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The NOTCH signaling pathway is a conserved signaling cascade that regulates many 
aspects of development and homeostasis in multiple organ systems. Aberrant activity 
of this signaling pathway is linked to the initiation and progression of several hema-
tological malignancies, exemplified by T-cell acute lymphoblastic leukemia (T-ALL). 
Interestingly, frequent non-mutational activation of NOTCH1 signaling has recently been 
demonstrated in B-cell chronic lymphocytic leukemia (B-CLL), significantly extending 
the pathogenic significance of this pathway in B-CLL. Leukemia patients often present 
with high-blood cell counts, diffuse disease with infiltration of the bone marrow, second-
ary lymphoid organs, and diffusion to the central nervous system (CNS). Chemokines 
are chemotactic cytokines that regulate migration of cells between tissues and the 
positioning and interactions of cells within tissue. Homeostatic chemokines and their 
receptors have been implicated in regulating organ-specific infiltration, but may also 
directly and indirectly modulate tumor growth. Recently, oncogenic NOTCH1 has been 
shown to regulate infiltration of leukemic cells into the CNS hijacking the CC-chemokine 
ligand 19/CC-chemokine receptor 7 chemokine axis. In addition, a crucial role for the 
homing receptor axis CXC-chemokine ligand 12/CXC-chemokine receptor 4 has been 
demonstrated in leukemia maintenance and progression. Moreover, the CCL25/CCR9 
axis has been implicated in the homing of leukemic cells into the gut, particularly in the 
presence of phosphatase and tensin homolog tumor suppressor loss. In this review, we 
summarize the latest developments regarding the role of NOTCH signaling in regulating 
the chemotactic microenvironmental cues involved in the generation and progression of 
T-ALL and compare these findings to B-CLL.

Keywords: T-cell acute lymphoblastic leukemia, chemokines, CXC-chemokine receptor 4, stromal-derived 
factor-1, NOTCH, CXCR7, infiltration

iNTRODUCTiON

The NOTCH signaling cascade is an evolutionarily conserved signaling pathway that in mammals 
consists of a family of four transmembrane receptors (NOTCH1, NOTCH2, NOTCH3, and NOTCH4) 
(1) and five ligands of the Delta-Serrate-Lag family [jagged 1 (JAG1), JAG2, delta-like 1 (DLL1), 
DLL3 and DLL4] (2). This signaling system plays a crucial role in regulating development and tissue 
homeostasis (3). Given the important role played by NOTCH signaling in regulating key cellular 
traits such as differentiation, proliferation, and apoptosis, it is perhaps not surprising that deregula-
tion of NOTCH has been implicated in the pathogenesis of a variety of malignancies (4, 5). In this 
regard, the most firmly established evidence for altered NOTCH signaling in cancer is represented 
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by activating NOTCH1 receptor mutations found in over 50–60% 
of T-cell acute lymphoblastic leukemia (T-ALL) cases (6). In 
addition, 8–30% of T-ALLs harbor mutations in F-box and WD 
repeat domain containing 7 (FBXW7), a protein that normally 
promotes NOTCH1 ubiquitination and degradation, which lead 
to increased NOTCH1 protein stability (7, 8). Moreover, parac-
rine mechanisms that result in NOTCH1 or NOTCH3 signaling 
upregulation or rare mutations in NOTCH3 (9) could contribute 
to T-ALL. Further, aberrant expression of the NOTCH ligand, 
DLL4, may contribute to NOTCH1-driven leukemias (10). 
Thus, the majority of T-ALL cases have hyper-activation of the 
NOTCH signaling pathway. Interestingly, activating mutations 
affecting NOTCH1 are also present in 4–13% of B-cell chronic 
lymphocytic leukemia (B-CLL) cases (11, 12), and very recently 
frequent non-mutational NOTCH1 activation in B-CLL has also 
been reported, irrespective of NOTCH1 mutational status (13). 
However, differently from T-ALL, the specific role of NOTCH1 
signaling in the pathogenesis of B-CLL remains to be established. 
T-ALL is an aggressive hematological malignancy arising from 
the malignant transformation and subsequent clonal expansion 
of immature T-cell precursors. Clinically, T-ALL patients present 
with diffuse infiltration of the bone marrow (BM) by immature 
T-cell blasts, high-blood cell counts (hyperleukocytosis) with 
extramedullary infiltration of lymph nodes and other organs 
such as the central nervous system (CNS), and the presence 
of mediastinal masses (14). T-ALL may arise in the BM from 
thymus settling progenitors endowed with T-lineage potential 
or thymus resident T-cell precursor cells. These transformed 
T lymphoblasts under the influence of oncogenic NOTCH1 
activation and collaborating oncogenes spread infiltrating BM 
cavities and/or thymus with extensive disease already at time of 
diagnosis. In addition, leukemic cells invade other tissues such 
as liver, spleen, lymph nodes, and CNS. B-CLL, on the other 
hand, is a common hematological malignancy characterized by 
the clonal expansion of non-functional CD5+ B cells in the BM 
and lymph nodes (15). The putative normal counterparts of this 
disease, although debated, are considered naïve and memory 
B cells (16, 17). Interestingly, B-CLL cells in the lymph node are 
known to harbor frequent NOTCH1 activation independent of 
mutations (18) and recent findings have shown that NOTCH1 
is physiologically expressed and activated in the cells of origin 
of B-CLL (13). Additionally, approximately 50% of B-CLL cases 
without NOTCH1 mutations express the active form of NOTCH1 
ICN1 (intracellular portion of NOTCH1), bringing NOTCH1 
signaling to the forefront also in this disease.

