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A HAAR-RADO TYPE THEOREM FOR MINIMIZERS
IN SOBOLEV SPACES

Carlo Mariconda1 and Giulia Treu1

Abstract. Let u ∈ φ + W 1,1
0 (Ω) be a minimum for

I(v) =

�
Ω

g(x, v(x)) + f(∇v(x)) dx

where f is convex, v �→ g(x, v) is convex for a.e. x. We prove that u shares the same modulus of conti-
nuity of φ whenever Ω is sufficiently regular, the right derivative of g satisfies a suitable monotonicity
assumption and the following inequality holds

∀γ ∈ ∂Ω |u(x) − φ(γ)| ≤ ω(|x − γ|) a.e. x ∈ Ω.

This result generalizes the classical Haar-Rado theorem for Lipschitz functions.
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1. Introduction

The classical Haar-Rado Theorem [7] concerns the minimizers of the integral functional of the gradient

I(v) =
�

Ω

f(∇v(x)) dx among the Lipschitz functions u : Ω → R, where Ω is an open and bounded subset

of R
n. It asserts that if f is strictly convex and u is a minimizer of I then, denoting by φ the restriction of u

to the boundary ∂Ω of Ω, the Lipschitz rank of u turns out to be equal to

sup
{ |u(x) − φ(γ)|

|x− γ| : x ∈ Ω, γ ∈ ∂Ω
}
.

In other terms, if one knows a priori that the minimizer u is Lipschitz and that

∀x ∈ Ω, ∀γ ∈ ∂Ω |u(x) − φ(γ)| ≤ K|x− γ|
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then it turns out that
∀x, y ∈ Ω |u(y) − u(x)| ≤ K|y − x|,

i.e. that the Lipschitz constant of u is bounded by K.
Among the applications of the Haar-Rado theorem, we quote the famous existence result of a minimizer

among Lipschitz functions of the functional I whenever the boundary datum satisfies a barrier condition, e.g.
the Bounded Slope Condition of Hartman and Stampacchia [9].

The Bounded Slope Condition, that is in fact a quite restrictive assumption (see [8,13] for detailed discussion),
has been recently used and generalized in order to prove the regularity properties of minimizers that belong to
Sobolev spaces [3–5,10]; their existence is guaranteed by Tonelli’s theorem whenever the Lagrangian satisfies
suitable growth assumptions. In [3,4,10,12] the proofs are based on Comparison Principles, on a translation
technique that goes back to [2] and on the extension of the boundary datum outside of the domain. The last
step is straightforward when the boundary datum is Lipschitz, as in the case where φ satisfies the Bounded
Slope Condition, but it is far to be trivial when we need to extend a function defined on ∂Ω to a function
that is in a Sobolev space and has to share the same modulus of continuity with φ. The extension of the
boundary datum can be avoided if a Haar-Rado type theorem holds: this last remark together with the interest
in obtaining regularity results under more general boundary conditions and for more general Lagrangians are
the main motivations of the present paper.

The result that we present here is not only a reformulation of the classical Haar-Rado Theorem that encom-
passes the difficulty of working with Sobolev functions instead of Lipschitz ones, but it is a truly generalization
of it. Indeed we take into account more general functionals of the form

I(v) =
�

Ω

g(x, v(x)) + f(∇v(x)) dx,

we do not assume the strict convexity of the functional that is needed in the classical Haar-Rado theorem and
we deal with any modulus of continuity ω instead of just ω(t) = K|t|, i.e. the Lipschitz one. This last matter
allows us, for instance, to deal with the problem of the Hölder continuity of the minimizers, as in [12].

The lack of the strict convexity of I has the counterpart that the minima may not be unique: assuming that
Ω is sufficiently regular and that ω is a modulus of continuity of φ our result states that if u is the minimum or
the maximum of the minimizers of I on φ+W 1,1(Ω) and g satisfies a monotonicity assumption (Hω) formulated
below then |u(y) − u(x)| ≤ ω(|y − x|) for a.e. x, y ∈ Ω once

∀γ ∈ ∂Ω |u(x) − φ(γ)| ≤ ω(|x− γ|) for a.e. x ∈ Ω. (1.1)

The assumption (Hω) requires that u �→ g(x, u) is convex, and that its right derivative g+
v (x, v) satisfies the

monotonicity assumption
v ≥ u+ ω(|y − x|) =⇒ g+

v (y, v) ≥ g+
v (x, u).

