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A R T I C L E I N F O

Available online

A B S T R A C T

In an always connected world, cyber-attacks and computer security breaches can produce

significant financial damages as well as introduce new risks and menaces in everyday’s life.

As a consequence, more and more sophisticated packet screening/filtering solutions are de-

ployed everywhere, typically on network border devices, in order to sanitize Internet traffic.

Despite the obvious benefits associated to the proactive detection of security threats, these

devices, by performing deep packet inspection and inline analysis, may both affect latency-

sensitive traffic introducing non-negligible delays, and increase the energy demand at the

network element level. Starting from these considerations, we present a selective routing

and intrusion detection technique based on dynamic statistical analysis. Our technique sepa-

rates latency-sensitive traffic from latency-insensitive one and adaptively organizes the

intrusion detection activities over multiple nodes. This allows suppressing directly at the

network ingress, when possible, all the undesired components of latency-insensitive traffic

and distributing on the innermost nodes the security check for latency sensitive flows, pri-

oritizing routing activities over security scanning ones. Our final goal is demonstrating that

selective intrusion detection can result in significant energy savings without adversely af-

fecting latency-sensitive traffic by introducing unacceptable processing delays.

© 2017 Elsevier Ltd. All rights reserved.

Keywords:

Dynamic traffic classification

Network energy containment

Selective intrusion detection

Distributed intrusion detection

1. Introduction

The number of devices interconnected and always on is growing
rapidly and, according to a study from Gartner (G. Group, 2017),
will outnumber humans on earth during 2017. Unfortunately,
as it has been shown by the Mirai botnet1, the resilience to in-

trusion and hacking of these devices has often not grown at
the same pace, hence, the thorough sanitization of Internet
traffic is a real necessity. Consequently, while in the past
network breaches Denial of Service (DoS) attacks and cyber-
security threats were considered just as an inconvenience, they
have now been recognized as a major cause of financial losses
and could morph into deadly threats together with the massive

* Corresponding author.
E-mail addresses: s.baddar@ju.edu.jo (S. Al-Haj Baddar), alessio@dibris.unige.it (A. Merlo), mauro.migliardi@unipd.it (M. Migliardi), fpalmieri@

unisa.it (F. Palmieri).
https://doi.org/10.1016/j.cose.2017.12.003
0167-4048/© 2017 Elsevier Ltd. All rights reserved.

1 https://www.cyber.nj.gov/threat-profiles/botnet-variants/mirai-botnet.
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diffusion of ubiquitous connectivity, smart control/sensing
devices and Internet of Things technologies. Indeed, many
recent experiences focusing on network threats (see, e.g., Labs,
2016; Leder et al., 2009; Paganini) indicate that the worst state-
of-the-art menaces are now empowered by botnet
infrastructures and most of the malicious activities of these
botnets are based on the availability of a huge number of
“zombie” agent nodes that produce significant amounts of ma-
licious traffic.

Several experiences prove that such malicious traffic can
adversely affect network activity and operations (i.e., Lan et al.,
2003; Mallikarjunan et al., 2016), even when the perceived effect
does not assume catastrophic proportions as it happened in
the case of the widespread Nimda/RedCode infection.

Furthermore, the evidence that malicious traffic is poten-
tially able to change the behavior of networks is the basis on
top of which all the modern anomaly detection systems build
their work (see Baddar et al., 2014 for some references); in fact,
if malicious traffic were completely negligible compared to
normal aggregate traffic, no anomalies would be ever generated.

As an additional side effect, the aforementioned process-
ing overhead will increase the energy demand at the network
element level, due to the energy-proportional behavior of
modern electronic processing devices.

The combination of all the previous factors, namely the need
of detecting anomalous network behaviors within the context
of an Internet traffic sanitization policy aiming at reducing the
amount of undesired traffic loading the network infrastruc-
ture, represents an opportunity to leverage the need for security
for energy saving purposes. This becomes particularly impor-
tant in modern mobile and ubiquitous wireless networking
scenarios, where battery-powered (and hence energy-
constrained) devices assume both the role of routers and traffic
control and screening devices in ad-hoc communication
infrastructures.

