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Abstract. We give an elementary proof of the following remark: if G is a fi-

nite group and {g1, . . . , gd} is a generating set of G of smallest cardinality, then

there exists a maximal subgroup M of G such that M ∩{g1, . . . , gd} = ∅. This
result leads us to investigate the freedom that one has in the choice of the maxi-

mal subgroup M of G. We obtain information in this direction in the case when

G is soluble, describing for example the structure of G when there is a unique
choice for M. When G is a primitive permutation group one can ask whether

is it possible to choose in the role of M a point-stabilizer. We give a posi-
tive answer when G is a 3-generated primitive permutation group but we leave

open the following question: does there exist a (soluble) primitive permutation

group G = 〈g1, . . . , gd〉 with d(G) = d > 3 and with
⋂

1≤i≤d supp(gi) = ∅?

We obtain a weaker result in this direction: if G = 〈g1, . . . , gd〉 with d(G) = d,

then supp(gi) ∩ supp(gj) 6= ∅ for all i, j ∈ {1, . . . , d}.

1. Introduction

We start with a short and elementary proof of the following result:

Theorem 1.1. Let G be a finitely generated group and let d = d(G) be the smallest
cardinality of a generating set of G. If G = 〈g1, . . . , gd〉, then there exists a maximal
subgroup M of G such that M ∩ {g1, . . . , gd} = ∅.
Proof. If G is cyclic, that is, d ≤ 1, the statement is clear. When d > 1, consider
H = 〈g1g2, g2g3, . . . , gd−1gd〉. Since d(H) ≤ d − 1 < d = d(G), we have H 6= G.
Let S be the family of the proper subgroups of G containing H, and observe that
S ordered by “set inclusion” is a non-empty partially ordered set. Let C be a non-
empty chain in S and set K =

⋃
C∈C C. Clearly, K is a subgroup of G containing H.

Moreover, as G is finitely generated, it is easy to see that K 6= G, that is, K ∈ S.
Thus every non-empty chain in S has a maximal element. By Zorn’s lemma, S
has a maximal element M and, by construction, M is a maximal subgroup of G
containing H.

If gi ∈ M and i 6= d, then gi+1 = g−1
i (gigi+1) ∈ M. Similarly, if gi ∈ M

and i 6= 1, then gi−1 = (gi−1gi)g
−1
i ∈ M. Thus M ∩ {g1, . . . , gd} 6= ∅ implies

G = 〈g1, . . . , gd〉 ≤M, a contradiction. �

Theorem 1.1 does not remain true if we drop the assumption d = d(G). For
example, let G = Fd2, the additive group of a vector space of dimension d ≥ 2 over
the field F2 with 2 elements and let

g1 = (1, 0, . . . , 0), g2 = (0, 1, . . . , 0), . . . , gd = (0, . . . , 0, 1), gd+1 = (1, 1, 0, . . . , 0).
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Let M = {(x1, . . . , xd) ∈ Fd2 | a1x1 + · · ·+ adxd = 0} be a maximal subgroup of G.
If i ∈ {1, . . . , d}, then gi ∈M only when ai = 0. Therefore

M = {(x1, . . . , xd) ∈ Fd2 | x1 + · · ·+ xd = 0}

is the unique maximal subgroup of G with gi /∈M for every i ∈ {1, . . . , d}. However
gd+1 ∈ M ; hence every maximal subgroup of G contains at least one of the d + 1
elements g1, . . . , gd+1.

One might wonder, if minded so, whether the Frattini subgroup Frat(G) may
play a role in trying to strengthen Theorem 1.1. However, we cannot weaken
the assumption “G = 〈g1, . . . , gd〉” requiring only that “gi /∈ Frat(G) for every
i ∈ {1, . . . , d}”: take for example g1 = (1, 0, 0), g2 = (0, 1, 0) and g3 = (1, 1, 0) in
the additive group G = F3

2.
Moreover, it is not sufficient to assume that {g1, . . . , gd} is a minimal generating

set of G (i.e. no proper subset of {g1, . . . , gd} generates G): for example, if G = 〈x〉
is a cyclic group of order 6, then {x2, x3} is a minimal generating set of G, and 〈x2〉
and 〈x3〉 are the unique maximal subgroups of G.

The proof of Theorem 1.1 is extremely easy, but it does not give any insight
on the freedom that we have in the choice of the maximal subgroup M . One of
the purposes of this note is to achieve some information in this direction for finite
soluble groups.

Notation 1.2. Unless otherwise stated, we assume that G is a finite soluble group
with d = d(G) and we assume that g1, . . . , gd satisfy the condition G = 〈g1, . . . , gd〉.

Let M be a maximal subgroup of G and denote by YM =
⋂
g∈GM

g the normal

core of M in G and by XM/YM the socle of the primitive permutation group G/YM
(in its action on the right cosets of M/YM in G/YM ): clearly XM/YM is a chief
factor of G and M/YM is a complement of XM/YM in G/YM .

LetM be the set of maximal subgroups of G, let V be a set of representatives of
the irreducible G-modules that are G-isomorphic to some chief factor of G having
a complement and, for every V ∈ V, let MV be the set of maximal subgroups M
of G with XM/YM ∼=G V. (Here V ∼=G W means that the G-modules V and W are
G-isomorphic.)

Observe that each element V of V is G-isomorphic to XM/YM for some M ∈M,
and hence MV 6= ∅. Indeed, if X/Y is a chief factor of G with complement K/Y
in G/Y , then K ∈M and X/Y ∼=G XK/YK .

The question that we want to address is:

For which V ∈ V, does there exist M ∈MV with M ∩ {g1, . . . , gd} = ∅?

To deal with this question it is useful to recall some results by Gaschütz [9].
Given V ∈ V, let

RG(V ) =
⋂

M∈MV

M.

It turns out that RG(V ) is the smallest normal subgroup of G contained in CG(V )
with CG(V )/RG(V ) being G-isomorphic to a direct product of copies of V and
having a complement in G/RG(V ). The factor group CG(V )/RG(V ) is called the
V -crown of G. The non-negative integer δG(V ) defined by

CG(V )

RG(V )
∼=G V δG(V )
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is called the V -rank of G and it equals the number of complemented factors in
any chief series of G that are G-isomorphic to V (see for example [2, Section 1.3]).
Moreover G/RG(V ) ∼= V δG(V ) o HV , where HV = G/CG(V ) acts diagonally on
V δG(V ), that is, (v1, . . . , vδG(V ))

h = (vh1 , . . . , v
h
δG(V )) for every h ∈ HV and for every

(v1, . . . , vδG(V )) ∈ V δG(V ).

Theorem 1.3. Let G = 〈g1, . . . , gd〉 be a finite soluble group with d = d(G) and
let V ∈ V. Set θG(V ) = 1 if V is a non-trivial G-module and θG(V ) = 0 otherwise,
FV = EndG(V ), qV = |FV | and nV = dimFV

(V ). If

δG(V ) ≥ (d− 1− θG(V ))nV + 1,

then there exists M ∈MV with M ∩ {g1, . . . , gd} = ∅.
Moreover, if there exists a unique choice for M , then one of the following occurs:

(1) V is a trivial G-module, qV = 2 and δG(V ) = d;
(2) V is a non-trivial G-module, d = 2, δG(V ) = 1 and (qV , nV ) ∈ {(3, 1), (2, 2)}.