It is worth mentioning that if g(x, v) = g(v) does not depend on x, then the convexity of g is enough for the
validity of (Hω). For ω(t) = K|t| and g of class C2 the assumption (Hω) is fulfilled if for instance

∀x ∈ R
n, ∀v ∈ R |gx,v(x, v)| ≤ Kgv,v(x, v); (1.2)

for this particular modulus of continuity condition (1.2) appeared first in [14] for g smooth, then in [10] in a
nonsmooth setting; in these papers however it was used to obtain a regularity result for the minimizers of I with
no apparent relation with the Haar-Rado theorem. We point out that the functional related to the elasto-plastic
torsion problem considered by Brezis and Sibony in [2] satisfies this assumption.

The proof of our result is based on several steps, most of which have an interest in themselves. In Section 2
we give an overview on how to work with the inequalities on the boundary of a domain in the trace sense. In
Section 3 we show that if u is the minimum or the maximum of the minimizers of I that satisfies (1.1) then for
all h ∈ R

n, u(x− h) ≤ u(x) + ω(|h|) on ∂(Ω ∩ (h+ Ω)) in the trace sense. Then assuming that g(x, u) satisfies
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assumption (Hω) it turns out that u(x − h) − ω(|h|) is a subminimum of I on h + Ω. Finally, in Section 4 we
prove the main result via a Comparison Principle for minimizers, a tool that we developed in the non strictly
convex setting in [11], whose formulation and shorter proof is given here for the convenience of the reader.

As a final remark we mention that, under a mild geometric assumption on the epigraph of f , the main result
holds for every minimizer of the functional I instead of just the minimum/maximum of the minimizers.

A version of the results that we present here for solutions to a class of degenerate elliptic equations with
some other applications will appear in a forthcoming paper.

2. Notation and basic definitions

In this paper g : R
n × R → R is a normal integrand, f : R

n → R is convex. Ω is a prescribed open and
bounded subset of R

n, whose closure is denoted by Ω.
The functional IΩ (just I when no ambiguity occurs) is

IΩ(v) =
�

Ω

g(x, v(x)) + f(∇v(x)) dx.

As we fix a boundary datum φ we will always assume there is a function v in φ + W 1,1
0 (Ω) such that IΩ(v) is

finite.

Definition 2.1. A function u ∈ W 1,1(Ω) is a sub-minimum (resp. super-minimum) of I if g(x, u) + f(∇u) ∈
L1(Ω) and I(v) ≥ I(u) for every v ∈ u+W 1,1

0 (Ω) with v ≤ u (resp. v ≥ u) a.e. on Ω. A function u ∈ W 1,1(Ω)
is a minimizer of I if it is both a sub-minimum and a super-minimum.

If v and w are functions then v ∧ w (resp. v ∨ w) stands for the pointwise minimum (resp. maximum) of
v and w. The restriction of a function u to a subset A of its domain is denoted by u|A. Finally, the scalar
product in R

n is denoted by “·”.

Definition 2.2 (modulus of continuity). A modulus of continuity is a positive continuous function ω : [0,+∞[
such that ω(0) = 0. A real valued function φ on a set X is ω-continuous if |φ(y) − φ(x)| ≤ ω(|y − x|) for all
x, y ∈ X .

3. Inequalities on the boundary

3.1. Inequalities in the trace sense

In this section D is an open and bounded subset of R
n. The following notion is crucial for our comparison

principles.

Definition 3.1 (inequalities in the trace sense). Let u, v ∈ W 1,1(D). We say that u ≤ v in ∂D in the trace
sense if u ∧ v ∈ u+W 1,1

0 (D) or, equivalently, if u ∨ v is in v +W 1,1
0 (D).

We give now some useful criteria that ensure the validity of an inequality in the trace sense.

