certSupp)Xt ≥ (1/certSupp)n = p the
algorithm terminates by time t+Xt ≤ t+ n.

To conclude the proof, let α = �T/n
 and call iterations i · n, . . . , (i+ 1) · n− 1,
the ith block of iterations. If the algorithm has not terminated by iteration i · n− 1,
then with probability at least p it terminates within the next n iterations and, hence,
within the ith block. Putting these bounds together for all α blocks, the probability
that the algorithm does not stop by the end of block α is at most (1 − p)α. This
concludes the proof.
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Going back to decomposable problems, we now make formal the claim that min-
imal projected certificates for decomposable mixed-binary sets do not mix the con-
straints from different blocks. Notice that projected certificates for a decomposable
mixed-binary set as in (1) have the form

∑
i λ

iAixi ≤ ∑
i λ

ibi and λiBi = 0 for all
i ∈ [k].

Lemma 3.5. Consider a decomposable mixed-integer set as in (1). Consider a
point x̄ /∈ projbin P and let

∑
i λ

iAixi ≤∑
i λ

ibi be a minimal projected certificate for
x̄. Then this certificate uses only inequalities from one block Pj, i.e., there is j such
that λi = 0 for all i �= j. Moreover, x̄j /∈ projbin Pj .

Proof. Let us use the natural decomposition x̄ = (x̄1, . . . , x̄k) ∈ {0, 1}n1 × · · · ×
{0, 1}nk, and call the certificate (πx ≤ π0) � (

∑
i λ

iAixi ≤∑
i λ

ibi). By the definition
of a projected certificate we have

∑
i λ

iAix̄i >
∑

i λ
ibi and, thus, by linearity there

must be an index j such that λjAj x̄j > λjbj . Moreover, as remarked earlier, decom-
posability implies that the certificate satisfies λiBi = 0 for all i, so, in particular, for
j. Thus, the inequality λj(Aj , Bj)(xj , yj) ≤ λjbj obtained by combining only the in-
equalities from Pj is a projected certificate for x̄. The minimality of the original certifi-
cate πx ≤ π0 implies that λi = 0 for all i �= j. This concludes the first part of the proof.

Also, since λjAj x̄j > λjbj and λjBj = 0 we have that λj(Aj , Bj)(x̄j , y) > λjbj

for all y and, hence, x̄j does not belong to projbin Pj . This concludes the proof.

We can finally prove the desired theorem.

Proof of Theorem 3.3. Again we use the natural decomposition x̄ = (x̄1, . . . , x̄k) ∈
{0, 1}n1 × · · · × {0, 1}nk of the iterates of the algorithm. From Lemma 3.5, we have
that, for each scenario, each iteration of mbWalkSAT is associated with just one of
the blocks P I

j ’s, namely, the P I
j containing all the inequalities in the minimal pro-

jected certificate used in this iteration; let Jt ∈ [k] denote the (random) index j of the
block associated with iteration t. Notice that at iteration t, only the binary variables
xJt can be modified by the algorithm.

Let Ti = ni 2
ni log ni�ln(k/δ)�. Applying the proof of Theorem 3.4 to the iterations

{t : Jt = i} with index i, we get that with probability at least 1 − δ
k the algorithm

finds some x̄i in projbin Pi within the first Ti of these iterations. Moreover, after the
algorithm finds such a point, it does not change it (that is, the remaining iterations
have index Jt �= i, due to the second part of Lemma 3.5).

Therefore, by taking a union bound we get that with probability at least 1 − δ,
for all i ∈ [k] the algorithm finds x̄i ∈ projbin Pi within the first Ti iterations with
index i (for a total of

∑
i Ti = T iterations). When this happens, the total solution x̄

belongs to projbin P and the algorithm returns. This concludes the proof.

4. Randomization step RandWalkSAT� within Feasibility Pump. In this
section we incorporate the randomization step RandWalkSAT� into the Näıve Fea-
sibility Pump, the resulting algorithm being called WFP. We describe this algorithm
in a slightly different way and using a notation more convenient for the analysis.

Consider a mixed-binary set P I as in (2). Given a 0/1 point x̃ ∈ {0, 1}n, let
�1-proj(P, x̃) denote a point (x, y) in P where ‖x̃−x‖1 is as small as possible. In case
of ties, we define �1-proj to have the following property.

Property 4.1 (�1-projection gives vertex). Consider a point x̃ ∈ {0, 1}n not in
projbin P , and let (x̄, ȳ) = �1-proj(P, x̃). Then x̄ is a vertex of projbin P .

Indeed notice that since projbin P ⊆ [0, 1]n and �1-proj(P, x̃) is an LP problem
whose objective function only depends on the x-components, there is always a vertex
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x of projbin P where (x, y) satisfies the desired properties of �1-proj(P, x̃) for some
y ∈ R

d.
Also, for a vector v ∈ [0, 1]n, we use round(v) to denote the vector obtained by

rounding each component of v to the closest integer. We use the convention that 1
2 is

rounded to 1, though any consistent rounding would suffice.

Property 4.2. Consider a vector x̄ ∈ [0, 1]n. If x̄i =
1
2 , then round(x̄)i = 1.

Notice that operations “�1-proj” and “round” correspond precisely to steps 5 and
4 in the Näıve Feasibility Pump. With this notation, algorithmWFP can be described
as follows.

Algorithm 4 WFP.

1: input parameter: integer � ≥ 1

2: Let (x̄0, ȳ0) be an optimal solution of the LP relaxation
3: Let x̃0 = round(x̄0)
4: for t = 1,2,. . . do
5: (x̄t, ȳt) = �1-proj(P, x̃

t−1)
6: x̃t = round(x̄t)

7: if x̃t ∈ projbin(P ) then
8: Return any (x̃t, ỹt) ∈ P
9: end if

10: if x̃t = x̃t−1 then � iterations have stalled
11: x̃t = RandWalkSAT�(x̃

t)
12: end if
13: end for

(In step 7 it suffices to test whether (x̃t, ȳt) ∈ P and return this point: This is
because whenever we get x̃t ∈ projbin(P ), in the next iteration the projection step
will compute (x̄t+1, ȳt+1) ∈ P with the same 0/1 part x̄t+1 = x̃t, which stays the
same after rounding, and thus (x̃t+1, ȳt+1) ∈ P . Also, since RandWalkSAT� was
defined over linear inequalities, we think of any equation present in an instance as two
opposing inequalities.)

Note that stalling in the above algorithm is determined using the condition x̃t =
x̃t−1. In principle, there could be “long cycle” stalling, that is, x̃t = x̃t′ , where
t′ < t− 1 but x̃t′ , . . . , x̃t−1 are all distinct binary vectors. As it turns out (assuming
no numerical errors) a consistent rounding rule implies that stalling will always occur
with cycles of length two.

Theorem 4.3. With consistent rounding, long cycle stalling cannot occur.