In past works (i.e., Merlo et al., 2016; Migliardi and Merlo,
2011, 2013a, 2013b) we have proved that significant energy
savings may be obtained through early suppression of unde-
sired traffic by adopting an aggressive Distributed Intrusion
Detection. In this context, Intrusion Detection is considered ag-
gressive since it continuously performs scavenging for all the
resources that are not dedicated to actual routing in order to
maximize its effectiveness, and it is distributed because each
flow is not checked in a single node but is, on the contrary,
analyzed along its whole trajectory. It is important to notice
that the two characteristics cannot be separated, in fact, adopt-
ing an aggressive approach to intrusion detection implies the
need to distribute the burden of the analysis to avoid intro-
ducing congestion.

However, besides significant energy savings, our studies also
showed that the misprediction of the amount of incoming traffic
introduces a certain risk of burdening some legitimate flows
with unwanted delays. In this work we extend the results pre-
sented in Al Haj Baddar et al. (2017), by trying to face this latter
challenge by introducing a novel technique capable of dynami-
cally identifying Latency Sensitive Traffic (LST) as opposed to
Latency Insensitive Traffic (LIT). LST comprises two-way traffic
flows where packets need to be delivered in almost real-time
fashion. In LIT, delivering packets in real-time is not a mandate;
delay in delivering packets is tolerable compared to LST ap-

plications. Table 1 lists examples of LST and LIT applications.
It is worth noticing that Live Audio/Video streaming applica-
tions like Internet Radio, fall somewhere in between, as they
are more sensitive to regularity in latency, than to latency itself.

Such a separation allows focusing on the sanitization of LIT
first, thereby guaranteeing undelayed forwarding of LST. At the
same time, the suppression of undesired LIT results in freeing
a significant amount of router resources that can reveal to be
extremely useful later along the following steps of LST traffic
flow processing activity, in order to complete the sanitization
of the whole traffic without adversely affecting the timing fea-
tures of LST. This results in a distributed intrusion detection
framework where routing is privileged over security screen-
ing for LST packets, so that the latter activity, that is
computationally heavier, is moved toward the routers that have
enough resources over the traffic flows paths, in order to avoid
affecting the traffic timing constraints. Even if LIT can be
seamlessly delayed in order to perform Intrusion Detection as
soon and effectively as possible, the amount of buffer space
required for such activity would be unbounded (or bounded
only by the maximum possible amount of incoming traffic).
Consequently, an effective and more realistic approach implies
the distribution of the Intrusion Detection activity over the
nodes along the traffic path also for LIT in presence of buffer
resources shortage. The estimation of the amount of energy
saved considers the fact that, while the cost of sanitization is
always required by safety and security reasons and hence
cannot be considered a by-product of our scheme, the energy
burden associated to the classification of the Internet traffic
into LIT and LST is indeed instrumental only to our proposed
scheme and hence it must be subtracted from the total quan-
tity of energy that can be potentially saved by relying on it. In
order to assess its performance and effectiveness, we apply our
scheme to different scenarios based on real world data.

The work is structured as follows: in Section 2 we de-
scribe past relevant studies in the field, whereas in Section 3
we describe the proposed selective intrusion detection frame-
work based on separation between LST and LIT. In Section 4
we present the experimental evaluation of the proposed adap-
tive intrusion detection solution on real world traffic, based on
data collected at the University of Padua, by discussing the
achieved results and finally, in Section 5 we draw our conclu-
sions from the presented experience and try to sketch some
future work perspectives.

2. Backgrounds and related literature

Despite the numerous Network Intrusion Detection Systems
(NIDS) whether proposed or implemented, effective

Table 1 – LST and LIT examples.

LST examples LIT examples

• Audio-video conferencing
• Network/Internet gaming
• Remote control/tele-control