Proposition 3.1. Let u, v ∈W 1,1(D). Then u ≤ v in ∂D in the trace sense if one of the following assumption
hold:

(a) u, v ∈ C(D) and u(γ) ≤ v(γ) for every γ ∈ ∂D;
(b) u ≤ v a.e. in D;
(c) there are two sequences uk, vk ∈ C(D) ∩W 1,1(D) such that uk converges to u and vk converges to v in

W 1,1(D) and moreover uk(γ) ≤ vk(γ) for every γ ∈ ∂D;
(d) the boundary of D is regular, D is a relatively compact subset of an open subset A of R

n, u, v are the
restrictions of u, v ∈W 1,1

loc (A) and u ≤ v a.e. on A \D.
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Proof. (a) If u(γ) ≤ v(γ) on ∂D then u∧ v−u = 0 pointwise on ∂D: follows from [1], Theorem IX.17, together
with [1], Remark 20, Chapter IX, that u ∧ v − u ∈W 1,1

0 (D).
(b) If u ≤ v a.e. in D then u ∧ v − u = 0 a.e. in D.
Assume (c); it follows from (a) that uk ∧ vk − uk ∈ W 1,1

0 (D). Since uk ∧ vk − uk converges to u ∧ v − u the
claim follows from the closure of W 1,1

0 (D).
(d) Since u∧ v − u ∈ W 1,1

loc (A) and u∧ v − u = 0 a.e. in A \D then u ∧ v− u ∈W 1,1
0 (A). It follows from [1],

Proposition IX.18, that the extension w of u ∧ v − u defined by

w(x) =
{

(u ∧ v − u)(x) if x ∈ A
0 if x /∈ A

belongs to W 1,1(Rn). Now w is also the extension of u ∧ v − u equal to 0 out of D and ∂D is regular. Again
by [1], Proposition IX.18, this implies that u ∧ v − u is in W 1,1

0 (D). �

3.2. Inequalities between trace functions in Lipschitz domains

There is another notion of inequalities on the boundary, involving the trace functions, that is useful when
the domain is regular. We show that in this case the two notions of inequality in the trace sense formulated
above and of the trace inequalities given here coincide.

We assume here that ∂Ω is Lipschitz. Let us recall the result on the existence of a trace function, we refer
to [6] for the details. We denote by L1

Hn–1(∂Ω) the set of Lebesgue integrable functions on ∂Ω with respect to
the (n− 1)-dimensional Hausdorff measureHn–1.

Theorem 3.1. There exists a linear, bounded operator TrΩ : W 1,1(Ω) −→ L1
Hn–1(∂Ω) named the trace operator

such that TrΩ u(γ) = u(γ) for all γ ∈ ∂Ω whenever u ∈ (Ω) ∩W 1,1(Ω). Moreover

W 1,1
0 (Ω) = {u ∈W 1,1(Ω) : TrΩ u = 0}. (3.1)

The following characterization of the functions that are traces will be used in the sequel.

Proposition 3.2 (characterization of the trace functions). Let φ ∈ L1
Hn–1(∂Ω). The following claims are

equivalent:

(i) φ = TrΩ u for some u ∈ W 1,1(Ω);
(ii) there is a sequence (un)n of Lipschitz functions on Ω such that un → u in W 1,1(Ω) and un|∂Ω → φ in

L1
Hn–1(∂Ω);

(iii) forHn–1-a.e. γ ∈ ∂Ω we have

lim
r→0+

�
Br(γ)∩Ω

|φ(γ) − u(x)| dx = 0. (3.2)

Proof. (i) ⇒ (ii): Assume that φ = TrΩ u: let (un)n in C1(Ω) such that un → u in W 1,1(Ω); the continuity of
the trace operator yields

φ = TrΩ u = lim
n

TrΩ un = lim
n
un|∂Ω in L1

Hn–1(∂Ω) .

Conversely, assume that there are un ∈ Lip(Ω) with un → u in W 1,1(Ω) and un|∂Ω → φ in L1
Hn–1(∂Ω). Again,

the continuity of the trace operator implies that TrΩ un converges to TrΩ u in L1
Hn–1(∂Ω); since TrΩ un = un|∂Ω

the two limits coincide, and it follows that TrΩ u = φ. The proof of the equivalence (i) ⇒ (iii) can be found
in [6]. �
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Remark 3.1. It follows from (iii) of Proposition 3.2 that if u ∈W 1,1(Ω) then

TrΩ u(γ) = lim
r→0+

�
Br(γ)∩Ω

u(x) dx a.e.