In Corollary 1.4 and 1.5 we analyse the case that there exists a unique maximal
subgroup avoiding a given generating set of minimum cardinality.

Corollary 1.4. Let G be a finite soluble group with d = d(G) ≥ 2. Suppose that
there exist g1, . . . , gd generating G with the property that there is a unique maximal
subgroup M of G with M ∩ {g1, . . . , gd} = ∅. Then |G : M | = 2 and every normal
subgroup N of G with d(G/N) = d is contained in G′G2.

Corollary 1.4 can be considerably strengthened when d(G) = 2.

Corollary 1.5. Let G be a finite group with d(G) = 2. Suppose that there exist
g1, g2 generating G with the property that there is a unique maximal subgroup M of
G with M ∩{g1, g2} = ∅. Then |G : M | = 2, G is nilpotent and the Hall 2′-subgroup
of G is cyclic.

Remark 1.6. We report some results from [6] related to our work that can shed
some light on the condition “δG(V ) ≥ (d − 1 − θG(V ))nV + 1” in Theorem 1.3.
Let N be the set of normal subgroups N of G with d(G/N) = d and d(G/K) < d
whenever N < K EG.

Let N ∈ N , let K/N be an arbitrary minimal normal subgroup of G/N and let
V = K/N . As d(G/K) < d and as V is an irreducible G-module, it follows easily
that V ∈ V. By [6, Theorem 1.4 and Theorem 2.7], the irreducible G-module V
satisfies:

(i): δG(V ) ≥ (d(G)− 1− θG(V ))nV + 1, and
(ii): d(G/CG(V )) < d(G).

(See Remark 1.8 for a comment concerning (ii).) In other words, for each N ∈
N , the minimal normal subgroups of G/N give rise to irreducible G-modules V
satisfying the condition “δG(V ) ≥ (d− 1− θG(V ))nV + 1”.

Therefore, for soluble groups, Theorem 1.1 follows from Theorem 1.3: the set

W = {V ∈ V | δG(V ) ≥ (d− 1− θG(V ))nV + 1}

is not empty (it contains all the minimal normal subgroups ofG/N for eachN ∈ N ).
Hence, when G = 〈g1, . . . , gd〉, for every V ∈ W, there exists M ∈ MV with
M ∩ {g1, . . . , gd} = ∅.
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Remark 1.7. Assume that G is a soluble primitive permutation group on a finite
set Ω with d(G) = 2. (Here and throughout the paper, we denote by suppΩ(g), or
simply supp(g), the support {ω ∈ Ω | ωg 6= ω} of the permutation g.) Observe that
G = V oHV (for some V ∈ V, and HV

∼= G/CG(V )) and thatMV = {Gω | ω ∈ Ω},
where Gω is the stabilizer of the point ω ∈ Ω.

Let g1, g2 ∈ G. If supp(g1) ∩ supp(g2) = ∅, then supp(g1) and supp(g2) are
〈g1, g2〉-orbits and hence 〈g1, g2〉 6= G because G is transitive. (Observe that this
holds true regardless of G being soluble.) Therefore, if G = 〈g1, g2〉, then supp(g1)∩
supp(g2) 6= ∅. Moreover,

{M ∈MV |M ∩ {g1, g2} = ∅} = {Gω | Gω ∩ {g1, g2} = ∅}
= {Gω | ω ∈ supp(g1) ∩ supp(g2)}

and hence the number of maximal subgroups M ∈MV avoiding {g1, g2} is exactly
| supp(g1) ∩ supp(g2)|.

When | supp(g1)∩ supp(g2)| = 1, we have a unique choice for M and, from The-
orem 1.3, we obtain that G is either the symmetric group Sym(3) or the symmetric
group Sym(4).

This has a rather remarkable application. Indeed, fix n ∈ N and a ∈ {2, . . . , n−
1}, and consider the two cycles g1 = (1, . . . , a) and g2 = (a + 1, . . . , n) and the
group G = 〈g1, g2〉. It can be easily seen that G is a primitive subgroup of Sym(n).
Since supp(g1) ∩ supp(g2) = {a}, we deduce that either n ≤ 4 or G is insoluble. In
this way we prove that Sym(n) is insoluble for n ≥ 5 using an argument that relies
only on linear algebra. (The proof of Theorem 1.3 relies only on linear algebra.)

Remark 1.8. Here we discuss again the condition “δG(V ) ≥ (d−1−θG(V ))nV +1”
in Theorem 1.3.

(i): Clearly, this condition is vacuously satisfied when d = 1.
(ii): Observe that d(G/CG(V )) ≤ d(G) = d. When d(G/CG(V )) < d, the

condition δG(V ) ≥ (d − 1 − θG(V ))nV + 1 is necessary and sufficient to
ensure that, for every generating d-tuple g1, . . . , gd, there exists M ∈ MV

with M ∩ {g1, . . . , gd} = ∅.
Indeed, if δG(V ) ≤ (d − 1 − θG(V ))nV and d(G/CG(V )) < d, then

d(G/RG(V )) ≤ d − 1 (see for example [6, Theorem 2.7]) and hence there
exist x1, . . . , xd−1 ∈ G with G = 〈x1, . . . , xd−1,RG(V )〉. By a result of
Gaschütz [8], there exist r1, . . . , rd ∈ RG(V ) withG = 〈x1r1, . . . , xd−1rd−1, rd〉:
since RG(V ) =

⋂
M∈MV

M , we have rd ∈M ∩ {x1r1, . . . , xd−1rd−1, rd} for
every M ∈MV .

(iii): When V is a trivial G-module, we have G = CG(V ), d(G/CG(V )) < d
and hence the condition δG(V ) ≥ (d − 1 − θG(V ))nV + 1 is necessary and
sufficient.

(iv): When d = 2 and V is a non-trivial G-module, the condition δG(V ) ≥
(d− 1− θG(V ))nV + 1 simplifies to δG(V ) ≥ 1, which clearly holds true.

(v): The condition δG(V ) ≥ (d−1−θG(V ))nV +1 in general is not necessary

when d(G/CG(V )) = d. Let G̃ be the soluble primitive permutation group

V o G/CG(V ) (with its natural affine action) and let ˜ : G → G̃ be the

natural projection. We have d(G̃) = d and, arguing as in Remark 1.7, a
sufficient condition for the existence of M ∈MV with M∩{g1, . . . , gd} = ∅
is that ∩1≤i≤d supp(g̃i) 6= ∅ whenever G̃ = 〈g̃1, . . . , g̃d〉. This always holds
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true (for example) when d = 3, as it can be deduced from the following,
more general, result:

Theorem 1.9. If G = 〈g1, g2, g3〉 is a primitive group with d(G) = 3, then
supp(g1) ∩ supp(g2) ∩ supp(g3) 6= ∅.