• Media streaming
• Mailing
• File sharing
• Upload/download of contents
• Web browsing
• Instant messaging
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solutions have not been fully realized yet. Some well-known
solutions adopted the signature-based approach were pat-
terns of malicious behaviors are fed to the NIDS, and hence
only intrusions within the scope of such signatures can be de-
tected, while others opted for the behavioral approach. Such
systems, instead aim at modeling the behavior of the moni-
tored network to understand its behavior. Upon accomplishing
such a far from trivial task, identifying malicious activities that
do not comply with the designated normal behaviors would
be rather feasible, even if clearly defining the concept of normal
network behavior can be extremely challenging. Several
signature-based solutions have been used extensively re-
cently, and include Snort2, Bro3, and Suricata4, to mention some
of them. Snort is a well-known single-threaded signature-
based NIDS that, despite its diffusion and huge users’
community, fails at distinguishing application-level proto-
cols. Compared to Snort, Bro better defines malicious signatures,
yet, it is limited to Unix-based platforms. Suricata, on the other
hand, stands out compared to Snort and Bro, as it uses multi-
threading. Recent examples on behavioral approaches are
depicted in Ashfaq et al. (2017), Ji et al. (2016), and Lin et al.
(2015). There are several types of behavioral systems, some
based on a statistical approach and others rely on machine
learning (Aburomman and Reaz, 2017). In addition, a NIDS may
also adopt strategies based on information theory such as the
one presented in Weller-Fahy et al. (2015), as well as use a
streaming approach (Desale et al., 2015; Noorbehbahani et al.,
2017; Wang et al., 2014). However, as a common feature, all these
behavioral approaches require significant amount of compu-
tation for their operations, essentially related to deep packet
inspection, stateful flow analysis and high level protocol rec-
ognition, that in turn are able to heavily tax networking devices,
both from the data processing capability and energy consump-
tion perspectives. Several studies targeted the implementation
of lightweight NIDS solutions (Li et al., 2009).

New emerging challenges surface and render developing ef-
fective NIDS solutions even harder. One of these challenges is
energy-awareness: it is now essential for many types of heavy
data processing operations, such as packet screening and flow
inspection, to behave in a more energy-efficient way depend-
ing on the specific application context. This problem becomes
even more pressing for Internet of Things (IoT) and wireless
devices that are inherently energy-limited. Thus, several re-
cently developed NIDS architectures address energy-awareness
through different approaches as illustrated in the systems pro-
posed in Hassanzadeh et al. (2014), Şen et al. (2010), and
Tsikoudis et al. (2016). An example of effective distributed in-
trusion detection technique has been introduced in Migliardi
and Merlo (2013b), where energy savings are analyzed for early
and later discovery of intrusions. Another related experience
has been presented in Viegas et al. (2017) describing novel
energy-efficient feature selection and extraction approaches.
This study also compared the energy consumption profiles of
proposed hardware and software implementations with other
machine-learning based approaches and showed that their ap-

proach saved more energy. Several recent studies addressed
developing energy-aware NIDS solutions for IoT. For in-
stance, the study presented in Khan and Herrmann (2017)
depicts a NIDS that allows devices, in healthcare context, to
manage reputation information about their neighbors.This ap-
proach enables identifying malicious units in an energy-
aware way. To evaluate this solution, three variants of the
reference scenario have been simulated by comparing their
results. Another example is introduced in Sedjelmaci et al.
(2016), where a game-theoretic approach and Nash equilib-
rium were used to implement intrusion detection while saving
energy. Simulation results that compared this approach to other
recent solutions showed that it is able to achieve comparable
detection accuracy using less energy. The study in Muradore
and Quaglia (2015) presented an energy-efficient intrusion de-
tection and mitigation architecture for wireless control systems.
The proposed architecture relied on selective encryption in order
to save energy while attacks are being detected. It also adapted
packet transmission rate during attacks according to instan-
taneous control performance. The simulation results in
Muradore and Quaglia (2015) showed that the proposed archi-
tecture promptly reacted to attacks with energy saving
compared to a default setup in which no intrusion detection
was deployed.

Some recent NIDS approaches addressed energy-awareness
with low latency; the study in (Tsikoudis et al., 2016), for
example, introduced LEoNIDS, a low latency and energy-
efficient NIDS. LEoNIDS balanced energy-awareness and low
latency goals by identifying the packets that were more likely
malicious and gave them higher priority, and thus, LEoNIDS
achieved low attack detection latency. Simulation results show
that LEoNIDS detected attacks faster by an order of magni-
tude compared to state-of-the-art solutions while consuming
a comparable amount of energy. Other solutions addressed in-
trusion detection in delay/disruption tolerant networks (DTNs).
More precisely, the work in Zhu et al. (2014) discussed a proba-
bilistic strategy for detecting misbehaviors for secure routing
in DTNs. The resulting scheme, referred to as iTrust, used a
Trusted Authority to assess at regular intervals the behavior
of network nodes by collecting routing evidences and per-
forming probabilistic checking. It has been shown that, by
choosing the appropriate investigation probability, iTrust is able
to enforce the security of routing in DTN scenarios at a reduced
cost.