The monotonicity of the trace follows then directly.

Corollary 3.1. Monotonicity of the trace Let u, v ∈W 1,1(Ω) be such that u ≤ v a.e. in Ω. Then TrΩ u ≤ TrΩ v
Hn–1-a.e.

In the case where ∂Ω is Lipschitz the notion of inequality of functions in the trace sense as in Definition 3.1
is hopefully equivalent to the a.e. inequality among traces.

Proposition 3.3. Let ∂Ω be Lipschitz and u, v ∈ W 1,1(Ω). Then u ≤ v in the trace sense, i.e. u ∨ v ∈
v +W 1,1

0 (Ω), if and only if TrΩ(u) ≤ TrΩ(v)Hn–1-a.e. on ∂Ω.

Proof. It is clearly enough to prove the claim when v = 0. Assume that u ≤ 0 in the trace sense, namely
that u ∨ 0 ∈ W 1,1

0 (Ω). Then by (3.1) TrΩ(u ∨ 0) = 0, the monotonicity of the trace operator then implies that
TrΩ u ≤ TrΩ(u ∨ 0) = 0 a.e. Conversely assume that TrΩ u ≤ 0 Hn–1-a.e. on ∂Ω. Let (un)n be a sequence
in Lip(Ω) such that un → u in W 1,1(Ω) and un|∂Ω → TrΩ u in L1

Hn–1(∂Ω). By taking a subsequence we may
assume that un|∂Ω → TrΩ Hn–1-a.e. on ∂Ω. Now un ∨ 0 → u ∨ 0 in W 1,1(Ω) whereas un ∨ 0 ∈ Lip(Ω) and
(un ∨ 0)|∂Ω → TrΩ u ∨ 0 = 0 a.e. on ∂Ω; it follows from Proposition 3.3 that TrΩ(u ∨ 0) = 0 so that, again
by (3.1), u ∨ 0 ∈W 1,1

0 (Ω) meaning that u ≤ 0 in the trace sense. �

Remark 3.2. The claim of Proposition 3.3 would also follow from the fact that, for u, v ∈ W 1,1(Ω),

TrΩ(u ∧ v) = TrΩ u ∧ TrΩ v, TrΩ(u ∨ v) = TrΩ u ∨ TrΩ v.

We end this section with a result on the trace on the intersection of two domains that will be used later.

Lemma 3.1. Let A,B be two open bounded subsets of R
n such that ∂A, ∂B, ∂(A ∩ B) are Lipschitz. Let

u ∈W 1,1(A). Then TrA u = TrA∩B u a.e. on ∂A ∩ ∂(A ∩B).

Proof. Let (un)n in Lip(Ω) such that un → u in W 1,1(A) with un|∂A → TrA u in L1
Hn–1(∂A), by taking a

subsequence we may assume that the convergence holds a.e. in ∂A. Now un → u in W 1,1(A∩B): the continuity
of the trace operator then implies that un|∂(A∩B) = TrA∩B un → TrA∩B u in L1

Hn–1(∂(A ∩ B)); again we may
assume that the convergence holds a.e. The uniqueness of the (pointwise) limit yields the claim. �

Remark 3.3. In Lemma 3.1 it is not enough to assume the Lipschitz regularity of ∂A and ∂B. Indeed it is
easy to build some examples in which these two sets are Lipschitz but ∂(A ∩B) is not.

4. Minimality properties of translates

We consider the following assumption. We denote by g+
v (x, v) the right derivative of g with respect to the

second variable.

Assumption (Hh,c). Let h ∈ R
n and c ∈ R. The function g : R

n × R → R is convex in the second variable.
We assume that

∀x ∈ R
n, ∀u, v ∈ R v ≥ u+ c⇒ g+

v (x± h, v) ≥ g+
v (x, u).