Chemokines and their receptors, in particular so-called 
“homeostatic chemokines” which normally orchestrate leukocyte 
trafficking and homing during development, have been recently 
implicated in directing organ-specific metastasis (19, 20). 
Mechanistic insights on the trafficking of NOTCH-dependent 
leukemia cells to target organs are still ill-defined, however, 
recent reports have highlighted the importance of some homing 
receptors and their ligands (Figure 1) such as: (i) CC-chemokine 
ligand 19 (CCL19)/CC-chemokine receptor 7 (CCR7) (21); (ii) 
CXC-chemokine ligand 12 (CXCL12)/CXC-chemokine receptor 
4 (CXCR4) (22–24); and (iii) CCL25/CCR9 (25). As leukemic 
relapse remains a major cause of treatment failure in childhood 

ALL, with leukemic relapses directly linked to the survival of 
blasts in the BM and/or distant sites such as CNS, the identifica-
tion of targetable mechanisms behind this phenomenon are of 
clear impact.

DeReGULATiON OF NOTCH1 SiGNALiNG 
iN LYMPHOiD LeUKeMiAS

NOTCH alterations can be found in a broad spectrum of hemato-
logical tumors [reviewed in Ref. (26, 27)]. In particular, NOTCH1 
and to a lesser extent also NOTCH2, resulted the most frequently 
mutated. NOTCH1 is well known for its role as a master player in 
the pathogenesis of T-ALL as demonstrated by the high incidence 
of mutations in this disease (6). Most of these mutations cluster 
in the negative regulatory region (NRR), which prevents the 
extracellular receptor from being cleaved by the Disintegrin and 
metalloproteinase domain-containing protein 10 in the absence 
of ligand. These mutations mainly include missense substitutions 
or short insertions or deletions, which lead to receptor destabili-
zation and ligand-independent activation (28). Other mutations 
in NOTCH1 truncate the PEST [proline (P), glutamic acid (E), 
serine (S), threonine (T)-rich protein sequence] domain through 
non-sense or frameshift events that lead to premature STOP 
codons in the C-terminal portion of NOTCH1 and increase half-
life of ICN1. In addition, in a significant fraction of T-ALL cases, 
loss of function mutations or deletions in FBXW7 gene, an ubiq-
uitin ligase implicated in ICN1 turnover, contribute to activation 
of NOTCH1 signaling in this malignancy (7, 8). Importantly, in 
about 20% of T-ALL cases, NOTCH1 signaling results strongly 
activated by the cooperativity of both mechanisms because of 
dual mutations affecting the NRR and PEST regions of NOTCH1 
or the NRR domain together with the FBXW7 mutations (6–8). 
The importance of NOTCH1 mutations has also been extensively 
validated in murine mouse models of T-ALL. Forced expression 
of activated forms of Notch1 in murine hematopoietic progenitors 
determine T-ALL with a penetrance that depends on the strength 
of oncogenic Notch1 alleles (29, 30). In addition, numerous 
T-ALL mouse models showed Notch1 alterations as significant 
events in T-ALL progression (31, 32). In the context of NOTCH 
signaling, a role of Notch3 was also established with transgenic 
mice expressing ICN3 developing T-ALL with high penetrance, 
demonstrating a potential role for Notch3 in T-ALL (33). In 
addition, the human T-ALL cell line TALL1, which has wild-type 
Notch1 but is sensitive to γ-secretase inhibitors (GSI), carries an 
NRR mutation in NOTCH3 gene and shows ICN3 overexpression 
(9, 34). In T-ALL, the oncogenic function of NOTCH1 has been 
extensively studied and is linked to its capacity to regulate crucial 
signaling pathways and genes such as nuclear factor-κB (NF-κB), 
MYC, IGF-1R, and IL-7R all of which contribute to tumor growth 
and progression (35–39). NOTCH1 also regulates two families 
of transcriptional repressors Hes and Hey/Hers which in turn 
exert several downstream effects of NOTCH1 signaling. In par-
ticular, Hes1 sustains the phosphoinositide-3 kinase (PI3K)-AKT 
pathway and NF-κB activation through the direct suppression of 
phosphatase and tensin homolog (PTEN) and CYLD, respectively 
(40, 41). Moreover, Hes1 negatively regulates apoptosis of T-ALL 
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cells through the repression of the BBC3/Puma pro-apoptotic 
factor (42). In addition to the consolidated function of NOTCH1 
signaling in promoting anabolic processes and growth, NOTCH1 