3. Traffic prioritization and energy saving
through selective intrusion detection

The basic concept behind the proposed selective intrusion de-
tection strategy is that while LST cannot be delayed by packet
inspection and screening activities without adversely affect-
ing its behavior, LIT can. Hence, the proposed distributed
intrusion detection architecture in presence of LST privileges
routing activities over any kind of heavy security analysis, while
for LIT, it gives priority to security analysis over routing. This
results in a hierarchy of nodes, where the outermost ones (on
top of the hierarchy), typically located on the network border,
have the role of separating latency sensitive flows from latency
insensitive ones and perform intrusion detection on LIT packets

2 http://snort.org.
3 http://bro.org.
4 http://suricata-ids.org.

ARTICLE IN PRESS

Please cite this article in press as: Sherenaz Al-Haj Baddar, Alessio Merlo, Mauro Migliardi, Francesco Palmieri, Saving energy in aggressive intrusion detection through
dynamic latency sensitivity recognition, Computers & Security (2017), doi: 10.1016/j.cose.2017.12.003

3c om pu t e r s & s e cu r i t y ■ ■ ( 2 0 1 7 ) ■ ■ –■ ■

180bs_bs_query

181bs_bs_query

182bs_bs_query

183bs_bs_query

184bs_bs_query

185bs_bs_query

186bs_bs_query

187bs_bs_query

188bs_bs_query

189bs_bs_query

190bs_bs_query

191bs_bs_query

192bs_bs_query

193bs_bs_query

194bs_bs_query

195bs_bs_query

196bs_bs_query

197bs_bs_query

198bs_bs_query

199bs_bs_query

200bs_bs_query

201bs_bs_query

202bs_bs_query

203bs_bs_query

204bs_bs_query

205bs_bs_query

206bs_bs_query

207bs_bs_query

208bs_bs_query

209bs_bs_query

210bs_bs_query

211bs_bs_query

212bs_bs_query

213bs_bs_query

214bs_bs_query

215bs_bs_query

216bs_bs_query

217bs_bs_query

218bs_bs_query

219bs_bs_query

220bs_bs_query

221bs_bs_query

222bs_bs_query

223bs_bs_query

224bs_bs_query

225bs_bs_query

226bs_bs_query

227bs_bs_query

228bs_bs_query

229bs_bs_query

230bs_bs_query

231bs_bs_query

232bs_bs_query

233bs_bs_query

234bs_bs_query

235bs_bs_query

236bs_bs_query

237bs_bs_query

238bs_bs_query

239bs_bs_query

240bs_bs_query

241bs_bs_query

242bs_bs_query

243bs_bs_query

244bs_bs_query

245bs_bs_query

246bs_bs_query

247bs_bs_query

248bs_bs_query

249bs_bs_query

250bs_bs_query

251bs_bs_query

252bs_bs_query

253bs_bs_query

254bs_bs_query

255bs_bs_query

256bs_bs_query

257bs_bs_query

258bs_bs_query

259bs_bs_query

260bs_bs_query

261bs_bs_query

262bs_bs_query

263bs_bs_query

264bs_bs_query

265bs_bs_query

266bs_bs_query

267bs_bs_query

268bs_bs_query

269bs_bs_query

270bs_bs_query

271bs_bs_query

272bs_bs_query

273bs_bs_query

274bs_bs_query

275bs_bs_query

276bs_bs_query

277bs_bs_query

278bs_bs_query

279bs_bs_query

280bs_bs_query

281bs_bs_query

282bs_bs_query

283bs_bs_query

284bs_bs_query

285bs_bs_query

286bs_bs_query

287bs_bs_query

288bs_bs_query

289bs_bs_query

290bs_bs_query

291bs_bs_query

292bs_bs_query

293bs_bs_query

294bs_bs_query

295bs_bs_query

296bs_bs_query

297bs_bs_query

298bs_bs_query

299bs_bs_query

Original Text
Toppan Best-set
 
ing

Original Text
Toppan Best-set
 
(

Original Text
Toppan Best-set
 
;

Original Text
Toppan Best-set
 
; 

Original Text
Toppan Best-set
 
(

Original Text
Toppan Best-set
 
energy-

Original Text
Toppan Best-set
 
(

Original Text
Toppan Best-set
 
(

Original Text
Toppan Best-set
 
(

Original Text
Toppan Best-set
 
(

Original Text
Toppan Best-set
 
(

Original Text
Toppan Best-set
 
low-

Original Text
Toppan Best-set
 
 