We present a proof of Theorem 4.3 in Appendix B (also see [GMSS17]).
For the remainder of the section, we analyze the behavior of algorithm WFP

on decomposable 1-row instances, proving Theorem 2.4 stated in the introduction.
Notice that the projection operators �1-proj and round now present also act on each
block independently, namely, given a point x = (x1, . . . , xk) ∈ R

n1 × · · · × R
nk , if

(x̌1, . . . , x̌k) = �1-proj(P, x), then x̌i = �1-proj(Pi, x
i) for all i ∈ [k] and, similarly,

for round. Therefore, as in the proof of Theorem 3.3, it will suffice to analyze the
execution of algorithmWFP over a single block/inequality of the decomposable 1-row
set. Thus, we start by analyzing these instances, and in section 4.2 we provide a more
formal reduction to this case.
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4.1. Running time of WFP on 1-row instances. In this section we prove
the following guarantee for WFP on a general 1-row instance.

Theorem 4.4. Consider a nonempty 1-row set P I = P ∩ ({0, 1}n × R
d
+) for

P = {(x, y) ∈ [0, 1]n × R
d
+ : ax+ by = c}.(3)

Then for every T ≥ 1, the probability that WFP with � = 2 does not find a feasible
solution within the first T iterations is at most (1−p)�T/(n·(n+1))�, where p = (1/n2)n.
In particular, for T = n(n+ 1) · 22n logn · �ln(1/δ)� this probability is at most δ.

The high-level idea of the proof of this theorem is the following. We use a similar
strategy as before, where we consider a fixed feasible solution x∗ ∈ projbin P and track
its distance to the iterates x̃t generated by algorithm WFP. However, while again the
randomization step RandWalkSAT2 brings x̃t closer to x∗ with small but nonzero
probability, the issue is that the projections �1-proj and round in the next iterations
could send the iterate even further from x∗. To analyze the algorithm we first have to
track the distance to a special feasible solution x∗ (namely, a coordinatewise maximal
one), use the structure of 1-row instances to carefully analyze the effect of the pro-
jections involved, and show that a round of RandWalkSAT2 plus “�1-proj+ round”
still has a nonzero probability of generating a point closer to x∗. For this, it will be
actually important that we use � = 2 in algorithm WFP (in fact, � ≥ 2 suffices).

For the remainder of the section we prove Theorem 4.4. To simplify the notation
we omit the polytope P from the notation of �1-proj. Given a point x̃ ∈ {0, 1}n, let
AltProj(x̃) be the effect of applying to x̃ the function �1-proj(.) and then round(.),
namely, if (x̄, ȳ) = �1-proj(x̃) then AltProj(x̃) = round(x̄). Notice this is again a 0/1
vector; moreover, if x̃ belongs to projbin P , then AltProj(x̃) = x̃. Then algorithm
WFP can be thought of as performing an AltProj operation, then checking if the
iterate obtained either belongs to projbin P (in which case it exits) or if it equals the
previous iterate (in which case it applies RandWalkSAT2); if neither of these occur,
then another AltProj operation is performed.

It will be then convenient to compress a sequence of operations AltProj into
its “closure” AltProj∗. More precisely, define the iterated operation AltProjt(x̃) =
AltProj

(
AltProjt−1(x̃)

)
(with AltProj1 = AltProj), and if the sequence (AltProjt(x̃))t

stabilizes at a point, let AltProj∗(x̃) denote this point. We then arrive at the com-
pressed version of the algorithm WFP.

Algorithm 5 WFP-Compressed.

1: input parameter: integer � ≥ 1

2: Let (x̄0, ȳ0) be an optimal solution of the LP relaxation
3: Let z0 = round(x̄0)
4: for τ = 1,2,. . . do
5: z̃τ = AltProj∗(zτ−1)

6: if z̃τ ∈ projbin P then
7: Return z̃τ

8: end if

9: zτ = RandWalkSAT�(z̃
τ )

10: end for

Thus, WFP-Compressed starts with a point z̃1 and repeatedly applies the op-
eration AltProj(RandWalkSAT�(.)) to obtain the sequence z̃1, z̃2, . . . until one of
these terms belongs to projbin P .
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By using the same randomness in both WFP and WFP-compressed (or more
precisely coupling the outcomes of RandWalkSAT�(.) on both algorithms) we see
that in all scenarios the number of iterations WFP and WFP-Compressed is related
by how large a sequence of AltProj’s we can have before stabilizing:

# iterations WFP ≤
[# iterations WFP-Compressed] · max

x̃∈{0,1}n
min{k : AltProjk(x̃) = AltProj∗(x̃)}.(4)

Thus, from now on we focus on analyzing the number of iterations WFP-
Compressed (with � = 2) takes and in controlling the multiplicative factor in this
inequality.

In the next few lemmas, we start by understanding the behavior of AltProj alone.
First, some basic properties related to the �1-projection it performs.

Lemma 4.5. The following hold:
1. The set projbin P is equal to either the set [0, 1]n, the set {x ∈ [0, 1]n : ax ≤ c},

the set {x ∈ [0, 1]n : ax ≥ c}, or the set {x ∈ [0, 1]n : ax = c}.
2. For any point x̃ ∈ {0, 1}n, �1-proj(x̃) has at most one fractional coordinate.
3. For any point x̃ ∈ {0, 1}n not in projbin P or, equivalently, ‖�1-proj(x̃)−x̃‖1 >

0, we have a · �1-proj(x̃) = c.

Proof. 1. It is immediate that projbin depends on the coefficients b of the con-
tinuous variables in the following way: projbin P is equal to [0, 1]n if b has a pos-
itive and a negative coefficient, equal to {x ∈ [0, 1]n : ax = c} if b = 0, equal
to {x ∈ [0, 1]n : ax ≤ c} if b ≥ 0 and it has a positive coefficient, or equal to
{x ∈ [0, 1]n : ax ≥ c} if b ≤ 0 and it has a negative coefficient. Notice these cover all
the cases for the possible sign combinations in b.

2. Recall �1-proj(x̃) is a vertex of projbin P . But since projbin P only has one
equation/inequality in addition to the bounds [0, 1]n, it is well known that its vertices
(or, equivalently, basic feasible solutions) will have all but at most one of its coordi-
nates set to its upper or lower bound; thus, all but possibly this special coordinate
have 0/1 value.

3. The intuition if x̃ /∈ projbin P , then the �1-projection of this point to projbin P
lies on the boundary of projbin P , and thus should satisfy the equality ax = c.

More precisely, let x̄ = �1-proj(x̃). Recall the classification of projbin P from item
1. If projbin P = [0, 1]n, then x̃ ∈ projbin P , and if projbin P = {x ∈ [0, 1]n : ax = c},
then clearly ax̄ = c. So assume projbin P = {x ∈ [0, 1]n : ax ≤ c} (the case ax ≥ c
is analogous). By contradiction suppose x̃ /∈ projbin P , so ax̃ > c, but ax̄ < c. Then
there is ε > 0 such that εx̃ + (1 − ε)x̄ belongs to projbin P . But this point is closer
in �1 to x̃ than x̄ is, contradicting the minimality of the latter. This concludes the
proof.

The following is the starting point for understanding when a sequence of AltProj’s
stabilizes.

Lemma 4.6. Consider a point x̃ ∈ {0, 1}n. Then:
1. If ‖�1-proj(x̃)− x̃‖1 < 1

2 , then AltProj(x̃) = x̃.
2. If ‖�1-proj(x̃) − x̃‖1 = 1

2 , then AltProj(x̃) is coordinatewise at least x̃ and
these vectors differ in at most one coordinate.