Let ω be a modulus of continuity on R
n. In the next section we will be concerned with Assumption (Hh,c)

when c = ω(|h|) for all h ∈ R
n; it is fulfilled if the following Assumption (Hω) holds.
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Assumption (Hω). The function g : R
n × R → R is measurable and convex in the second variable. Denoting

by g+
v the right derivative of g with respect to the second variable, we assume that

∀x, y ∈ R
n, ∀u, v ∈ R v ≥ u+ ω(|y − x|) ⇒ g+

v (y, v) ≥ g+
v (x, u).

Remark 4.1. It is worth noticing that Assumption (Hω) is fulfilled when the function g(x, v) = g(v) is convex
and does not depend on x.

We state a condition under which Assumption (Hω) is fulfilled in the case where ω is a Lipschitz modulus of
continuity, i.e. ω(t) ≤ K|t|.
Proposition 4.1. Let K > 0; assume that g is of class C2 and such that

∀x ∈ R
n, ∀v ∈ R, |gx,v(x, v)| ≤ Kgv,v(x, v).

Then g satisfies Assumption (Hω) where ω(t) = K|t|.
Proof. Assume that v ≥ u+K|y − x|. Now there are (ξ, ζ) such that

gv(y, v) − gv(x, u) = gx,v(ξ, ζ) · (y − x) + gv,v(ξ, ζ)(v − u).

Our condition implies that gv,v ≥ 0, thus

gv(y, v) − gv(x, u) ≥ gx,v(ξ, ζ) · (y − x) + gv,v(ξ, ζ)K|x − y|
≥ −|gx,v(ξ, ζ)||y − x| + gv,v(ξ, ζ)K|x − y|
= |x− y|(Kgv,v(ξ, ζ) − |gx,v(ξ, ζ)|) ≥ 0

proving the claim. �

Remark 4.2. In the case where ω(t) = K|t| some conditions similar to those stated above where formulated
in [14] and, in a nonsmooth setting, in [10]. In both papers, however, they were used to establish Lipschitz
regularity results for the minimizers of I with no apparent connections to the result that we formulate in the
present paper.

Theorem 4.1. Let h ∈ R
n and c ∈ R and assume that g satisfies Assumption (Hh,c). Let u be a sub-minimum

of I then u(y− h)− c is a sub-minimum of Ih+Ω. Analogously, if u is a super-minimum of I then u(y+ h) + c
is a super-minimum of I−h+Ω.

Proof. Assume that u is a super-minimum of I. Let v ∈W 1,1(Ω) be such that

v(y) ≥ u(y + h) + c a.e. on − h+ Ω, v(y) = u(y + h) + c on ∂(−h+ Ω).

Then v(x − h) − c ≥ u(x) a.e. on Ω and v(x − h) − c = u(x) on ∂Ω. Since u is a super-minimum then
I(v(x − h) − c) ≥ I(u); we wish to prove that the inequality I−h+Ω(v) ≥ I−h+Ω(u(y + h) + c) holds true. Now

I−h+Ω(v) =
�
−h+Ω

g(y, v(y)) + f(∇v(y)) dy

=
�

Ω

g(x− h, v(x− h)) + f(∇v(x− h)) dx

=
�

Ω

g(x− h, v(x− h)) dx−
�

Ω

g(x, v(x − h) − c) dx+ IΩ(v(x − h) − c).
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Analogously

I−h+Ω(u(y + h) + c) =
�
−h+Ω

g(y, u(y + h) + c) + f(∇u(y + h)) dy

=
�

Ω

g(x− h, u(x) + c) dx−
�

Ω

g(x, u(x)) dx + IΩ(u).

Since u is a super-minimum then IΩ(v(x − h) − c) ≥ IΩ(u): therefore it is enough to show that

g(x− h, v(x− h)) − g(x, v(x− h) − c) ≥ g(x− h, u(x) + c) − g(x, u(x)) a.e. on Ω

or, equivalently,

g(x− h, v(x− h)) − g(x− h, u(x) + c) ≥ g(x, v(x− h) − c) − g(x, u(x)) a.e. on Ω. (4.1)

For this purpose fix x ∈ Ω such that all the above quantities are defined and finite. Set, for t ∈ [u(x)+c, v(x−h)],
ψ(t) = g(x−h, t), φ(t) = g(x, t− c). Then ψ, φ have right derivatives ψ′