(See also Remark 1.7 to see how this result fits within our investigation.)

Remark 1.8. (continued)

(v): In particular, when d(G) = d(G/CG(V )) = 3, there always exists M ∈
MV with M∩{g1, g2, g3} = ∅, regardless of whether the condition δG(V ) ≥
(d− 1− θG(V ))nV + 1 holds or not.

(vi): We do not have any example of a finite soluble group G = 〈g1, . . . , gd〉
with d = d(G) = d(G/CG(V )) and of a non-trivial G-module V ∈ V where
there is no M ∈MV with M ∩ {g1, . . . , gd} = ∅.

It is not clear whether Theorem 1.9 admits some generalisations. In particular:

Question 1.10. Does there exist a (soluble) primitive group G = 〈g1, . . . , gd〉 with
d(G) = d > 3 and

⋂
1≤i≤d supp(gi) = ∅?

An answer to Question 1.10 may shed some light on Remark 1.8 (vi). Indeed,
an affirmative answer to Question 1.10 yields a primitive group G = 〈g1, . . . , gd〉 on
Ω with d(G) = d and

⋂
1≤i≤d suppΩ(gi) = ∅. As G is soluble, we get G = V oH

where V is the socle of G and H ≤ GL(V ) is irreducible. Now, d(G) = d(G/CG(V ))
by [6]; moreover MV = {Gω | ω ∈ Ω} and hence there is no M ∈ MV with
M ∩ {g1, . . . , gd} = ∅.

A weaker result in this direction is the following:

Theorem 1.11. If G = 〈g1, . . . , gd〉 is a primitive permutation group with d(G) =
d ≥ 1, then supp(gi) ∩ supp(gj) 6= ∅ for all i, j ∈ {1, . . . , d}.

Theorem 1.11 does not remain true if we replace “primitive” with “transitive”.
For example take g1 = (1, 2, 3, 4), g2 = (5, 7), g3 = (1, 5)(2, 6)(3, 7)(4, 8). We have
that G = 〈g1, g2, g3〉 is a Sylow 2-subgroup of Sym(8): in particular d(G) = 3 but
supp(g1) ∩ supp(g2) = ∅.

2. Proof of Theorem 1.3

Before proving Theorem 1.3 we need a preliminary lemma.

Lemma 2.1. Let V1, . . . , Vd be vector spaces of the same dimension, say n, over a
finite field F of cardinality q. Assume d ≥ 2 and, when q = 2, assume also n ≥ 2. Let
W be a subspace of the direct product V1×· · ·×Vd and let U be a subspace of W with
dimF(U) = n. If dimF(W ) > n(d− 1), then there exists (v1, . . . , vd) ∈ W \ U such
that vi 6= 0 for every i ∈ {1, . . . , d}. Moreover, when (q, n, d) /∈ {(3, 1, 2), (2, 2, 2)},
there are at least two F-linearly independent elements satisfying this property.

Proof. For the time being, letW be any subspace of V1×· · ·×Vd withm = dimF(W ),
let πi be the projection from V1 × · · · × Vd to the direct factor Vi and let

ad = dimF πd(W ),

ai = dimF(πi(kerπd ∩ kerπd−1 ∩ · · · ∩ kerπi+1)), for each i ∈ {1, . . . , d− 1},
Λ = {(v1, . . . , vd) ∈W | vi 6= 0, for every i ∈ {1, . . . , d}}.
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We claim that

|Λ| ≥
d∏
i=1

(qai − 1).

We argue by induction on d. When d = 1, we have W = π1(W ) ≤ V1, ad = m and
W has qm−1 non-zero vectors. Assume now that d > 1. Let ρ : V1×V2×· · ·×Vd →
V2×· · ·×Vd be the natural projection. Replacing V1×· · ·×Vd by V2×· · ·×Vd, W
by ρ(W ) and Λ by ρ(Λ), the inductive hypothesis gives ρ(Λ) ≥

∏d
i=2(qai − 1). For

each x = (v2, . . . , vd) ∈ ρ(Λ), choose v1x ∈ V1 with (v1x, v2, . . . , vd) ∈ W . Observe
now that ker ρ = kerπd ∩ · · · ∩ kerπ2 has dimension a1 and hence W contains qa1

vectors of the form (v1, 0, . . . , 0). In particular, for each x = (v2, . . . , vd) ∈ ρ(Λ),
there are at least qa1 − 1 elements (v1, 0, . . . , 0) ∈W with

(v1x, v2, . . . , vd) + (v1, 0, . . . , 0) = (v1x + v1, v2, v3, . . . , vd) ∈ Λ.

Therefore |Λ| ≥ (qa1 − 1)|ρ(Λ)| ≥
∏d
i=1(qai − 1) and the claim is proved.

Assume now that d ≥ 2, m ≥ n(d − 1) + 1, and n ≥ 2 when q = 2. We
need to show that Λ \ U 6= ∅ and, for the stronger statement, that Λ \ U has at
least two F-linearly independent vectors when (q, n, d) /∈ {(3, 1, 2), (2, 2, 2)}. Since
dimF(U) = n, U contains at most qn − 1 elements of Λ; hence it suffices to prove
that

|Λ| ≥ qn

and, for the stronger statement, that

|Λ| ≥ qn + (q − 1)

when (q, n, d) /∈ {(3, 1, 2), (2, 2, 2)}.
Since ai ≤ dimF(Vi) = n for every i ∈ {1, . . . , d} and a1 + · · ·+ ad = dimF(W ) =

m ≥ n(d− 1) + 1, we have 1 ≤ ai ≤ n for every i ∈ {1, . . . , d}.
Case 1: n = 1.

As n = 1, we have q 6= 2 and hence

|Λ| ≥
d∏
i=1

(qai − 1) ≥ (q − 1)d ≥ (q − 1)2 ≥ q;

moreover (q − 1)d ≥ q + (q − 1) when (q, n, d) 6= (3, 1, 2).

Suppose n ≥ 2. As
∑d
i=1 ai = m ≥ 2(d − 1) + 1 > d, we get aj > 1 for some

j ∈ {1, . . . , d}. Therefore

|Λ| ≥
d∏
i=1

(qai − 1) = (qaj − 1)

d∏
i=1
i 6=j

(qai − 1) ≥ (qaj − 1)

d∏
i=1
i6=j

(q − 1)qai−1

≥

((q − 1)qaj−1
) d∏
i=1
j 6=i

(q − 1)qai−1

+ 1 = (q − 1)dqm−d + 1

≥ (q − 1)dq(d−1)(n−1) + 1.

Case 2: n ≥ 2 and d ≥ 3.