Proof. Consider a point x̃ ∈ {0, 1}n with ‖�1-proj(x̃) − x̃‖1 ∈ (0, 12 ] (in the case
‖�1-proj(x̃)− x̃‖1 = 0, item 1 clearly holds). This implies that the vectors �1-proj(x̃)
and x̃ differ exactly in the unique (by the lemma above) fractional coordinate of x̃;
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let j denote this coordinate. This implies that after rounding we have AltProj(x̃) =
round(proj(x̃))i = x̃i for all i �= j.

This also implies that |�1-proj(x̃)j−x̃j | = ‖�1-proj(x̃)−x̃‖1. If the right-hand side
is strictly less than 1

2 , we have round(�1-proj(x̃))j = x̃j , and thus round(�1-proj(x̃)) =
x̃; this proves item 1 of the lemma. If instead we have ‖�1-proj(x̃) − x̃‖1 = 1

2 , then
�1-proj(x̃)j must be equal to 1

2 , which implies that round(�1-proj(x̃))j = 1. Thus,
AltProj(x̃)j ≥ x̃j , and since this is the only coordinate where these vectors can differ
we have the proof of item 2 of the lemma.

The next lemma shows that regardless of the starting point, after only one appli-
cation of AltProj we end up in one of the cases of the lemma above.

Lemma 4.7. Consider x̃ ∈ {0, 1}n and let x̃′ = AltProj(x̃). Then

‖�1-proj(x̃′)− x̃′‖1 ≤ 1

2
.

Proof. Let x̄ = �1-proj(x̃) and recall x̃′ = round(x̄). Since x̄ has at most one
fractional coordinate (Lemma 4.5), this is the only one that can be rounded (to
the nearest integer) and hence ‖x̄ − x̃′‖1 ≤ 1

2 . Since �1-proj(x̃
′) is a minimizer of

minx∈projbin P ‖x− x̃′‖1 and x̄ is a feasible solution for this minimization problem, we
have ‖�1-proj(x̃′)− x̃′‖1 ≤ 1

2 . This concludes the proof.

Since after the first application of AltProj we satisfy the conditions of Lemma
4.6, and since this lemma guarantees that each further application of AltProj either
does not do anything or componentwise increases the input vector (and we cannot
have more than n of such increases), we get that we stabilize after at most n + 1
applications of AltProj.

Corollary 4.8. For any point x̃ ∈ {0, 1}n4, AltProj∗(x̃) = AltProjn+1(x̃).

In particular, this shows that the last term in the right-hand side of (4) is at most
n+ 1.

To be able to analyze the effect RandWalkSAT2 when combined with AltProj,
we need to obtain a finer understanding of the case of item 2 in Lemma 4.6, namely,
when there are multiple applications of AltProj before stabilizing. The following
example is very representative of when this happens.

Example 4.9. Consider the pure-integer 1-row set with left-hand side coefficients
a = (2,−2, 2, 1) and right-hand side c = 1, so its relaxation is

P = {x ∈ [0, 1]4 : 2x1 − 2x2 + 2x3 + x4 = 1}.

Notice that any feasible solution sets x4 = 1.
Now consider starting at the point x̃ = (0, 0, 0, 0) and the sequence of iterates

(AltProjt(x̃))t. In the first step we have two options for the projection �1-proj(x̃) =
(0, 0, 0, 0) (due to the symmetry between x1 and x3), so for concreteness assume
�1-proj(x̃) = (12 , 0, 0, 0); notice this falls on item 2 of Lemma 4.6. After rounding we
then have AltProj(x̃) = (1, 0, 0, 0). In the next step, when projecting AltProj(x̃) we
again have two options (due now to a different symmetry between x1 and x2), so for
concreteness assume �1-proj(AltProj(x̃)) = (1, 12 , 0, 0) (again item 2 of Lemma 4.6);

thus, AltProj2(x̃) = (1, 1, 0, 0). Proceeding in this way, we may obtain AltProj3(x̃) =
(1, 1, 1, 0), at which point the sequence finally stabilizes: AltProj4(x̃) = AltProj3(x̃),
which then equals AltProj∗(x̃).
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The next lemma show that the only way we can have a long sequence of AltProj
before stabilizing is when coordinates of the left-hand side of opposite signs are being
“added” to our iterates (e.g., the 2’s and −2’s in the above example).

Lemma 4.10. Consider a point x̃ ∈ {0, 1}n with ‖�1-proj(x̃)− x̃‖1 ≤ 1
2 . Consider

the points x̃′ = AltProj(x̃) and x̃′′ = AltProj2(x̃). Suppose x̃ �= x̃′ �= x̃′′, and from
Lemma 4.6.2 let i1, i2 ∈ [n] be the indices such that supp(x̃′) = supp(x̃) ∪ {i1} and
supp(x̃′′) = supp(x̃′) ∪ {i2}. Then ai1 = −ai2 .

Proof. To simplify the notation define x̄ = �1-proj(x̃) and x̄′ = �1-proj(x̃
′). Since

x̃′ = x̃ + ei1 , ‖x̄ − x̃‖1 = 1
2 , and round(x̄) = x̃′, we have x̄i1 = 1

2 and x̄i = x̃i for all
i �= i1. Thus x̄ = x̃+ 1

2e
i1 .

Lemma 4.7 guarantees that ‖x̄′ − x̃′‖1 ≤ 1
2 , and because x̃′ �= x̃′′ = AltProj(x̃′),

Lemma 4.6.1 guarantees that actually ‖x̄′−x̃′‖1 = 1
2 . Thus, the same argument above

holds with x̃′ replacing x̃ and gives that x̄′ = x̃′+ 1
2e

i2 = x̃+ ei1 + 1
2e

i2 . In particular,
x̄− x̄′ = − 1

2 (e
i1 + ei2).

From Lemma 4.5.3 we have that the points x̄ and x̄′ satisfy ax = c. Thus, taking
their differences and using the equality above we obtain

0 = a(x̄− x̄′) = −1

2
a(ei1 + ei2) = −1

2
(ai1 + ai2),

which implies ai1 = −ai2 . This concludes the proof.

Finally we start bringing RandWalkSAT2 into the picture. The next lemma
shows that given any point x̃, there is a “lucky choice” in RandWalkSAT2(x̃) that
changes at most two coordinates of the vector and brings us closer to a feasible solution
x∗. Importantly, it also gives us precise control on the �1-projection of the obtained
point, which will be crucial for analyzing the effect of applying AltProj∗ to the new
point obtained.

Lemma 4.11. Consider a point x∗ ∈ {0, 1}n in projbin P , and a point x̃ ∈ {0, 1}n
not in projbin P . Suppose AltProj(x̃) = x̃. Then there is a point x̃′ ∈ {0, 1}n satisfying
the following:

1. (close to x̃) ‖x̃′ − x̃‖0 ≤ 2;
2. (closer to x∗) ‖x̃′ − x∗‖0 ≤ ‖x̃− x∗‖0 − 1;
3. (projection control) ‖�1-proj(x̃′)− x̃′‖1 ≤ 1

2 .
Moreover, if we have the equality ‖�1-proj(x̃′)− x̃′‖1 = 1

2 in item 3, then ‖x̃′−x∗‖0 ≤
‖x̃− x∗‖0 − 2.