+(t) = g+
v (x−h, t), φ′+(t) = g+

v (x, t− c);
since the difference t− (t− c) = c ≥ c the assumption (Hh,c) implies that g+

v (x − h, t) ≥ g+
v (x, t − c) and thus

ψ′
+(t) ≥ φ′+(t) on [u(x) + c, v(x− h)]. The mean value theorem thus yields

ψ(v(x − h)) − ψ(u(x) + c) ≥ φ(v(x − h)) − φ(u(x) + c)

which is exactly (4.1), proving the claim. �

5. A Rado-Haar type theorem

The next result was proven, just for minima and not as here for sub/super-minima, in [11], Theorem 2.1.
We give here the proof both for the convenience of the reader and because we use here an elegant and concise
argument that was suggested to the authors by Sergio Solimini in a personal communication. It is based on the
so called Stampacchia Principle that we do not found however in the literature. We formulate it here for the
convenience of the reader, its proof being straightforward.

Lemma 5.1. Let L : Ω × R × R
n → R be a normal integrand and set

L(u) =
�

Ω

L(x, u,∇u) dx.

Assume that u, v ∈W 1,1(Ω) are such that L(x, u,∇u), L(x, v,∇v) ∈ L1(Ω). Then

L(u) + L(v) = L(u ∧ v) + L(u ∨ v).

Let us recall that if the functional I is not strictly convex the minima may not be unique. As we showed
in [11], given a trace function φ on ∂Ω, the minimum and the maximum of the minimizers of IΩ,φ exist if f is
superlinear.

Theorem 5.1. Assume that u is the minimum of the minimizers of IΩ,φ, where φ is a given trace function
on ∂Ω. Let v be a super-minimum of I with u ≤ v on ∂Ω. Then u ≤ v a.e. on Ω; in other words u satisfies
the Comparison Principle from below. Analogously, the maximum of the minimizers satisfies the Comparison
Principle from above.

Proof. By Lemma 5.1 we have
I(u) + I(v) = I(u ∧ v) + I(u ∨ v). (5.1)

Since u ≤ v on ∂Ω then
u ∧ v = u on ∂Ω u ∨ v = v on ∂Ω.
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Since u is a minimizer and v is a super-minimum then

I(u ∧ v) ≥ I(u) I(u ∨ v) ≥ I(v)

so that, by (5.1), the latter inequalities turn out to be equalities. Therefore u ∧ v is a minimizer of I with
u ∧ v = u on ∂Ω: the minimality of u implies that u ≤ u ∧ v a.e. so that u ≤ u ∧ v ≤ v a.e. on Ω. The second
part of the claim follows similarly. �

The next result is a version of the Haar-Rado Theorem [7], in the setting of Sobolev functions.

Theorem 5.2 (Haar-Rado type). Let ω : [0,+∞[ → [0,+∞[ be a modulus of continuity. Let φ be a function in
W 1,1(Ω) that is ω-continuous on Ω and let u ∈ φ+W 1,1

0 (Ω) be the minimum or the maximum of the minimizers
of I. Assume that one of the following conditions holds:

(H1) u, φ ∈ C(Ω) and

∀γ ∈ ∂Ω, ∀x ∈ Ω |u(x) − φ(γ)| ≤ ω(|x− γ|); (5.2)

(H2) Ω ∩ (h+ Ω) is regular for all h ∈ R
n; moreover

∀γ ∈ ∂Ω |u(x) − φ(γ)| ≤ ω(|x− γ|) a.e. x; (5.3)

(H3) Ω ∩ (h + Ω) is regular for all h ∈ R
n; moreover there exist 	1, 	2 ∈ φ + W 1,1

0 (Ω) that are ω-continuous
on Ω and such that

	1(x) ≤ u(x) ≤ 	2(x) a.e. on Ω. (5.4)

Then |u(y) − u(x)| ≤ ω(|y − x|) for every Lebesgue points x and y of u.

For h ∈ R
n and u a function on Ω we denote by uh the function defined on −h+ Ω by uh(x) = u(x+ h) and

we set Ωh = (−h+ Ω) ∩ Ω.