has been found to regulate some chemokine receptors (CCR5, 
CCR7, and CCR9; see below) thus orchestrating cell migration in 
specific microenvironments (21, 43).
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FiGURe 1 | “Cellular highways” hijacked by leukemic cells implicated in T-cell acute lymphoblastic leukemia dissemination (many of the findings may also apply to 
B-cell chronic lymphocytic leukemia). Under physiological conditions, homeostatic chemokines control cellular migration by directing cells expressing specific 
chemokine receptors to appropriate locations expressing their cognate chemokine ligands. These cellular highways are also used by leukemic cells. In the brain, 
CC-chemokine ligand 19 (CCL19) and CXC-chemokine ligand 12 (CXCL12) recruit CC-chemokine receptor 7 (CCR7)- and CXC-chemokine receptor 4 (CXCR4)-
expressing leukemic cells from blood vessels. In the spleen, CCL19 recruits CCR7-expressing leukemic cells from blood vessels possibly in combination with 
CXCL12. Migrated leukemic cells may then activate an autocrine/paracrine secretion of CCL19. CCR7-expressing leukemic cells together with CD62L (not shown) 
and CXCR4, gain access to secondary lymphoid organs such as lymph nodes (shown) via interactions with CCL19, CCL21, peripheral lymph node vascular 
addressin (not shown) and CXCL12 presented on high-endothelial venules (HEV). Here, leukemic cells are retained, proliferate, and completely substitute the normal 
tissue architecture. In the bone marrow (BM), CXCR4-expressing leukemic cells are probably initially recruited to the perivascular niche expressing high levels 
CXCL12, where a leukemic niche is established. Inhibitors of the CXCL12/CXCR4 interaction release leukemic cells from their BM niche, and allow these cells to 
enter the blood stream. In the small intestine, CCR9-expressing leukemia cells (together with αEβ7 integrin) are recruited by CCL25, where the presence of 
phosphoinositide-3 kinase-AKT pathway activation contributes to confer a proliferative advantage to leukemic cells in an otherwise non-supportive 
microenvironment.
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As described above, NOTCH1 mutations have also been 
described in B-CLL (11, 12). Mutational activation of NOTCH1 
has been found in about 8% of B-CLL at diagnosis and at 
significantly higher frequency during disease progression 
toward Richter transformation (about 30%), as well as in 
chemo-refractory B-CLL (about 20%). Differently from T-ALL, 
NOTCH1 mutations clustered uniquely in the PEST domain and 
the 2-bp frameshift deletion (ΔCT7544–7545, P2515fs) is present 
in about 80% of cases, making it a potential target for screening 
and specific targeted therapies. Consistent with the association 
of NOTCH1 mutations with clinically aggressive forms of the 
disease, B-CLL with NOTCH1 mutations at diagnosis have a 
poor prognosis similar to B-CLL carrying TP53 disruption and 
NOTCH1 mutations and TP53 disruption tended to distribute in 
a mutually exclusive pattern (44). The functional role of NOTCH1 
mutations in B-CLL is not completely understood. A recent study 
showed that ICN1 is expressed in about 50% of peripheral blood 
B-CLL cases that present wild-type NOTCH1, suggesting that 
alternative mechanisms are involved in NOTCH1 activation in 
B-CLL (13). Moreover, independent from the mutational status, 
ICN1+ cases expressed a NOTCH1 gene signature and were 
sensitive to GSI. Notably, NOTCH1 regulated genes included 
those with a crucial role in the pathogenesis of B-CLL, including 
CCND3, BCL2, MCL1, BCR signaling pathway genes, and NF-κB 
pathway members.

CHeMOKiNeS AND CHeMOKiNe 
ReCePTORS

Chemokines are small, secreted cytokines with chemotactic 
properties that are best known for their capacity to mediate 
immune cell trafficking and lymphoid tissue homeostasis 
(45, 46). This subfamily of cytokines which comprise over 48 
ligands regulate cell trafficking and positioning by activating 20 
seven-transmembrane spanning G-protein-coupled chemokine 
receptors (GPCR). In addition, chemokines can also bind to non-
G-protein-coupled seven-transmembrane spanning receptors 
called atypical chemokine receptors (ACKR), which due to their 
incapacity to interact with Gi proteins are supposed to act mainly 
as decoy receptors, scavenging chemokines to help maintain 
chemokine gradients in tissues. Chemokines are subdivided into 
four classes based on the position of the first two cysteine (C) 
residues at their N-terminal protein sequence: CC-chemokines, 

CXC-chemokines, XC-chemokines, and CX3C-chemokines. The 
chemokine receptor nomenclature is based on the chemokine 
subclass specificity of the receptor, where L (ligand) is replaced 
by R (receptor) (47). There is an important degree of promiscuity 
in the chemokine superfamily, with numerous ligands binding 
different receptors and vice versa (46). Functionally, chemokines 
can be divided into “inflammatory” (induced upon inflamma-
tion) and “homeostatic” (constitutively expressed in specific 
tissues or cells) (48). Metaphorically, we can imagine our body as 
containing “cellular highways” regulated mainly by “homeostatic” 
chemokines and their receptors through which cells travel to reach 
specific locations within the body. In this system, chemokines 
can be envisioned as “traffic directors” responsible for sending 
cells expressing appropriate chemokine receptors to specific sites. 
Leukemia cells “hijack” this system to disseminate throughout 
the body and ensure their survival beyond the primary tumor 
site (19).

CXCL12/CXCR4–CXCR7 SiGNALiNG

The stromal cell-derived factor-1 (or CXCL12) initially thought 
to selectively interact with CXCR4, but now known to signal also 
through CXCR7 or ACKR3 (49), is widely expressed in numerous 
tissues and cells, including immature osteoblasts and endothelial 
cells (EC) within the BM, stromal cells in thymus, lungs, liver, 
brain, and lymph nodes. CXCR4 is also broadly expressed and is 
frequently overexpressed in cancer (50). Under homeostasis, the 
CXCL12/CXCR4 axis is crucial for the homing of hematopoietic 
progenitor cells (HPC) in the BM and their mobilization into the 
periphery (51). HPC reside in BM “niches” or specialized areas 
consisting of diverse cells regulating self-renewal, proliferation, 
and survival of HPC (52). At least two distinct BM niches have 
been identified, called “osteoblastic/endosteal” and “vascular” 
niches. In the hypoxic endosteal niche, osteoblasts lining the 
endosteum are responsible for HPC retention and quiescence 
maintenance through the intervention of numerous molecules 
including granulocyte colony-stimulating factor, bone mor-
phogenetic protein, JAG-1/NOTCH1, Angiopoietin-1/Tie2, 
and osteopontin signaling (53). The vascular niche, localized at 
the sinusoidal walls, which includes EC, regulates proliferation, 
differentiation, and mobilization of HPC by secreting stimula-
tory and inhibitory soluble factors (54). A third niche, formed 
by CXCL12-abundant reticular cells (CAR), is located in central 
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areas of the BM thus surrounding sinusoidal EC. These CAR cells, 
which comprise reticular Nestin+-mesenchymal stromal cells, as 
well as leptin receptor positive perivascular stromal cells (55, 56), 
are essential for the earliest stages of lymphoid development and 
express high levels of CXCL12, stem cell factor, interleukin-7, 
Angiopoietin-1, Fms-Related Tyrosine Kinase 3 Ligand, vascular 
cell adhesion molecule 1, and osteopontin (57–59). These reticu-
lar cells promote HPC retention and proliferation.