Proof. Recall the classification of projbin P from Lemma 4.5. Since the 0/1 point
x̃ does not belong to projbin P , we cannot have projbin P = [0, 1]n. Let us consider
the other possible cases and understand the relations ax∗ � c and ax̃ ≷ c that come
from the assumption on these points.

If projbin P is in the “less-than-or-equal” case, i.e., projbin = {x ∈ [0, 1]n : ax≤ c},
then we have ax∗ ≤ c and ax̃ > c; if we are in the “greater-than-or-equal” case
projbin = {x ∈ [0, 1]n : ax ≥ c}, then ax∗ ≥ c and ax̃ < c; finally, if we are in the
“equality” case projbin = {x ∈ [0, 1]n : ax = c}, we have ax∗ = c and ax̃ �= c. There-
fore, to consider all these cases together, we can just consider ax∗ � c and ax̃ � c,
where “≺” is either of the strict relations “<” or “>,” “�” is the opposite relation,
and “�” is the predicate [≺ or =].

Define χ = x̃− x∗; so identifying x̃ and x∗ with the corresponding sets they indi-
cate, χi = 1 if i belongs to x̃ but not x∗, χi = −1 if i belongs to x∗ but not x̃, and 0
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otherwise. Thus, to construct an x̃′ that is closer to x∗ than x̃, we will subtract from
x̃ one or two terms χi’s.

Since

0 ≺ ax̃− c ≺ a(x̃− x∗) =
∑
i

aiχi,(5)

there is at least one index where aiχi � 0; we break into two cases depending on how
�-big such a value can be.

Case 1: There is index j such that χjaj � 0 and χjaj � ax̃ − c. Then define
x̃′ = x̃ − χje

j. It is clear that this point satisfies items 1 and 2 of the lemma, so we
focus on item 3. For that, we will construct a candidate u for the �1-projection onto
projbin P that satisfies ‖u− x̃‖1 < 1

2 .
Since AltProj(x̃) = x̃, Lemma 4.7 implies ‖�1-proj(x̃)− x̃‖1 ≤ 1

2 . Also, by Lemma
4.5 �1-proj(x̃) has exactly one fractional coordinate, say, coordinate k (if �1-proj(x̃)
has no fractional coordinates, then x̃ = round(�1-proj(x̃)) = �1-proj(x̃) and so x̃ ∈
projbin P , contradicting its definition); together these imply that x̃−�1-proj(x̃) = αek

for some α ∈ [−1/2, 1/2].
We claim that the coordinates k and j are different. To see this, notice that

ax̃− c = a(x̃− �1-proj(x̃)) = αak,

and since |α| ≤ 1
2 this implies that |ak| ≥ 2|ax̃ − c|; by the definition of j, this is

strictly greater than |aj |, and thus j �= k.
So define the point u = x̃′ − βαek for some β such that au = c; notice that such

β exists and belongs to the interval (0, 1), since at the bounds of this interval we get
(using the definition of j)

ax̃′ = a(x̃− χje
j) = ax̃− aj � c

and
a(x̃′ − αek) = a(�1-proj(x̃)− χje

j) = c− aj ≺ c,

and since a(x̃′ − βαek) is continuous on β (so we can use the intermediate value
theorem).

Notice that u ∈ projbin P : by construction au = c, ui ∈ [0, 1] for all i �= k (be-
cause ui = x̃′

i and the right-hand side belongs to {0, 1}), and also uk ∈ [0, 1] (because
we have the convex combination

uk = (1− β)x̃′
k + β(x̃′ − α) = (1− β)x̃k + β(x̃k − α)

and the terms x̃k and x̃k − α = �1-proj(x̃)k belong to [0, 1]). Thus, u is indeed a
candidate for �1-projection onto projbin P and, hence,

‖�1-proj(x̃′)− x̃′‖1 ≤ ‖u− x̃′‖1 = β|α| < 1

2
.

Case 2: There is an index j with ajχj � 0 and ajχj � ax̃ − c. Given this hy-
pothesis, there must be also an index k such that akχk ≺ 0, since from (5) we have
that

∑
i aiχi � ax̃− c. To construct the vectors x̃′ and u, consider the 2-dimensional

system on variables α, β,

ax̃− α ajχj − β akχk = c,

α, β ∈ [0, 1].
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This system is feasible, since setting (α, β) = (0, 0) we obtain ax̃ � c and setting
(α, β) = (1, 0) we obtain ax̃ − ajχj ≺ c (and as before we have continuity on α); in
fact, this argument shows that there is a solution on the semiopen box (0, 1)× [0, 1].
Moreover, because the terms ajχj � 0 and akχk ≺ 0 have opposite signs, the line
{(α, β) ∈ R

2 : ax̃ − αajχj − β akχk = c} (or more precisely the function β = β(α)
it represents) has positive slope, and thus intersects the box [1, 0]2 in either the line
{1}× [0, 1] or the line [0, 1]×{1}. Thus, there is a solution (ᾱ, β̄) to the system where
at least one of ᾱ or β̄ equals 1.

Now define (α̃, β̃) = round((ᾱ, β̄)), where again we round 1
2 to 1. Then define

u = x̃ − ᾱχje
j − β̄χke

k and x̃′ = x̃ − α̃χje
j − β̃χke

k. Clearly x̃′ satisfies item 1 of
the lemma: ‖x̃′ − x̃‖0 ≤ 2. Also, as before u is a candidate for �1-projection onto
projbin P , which gives the �1 bound

‖�1-proj(x̃′)− x̃′‖1 ≤ ‖u− x̃′‖1 = ‖(ᾱ, β̄)− (α̃, β̃)‖1.(6)

Recall at least one of ᾱ or β̄ equals 1;
• if the other one equals any value different from 1

2 , the right-hand side of (6)
is strictly less than 1

2 (so item 3 of the lemma is satisfied) and we still have

‖x̃′ − x∗‖0 ≤ ‖x̃− x∗‖0 − 1 (because at least one of α̃ or β̃ equals 1);
• if instead the other one equals 1

2 , then the right-hand side of (6) equals 1
2 but

both α̃ and β̃ equal 1, thus ‖x̃′ − x∗‖0 ≤ ‖x̃− x∗‖0 − 2.
This concludes the proof.

Now take the point x̃′ closer to x∗ than x̃ constructed in the previous lemma
and consider the effect of applying AltProj∗ to x̃′. We would like to obtain that the
final point AltProj(x̃′) is still closer to x∗ than where we began, i.e., we would like
‖AltProj∗(x̃′) − x∗‖0 ≤ ‖x̃ − x∗‖0 − 1. If AltProj∗(x̃′) = x̃′ this is clearly true, but
if this does not happen we know (for instance, from Lemma 4.6) that the repeated
application of AltProj can only coordinatewise increase the vector x̃′. Thus, if we
compare the final vector AltProj∗(x̃′) with a maximal feasible solution x∗ there is
a chance that these applications of AltProj did not take us further from x∗. In
order to make this very crude intuition precise we need to use the finer control on
the effect of AltProj given by Lemma 4.10 and the extra slack in the guarantee
‖x̃′ − x∗‖0 ≤ ‖x̃− x∗‖0 − 2 of the lemma above when ‖�1-proj(x̃′)− x̃′‖1 = 1

2 .