Here,

|Λ| ≥ (q − 1)dq(d−1)(n−1) + 1 ≥ (q − 1)2q2(n−1) + 1 ≥ (q − 1)2 + q2(n−1) ≥ q − 1 + qn.
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(In the third inequality we have used ab + 1 ≥ a + b, which is valid for all a, b ∈
N \ {0}.)
Case 3: d = 2, n ≥ 2 and (m, q) /∈ {(n+ 1, 2), (n+ 1, 3)}.
We have

|Λ| ≥ (qa1 − 1)(qa2 − 1) = qm − qa1 − qa2 + 1 ≥ qm − 2qn + 1 ≥ qn + (q − 1).

(In the last inequality we used (m, q) /∈ {(n+ 1, 2), (n+ 1, 3)}.)
Case 4: d = 2, n ≥ 2 and (m, q) = (n+ 1, 3).

Here n + 1 = m = a1 + a2 and |Λ| ≥ (3a1 − 1)(3a1 − 1) = 3n+1 − 3a1 − 3a2 + 1 ≥
3n + (3− 1) because a1 and a2 cannot be both n.

Case 5: d = 2, n ≥ 2 and (m, q) = (n+ 1, 2).

We have |Λ| ≥ 2n+1 − 2a1 − 2a2 + 1 ≥ 2n + (2 − 1) except when (a1, a2) ∈
{(1, n), (n, 1)}.

Assume (a1, a2) = (1, n) and fix (f, 0) a non-zero vector of kerπ2. For every
non-zero vector v ∈ V2, there exists w ∈ V1 such that (w, v) ∈ W. Since also
(w + f, v) ∈ W , a moment’s thought gives that either |Λ| > 2n, or |Λ| = 2n − 1
and π1(W ) is the 1-dimensional subspace of V1 spanned by f. In the former case,
the lemma is proved. In the latter case, W = 〈f〉 × V2, Λ = {(f, v) | v ∈ V2 \ {0}}
and |Λ| = 2n − 1. With this concrete description of W and Λ, we see that an
n-dimensional subspace U of W can contain at most 2n−1 elements of Λ : so there
are at least 2n − 1− 2n−1 = 2n−1 − 1 elements in Λ \ U. Clearly, Λ \ U contains at
least two F-linearly independent vectors as long as 2n−1 − 1 ≥ 2, that is, n 6= 2.

A similar argument works when (a1, a2) = (n, 1). �

Proof of Theorem 1.3. We write Ḡ = G/RG(V ) and, for every g ∈ G, we denote
by ḡ the element gRG(V ) of Ḡ. We distinguish two cases.

Case 1: V is a trivial G-module.

In this case G = CG(V ) and Ḡ is elementary abelian and hence it can be viewed
as the vector space Fδp of dimension δ = δG(V ) over the finite field Fp of prime
cardinality p = |V |. Therefore qV = p, nV = 1, θG(V ) = 0 and the condition
δG(V ) ≥ (d − 1 − θG(V ))nV + 1 simplifies to δ ≥ d. As d(Ḡ) = δ and d(G) = d,
we have δ ≤ d and hence δ = d. Moreover, the elements in MV are in one-to-one
correspondence with the maximal subgroups of Ḡ, that is, with hyperplanes of Fδp.

For every i ∈ {1, . . . , d}, we identify ḡi with the vector (xi1, . . . , xiδ) of Fδp. A

maximal subgroup M of Ḡ is determined by a linear equation a1x1 + · · ·+aδxδ = 0

for suitable a1, . . . , aδ ∈ Fp, and ḡi ∈M if and only if
∑δ
j=1 ajxij = 0.

Consider the linear map φ : Fδp → Fdp defined by setting

φ(a1, . . . , aδ) =

 δ∑
j=1

ajx1j , . . . ,

δ∑
j=1

ajxdj


and observe that φ is injective and hence bijective because δ = d. Let Λ =
{(b1, . . . , bd) ∈ Fdp | bi 6= 0, for every i ∈ {1, . . . , d}}. The existence of M ∈ MV

with M ∩{g1, . . . , gd} = ∅ is equivalent to φ(Fδp)∩Λ 6= ∅, which is clearly satisfied

as φ(Fδp)∩Λ = Λ. Moreover, there are |Λ|/(p− 1) = (p− 1)d−1 maximal subgroups
M ∈ MV with M ∩ {g1, . . . , gd} = ∅. Thus the choice of M is unique only when
qV = p = 2.
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Case 2: V is a non-trivial G-module.

Let δ = δG(V ), H = G/CG(V ), F = EndG(V ), q = |F|, n = nV . We know that
Ḡ = G/RG(V ) ∼= V δ o H. For every i ∈ {1, . . . d}, we may write ḡi = hiwi with
hi ∈ H and wi = (vi1, . . . , viδ) ∈ V δ.

Let Ω = V × Fδ ∼= Fn+δ and let Ω∗ = {(w, λ1, . . . , λδ) ∈ Ω | (λ1, . . . , λδ) =
(0, . . . , 0)}. For every ω = (w, λ1, . . . , λδ) ∈ Ω \ Ω∗, we associate the following
subgroup Mω of Ḡ :

Mω =

h(v1, . . . , vδ) ∈ Ḡ | w − wh +

δ∑
j=1

λjvj = 0

 .

(It is an exercise to prove that Mω is indeed a subgroup of Ḡ.) Observe that if
ω ∈ Ω \ Ω∗ and λ ∈ F \ {0}, then Mω = Mλω.

Since (λ1, . . . , λδ) 6= (0, . . . , 0), for every h ∈ H, there exists (v1, . . . , vδ) ∈ V δ
with wh−w =

∑
j λjvj , that is, h(v1, . . . , vδ) ∈Mω. Therefore MωV

δ = HV δ = Ḡ.

Moreover Mω∩V δ is a maximal H-submodule of V δ, so Mω is a maximal subgroup
of Ḡ.

By [3, Proposition 2.1], the linear map φ : V × Fδ → V d defined by setting

φ(w, λ1, . . . , λδ) =

w − wh1+

δ∑
j=1

λjv1j

 , . . . ,

w − whd+

δ∑
j=1

λjvdj


is injective. Moreover, {M̄ | M ∈ MV } = {Mω | ω ∈ Ω \ Ω∗}. Therefore we have
a one-to-one correspondence between the elements of MV and the 1-dimensional
subspaces of Ω contained in Ω\Ω∗. Under this mapping the elements M ∈MV with
M∩{g1, . . . , gd} = ∅ correspond to the elements ω ∈ Ω\Ω∗ with φ(ω) = (v1, . . . , vd)
having all non-zero coordinates, that is, vi 6= 0 for every i ∈ {1, . . . , d}.

Let Λ = {(v1, . . . , vd) ∈ V d | vi 6= 0, for every i ∈ {1, . . . , d}}, let W = φ(Ω) and
let U = φ(Ω∗). Observe that dimF(W ) = n + δ, dimF(U) = n and U ≤ W ≤ V d.
Summing up, there exists a maximal subgroup M ∈MV with M∩{g1, . . . , gd} = ∅
if and only if there exists a vector of W in Λ \ U .