It is becoming increasingly evident that leukemic cells (and 
leukemic stem cells) actively interact with the BM microenviron-
ment to promote their proliferation and survival at the expense of 
normal hematopoiesis (60). Indeed, using a Notch-1-dependent 
mouse model it has been found that TALL cells suppress normal 
hematopoiesis through the remodeling of the BM microenviron-
ment by hijacking the proliferative vascular niche and repressing 
the endosteal/osteoblastic niche (61). The depletion of osteoblasts 
was due to the aberrant activation of Notch in these cells prob-
ably through Hes1-mediated repression of Runx2 transcriptional 
activity (61). This activation of Notch signaling in osteoblasts 
(possibly through increased expression of JAG1 or inflammatory 
cytokines) was associated with a reduced expression of CXCL12 
within the stem/perivascular niche. Ultimately, one could envision 
a feedback loop where leukemic T-cell blasts disrupt homeostatic 
stem/lymphoid niches leading to compromised hematopoiesis 
while promoting their own Notch-dependent outgrowth.

T-cell lineage cell production relies on the thymic colonization 
by BM-exported early progenitors (thymus-seeding progenitors) 
expressing P-selectin glycoprotein ligand-1 and the chemokine 
receptors CCR7, CCR9, CXCR4, and possibly CCR5 (62, 63). 
These cells enter the thymus at the cortico-medullary junction 
where they undergo T-cell development. In the thymus, CXCL12 
seems expressed throughout the cortex (64) by cortical thymic 
epithelial cells and together with the ligands for CCR7 (CCL21/
CCL19) and CCR9 (CCL25) (65) contribute to the gradients 
required for the step-wise migration of immature thymocytes 
through the cortex toward the medulla. It has been found that 
chemokine receptor expression is very dynamic during T-cell 
development, in fact CCR7 is downregulated during double nega-
tive (DN) stages such that pre-positive selection double positive 
(DP) thymocytes are CCR7−, while CD4 and CD8 single positive 
(SP) thymocytes generated after positive selection re-express 
CCR7 prior to entering the medulla for tolerance induction (64, 
66). On the other hand, DN and DP thymocytes express both 
CCR9 and CXCR4. The CXCL12/CXCR4 axis seems to have a 
role beyond acting as a retention signal that maintains DP thy-
mocytes in the cortex, as it critically impacts on the proliferation 
and survival of DN thymocytes during β-selection acting as a 
co-stimulator of the pre-T-cell receptor (67). Moreover, CXCL12 
may also act as a chemorepellent during the exit of mature SP 
cells from the thymus into the bloodstream, a process called 
chemofugetaxis (68). Recently, however, it has been suggested 
that following positive selection, CXCR4 high CCR9+CD69− DP 
cells downregulate CXCR4 to become CXCR4 low CCR9+ CD69+ 
DP cells and subsequently CD4+ and CD8+ SP cells with very 
low/undetectable CXCR4 surface expression. Thus, unlike for the 
DN thymic compartment, CXCR4 expression in DP cells may be 
dispensable for downstream αβ-T-cell development (64).

CXC-chemokine ligand 12 modulates cancer biology prin-
cipally through two mechanisms: (i) direct/autocrine effects 
promoting cancer cell growth, metastasis, and angiogenesis; (ii) 
by indirect/paracrine effects, including recruitment of CXCR4+ 
cancer cells to CXCL12-expressing organs (BM, liver, thymus, 
lymph nodes, brain, among others) or CXCR4-expressing stromal 
cells to tumor sites (69). CXCR4 is overexpressed in many human 
cancers (70), with numerous studies demonstrating differential 
expression patterns (nuclear, cytoplasmic, and membrane) which 
translated in differences in biological behavior of cancers (71). 
Thus, membrane and/or cytoplasmic CXCR4 promotes tumor 
cell proliferation and metastasis, while nuclear CXCR4 is ineffec-
tive in explicating these functions. The role for CXCL12/CXCR4 
axis in the infiltration of extramedullary sites, which commonly 
express significant levels of CXCL12 is supported by the cor-
relation between high-surface CXCR4 expression by ALL cells 
(including T-ALL cells) and infiltration of extramedullary organs 
such as spleen and liver (72).