Lemma 4.12. Let x∗ be a coordinatewise maximal solution in {0, 1}n∩ projbin P .
Consider any point x̃ ∈ {0, 1}n \ projbin P satisfying AltProj∗(x̃) = x̃, and let x̃′ ∈
{0, 1}n be a point constructed in Lemma 4.11 with respect to x∗ and x̃. Then
‖AltProj∗(x̃′)− x∗‖0 ≤ ‖x̃− x∗‖0 − 1.

Proof. If AltProj(x̃′) = x̃′ then the the result holds, since by definition
‖x̃′−x∗‖0 ≤ ‖x̃−x∗‖0−1. So suppose AltProj(x̃′) �= x̃′; since ‖�1-proj(x̃′)− x̃′‖1 ≤ 1

2
and Lemma 4.6 precludes this inequality holds strictly, we have ‖�1-proj(x̃′)−x̃′‖1 = 1

2 .
Thus, we get that stronger guarantee in Lemma 4.11 that ‖x̃′−x∗‖0 ≤ ‖x̃−x∗‖0− 2.

Now let k be the smallest such that AltProjk(x̃′) = AltProj∗(x̃′), which exists
from Corollary 4.8; so we want to show ‖wk − x∗‖0 ≤ ‖x̃ − x∗‖0 − 1. To simplify
the notation, let wt � AltProjt(x̃′) for t = 0, 1, . . . , k. From Lemma 4.7 we have
that ‖�1-proj(wt) − wt‖1 ≤ 1

2 for all t’s. Then the characterization of sequences of
AltProj’s of Lemma 4.10 give that there are indices i1, . . . , ik such that

wt−1 + eit = wt, t = 1, 2, . . . , k,
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and that satisfy the alternating relation ait = −ait+1 for all t = 1, 2, . . . , k − 1. Thus,
the sequence (ait)t only contains the values v and −v for some v ∈ R.

Notice that since the it’s do not belong to the support of w0, we see (for instance,
by induction) that

‖wk − x∗‖0 = ‖w0 − x∗‖0 − [# t’s with it ∈ supp(x∗)] + [# t’s with it /∈ supp(x∗)].
(7)

But notice that the values v and −v cannot both be outside supp(x∗), i.e., there
are no indices i, j /∈ supp(x∗) with ai = v and aj = −v, otherwise, we could add
them to x∗ (i.e., consider x∗ + ei + ej) and obtain a coordinatewise larger point in
{0, 1}n∩projbin P , contradicting the maximality of x∗. Thus, we obtain that roughly
at most half of the it’s that belong are outside supp(x∗):

# t’s with it /∈ supp(x∗) ≤
⌈
k

2

⌉

(and the rest of the it’s belong to supp(x∗)). Employing these bounds on (7) we get

‖wk − x∗‖0 ≤ ‖w0 − x∗‖0 −
⌊
k

2

⌋
+

⌈
k

2

⌉
≤ ‖w0 − x∗‖0 + 1.

But as mentioned in the beginning of the proof ‖w0 − x∗‖0 = ‖x̃′ − x∗‖0 is at most
‖x̃− x∗‖0 − 2; thus, ‖wk − x∗‖0 ≤ ‖x̃− x∗‖0 − 1, which concludes the proof.

Now going back to algorithm WFP-Compressed. Notice that since z̃τ is obtained
from AltProj∗(.), it satisfies the fixed point condition AltProj(z̃τ ) = z̃τ . Thus, as
long as z̃τ does not belong to projbin P we can apply the above lemma to obtain that,
with probability at least 1

n2 , the procedure RandWalkSAT2 will flip coordinates of
z̃τ in a way that z̃τ+1 = AltProj∗(RandWalkSAT2(z̃

τ )) is closer to x∗ in �0 than
the previous iterate z̃τ .

Corollary 4.13. Let x∗ be a coordinatewise maximal point in {0, 1}n∩projbin P .
Then

Pr
(
‖z̃τ+1 − x∗‖0 ≤ ‖z̃τ − x∗‖0 − 1

∣∣∣ z̃τ /∈ P
)
≥ 1

n2
.

Now we can conclude the proof of Theorem 4.4 arguing just like in the proof of
Theorem 3.4.

Proof of Theorem 4.4. We bound the number of iterations of algorithm WFP-
Compressed first. Fix T ≥ 1 and let T ′ = T/(n+ 1).

Let x∗ be a coordinatewise maximal point in {0, 1}n ∩ projbin P , and let Zτ =
‖z̃τ − x∗‖0. Notice that Zτ = 0 implies z̃τ = x∗ and hence z̃τ ∈ P , which implies
that the algorithm stops. Corollary 4.13 gives that Pr(Zτ+1 ≤ Zτ −1 | z̃τ /∈ P ) ≥ 1

n2 .
Therefore, if we start at iteration τ and for all the next Zτ iterations either the iterate
z̃τ ′

belongs to P or the algorithm reduces Zτ ′ , it terminates by time τ + Zτ . Thus,
with probability at least (1/n2)Zτ ≥ (1/n2)n = p the algorithm terminates by time
τ +Zτ ≤ τ + n.

Now let α = �T ′/n
 and call time steps i · n, . . . , (i + 1) · n− 1 the ith block of
time. From the above paragraph, the probability that there is τ in the ith block of
time such that z̃τ ∈ P conditioned on z̃i·n−1 /∈ P is at least p. Using the chain rule
of probability gives that the probability that there is no z̃τ ∈ P within any of the
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α blocks is at most (1 − p)α. This shows that with probability at least 1− (1 − p)α

algorithm WFP-Compressed terminates after at most T ′ iterations.
Moreover, since from Corollary 4.8 we have that AltProjn+1(x̃) = AltProj∗(x̃), it

follows from inequality (4) that the original algorithm WFP terminates in at most
T ′ ·(n+1) = T iterations with probability at least 1−(1−p)α = 1−(1−p)�T/(n(n+1))�.
This concludes the proof.

4.2. Proof of Theorem 2.4. Fix a decomposable 1-row set P and let Pi denote
its ith block, so P = P1 × P2 × · · · × Pk. Consider the execution of algorithm WFP

over P , and let x̃t ∈ {0, 1}n1+···+nk be the iterate produced by WFP at the end
of iteration t. Let proji : Rn1+···+nk → R

ni denote the canonical projection to the
coordinates corresponding to the ith block of P (so proji x̃

t is the binary part of a
tentative solution for the ith block).

As in the proof of Theorem 3.3, from Lemma 3.5 we have that, for each scenario,
each application of RandWalkSAT� acts on only one block of P , namely, the Pi con-
taining the inequality comprising the minimal projected certificate used. If operator
RandWalkSAT� is invoked in iteration t of WFP, let Jt ∈ [k] denote the (random)
index i of the block this operator acts on (we leave Jt undefined if this operator is
not invoked).

Now for a block i, we define the (random) set of iterations where WFP modifies
the ith block iterate proji x̃

t:

Ii = {t ≥ 1 : proji x̃
t �= proji x̃

t−1}.

Consider a block i. Now we claim that the sequence (proji x̃
t)t∈Ii∪{0} has the same

distribution as the sequence of binary iterates obtained by applying WFP to the block
Pi alone. More precisely, as we defined x̃t, let w̃t ∈ {0, 1}ni be the iterate at the end
of iteration t when we apply WFP to the block Pi with starting point w̃0 = proji x̃

0

(notice we used the letter w to replace the letter x used in the description of WFP).
To avoid ambiguity, we use WFPP to refer to the execution of the algorithm over P
and and WFPPi to refer to the execution of the algorithm over Pi.