The condition δG(V ) ≥ (d−1− θG(V ))nv + 1 simplifies to δ ≥ (d−2)n+ 1, that
is, dimF(W ) = n+ δ ≥ n(d− 1) + 1 = dimF U(d− 1) + 1. Now, the existence of a
vector of W in Λ \ U is guaranteed by Lemma 2.1. Moreover, the choice of M is
unique if and only if there are no two F-linearly independent vectors of W in Λ\U ,
that is, when (q, n, d) ∈ {(3, 1, 2), (2, 2, 2)} in view of Lemma 2.1. �

3. Proofs of Corollary 1.4 and Corollary 1.5

Proof of Corollaries 1.4 and 1.5. Recall Remark 1.6 and the notation therein. The
uniqueness of M implies that the set W contains a unique G-module, say V. More-
over MV contains a unique maximal subgroup M with M ∩ {g1, . . . , gd} = ∅.

Suppose d ≥ 3. Now, Theorem 1.3 yields |V | = 2, CG(V ) = G and RG(V ) =
G′G2. Moreover, from Remark 1.6, we deduce that N ≤ RG(V ) = G′G2 for each
N ∈ N . Since every normal subgroup N of G with d(G/N) = d(G) is contained
in some member of N , it follows that N ≤ G′G2. This proves Corollary 1.4 when
d ≥ 3. Observe that Corollary 1.5 implies Corollary 1.4 when d = 2. In particular,
it remains to prove Corollary 1.5.
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Assume then d(G) = 2. Suppose that G is not soluble. Let Y1/Y2 be a non-
abelian chief factor of G and let X = CG(Y1/Y2). The factor group G/X is mono-
lithic (that is, it has a unique minimal normal subgroup) and its socle N/X is
isomorphic to Y1/Y2. We use the “bar” notation to denote the images under the
projection π : G→ G/X = Ḡ. Let P̄ be a Sylow p-subgroup of N̄ . From the Frattini
argument we have Ḡ = N̄NḠ(P̄ ), and hence there exists a maximal subgroup M̄ of
Ḡ with NḠ(P̄ ) ≤ M̄. The action of Ḡ = 〈ḡ1, ḡ2〉 on the set Ω of the right cosets of
M̄ in Ḡ is faithful and primitive. If M̄x ∩ {ḡ1, ḡ2} 6= ∅ for each x ∈ Ḡ, then every
point of Ω is fixed by either ḡ1 or ḡ2, that is, Ω = (Ω \ suppΩ(ḡ1))∪ (Ω \ suppΩ(ḡ2))
and suppΩ(ḡ1) ∩ suppΩ(ḡ2) = ∅, but this forces the group Ḡ = 〈ḡ1, ḡ2〉 to be
intransitive. Therefore there exists x ∈ G with Mx ∩ {g1, g2} = ∅.

Since N̄ 6≤ M̄, there exists a prime q with q 6= p, q | |N̄ | and with M̄ not
containing any Sylow q-subgroup of N̄ . Applying the Frattini argument as above
with the prime p replaced by the prime q, we find a maximal subgroup K̄ of Ḡ
containing the normalizer of a Sylow q-subgroup of N̄ and an element y ∈ G with
Ky∩{g1, g2} = ∅. Therefore we have two distinct maximal subgroups Mx and Ky,
both avoiding the two generators g1 and g2, against our assumption. Thus G is
soluble.

Observe that the condition “δG(V ) ≥ (d− 1− θG(V ))nV + 1” is always satisfied
when d = 2 and V is a non-trivial G-module (see Remark 1.8 (iv)). Therefore, by
Theorem 1.3, for every non-trivial G-module V ∈ V, there exists at least a maximal
subgroup M ∈ V with M ∩ {g1, g2} = ∅. Since we are assuming that there is a
unique maximal subgroup with M ∩ {g1, g2} = ∅, we deduce that V contains at
most a unique non-trivial irreducible G-module.

By [7, Ch. A, Theorem 13.8], the Fitting subgroup Fit(G) is the intersection
of the centralisers of the chief factors of G which are complemented. Therefore,
from the previous paragraph, either G is nilpotent (that is, G has no non-trivial
chief factors) or Fit(G) = CG(V ), where V is the unique non-trivial G-module in
V. Assume that G is not nilpotent, and let V be the unique non-trivial irreducible
G-module in V. Again by Theorem 1.3, either |V | = 4 and G/CG(V ) ∼= GL2(2) ∼=
Sym(3), or |V | = 3 and G/CG(V ) ∼= GL1(3) ∼= C2. In both cases, there exists a
group epimorphism φ : G → Sym(3) (in the first case, by taking the projection of
G to G/CG(V ), and in the second case, by taking the affine action of G on V ).
Let x1 = φ(g1), x2 = φ(g2). As G contains a unique maximal subgroup avoiding
g1 and g2, we deduce that Sym(3) contains a unique maximal subgroup K with
K ∩ {x1, x2} = ∅. But this is false: either one of the two elements x1, x2 has
order 3 and in this case there are two subgroups of order 2 of Sym(3) with trivial
intersection with {x1, x2}, or both x1 and x2 have order 2, in which case there is
one subgroup of order 2 and one of order 3 avoiding x1 and x2. Therefore V has no
non-trivial irreducible G-modules, and G is nilpotent.

The condition “δG(V ) ≥ (d − 1 − θG(V ))nV + 1” reduces to δG(V ) ≥ 2 for
each V ∈ V because d(G) = 2. In particular, if δG(V ) ≥ 2 for some irreducible
G-module V ∈ V of odd order p (that is, G has an epimorphic image isomorphic
to Cp × Cp), then the second part of Theorem 1.3 guarantees the existence of two
distinct maximal subgroups avoiding g1, g2, contrary to our assumption. Therefore
δG(V ) = 1 for each irreducible G-module V ∈ V of odd order, that is, the Hall
2′-subgroup of G is cyclic. Let M be the unique maximal subgroup avoiding g1

and g2. As d(G) = 2, G is not cyclic and hence G has an irreducible G-module
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V ∈ V of even order and with δG(V ) ≥ 2. Now, Theorem 1.3 yields M ∈MV ; thus
|G : M | = 2. �

4. Proofs of Theorem 1.9 and Theorem 1.11

We first prove Theorem 1.11. (Here, given a permutation g ∈ Sym(Ω), we write
fix(g) = {ω ∈ Ω | ωg = ω}.)

Proof of Theorem 1.11. Let G = 〈g1, . . . , gd〉 be a primitive subgroup of Sym(Ω),
with d = d(G) ≥ 1 and |Ω| = n. We argue by contradiction and we suppose
that supp(gi) ∩ supp(gj) = ∅ for some i, j ∈ {1, . . . , d}. In particular, 〈gi, gj〉 is
intransitive and hence d > 2. Moreover fix(gi) ∪ fix(gj) = Ω, hence |fix(gi)| +
|fix(gj)| ≥ n. Therefore there exists g ∈ {gi, gj} with |fix(g)| ≥ n/2. The finite
primitive groups admitting a non-identity element fixing at least half of the points
of the domain have been classified by Guralnick and Magaard [11, Theorem 1]. We
use the classification of Guralnick and Magaard and we distinguish two possibilities:

Case a: G is an affine group with regular normal subgroup V and n = |V | = 2k.