Recently, Pitt et  al. (22) demonstrated that mouse Notch1-
dependent T-ALL cells were directly interacting with CXCL12-
producing vascular EC, and that this contact was necessary for 
leukemia maintenance and progression. In addition, murine and 
human T-ALL cells were shown to express increased cell-surface 
CXCR4 compared with mature peripheral T cells. Interestingly, 
this increased expression was not present at the transcript 
level, suggesting a non-transcriptional mechanism. Indeed, 
CXCR4 cell-surface expression, results from a balance between 
endocytosis, intracellular trafficking, and recycling, as well as 
gene expression (73, 74). CXCR4 internalization requires phos-
phorylation of its C-terminus, followed by ubiquitination and 
subsequent β-arrestin-dependent sorting into early endosomes, 
which are then processed into late endosomes or multivescicular 
bodies and further fused with lysosomes, ultimately leading to 
receptor and ligand degradation. The maturation of endosomes 
entails a cascade controlled by Rab small GTP-ases (75). CXCR4 
internalization also depends on a dileucine motif within the 
C-terminal tail of CXCR4 (76) and numerous proteins including 
cortactin (77) and PIM1 (73) have been shown to regulate CXCR4 
recycling and cell-surface expression. Remarkably, defects in 
endocytic trafficking of CXCR4 may contribute to increased 
surface expression and cancer progression (78). In acute myeloid 
leukemia (AML), a link has been found between PIM1 kinase 
activity and the surface expression and function of the CXCR4 
receptor, with PIM1 expression levels correlating with CXCR4 
surface expression (73). Indeed, PIM1 can phosphorylate serine 
339 in the C-terminal domain of the CXCR4 receptor (a site criti-
cal for receptor recycling) contributing to high-CXCR4 surface 
expression and function at least in AML and B-CLL (79) cells. 
Along these lines, it has recently been shown that calcineurin 
(a serine/threonine protein phosphatase) previously associated 
with leukemia initiating cell activity (80), affects CXCR4 cell-
surface expression at least partially through increased cortactin 
expression and thus CXCR4 recycling (23). CXCR4 expression 
was found to be essential for T-ALL maintenance and progres-
sion (22, 23) with loss of CXCL12/CXCR4 signaling leading to 
reduced Myc expression (a transcription factor directly regulated 
by NOTCH1) and previously linked to leukemia initiating cell 
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TABLe 1 | Functional similarities and differences determined by NOTCH1 in influencing the biological behavior of T-cell acute lymphoblastic leukemia (T-ALL) and B-cell 
chronic lymphocytic leukemia (B-CLL) cells.

T-ALL B-CLL Reference

Significance of NOTCH1 mutations Mainly associated with improved therapeutic response 
and high sensitivity to glucocorticoid therapy

Associated with adverse clinical and biological 
characteristics (disease progression and 
chemoresistance)

(44, 81–85)

Effect on CCR7 expression Transcriptional target (increased expression) Not known (21)
Effect on CXCR4 expression Non-transcriptional increased cell-surface expression# Direct transcriptional target (increased expression#) (13, 22)
Effect on CCR5 expression Indirect transcriptional target (increased expression) Generally not expressed (43)
Effect on CXCR7 expression Direct transcriptional target (increased expression#) Not known (86)
Effect on CCR9 expression Indirect transcriptional target (increased expression) Generally not expressed (43)
Effect on c-MYC expression Direct transcriptional target (increased expression) Direct transcriptional target (increased expression) (13, 36, 37)
Main signaling pathways activated 
to promote cell growth, proliferation, 
and survival

NF-κB, c-MYC, and PI3K-AKT-mTOR NF-κB, c-MYC, and MAPK (13, 35, 87)

PI3K, phosphatidylinositide 3-kinase; MAPK, mitogen-activated protein kinase; mTOR, mechanistic target of rapamycin; AKT, protein kinase B; NF-κB, nuclear factor kappa B 
subunit; CCR, CC-chemokine receptor; CXCR, CXC-chemokine receptor; #, to be verified.
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activity in T-ALL. Surprisingly, although NOTCH1 has been 
reported to regulate numerous chemokine receptors in T-ALL 
(CCR5, CCR7, and CCR9; see below) this is not true for CXCR4 
(21, 43), suggesting that NOTCH1 activation is not responsible 
for the increased CXCR4 expression. Differently in B-CLL cells, 
which also express high levels of surface CXCR4 and where the 
CXCL12/CXCR4 axis is regarded as a retention signal in tissue 
niches, CXCR4 has been shown to be a direct NOTCH1 target 
(13), suggesting a fundamental role of the NOTCH1-CXCR4 axis 
in the dissemination of B-CLL cells to lymphoid organs. Some of 
the main consequences on the biological behavior of T-ALL and 
B-CLL cells determined by NOTCH1 signaling are summarized 
in Table 1.

CXC-chemokine ligand 12 binding to CXCR4 triggers recep-
tor homo- and heterodimerization, often with CXCR7 (a second 
chemokine receptor for CXCL12; discussed below), depending 
on the levels of co-expression (88). The binding of CXCL12 to 
CXCR4 initiates divergent signaling events that result in numer-
ous responses (possibly cell-type specific) such as chemotaxis, cell 
survival, and/or proliferation, increase in intracellular calcium 
and gene transcription (Figure 2). CXCR4 is a GPCR that uses 
trimeric G-proteins constituted mainly of a Gαi subunit which 
inhibits adenyl cyclase activity and to a lesser extent a Gαq subu-
nit which activates phospholipase C-β, which leads to inositol 
1,4,5 trisphosphate and diacylglycerol production. Ultimately, 
these events lead to activation of the transcription factor NF-κB, 
the tyrosine kinase PYK2, Janus kinase-signal transducer and 
activator of transcription and PI3K-AKT pathways. The βγ dimer 
instead is mainly involved in Ras activation of ERK1/2 MAPK 
and activation of PI3K through direct interaction of the βγ dimer 
with ion channels. Moreover, following ligand-induced CXCR4 
phosphorylation by G-protein receptor kinases the interaction 
with β-arrestin not only mediates clathrin-dependent endocyto-
sis (see above) but also promotes the activation of MAPKs (p38, 
ERK1/2) and CXCL12-dependent chemotaxis (89). Recently, 
CXCR7 has been identified as a second receptor for CXCL12, 
showing a 10-fold higher affinity for this ligand than CXCR4 (49). 
This receptor is a member of the ACKR subgroup as it does not 
activate G-proteins after ligand binding (48). This receptor also 