Lemma 5.2. Let φ be a function in W 1,1(Ω) that is ω-continuous on Ω and let u ∈ φ+W 1,1
0 (Ω). Assume that

one the conditions (H1), (H2) or (H3) stated in Theorem 5.2 holds. Then

uh ≤ u+ ω(|h|) on ∂Ωh (5.5)

in the trace sense.

Proof. Assume that (H1) holds. Let γ ∈ ∂Ωh; it is not restrictive to assume that γ ∈ ∂Ω. Either γ ∈ −h+Ω and
uh(γ)−u(γ) = u(γ−h)−φ(γ) ≤ ω(|γ−h−γ|) = ω(|h|) or γ ∈ ∂(−h+Ω) and uh(γ)−u(γ) = φ(γ−h)−φ(γ) ≤
ω(|h|) by the ω-continuity of φ: in both cases uh(γ) − u(γ) ≤ ω(|h|) for every γ ∈ ∂Ωh. Proposition 3.1(a)
yields the claim.

Assume that (H2) holds; we show that, forHn–1-almost every γ ∈ ∂(Ω ∩ Ωh),

lim
r→0

�
Br(γ)∩Ω∩Ωh

uh(x) − u(x) dx ≤ ω(|h|). (5.6)

Let γ ∈ ∂(Ω ∩ Ωh); it is not restrictive to assume that γ ∈ ∂Ω.
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Two cases may occur:
(a) γ ∈ Ωh so that Br(γ) ∩ Ω ∩ Ωh = Br(γ) ∩ Ω for r sufficiently small. Since for a.e. x ∈ Ω ∩ Ωh we have

uh(x) − u(x) = uh(x) − φ(γ) + φ(γ) − u(x) then
�

Br(γ)∩Ω∩Ωh

uh(x) − u(x) dx ≤
�

Br(γ)∩Ω∩Ωh

uh(x) − φ(γ) dx+
�

Br(γ)∩Ω∩Ωh

φ(γ) − u(x) dx

=
�

Br(γ)∩Ω∩Ωh

uh(x) − φ(γ) dx+
�

Br(γ)∩Ω

φ(γ) − u(x) dx.

Now by (H2) uh(x) − φ(γ) = u(x− h) − φ(γ) ≤ ω(|x− h− γ|) a.e. and thus
�

Br(γ)∩Ω∩Ωh

uh(x) − u(x) dx ≤
�

Br(γ)∩Ω∩Ωh

ω(|x− h− γ|) dx+
�

Br(γ)∩Ω

φ(γ) − u(x) dx

and
�

Br(γ)∩Ω∩Ωh

ω(|x− h− γ|) dx→ ω(|γ − h− γ|) = ω(|h|) as r → 0 whereas
�

Br(γ)∩Ω

φ(γ) − u(x) dx→ 0 as

r → 0 unless γ belongs to aHn–1-negligible subset of ∂Ω, proving (5.6).
(b) γ ∈ ∂Ωh so that γ − h ∈ ∂Ω and, as above, γ ∈ ∂Ω. Again by dropping out a Hn–1-negligible subset

of ∂Ω, we may assume from Lemma 3.1 that

TrΩ u(γ) = TrΩ∩Ωh u(γ) = φ(γ), TrΩh u(γ − h) = TrΩ∩Ωh u(γ − h) = φ(γ − h).

Now for a.e. x ∈ Ω ∩ Ωh we have

uh(x) − u(x) = uh(x) − φ(γ − h) + φ(γ − h) − φ(γ) + φ(γ) − u(x)

and �
Br(γ)∩Ω∩Ωh

uh(x) − φ(γ − h) dx→ 0
�

Br(γ)∩Ω∩Ωh

φ(γ) − u(x) dx→ 0

as r → 0; moreover φ(γ − h) − φ(γ) ≤ ω(|h|) since φ is ω-continuous. Therefore

lim
r→0

�
Br(γ)∩Ω∩Ωh

uh(x) − u(x) dx ≤ ω(|h|)

a.e. on ∂(Ω ∩ Ωh) proving (5.6).
The conclusion of Theorem 5.2 under (H3) follows directly from the previous case since, if (5.4) holds then