Lemma 4.14. The sequences (proji x̃
t)t∈Ii∪{0} and (w̃t)t≥0 have the same distri-

bution.

Proof. Before we start, notice that each iteration of algorithm WFP over P is ei-
ther an application of AltProjP or an application of AltProjP followed by
RandWalkSAT� (the subscript P in AltProjP makes explicit to which set the �1-
projection is happening). Moreover, because of the decomposability of the instance,
the operator AltProj commutes with the projection proji:

proji ◦AltProjP = AltProjPi
◦ proji .

Now we start comparing the sequences (proji x̃
t)t∈Ii∪{0} and (w̃t)t≥0 using a

coupling argument. The idea is to show that if at some point both sequences have the
same iterate, then the next items of both sequences have the same distribution, which
can then be coupled to continue this process (see [Tho00] for a formal presentation of
this coupling argument).

We proceed by induction. By definition both sequences have the same starting
point. Now consider the jth smallest index in Ii, denoted by tj , and assume by
induction that proji x̃

tj and w̃j have the same distribution; we couple them so as to
have proji x̃

tj = w̃j .
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If proji(x̃
tj ) belongs to projbin Pi, then WFPP will not change this part of the

iterate anymore and RandWalkSAT� is not invoked in the ith block anymore (since
the constraint in the ith block is satisfied it cannot be used in the minimal certificate).
In this case, tj is the last index in Ii, i.e., x̃

tj is the last item of the sequence of iterates.
Since proji x̃

tj = w̃j , the same holds for w̃t. Thus, there is no inductive step to be
proved in this case.

Now suppose proji(x̃
tj ) /∈ projbin Pi. We have two cases.

Case 1: AltProjPi
(proji(x̃

tj )) �= proji x̃
tj . Then notice AltProjP (x̃

tj ) �= x̃tj ,
since

proji AltProjP (x̃
tj ) = AltProjPi

(proji(x̃
tj )) �= proji x̃

tj .

Thus, WFPP changes the iterate in the iteration tj+1 and, hence, the next index in Ii
is tj+1 = tj +1. Moreover, because of this change, the operator RandWalkSAT� is
not invoked in this iteration of WFPP and thus x̃tj+1 = AltProjP (x̃

tj ), which implies
that in the ith block proji x̃

tj+1 = AltProjPi
(proji x̃

tj ). The same observations hold
for WFPPi , so

w̃t+1 = AltProjPi
w̃t = AltProjPi

(proji x̃
tj ) = proji x̃

tj+1 ,

proving the inductive step in this case.
Case 2: AltProjPi

(proji(x̃
tj )) = proji x̃

tj . Because of this fixed-point prop-
erty, the iterate proji x̃

τ remains the same for τ ∈ {tj , . . . , tj+1 − 1}. Moreover,
since tj+1 ∈ Ii we have the iterate x̃tj+1 is different from x̃tj ; again because of
the fixed-point property, it implies that at iteration tj+1 the algorithm WFPP in-
vokes RandWalkSAT� on block i. Thus, the iterate proji x̃

tj+1 is obtained by
applying RandWalkSAT� to proji x̃

tj with the constraint of Pi as minimal pro-
jected certificate. For the same reason, algorithm WFPPi obtains w̃t+1 by applying
RandWalkSAT� to w̃t with the constraint of Pi as the minimal projected certificate.
Since the initial points proji x̃

tj = w̃t are the same, it follows that proji x̃
tj+1 and

w̃t+1 have the same distribution. This concludes the inductive step in this case, and
thus the proof.

Using Theorem 4.4, with probability at least 1− δ
k , algorithm WFPPi performs

at most (ni(ni + 1) · 22ni logni · �ln(k/δ)�) iterations and, hence, by the equivalence
from the above lemma this provides an upper bound on the length of the sequence
(proji x̃

t)t∈Ii∪{0} or, equivalently, on the size of Ii. Employing a union bound, with
probability at least 1− δ we have that

k∑
i=1

|Ii| ≤ �ln(k/δ)�
k∑

i=1

ni(ni + 1) · 22ni logni .

Since every iteration of algorithm WFPP is accounted for in one of the sets Ii, this
upper bounds the number of iterations of the algorithm. This concludes the proof of
Theorem 2.4.

5. Computations. In this section, we describe the algorithms that we have im-
plemented and report computational experiments comparing the performance of the
original Feasibility Pump 2.0 algorithm from [FS09], which we denote by FP in the
tables, to our modified code that uses the new perturbation procedure. The code is
based on the current version of the Feasibility Pump 2.0 code (the one available on
the NEOS servers), which is implemented in C++ and linked to IBM ILOG CPLEX
12.6.3 [ILO] for preprocessing and solving LPs. All features such as constraint prop-
agation which are part of the Feasibility Pump 2.0 code have been left unchanged.
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All algorithms have been run on a cluster of identical machines, each equipped
with an Intel Xeon CPU E5-2623 V3 running at 3.0GHz and 16 GB of RAM. Each
run had a time limit of half an hour.

5.1. WalkSAT-based perturbation. In preliminary tests, we implemented
the algorithm WFP (with � = 4) as described in the previous section. However, its
performance was not competitive with Feasibility Pump. In hindsight, this can be
justified by the following reasons:

• Picking a fixed � can be tricky. Too small or too big a value can lead to slow
convergence in practical implementations.
• Using RandWalkSAT� at each perturbation step can be overkill, as in most
cases the original perturbation scheme does just fine.
• Computing the minimal certificate can be too expensive, as it requires solving
LPs.

For the reasons above, we devised a more conservative implementation of a pertur-
bation procedure inspired by WalkSAT, which we denote by WFPb. The algorithm
works as follows. Let F ⊂ [n] be the set of indices with positive fractionality |x̃j− x̄j |.
If TT ≤ |F |, then the perturbation procedure is just the original one in FP. Else, let
S be the union of the supports of the constraints that are not satisfied by the current
point (x̃, ȳ). We select the |F | indices with largest fractionality |x̃j − x̄j | and select
uniformly at random min{|S|,TT− |F |} indices from S, and flip the values in x̃ for
all the selected indices.

Note also that the above procedure applies only to the case in which a cycle of
length one is detected. In the case of a longer cycle, we use the very same restart
strategy of Feasibility Pump.

5.2. Computational results. We tested the three algorithms (Feasibility Pump,
WFP, and WFPb) on two classes of models: two-stage stochastic models and the
MIPLIB 2010 dataset.

Two-stage stochastic models. In order to validate the hypothesis suggested by the
theoretical results that our walkSAT-based perturbation should work well on almost-
decomposable models, we compared the algorithms on two-stage stochastic models.
These are the deterministic equivalents of two-stage stochastic programs and have the
form

Ax+Diyi ≤ ci, i ∈ {1, . . . , k},
x ∈ {0, 1}p,
yi ∈ {0, 1}q, i ∈ {1, . . . , k}.