binds CXCL11 (known ligand of CXCR3) with low affinity and 
macrophage migration inhibitory factor (90, 91). CXCR7 has been 
implicated in cell survival and adhesion (92). CXCR7 can act as a 
scavenger receptor or decoy receptor that removes CXCL12 from 
the extracellular milieu. Binding of ligands (CXCL12 or CXCL11) 
to CXCR7 promotes their internalization (49), ligand trafficking 
to lysosomes (where ligands are degraded), and CXCR7 recycling 
back to the cell membrane (93). Such CXCR7-dependent regu-
lation of local CXCL12 availability ultimately leads to reduced 
CXCL12/CXCR4 signaling. On the other hand, the CXCL12 
scavenging function of CXCR7 may positively regulate CXCR4-
mediated migration by preventing down-regulation of CXCR4 
surface expression and function following the exposure to exces-
sive CXCL12 concentrations. In contrast, in cells with primarily 
intracellular CXCR7 expression and high-CXCR4 surface expres-
sion, CXCR7 blockade was not able to alter CXCR4-mediated 
phosphorylation of ERK and AKT, suggesting that CXCR7 was 
not necessary for CXCR4 signaling (94). Emerging evidence sug-
gests that CXCR7 is a fully signaling receptor independent of G 
proteins and can activate intracellular signaling pathways such 
as AKT, MAPK, Janus kinase-signal transducer, and activator of 
transcription 3 either by direct modulation, through a β-arrestin-
dependent pathway or after heterodimerization with CXCR4 (95). 
Thus, the relative expression levels of CXCR4 and CXCR7 could 
critically influence the cellular response to CXCL12. Recently, 
CXCR7 expression has been found to be very low in normal BM 
CD34+ cells compared with high levels of expression of this recep-
tor in malignant ALL cells and cell lines (96, 97). In addition, 
particularly high levels of CXCR7 transcript were found in the 
T-ALL subtype. Analysis of the cellular distribution of CXCR7 in 
T-ALL cell lines disclosed a rather heterogeneous pattern with a 
sizable fraction being intracellular in Jurkat cells differently from 
MOLT4 cells. Interestingly, this different cellular distribution did 
not modify the functional consequences of CXCR7 silencing, as 
both cell lines exhibited reduced cell migration in the presence 
of a CXCL12 gradient (97). Notably, through the use of Notch 
pathway inhibitors, Asters group has identified a subset of Notch-
binding sites in leukemia cell genomes that are dynamic, rapidly 
changing in occupancy when Notch signaling is modulated 
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FiGURe 2 | Schematic diagram of putative CXCR4–CXCR7 crosstalk affecting signaling pathways. The influence of NOTCH signaling on the main aspects of this 
signaling axis is shown in gray boxes [differences between T-cell acute lymphoblastic leukemia (T-ALL) and B-cell chronic lymphocytic leukemia (B-CLL) is 
presented]. CXCL12 employs two distinct receptors, CXCR4 and CXCR7 which can form homodimers or heterodimers. Additionally, CXCR4 and CXCR7 can act as 
receptors for macrophage migration inhibitory factor (MIF), while CXCR7 can also bind to CXCL11. Commonly, stimulation of CXCR4 leads to G-protein-coupled 
chemokine receptors (GPCR) signaling through phosphoinositide-3 kinase (PI3K)/AKT, PLC/IP3, MAPK pathways, and mobilization of Ca2+ from intracellular 
sources. CXCR4/CXCR7 heterodimerization attenuates GPCR signaling, promoting β-arrestin mediated signaling. Activation of CXCR7 triggers β-arrestin mediated 
signaling. Internalization of the receptors CXCR4 and CXCR7, and subsequent recycling to the cell surface, is also mediated by β-arrestin. Binding of CXCL12 to 
CXCR7 promotes internalization and scavenging (lysosomal degradation) of CXCL12. AC, adenylyl cyclase; cAMP, cyclic adenosyl monophosphate; PKA, protein 
kinase A; PLC, phospholipase C; GRK, GPCR kinase; PI3K, phosphatidylinositide 3-kinase; Gα/Gβ/Gγ, heterotrimeric G-protein consisting of subunits α, β, and γ; 
PIP2, phosphatidylinositol 4,5-bisphosphate; IP3, inositol 1,4,5-bisphosphate; AKT, protein kinase B; MAPK, mitogen-activated protein kinase; FAK, focal adhesion 
kinase; Pyk-2, proline rich kinase-2; DAG, diacylglycerol; PKC, protein kinase C. “?”, not known; black, pathway activation; red, pathway repression.
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(86). These dynamic NOTCH1 sites are highly associated with 
genes that are directly regulated by Notch and mainly lie in large 
regulatory switches (termed superenhancers), characterized by 

exceptionally broad and high levels of H3K27 acetylation (98). 
The CXCR7 gene was found to be among these genes with high-
dynamic regulatory potential and that are up-regulated following 
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GSI washout in CUTLL1 cells (86). As the list of genes with highly 
dynamic regulatory potential are enriched for previously identi-
fied putative direct NOTCH1 target genes, it will be interesting 
to validate CXCR7 as a NOTCH1 direct target as this could add 
a further layer of complexity to the role played by NOTCH1 in 
promoting T-ALL retention/dissemination.