Original Text
Toppan Best-set
 
(

http://snort.org
http://bro.org
http://suricata-ids.org
https://doi.org/10.1016/j.cose.2017.12.003


only, by immediately forwarding, and hence distributing, LST
to innermost nodes that in turn will perform their security
screening activity on significantly reduced amounts of packets,
thus without affecting the flows latency.This results in an adap-
tive approach where the task of identifying malicious traffic
is distributed on multiple nodes, where some border nodes,
if they have enough residual energy available, can immedi-
ately perform security screening on LIT only, by dropping
unwanted packets and hence drastically reducing the load
toward innermost nodes, whose screening and inspection will
be limited to LST so that they can directly route LIT, without
any additional computational burden. Such behavior, by dis-
tributing the load on multiple nodes, can lower their average
processing activity, so that they can better benefit from power
scaling behavior of modern processing devices, with signifi-
cant energy savings on the overall network. As a further
optimization, innermost devices perform traffic inspection only
if they have enough residual energy to do so, otherwise they
limit their activity to routing alone, by delegating the inspec-
tion activity to the next step nodes on the flow path.

In the following we present in detail the whole architec-
tural framework by illustrating how distributed adaptive
intrusion detection is implemented with F-Sketure, a new

version of Sketure, the sketch-based packet analysis tool in-
troduced in Baddar et al. (2016), specifically developed to operate
on a per-flow basis. We also show how the F-Sketure system
is able to effectively perform traffic classification, by separat-
ing the LST and LIT classes, and try to quantify the energy
savings that can be achieved through a better load distribution.

3.1. Separating LST from LIT traffic through F-Sketure

First of all, the basic step needed for implementing the above
adaptive distributed intrusion detection approach is discrimi-
nating LST from LIT on outermost nodes, in order to allow
further processing depending on the traffic class and avail-
able energy/processing capabilities, as previously described.
Packets have to be classified and screened, characterized by
specific source and destination addresses, and tagged accord-
ing to their latency sensitivity. For this purpose, we developed
F-Sketure, a per-flow version of Sketure, a traffic analyzer that
must run on outermost (border) nodes and classifies packets
in flows as LST or LIT, without jeopardizing users’ privacy. The
abstract architecture of this tool is illustrated in Fig. 1.

As depicted in Fig. 1, F-Sketure aims at summarizing the
behavior of each flow, alongside its inverse, in the monitored

Fig. 1 – The F-Sketure abstract architecture.

ARTICLE IN PRESS

Please cite this article in press as: Sherenaz Al-Haj Baddar, Alessio Merlo, Mauro Migliardi, Francesco Palmieri, Saving energy in aggressive intrusion detection through
dynamic latency sensitivity recognition, Computers & Security (2017), doi: 10.1016/j.cose.2017.12.003

4 c om pu t e r s & s e cu r i t y ■ ■ ( 2 0 1 7 ) ■ ■ –■ ■

Q4

Q11

300bs_bs_query

301bs_bs_query

302bs_bs_query

303bs_bs_query

304bs_bs_query

305bs_bs_query

306bs_bs_query

307bs_bs_query

308bs_bs_query

309bs_bs_query

310bs_bs_query

311bs_bs_query

312bs_bs_query

313bs_bs_query

314bs_bs_query

315bs_bs_query

316bs_bs_query

317bs_bs_query

318bs_bs_query

319bs_bs_query

320bs_bs_query

321bs_bs_query

322bs_bs_query

323bs_bs_query

324bs_bs_query

325bs_bs_query

326bs_bs_query

327bs_bs_query

328bs_bs_query

329bs_bs_query

330bs_bs_query

331bs_bs_query

332bs_bs_query

333bs_bs_query

334bs_bs_query

335bs_bs_query

336bs_bs_query

337bs_bs_query

338bs_bs_query

339bs_bs_query

340bs_bs_query

341bs_bs_query

342bs_bs_query

343bs_bs_query

344bs_bs_query

345bs_bs_query

346bs_bs_query

347bs_bs_query

Original Text
Toppan Best-set
 
s

Original Text
Toppan Best-set
 
of

Original Text
Toppan Best-set
 
(

https://doi.org/10.1016/j.cose.2017.12.003
Original Text
Toppan Best-set
 
“can better benefit of power scaling” changed to “better benefit from power scaling” correct? Please check or amend as necessary.