The variables x are the first-stage variables, and yi are the second-stage variables
for the ith scenario. Notice that these second-stage variables are different for each
scenario, and are only coupled through the first-stage variables x. Thus, as long as the
number of scenarios is reasonably large compared to the dimensions of x, y1, . . . , yk,
these problems are to some extent almost-decomposable.

For our experiments we randomly generated instances of this form as follows:
(1) the entries in A and the Di’s are independently and uniformly sampled from
{−10, . . . , 10}; (2) to guarantee feasibility, a 0/1 point is sampled uniformly at random
from {0, 1}p+k·q and the right-hand sides ci are set to be the smallest ones that make
this point feasible. We generated 150 instances, 15 for each setting of parameters
k ∈ {10, 20, 30, 40, 50} and p ∈ {10, 20} (q is always set equal to p).
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We compared the three algorithms over these instances using ten different random
seeds. First, we aggregated the results based on the value of k. The results are
reported in Table 1. In the tables, #found denotes the number of models for which
a feasible solution was found, while time and itr. report the shifted geometric
means [Ach07] of running times and iterations (with shifts of 1 s and 10 iterations),
respectively. Column pgap reports the average primal gap of solutions found w.r.t.
the best known solutions. For WFPb, we also report in column wpertQ the average
percentage of WalkSAT-based perturbations. For completeness we also report in
column solver the time CPLEXwith default parameters took to solve the instances to
optimality, though we believe the most relevant comparisons are between the different
Feasibility Pump-type algorithms.

Table 1

Aggregated results by k on two-stage stochastic models.

# found itr. time (s) pgap wpertQ solver (s)

k FP WFPb WFP FP WFPb WFP FP WFPb WFP FP WFPb WFP WFPb

10 177 227 187 159 99 157 1.05 0.68 1.02 36% 20% 33% 16% 0.67
20 155 205 161 294 176 286 2.24 1.63 2.19 50% 39% 49% 30% 1.85
30 167 220 180 306 197 284 2.94 2.26 2.79 47% 36% 43% 34% 2.57
40 160 177 158 249 213 246 3.66 3.32 3.63 47% 43% 48% 18% 3.85
50 138 159 141 364 278 325 4.93 4.66 4.75 52% 48% 51% 23% 4.31

Then we aggregated the results based on seed. The corresponding results are
reported in Table 2, where the last row provides average figures across seeds.

Table 2

Aggregated results by seed on two-stage stochastic models.

# found itr. time (s) pgap wpertQ solver (s)

seed FP WFPb WFP FP WFPb WFP FP WFPb WFP FP WFPb WFP WFPb

1 81 96 81 266 198 250 2.76 2.35 2.65 47% 39% 45% 22% 2.40
2 81 101 84 257 167 254 2.71 2.11 2.72 45% 36% 45% 26% 2.49
3 79 93 80 279 194 247 2.86 2.41 2.68 48% 40% 47% 25% 2.39
4 81 106 81 275 181 257 2.81 2.26 2.72 45% 35% 46% 23% 2.41
5 83 103 84 253 178 255 2.69 2.15 2.69 45% 35% 44% 25% 2.39
6 76 101 82 255 185 246 2.72 2.20 2.63 49% 37% 45% 27% 2.44
7 78 94 81 277 198 264 2.84 2.43 2.75 47% 39% 47% 27% 2.37
8 80 99 88 256 175 249 2.71 2.21 2.65 47% 37% 43% 25% 2.45
9 78 97 80 276 192 259 2.79 2.36 2.79 48% 37% 46% 26% 2.40
10 80 98 86 274 185 256 2.86 2.24 2.65 47% 38% 43% 24% 2.49

Avg. 80 99 83 267 185 254 2.78 2.27 2.69 47% 37% 45% 25% 2.42

On this testbed of models, both WFP and WFPb outperform Feasibility Pump;
the first does so only marginally, while WFPb significantly improves over Feasibility
Pump and across all performance measures. Notice that being a pure-integer testbed,
WFP is not slowed down by the need of solving LPs to compute minimal certificates;
still, the strategy of always using the WalkSAT-based perturbation is too aggressive
and does not pay off as nicely as the strategy in WFPb. The current results do not
show a different relationship between number of iterations and k among the different
methods, as could be indicated from our theoretical findings. However, this is not
surprising, as all methods either find a feasible solution or hit the time limit well
before the theoretical worst case limits.
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MIPLIB 2010. We also compared the algorithms on the whole MIPLIB 2010
[KAA+11], a testbed of 358 models. Again we compared the three algorithms using
ten different random seeds. A seed by seed comparison is reported in Table 3.

Table 3

Aggregated results by seed on MIPLIB 2010.

# found itr. time (s) pgap wpertQ

seed FP WFPb WFP FP WFPb WFP FP WFPb WFP FP WFPb WFP WFPb

1 279 280 272 43 43 55 8.24 8.32 9.88 48% 48% 50% 29%
2 279 279 275 44 44 56 8.40 8.33 10.03 50% 50% 52% 22%
3 277 285 270 43 41 55 8.32 8.02 9.80 48% 47% 50% 33%
4 280 282 271 42 41 53 8.07 7.89 9.38 48% 48% 51% 25%
5 276 277 271 42 41 54 8.26 8.21 9.82 51% 51% 52% 27%
6 277 278 270 43 42 55 8.29 8.13 9.76 50% 50% 52% 32%
7 278 281 274 43 41 53 8.17 8.04 9.65 50% 49% 51% 26%
8 273 277 269 43 43 52 8.16 8.07 9.15 49% 48% 51% 31%
9 282 282 275 42 41 52 8.13 7.95 9.48 49% 49% 52% 27%
10 278 282 275 42 40 53 8.33 8.02 9.79 50% 49% 52% 31%

Avg. 278 280 272 43 42 54 8.24 8.10 9.67 49% 49% 51% 28%

The improvement in this heterogeneous testbed is less dramatic than in the two-
stage stochastic models. In this case, WFP performs consistently worst than Feasi-
bility Pump, according to all measures. On the other hand, WFPb still consistently
dominates Feasibility Pump, albeit by a very small margin: it can find more solutions
in 8 out 10 cases (in the remaining 2 cases it is a tie), taking a comparable number of
iterations and computing time. Solution quality, as measured by the average primal
gap, is also not negatively affected by the proposed change.

Finally, we also recomputed aggregated results filtering out all instances on which
all methods could find a feasible solution in less than 10 iterations. A seed by seed
comparison on this restricted testbed of harder instances is reported in Table 4. The
results therein are consistent with those of the complete testbed.

Table 4

Aggregated results by seed on hard models from MIPLIB 2010.