for every γ ∈ ∂Ω and for a.e x in Ω we have

u(x) − φ(γ) ≤ 	2(x) − φ(γ) = 	2(x) − 	2(γ) ≤ ω(|x− γ|)
and, analogously,

−ω(|x− γ|) ≤ 	1(γ) − 	1(x) ≤ φ(γ) − u(x)
ensuring the validity of (5.3). �
Proof of Theorem 5.2. Assume that u is the maximum of the minimizers of I. Fix h in R

n: we know from
Lemma 5.2 that uh − ω(|h|) ≤ u on ∂(Ω ∩ Ωh). By Theorem 4.1 uh − ω(|h|) is a subminimum of I on Ωh and
thus on Ω ∩ Ωh whereas u is still the maximum of the minimizers of I on Ω ∩ Ωh. The Comparison Principle
(Thm. 5.1) implies that uh − ω(|h|) ≤ u a.e. on Ω ∩ Ωh. Now let x, y be two Lebesgue points of u and let
r > 0 be such that Br(x) and Br(y) are contained in Ω. Let h = y − x; since u(z + h) ≤ u(z) + ω(|h|) for
a.e. z ∈ Br(x), it turns out by integration on balls of radius r and then passing to the limit as r tends to 0
that u(y) − u(x) ≤ ω(|y − x|); proving the claim. The case where u is the minimum of the minimizers follows
similarly. �
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Remark 5.1. In (H2) the regularity assumption on the boundary of Ω ∩ (h + Ω) is satisfied for instance if Ω
is convex. In (H3) it is more natural to choose ω as a common modulus of continuity of 	1, 	2.

Under a further mild assumption on f it turns out that the conclusion of Theorem 5.2 holds for every
minimum of I. We recall that a face of the epigraph of the convex function f is the intersection of the epigraph
with any of its supporting hyperplanes.

Corollary 5.1. Under the conditions of Theorem 5.2, assume moreover that the diameters of the projections
onto R

n of the faces of the epigraph of f are uniformly bounded by a constant K and that f is superlinear. Then
any minimizer of I is ω̃-continuous, where ω̃(t) = max{K|t|, ω(t)}.
Proof. Since f is superlinear the maximum and the minimum of the minimizers of I in φ + W 1,1

0 (Ω) exist:
the proof of the claim given in [11], Proposition 4.1, actually holds true for any Lagrangian satisfying Tonelli’s
assumptions for the existence of a minimizer. Let u be a minimizer and U be the maximum of the minimizers of I
in φ+W 1,1

0 (Ω). From Theorem 5.2 |U(y)−U(x)| ≤ ω(|y−x|) for every Lebesgue points x, y of U . Moreover [10],
Lemma 4.9, shows that (∇u, f(∇u)) and (∇U, f(∇U)) belong a.e. to the same face of the epigraph of f : our
assumption then implies that there is K > 0 such that |∇U−∇u| ≤ K a.e. so that u−U is Lipschitz of rank K.
Thus for every Lebesgue points x, y of U we have

|u(y) − u(x)| ≤ |(u− U)(y) − (u− U)(x)| + |U(y) − U(x)|
≤ K|y − x| + ω(|y − x|) ≤ ω̃(|y − x|),

proving the claim. �

As an application of the main result of this paper we obtain the following Hölder estimate.

Proposition 5.1. Let α ∈ ]0, 1] and Ω be convex; let φ be Lipschitz in Ω. Let u be the minimum or the maximum
of the minimizers of I in φ+W 1,1

0 (Ω), or any minimizer if f satisfies the assumptions of Corollary 5.1. Assume
moreover that

∀γ ∈ ∂Ω |u(x) − φ(γ)| ≤ C|x− γ|α a.e. x

for some C > 0. Then u is Hölder continuous of order α.

Proof. First notice that φ is Hölder continuous of order α: let C′ be its Hölder constant. Set ω(t) = C′′|t|α
where C′′ = max{C,C′}. Since Ω is convex the Assumption (H2) of Theorem 5.2 is satisfied, proving the
claim. �

Remark 5.2. Proposition 5.1 provides an alternative and more concise proof of one of the key points of the
proof of the Hölder regularity result stated in [12], Theorem 4.5. The result was obtained there via a translation
method inspired by [2].
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