CXCL19/CCR7 SiGNALiNG

This signaling axis is physiologically important for its role in 
the development of immune responses, as it normally recruits 
activated dendritic cells and naïve T  cells (expressing CCR7) 
to draining lymph nodes (expressing high levels of the ligands 
CCL19/CCL21), thus initiating an adaptive immune response 
(99). In tumors, CCR7 is often overexpressed and its expres-
sion mostly correlates with lymph node metastasis (100). Many 
leukemia and lymphomas also express CCR7, and this may 
account for their tropism for lymph nodes (especially T-cell 
zones) (101). Additionally in B-CLL, the interaction between 
CXCR5 (expressed at high levels in B-CLL, but not T-ALL cells) 
and its ligand CXCL13 (produced by resident stromal cells) is 
responsible for recruiting leukemic cells to lymphoid organs 
and possibly orchestrates the establishment and maintenance of 
proliferation centers (pseudofollicles) within these tissues (102). 
T-ALL patients have increased risk of CNS involvement at diag-
nosis or relapse, with the mechanisms behind this tropism still 
ill-defined. Possible entry routes for leukemic cells in the CNS 
include dissemination to the subarachnoid space from the BM 
of the skull via the bridging veins or from the cerebrospinal fluid 
via the choroid plexus; through brain capillaries to the cerebral 
parenchyma; infiltration of meninges via bony lesions of the skull 
and possibly traumatic lumbar puncture (24, 103). Buonamici 
et  al. (21) showed that CCR7 signaling regulates CNS infiltra-
tion of leukemic T cells, using oncogenic Notch1 mouse models. 
Indeed, gene expression profiling of uncommitted hematopoietic 
progenitors expressing oncogenic Notch1 (Notch1-IC) showed 
significant upregulation of Ccr7. NOTCH1-dependent regulation 
of CCR7 was confirmed in T-ALL cell lines and primary T-ALL 
samples. Furthermore, overexpression of mouse ccr7 in a T-ALL 
cell line not expressing CCR7 (DND41) licenses these cells to 
specifically infiltrate the brain, possibly through interaction 
with CCL19 expressed on brain EC. Interestingly, using ccr6−/−, 
ccr7−/−, and cxcr4−/− fetal liver progenitors transduced with onco-
genic Notch1-IC, cxcr4 rather than ccr7 was implicated in CNS 
infiltration by T-ALL cells, in addition to BM engraftment (24). 
Significantly, in primary T-ALL samples, high CCR7/CXCR4 
mRNA levels correlated with increased risk of CNS involvement 
(104), although only CCR7 expression had an independent pre-
dictive impact on CNS status. Taken together, these data suggest 
that both CXCR4 and CCR7 play a role in the recruitment of 
leukemic T cells to the CNS.

The spleen is an important organ involved in extramedullary 
hematopoiesis and is frequently infiltrated in numerous lymphoid 
malignancies. There is a high incidence of splenomegaly in ALL, 
especially T-ALL, with the presence of splenomegaly associated 
with poorer prognosis of leukemia patients (105). Recent findings 
from Notch1-dependent leukemia models (106), suggest that the 

higher levels of CCL19 found in the splenic microenvironment 
compared with BM could be responsible for the initial homing 
of these leukemic cells to the spleen (given their expression of 
CCR7), and at the same time the splenic microenvironment could 
stimulate the expression of CCL19 by T-ALL cells establishing a 
positive feed-back loop, leading to further recruitment of leuke-
mic cells to the spleen (106).

CCL25/CCR9 SiGNALiNG

The CCL25/CCR9 chemokine axis normally influences the 
homing, development, and homeostasis of T cells (107). CCR9 
is expressed on the majority of immature DP (CD4+CD8+) 
thymocytes, and then is downregulated during their transition 
to mature SP CD4+ or CD8+ stage (108). Also, approximately 
half of all γδ TCR+ thymocytes and peripheral γδ-T cells express 
functional CCR9 (109). The ligand of CCR9, CCL25, is highly 
expressed not only by cortical and medullary thymic epithelial 
cells but also by epithelial cells of the small intestine (108). 
Intriguingly, a case report of a pediatric T-ALL expressing CCR9 
(and CD103 or αEβ7 integrin) at diagnosis, that switched to acute 
myeloid leukemia at relapse with disease localization to the gut 
has been reported (110), suggesting a role for CCR9 in the gut 
tropism of these leukemic cells. Recently, an elegant study found 
that conditional postnatal knockdown of Pten (shPten) in the 
hematopoietic compartment produced a highly disseminated 
T-ALL with the majority of leukemias harboring activating muta-
tions in the Notch1 PEST domain (25). These shPten leukemias 
expressed high levels of CCR9 and showed marked dissemina-
tion to the intestine (and liver). Surprisingly, PTEN reactivation 
had no effect on tumor growth in the lymph nodes or spleen, 
while it markedly decreased tumor infiltration into intestine and 
liver, suggesting that the impact of Pten expression on disease 
progression is dictated by the anatomical site of leukemic disease. 
Subsequent experiments to determine how PTEN influences 
T-ALL homing and survival in the intestine disclosed that 
reduced PTEN expression (through Pten knockdown) sensitized 
leukemia cells to CCL25-induced Akt phosphorylation leading 
to their increased migration in transwell assays, and this effect 
was largely abrogated following PTEN re-expression (25). These 
findings suggest that leukemic cells with PTEN suppression or 
loss are facilitated in dissemination to distant sites such as the 
intestine (if they express CCR9) and amplify weak environmen-
tal cues (such as CCL25 signaling) that enable their survival. 
Consistent with this notion, stimulation of T-ALL cells with 
CCL25 has been reported to enhance their resistance to TNF-α 
mediated apoptosis (through the induction of the inhibitor of 
apoptosis protein Livin) partly through the activation of c-jun-
NH2-kinase 1 (111). Interestingly, the Notch pathway has been 
shown to indirectly control the expression levels of CCR9 (and 
CCR5) in T-ALL cell lines and patient-derived primary leukemia 
cells, and subsequent biological effects such as cell proliferation 
and migration (43). It could thus be speculated that PTEN sup-
pression together with NOTCH1 activation (frequently observed 
in human T-ALL) could cooperate to enhance migration to spe-
cific anatomical sites such as the intestine (through the increased 
expression of selected chemokine receptors such as CCR9) and 
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confer a proliferative advantage in an otherwise non-supportive 
microenvironment (CCL25-expressing sites).