We have G = V oH, where H is an irreducible subgroup of GL(V ), and the action
of G on Ω is permutation equivalent to the affine action of G on V . We write
gi = hivi, gj = hjvj with hi, hj ∈ H and vi, vj ∈ V. By [11, Theorem 1], if g = hv
is a non-identity element of G with |fix(g)| ≥ n/2, then h acts as a transvection on
V and |fix(g)| = 2k−1 = n/2. Hence the inequality |fix(gi)|+ |fix(gj)| ≥ n implies
|fix(gi)| = |fix(gj)| = n/2 and consequently hi, hj both act as transvections on the
irreducible H-module V .

Since V is the unique minimal normal subgroup of G, from [16, Theorem 1.1],
we deduce d(G) = max{2, d(G/V )} = max{2, d(H)} and hence

(4.1) d(H) = d(G) > 2.

Let N = 〈hxi
i , h

xj

j | xi, xj ∈ H〉. Now N E H and hence V is a completely re-
ducible N -module from Clifford’s theory. Therefore we may write V = V1⊕· · ·⊕V`,
where Vm is an homogeneous N -submodule of V for each m ∈ {1, . . . , `} (a module
is said to be homogeneous if it is the direct sum of pairwise isomorphic submod-
ules), andH acts transitively by conjugation on the set {V1, . . . , V`}. ClearlyN fixes
{V1, . . . , V`} point-wise and G/N acts transitively by conjugation on {V1, . . . , V`}.
We prove that, for every m ∈ {1, . . . , `}, Vm is actually an irreducible N -module.
Indeed, write Vm = Vm,1 ⊕ · · · ⊕ Vm,`m , where Vm,i is an irreducible N -module
for every i ∈ {1, . . . , `m}. Since N is generated by transvections and since N acts
faithfully on V , there exists a transvection h ∈ N with h not centralizing Vm, that
is, h acts as a transvection on Vm. Therefore, h acts as a transvection on Vm,i
for some i ∈ {1, . . . , `m}, and h centralizes Vm,j for every j ∈ {1, . . . , `m} \ {i}. If
`m > 1, then this contradicts the fact that Vm,1, . . . , Vm,`m are pair-wise isomorphic
N -modules. Thus `m = 1 and Vm is an irreducible N -module.

Let Ym and Xm be the linear groups induced, respectively, by the actions of N
and NH(Vm) on Vk. We also write X = X1 and Y = Y1. Then N is a subdirect
product of Y1 × · · · × Y` and H acts transitively by conjugation on {Y1, . . . , Y`}.
Moreover Y1

∼= · · · ∼= Y` ∼= Y , X1
∼= · · · ∼= X`

∼= X, Y EX ≤ SLm(2), with m = k/`,
and H can be identified with a subgroup of the imprimitive linear group X oT, where
T is the subgroup of Sym(`) induced by the conjugacy action of H on {Y1, . . . , Y`}.
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Notice that T is an epimorphic image of G/N, which is generated by the elements
gkN with k ∈ {1, . . . , d} \ {i, j}, so

(4.2) d(T ) ≤ d− 2.

As N is generated by transvections, we deduce that also Y is generated by
transvections. Then the structure of Y can be deduced from [17, Theorem]: Y is
one of the following groups:

(1) SLm(2) for m ≥ 2,
(2) Spm(2) for m ≥ 4,
(3) O+

m(2) for m ≥ 6,
(4) O−m(2), for m ≥ 4,
(5) Sym(m+ 2) or Sym(m+ 1) for m ≥ 4.

From [13, Section 3 and Table 3.5A], we see that Spm(2) is maximal in SLm(2)
and, from [13, Section 3 and Table 3.5C], we see that O+

m(2) and O−m(2) are both
maximal in Spm(2). It follows that SLm(2), Spm(2), O+

m(2) and O−m(2) are self-
normalizing in SLm(2). As Aut(Sym(κ)) = Sym(κ) except when κ = 6, it follows
from Schur’s lemma that also Sym(m+ 2) and Sym(m+ 1) are self-normalizing in
SLm(2), except possibly when m ∈ {4, 5}. Finally, a direct computation yields that
Sym(6) is self-normalizing in SL4(2) and in SL5(2). Therefore, in all these cases, Y
is self-normalizing in SLm(2).

Since Y E X, we conclude Y = X. Moreover soc(Y ) is a simple group (not
necessarily non-abelian) and |Y/ soc(Y )| ≤ 2. Let ∆ = Y \ {1} if Y = soc(Y ), and
let ∆ = Y \ soc(Y ) otherwise.

Since N is a subdirect product of Y ` and it is generated by transvections, there
exists a transvection n = (y1, . . . , y`) ∈ N with yj ∈ ∆ for some j ∈ {1, . . . , `}.
Now, to be a transvection n must be equal to (1, . . . , 1, yj , 1 . . . 1). Let πj be the
projection from N to Yj . Since πj(N) = Yj , we have that [N,n] contains all the
elements of the form (1, . . . , s, . . . , 1) with s ∈ [Y, yj ]. As 〈yj , [Y, yj ]〉 = Y , we
obtain that N contains (1, . . . , y, . . . , 1) for every y ∈ Y. This implies N = Y ` and
H = Y o T.

Let K = (soc(Y ))` : an easy case-by-case analysis shows that K is the unique
minimal normal subgroup of H, so by [16, Theorem 1.1] d(H) = max{2, d(H/K)}.
On the other hand either soc(Y ) = Y and H/K ∼= T or |Y : soc(Y )| = 2 and
H/K ∼= C2 o T . In both cases, d(H/K) ≤ d(T ) + 1. Now, Eqs. (4.1) and (4.2) yield
2 < d = d(G) = d(H) ≤ max{2, d− 1}, a contradiction.

Case b: G ≤ H o Sym(t), where H is a primitive group on ∆ and the wreath
product H oSym(t) has its product action on Ω = ∆t. Moreover H is almost simple
with soc(H) ∈ {Alt(k),Ω2k+1(2),Ω+

2k(2),Ω−2k(2)} and |H/ soc(H)| ≤ 2.

The argument here is similar to the previous case. Write the element g ∈ G as
(x1, . . . , xt)πg where (x1, . . . , xt) lies in the base subgroup Ht and πg ∈ Sym(t).
Setting gi = (a1, . . . , at)πi and gj = (b1, . . . , bt)πj with πi, πj ∈ Sym(t) and
(a1, . . . , at), (b1, . . . , bt) ∈ Ht, it can be easily seen that the assumption supp(gi) ∩
supp(gj) = ∅ implies πi = πj = 1 and that there exists s ∈ {1, . . . , t} with
ar = br = 1 whenever r ∈ {1, . . . , t} \ {s}.