# found itr. time (s) pgap wpertQ

seed FP WFPb WFP FP WFPb WFP FP WFPb WFP FP WFPb WFP WFPb

1 119 120 112 191 194 281 17.76 18.09 23.78 47% 47% 52% 21%
2 119 119 115 202 200 286 18.34 18.09 24.21 48% 48% 51% 15%
3 118 125 110 194 179 280 17.93 16.92 23.39 48% 46% 51% 26%
4 120 122 111 185 177 268 17.41 16.78 22.77 46% 47% 51% 23%
5 116 117 111 188 183 276 17.09 16.90 23.04 49% 48% 51% 23%
6 117 118 110 190 186 276 17.85 17.23 23.22 50% 49% 53% 23%
7 118 121 114 191 180 263 17.50 17.03 22.83 48% 47% 50% 17%
8 113 117 109 196 193 261 17.75 17.42 21.68 50% 48% 52% 27%
9 122 122 115 189 179 255 17.23 16.60 22.00 48% 48% 51% 20%
10 118 122 115 189 174 265 17.36 16.21 22.61 47% 46% 50% 26%

Avg. 118 120 112 191 185 271 17.62 17.13 22.95 48% 47% 51% 22%

In conclusion, given that the suggested modification is very simple to implement,
and appears to dominate Feasibility Pump consistently, it suggests it is a good idea
to add it as a feature in all future Feasibility Pump codes.
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Appendix A. Original feasibility pump stalls even when flipping vari-
ables with zero fractionality is allowed. In section 2 we showed that the original
Feasibility Pump without restarts may stall; we now show that this is still the case
even if variables with zero fractionality can be flipped in the perturbation step.

Let TT, the number of variables to be flipped, be randomly selected from the set
[t, T ] ∩ Z, where T ∈ Z++ is a predetermined constant in the Feasibility Pump code
(independent of the instance). Moreover assume the reasonable convention that for
two variables with equal fractionality, we break ties using their index number, that
is, if the xi and xj have the same fractionality and i < j, then xi is picked before xj

to be flipped.
Consider the following subset-sum problem:

max xT+2

s.t. 5x1 + · · ·+ 5xT+1 + 2xT+2 = 5T + 5,

xi ∈ {0, 1} ∀ i ∈ [T + 2].

Clearly the LP optimal solution x̄0 is of the form x̄0
T+2 = 1, x̄0

i = 3
5 for some

i ∈ [T + 1] and x̄0
j = 1 for all j ∈ [T + 1] \ {i}. Rounding this we obtain x̃0, that is,

the all 1’s vector. It is also straightforward to verify that x̃0 is a stalling solution (i.e.,
AltProj(x̃0) = x̃0). So that algorithm randomly selects TT from the set [t, T ]∩Z and
flips TT variables. Note that only one variable xi (with i ∈ [T + 1]) has fractionality
| 35−1| and all other variables have fractionality 0. So using the convention for breaking
ties, we flip xi and TT− 1 other variables. Let S be the set of flipped variables and,
since TT ≤ T < T + 1, the variable xT+2 is not flipped. Thus, the point x̃ obtained
after slipping has x̃T+2 = 1, x̃j = 0 for j ∈ S, and x̃j = 1 for j ∈ [T + 1] \ S.

First note that x̃ is not a feasible solution since x̃T+2 = 1. Moreover,
1. if S = ∅, then x̃ is again the stalling point x̃0;
2. if S �= ∅, then 5x̃1 + · · · + 5x̃T+1 + 2x̃T+2 < 5T + 5 and after projecting to

the LP relaxation we obtain a point of the form of x̄0 (i.e., exactly one of the
coordinates i ∈ [T + 1] equals 3

5 , all others equal 1). Rounding this solution
again gives us the stalling point x̃0.

Thus, the algorithm simply keeps revisiting the same 0/1 point x̃0. This completes
the proof of the claim.

Appendix B. Proof of Theorem 4.3.

Lemma B.1. Suppose that the following is a sequence of points visited by Feasi-
bility Pump (without any randomization):

(x̄1, ȳ1)→ (x̃1, ȳ1)→ (x̄2, ȳ2)→ (x̃2, ȳ2),

where (x̄i, ȳi), i ∈ {1, 2} are the vertices of the LP relaxation P , x̃i, i ∈ {1, 2}, are
0/1 vectors, x̃i = round(x̄i), and (x̄2, ȳ2) = �1-proj(P, x̃

1). Then,

‖x̄1 − x̃1‖1 ≥ ‖x̄2 − x̃1‖1 ≥ ‖x̄2 − x̃2‖1.
Proof. This result holds due to the fact that we are sequentially projecting using

the same norm. In particular, we have that

‖x̄1 − x̃1‖1 ≥ ‖x̄2 − x̃1‖1,
since (x̄2, ȳ2) = �1-proj(P, x̃

1), i.e., x̄2 is a closest point in �1-norm to x̃1 in the
projection of the LP relaxation in the x-space. Then

‖x̄2 − x̃1‖1 ≥ ‖x̄2 − x̃2‖1,
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since x̃1 and x̃2 are both integer points and x̃2 is obtained by rounding x̄2 (and a
rounded point is a closest integer point in �1 norm).

A long cycle in Feasibility Pump is a sequence

(x̄1, ȳ1)→ (x̃1, ȳ1)→ (x̄2, ȳ2)→ (x̃2, ȳ2)→ · · · → (x̄k, ȳk)→ (x̃k, ȳk),

where
1. (x̄i, ȳi), i ∈ {1, 2, . . . , k}, are the vertices of the LP relaxation P , x̃i, i ∈
{1, 2, . . . , k}, are 0-1 vectors, x̃i =round(x̄i), and (x̄i+1, ȳi+1) = �1-proj(P, x̃

i);
2. x̃1, x̃2, . . . , x̃k−1 are unique integer vectors;
3. x̄1 = x̄k, x̃1 = x̃k; and
4. k ≥ 3.

The statement of Theorem 4.3 is that such a scenario cannot occur, assuming 0.5 is
always rounded consistently.

Proof of Theorem 4.3. Without loss of generality, we assume that 0.5 is rounded
up to the value 1. By contradiction, consider a long cycle as described above. We claim
that for all i we have the coordinatewise domination x̃i+1 ≥ x̃i, which contradicts this
long cycle.

To show this domination, first notice that by Lemma B.1 the sequence of �1 gaps
‖x̄i − x̃i‖1 is nondecreasing, and because of the cycle we have that the first and last
terms of this sequence are the same; thus, all these gaps are the same. Hence, Lemma
B.1 becomes equality: we have

‖x̄i − x̃i‖1 = ‖x̄i+1 − x̃i‖1 = ‖x̄i+1 − x̃i+1‖1
for all i. Letting J denote the set of indices j, where x̃i

j �= x̃i+1
j , we can expand the

last displayed equality to get∑
j

|x̃i
j − x̄i+1

j | =
∑
j /∈J

|x̃i
j − x̄i+1

j |+
∑
j∈J

|x̃i+1
j − x̄i+1

j |

≡
∑
j∈J

|x̃i
j − x̄i+1

j | =
∑
j∈J

|x̃i+1
j − x̄i+1

j |.(8)

Consider an index j ∈ J . If x̃i
j = 0, and thus x̃i+1

j = 1, we have that x̄i+1
j ≥ 0.5 (since

x̃i+1
j = 1 was obtained from it by rounding) and thus |x̃i

j − x̄i+1
j | ≥ |x̃i+1

j − x̄i+1
j |.

Similarly, if x̃i
j = 1, and thus x̃i+1

j = 0, we have that x̄i+1
j < 0.5 and thus the strict

inequality |x̃i
j − x̄i+1

j | > |x̃i+1
j − x̄i+1

j |. In order to have the equality in (8) we thus

cannot have any index j ∈ J with x̃i
j = 1 and x̃i+1

j = 0. Therefore, we have the

domination x̃i+1 ≥ x̃i. This concludes the proof.
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