CONCLUSiON AND PeRSPeCTiveS

ALL is the most common malignancy in children, with 15% 
showing markers for the T-lineage (T-ALL). Of these, approxi-
mately 20% still die due to disease relapse. Instead in adults, 
T-ALL represents around 25% of ALL cases, with approximately 
50% dying due to disease relapse notwithstanding current com-
bination chemotherapy (112, 113). B-CLL is the most common 
human leukemia in adults, with patients often presenting an 
indolent course, surviving for a number of years with relatively 
mild symptoms (15). In ALL, leukemia relapses have been 
directly linked to the survival of blasts in organs such as CNS 
or testes in addition to BM (103). Infiltration of distant organs 
such as CNS is frequently observed in T-ALL and is an important 
obstacle for long-term remission. Many genes are implicated in 
the pathogenesis of T-ALL, including NOTCH, with NOTCH1 
mutations being identified in over half of T-ALL patients (6). 
Although the mechanisms of normal T-cell homing to lymphoid 
organs and trans-endothelial migration are relatively well 
known, the mechanisms exploited by leukemic T  cells to gain 
access to target organs remain elusive. Homeostatic chemokines 
are considered pivotal molecules in promoting metastasis in 
solid tumors (19), and may help to account for the non-random 
metastatic destinations encountered in different neoplasia. In 
B-CLL, NOTCH1 activation probably reflects the constitutive, 
dysregulated expression of a physiological signal (13). NOTCH1 
mutations in T-ALL hijack the physiological role of NOTCH 
signaling during thymocyte development (114) with oncogenic 
NOTCH1 alterations expressed in HPC often used as models 
of human T-ALL to gain mechanistic insights. Mainly through 
the use of these NOTCH1-dependent leukemias it is emerging 
that homeostatic chemokines and their receptors are critically 
involved not only in dictating medullary and extramedullary 
dissemination but also directly affecting the viability and growth 
of nascent leukemic niches. Recent studies showing that surface 
chemokine receptor expression and function may not correlate 
with mRNA transcript levels and that defects in recycling or 
endocytic trafficking of chemokine receptors may contribute 
to cancer progression add a new layer of complexity to the 
mechanisms acting to fine-tune the functional consequences of 
chemokine signaling. Thus, future studies evaluating the signifi-
cance of chemokine receptor expression/signaling will need to go 
beyond mRNA expression levels, but will also have to take into 
account receptor phosphorylation, ubiquitination, recycling, and 

internalization rates. In particular, it may also be worth revisiting 
the role of CXCL12 biology in T-ALL (and possibly B-CLL) from 
the CXCR7 perspective. Intriguing are also recent observations 
that anti-tumor therapies (radiation and chemotherapy, among 
others) promote a hypoxic environment (19), which through the 
stabilization of hypoxia-inducible factors can increase the expres-
sion of chemokine receptors such as CXCR4 (115); conversely, 
other chemotherapies can downregulate chemokine receptor 
expression (19). Thus, some current therapies aimed at killing 
tumor cells may actually promote a more aggressive phenotype 
in the surviving cells (116). In B-CLL, the Bruton’s tyrosine 
kinase inhibitor, Ibrutinib, has been shown to determine early 
lymphocytosis and organomegaly reduction followed by normal 
cell count restoration, possibly in part due to its effects on CXCR4 
expression (117). The effects of contemporary chemotherapy 
regimens used in T-ALL on chemokine receptor expression 
remain to be elucidated. Comprehensively, although numerous 
studies have focused on the role of chemokine receptors and 
their regulation by NOTCH, much less is known on downstream 
signals such as integrin activation or actin remodeling dynamics.

Currently, clinically approved targeted therapies to impede 
organ infiltration in acute leukemia are lacking. Of the chemokine 
axes that can be targeted, the CXCL12/CXCR4–CXCR7 axis 
seems most promising in T-ALL, as monotherapy with the 
selective CXCR4 antagonist, AMD3465, was highly effective in 
suppressing human disease in a xenograft model (22). However, 
monotherapy with CXCR4 inhibitors in other malignancies 
has more modest anti-leukemic effects (including B-CLL), as 
it mainly sensitized leukemic cells to conventional or targeted 
therapies through the mobilization of the leukemic cells into 
the periphery (102, 118, 119). Thus, it is likely that combination 
therapies comprising chemokine receptors antagonists together 
with conventional chemotherapeutic agents or specific targeted 
therapies such as NOTCH1 inhibitors will be required to eradi-
cate the disease and prevent relapse.
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