If as and bs are both in soc(H), then gi, gj ∈ soc(G) = soc(H)t and this
implies d(G/ soc(G)) ≤ d − 2. As usual, from [16, Theorem 1.1], we deduce
d(G) = max{2, d(G/ soc(G))} ≤ max{2, d − 2}, a contradiction. Thus, we may
assume as /∈ soc(H). Then |H : soc(H)| = 2.
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Arguing exactly as in Case A, we get G = H o T with T a transitive subgroup of
Sym(t) and G/ soc(G) ∼= C2 o T . Since gi, gj ∈ Ht, we must have d(T ) ≤ d− 2 and
therefore d(G) = max{2, d(G/ soc(G))} ≤ max{2, d(T ) + 1} ≤ max{2, d− 1}, again
a contradiction. �

Proof of Theorem 1.9. Let G = 〈g1, g2, g3〉 be a primitive subgroup of Sym(Ω) with
d(G) = 3. We argue by contradiction and we suppose that supp(g1) ∩ supp(g2) ∩
supp(g3) = ∅. Then fix(g1) ∪ fix(g2) ∪ fix(g3) = Ω and

(4.3) |fix(g1)|+ |fix(g2)|+ |fix(g3)| ≥ |Ω|.

We use the O’Nan-Scott theorem, as stated in [14]. According to this, we have five
cases to consider. Let N be the socle of G.

Case a: G is an affine group.

Here, N is an elementary abelian p-group for some prime p, G = N o H where
H is an irreducible subgroup of GL(N) and the action of G on Ω is permutation
equivalent to the affine action of N oH on N .

Let F = EndH(N), q = |F|, κ = dimF(N). We write g1 = h1v1, g2 = h2v2,
g3 = h3v3, with h1, h2, h3 ∈ H and v1, v2, v3 ∈ N. In particular, given n ∈ N , we
have nhivi = nhi + vi and hence supp(gi) = {n ∈ N | nhi + vi 6= n}. For simplicity,
we define supp(gi) = Ni = {n ∈ N | n − nhi 6= vi}. As supp(g1) ∩ supp(g2) ∩
supp(g3) = ∅, there exists no w ∈ N with w − whi 6= vi for every i ∈ {1, 2, 3}.

The mapping φ : N × F→ N3 defined by setting

φ(w, λ) = (w − wh1 + λv1, w − wh2 + λv2, w − wh3 + λv3)

is clearly linear and (by [3, Proposition 2.1]) injective. We have d(H) = d(G) = 3
from [1, Corollary 1], and hence hi 6= 1 for every i ∈ {1, 2, 3}. This means that
κi = dimF(N1−hi) ≥ 1 : in particular the set Ni = {n ∈ N | n − nhi = vi} has
cardinality at most qκ−κi ≤ qκ−1. If

∑
1≤i≤3 q

κ−κi < qκ, then N 6= N1 ∪N2 ∪N3

and we are done: in particular, since
∑

1≤i≤3 q
κ−κi ≤ 3qκ−1, we may assume q ≤ 3.

If q = 3, then N 6= N1∪N2∪N3 except (possibly) when κi = 1 for every i ∈ {1, 2, 3}.
In this case, the fact that φ is injective implies that 3 = κ1 + κ2 + κ3 ≥ κ. On the
other hand, if κ ≤ 2, then d(H) ≤ 2 by [12, Theorem 1.2], against our assumption;
so κ = 3 and (N×{0})φ = N1−h1×N1−h2×N1−h3 and we can easily conclude that
there is (u1, u2, u3) ∈ N1−h1 ×N1−h2 ×N1−h3 with ui 6= vi for every i ∈ {1, 2, 3}.
Finally suppose q = 2. Relabelling the indexed set {1, 2, 3} if necessary, we may
assume that κ1 ≤ κ2 ≤ κ3. As above, if N 6= N1 ∪ N2 ∪ N3, then we are done.
Since |N1 ∪N2 ∪N3| ≤ 2κ−κ1 + 2κ−κ2 + 2κ−κ3 , we may restrict our attention to the
case 2κ−κ1 + 2κ−κ2 + 2κ−κ3 ≥ 2κ. This implies that either (κ1, κ2, κ3) = (1, 2, 2),
or (κ1, κ2) = (1, 1). In the first case κ ≤ κ1 + κ2 + κ3 ≤ 5, but then d(H) ≤ 2
by [12, Theorem 1.2], against our assumption. It remains to consider the case
(κ1, κ2) = (1, 1). This means that h1, h2 both act as transvections on the irreducible
H-module N . Using as a crib the argument in Case A in the proof of Theorem 1.11,
we deduce d(G) ≤ 2, a contradiction.

Case b: G is of simple diagonal type.

Here N = Sκ, for some non-abelian simple group S and for some positive integer
κ with κ ≥ 2. Moreover, |Ω| = |S|κ−1. Let g be a non-identity element of G. An
upper bound for |fix(g)| is given in [15, p. 310] (see also [10, Section 5]). We have
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|fix(g)| ≤


|Ω|
|S| when κ ≥ 3,

max
α∈Aut(S)

|{s ∈ S | sα = s−1}| when κ = 2.

When κ ≥ 3, we deduce |fix(g)| ≤ |Ω|/60, contradicting (4.3). Suppose then
κ = 2. From [18, Theorem 3.1], we have |{s ∈ S | sα = s−1}| ≤ 4|S|/15, for
each automorphism α of S. Therefore, |fix(g)| ≤ 4|Ω|/15 < |Ω|/3, contradicting
again (4.3).

Case c: G is of twisted wreath type.

Here N is a normal regular subgroup of G and the action of a point-stabilizer on Ω
is permutation equivalent to its action on N by conjugation. Consequently, if g is a
non-identity element of a point-stabilizer, then |fix(g)| ≤ |CN (g)| ≤ |N |/5 = |Ω|/5,
again contradicting (4.3).

Case d: G is almost simple.

From [5], the condition d(G) = 3 implies that either N = PSLn(q) with n ≥ 4 or
N = PΩ+

n (q) with n ≥ 8, moreover (in both cases) q is an even power of an odd
prime. In particular, q ≥ 9. By [15, Theorem 1], for each non-identity element
g ∈ G, we have

|fix(g)| ≤ 4|Ω|
3q
≤ 4|Ω|

27
<
|Ω|
3
,

again contradicting (4.3).

Case e: G is of wreath product type.

In particular G ≤ H o Sym(t), where H is a primitive group on ∆ and the wreath
product has its product action on Ω = ∆t. Moreover H is either of almost simple
type or of simple diagonal type and soc(G) = (soc(H))t. Let g1 = (a1, . . . , at)π1,
g2 = (b1, . . . , bt)π2 and g3 = (c1, . . . , ct)π3, where (a1, . . . , at), (b1, . . . , bt) and
(c1, . . . , ct) are in the base group Ht and π1, π2, π3 ∈ Sym(t).

Let g ∈ G and write g as (x1, . . . , xt)πg where (x1, . . . , xt) lies in the base group
Ht and πg ∈ Sym(t).

We claim that, if πg 6= 1, then

(4.4) |fix(g)| ≤ |∆t−1|

and the bound is met if and only if g is (H o Sym(t))-conjugate to

(x, x−1, 1, . . . , 1)(1 2),

for some x ∈ H. Indeed, choose i, j ∈ {1, . . . , t} with iπg = j and i 6= j. Observe
that if (δ1, . . . , δt) ∈ fix(g), then δj = δxi

i . Consequently, for the elements in fix(g)
the jth-coordinate is uniquely determined by the ith-coordinate and (4.4) is proved.
Moreover, if the bound in Eq. (4.4) is met then, πg is a transposition, say πg = (i j),
and moreover xk = 1 for every k ∈ {1, . . . , t} \ {i, j}. Now, a direct computation
with this explicit description of g yields that the bound in Eq. (4.4) is met if and
only if xixj = 1.

We observe that, if πg = 1 and g 6= 1, then

(4.5) |fix(g)| ≤ (|∆| − 2)|∆|t−1

and the bound is met if and only if g is (H o Sym(t))-conjugate to

(x, 1, . . . , 1),
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where x is a transposition in H. See for example [10, Section 3].
We now use Eqs. (4.4) and (4.5) and their characterisation of equalities to the

elements g1, g2, g3. Suppose that π1, π2, π3 6= 1. Using Eqs. (4.4), we get |Ω| ≤∑
1≤i≤n |fix(gi)| ≤ 3|∆|t−1 < |∆|t = |Ω|, a contradiction. Suppose next that

π1 = 1 and π2, π3 6= 1. Using Eqs. (4.4) and (4.5), we get |Ω| ≤
∑

1≤i≤n |fix(gi)| ≤
(|∆| − 2)|∆|t−1 + 2|∆|t−1 = |∆|t = |Ω|. In particular, |fix(g1)| = (|∆| − 2)|∆|t−1

and |fix(g2)| = |fix(g3)| = |∆|t−1. Using the characterisations above it is easy
to conclude that G = Sym(∆) o Sym(2) or G = Sym(∆) o Sym(3). In both cases,
d(G) = 2, a contradiction.

Relabelling the indexed set {1, 2, 3} if necessary, we may assume π1 = π2 = 1.
In particular, π3 is a t-cycle and, relabelling the indexed set {1, . . . , t} if necessary,
we may assume π3 = (1 2 . . . t).

There exists j1, j2 ∈ {1, . . . , t} with aj1 6= and bj2 6= 1. If supp(aj1) > |∆|/2 and
supp(bj2) > |∆|/2, then there exist i ∈ {1, . . . , t} and ω = (δ1, . . . , δt) ∈ ∆t = Ω
such that δj1aj1 6= δj1 , δj2bj2 6= δj1 and δici 6= δiπ3 . In this case ω ∈ supp(g1) ∩
supp(g2) ∩ supp(g3) and we are done. Therefore, we may assume that there exists
h ∈ H with | supp(h)| ≤ |∆|/2. The primitive groups with these properties have
been classified by Guralnick and Magaard [11, Theorem 1]: H is an almost simple
group and in all cases |H/ soc(H)| ≤ 2. (Here we follow closely the ideas in the
proof of Theorem 1.11 Case B.) Then G/ soc(G) ≤ C2 o Cn. To conclude the proof
we need the following claim.

Claim Let X be a subgroup of C2 o 〈σ〉, where σ = (1, . . . , t) ∈ Sym(t). If X
contains an element g of the form g = (c1, . . . , ct)σ, then d(X) ≤ 2.

Let W = Ct2 be the base of the wreath product C2 o 〈σ〉 and let U = W ∩X. We can
view W as a cyclic Fp[x]-module with x acting as g does. As Fp[x] is polynomial
ring, it is a principal ideal domain, therefore every submodule of W is cyclic: in
particular there exists u ∈ U generating U an Fp[x]-module. Thus X = 〈g, u〉 and
d(X) ≤ 2.

Applying the previous claim with G/ soc(G) and using [16, Theorem 1.1], we
deduce d(G) = max{2, d(G/ soc(G))} = 2, but this contradicts d(G) = 3. �

5. Direct product of non-abelian simple groups

Let S be a finite non-abelian simple group. Given a positive integer d ≥ 3,
consider the action of Aut(S) on Sd and let Ωd be the set of Aut(S)-orbits on the
set of d-tuples (x1, . . . , xd) ∈ Sd with the following properties:

(1) S = 〈x1, . . . , xd〉;
(2) for every maximal subgroup M of S, there exists i ∈ {1, . . . , d} with xi ∈M.

Notice that, since d ≥ 3, Ωd is non-empty, there are several generating d-tuples
in which at least one entry coincides with the identity element. (However, when
d = 2, we have Ω2 = ∅ by Theorem 1.1.)

We use the notation [(x1, . . . , xd)] to denote the Aut(S)-orbit containing (x1, . . . , xd) ∈
Ωd. We define the graph Γd with vertex set Ωd and where two distinct vertices
[(x1, . . . , xd)] and [(y1, . . . , yd)] are declared to be adjacent if and only if, for every
γ ∈ Aut(S), there exists i ∈ {1, . . . , d} (which may depend on γ) such that yi = xγi .
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Theorem 5.1. Let ω(Γd) be the clique number of Γd and let PS(k) be the probability
of generating S with k-elements. We have

ω(Γd) ≤
PS(d− 1)|S|d−1

|Aut(S)|
.

Proof. Let t = PS(d−1)|S|d−1

|Aut(S)| + 1 and suppose, by contradiction, that

ω1 = [(x11, . . . , xd1)], ω2 = [(x12, . . . , xd2)], . . . , ωt = [(x1t, . . . , xdt)]

are t+ 1 vertices of a clique of Γd. Consider the d elements

g1 = (x11, . . . , x1t), g2 = (x21, . . . , x2t), . . . , gd = (xd1, . . . , xdt)

of St. We have that St = 〈g1, . . . , gd〉 and St cannot be generated by d−1 elements
(by the way in which t is defined, see for example [4] for some details). So d(St) = d
and we may apply Theorem 1.1: there exists a maximal subgroup M of St with
M ∩ {g1, . . . , gd} = ∅.

Now, there are two possibilities:

Case a: M is of “product type”, i.e. there exists i ∈ {1, . . . , t} and a maximal
subgroup K of S such that M = {(s1, . . . , st) ∈ St | si ∈ K}.
In this case, as M ∩{g1, . . . , gd} = ∅, we have xji /∈ K for every j ∈ {1, . . . , d}, but
then ωi /∈ Ωd because we are violating the condition (1) above, a contradiction.

Case b: M is of “diagonal type”, i.e. there exist i, j ∈ {1, . . . , t} with i 6= j and
γ ∈ Aut(S) such that M = {(s1, . . . , st) ∈ St | sj = sγi }.
In this case, as M ∩ {g1, . . . , gd} = ∅, we have xkj 6= xγki for every k ∈ {1, . . . , d},
in contradiction with the fact that ωi and ωj are adjacent vertices of Γd. �
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