Original Text
Toppan Best-set
 
The quality of Figure is too poor to be used. Please provide better quality figure.



network. To achieve its goal, F-Sketure has to properly iden-
tify traffic flows, and then for each detected flow it needs to
summarize some of the most discriminating features of the
flows’ packet headers in order to reliably discriminate LST from
LIT. F-Sketure inspects each individual packet sent or re-
ceived without violating users’ privacy through auditors.
Auditors would passively sniff exchanged packets and com-
municate only a subset of the their headers information, i.e.,
features, to the dispatcher process, after obfuscating the source
and destination IP addresses. Here a packet p would be of the
format (source, destination, ti, v0(ti), v1(ti), . . ., v ti

F − ( )1 ), where source
and destination designate the packet’s sender and receiver ob-
fuscated addresses respectively, ti denotes the packet timestamp,
and vk(ti) denotes the value of the kth feature at time ti, and i ∈ {0,
1, 2, . . .}. The role of the dispatcher process is to forward ob-
fuscated packet headers to the Flow Generator process, or,
alternatively, to the Inverse Flow Generator process if the ob-
fuscated packet is in the format (destination, source, tj, v0(tj),
v1(tj), . . ., v tj

F − ( )1 ). The Flow Generator summarizes informa-
tion conveyed by the set of packets that comprise flow f over
equally-spaced time intervals, each of which is denoted by g.
The summarized features considered in this case span the
average packet size s, the average packet count c, and a tag field
T, that denotes the traffic class (LST or LIT) to which the packets
in f belong. An aggregate denoted by γ g

f , depicts the statisti-
cal summary produced by the Flow Generator during time
interval g for flow f. Each aggregate is of the form

γ g
f g s c T= , , , (1)

After G time intervals, the Flow Generator compiles the set
of aggregates γ G

f that describe the behavior of flow f over G,
where,

γ γG
f

g
f g G= ∈ … −{ }{ }, , ,0 1 (2)

and based on the set of aggregates γ G
f , flow f, will be denoted

by the tuple

f source destination T f
G
f= ( ), , , γ (3)

where Tf denotes the tag of flow f over G and likewise the tag
field of a packet p, it can be set to either LST or LIT. When the
flow generator designates flow f as LST or LIT, all packets com-
prising this flow over G will be labeled accordingly. A similar
process is carried out by the Inverse Flow Generator where flow
f′, the inverse of flow f, designates the traffic flowing in the op-
posite direction, to be represented in the form

′ = ( )′ ′f destination source T f
G
f, , , γ (4)

We also denote a given aggregate in f′ by γ g
f ′ where

γ g
f g s c T′ = ′ ′, , , (5)

Obviously, both flow f and its inverse flow f′ have the same
tag value, so either both flows are LST or both are LIT over a
given period of time G. Initially, the value of the tag T in a given
packet p is set to undefined. Moreover, in order to avoid any

security processing overhead, a packet has to be checked exactly
once during its life span. Thus, each packet header com-
prises a binary status flag Checked indicating whether or not
the packet has been already checked for security purposes. On
the other hand, a flow may be re-tagged several times if its
dynamic features change significantly.

Tag and checked flag values in packet headers can be prop-
erly conveyed within the label field in Multi-Protocol Label
Switching (MPLS)-enabled routing devices; where only 2 bits
out of 20 are necessary, one for the checked flag and one for
the tag. Alternatively, these flags can be inserted directly in some
unused fields of the IP packet header. More precisely, the high-
order bit of the IP fragment offset field (the so called evil bit)
can be used for the checked flag. This bit, officially defined as
unused in the IP header, has been mentioned in RFC 3514 (re-
leased on 1st April of 2003, the April Fools’ Day), with humorous
intents, for flagging packets that have malicious intent, by rec-
ommending security enforcement devices to drop inbound
packets with this bit set. In our specific case, the evil bit will
explicitly flag packets that are yet to be checked. Similarly, for
conveying the tag information we can use the original Type of
Service (TOS) bits (or the co-located DSCP ones, obsoleting TOS
in RFC 2474), by using a zero pattern for LIT traffic and a 111000
(CS7 for DSCP or Network Control for TOS) for LST. If these bits
were already previously assigned on their origin, and F-Sketure
confirms that a given flow f can be classified as LST, then the
existing value (nonzero) can be left unaffected to represent a
packet belonging to the LST traffic class. In order to identify
the tag value for a given flow f, F-Sketure performs two tests
on values s, and c within a given aggregate γ g

f in flow f, and
on their corresponding values in its inverse f′, as LST flows are
typically two-way, compared to, for example, streaming flows,
which are not latency sensitive, according to our definition. More
precisely, F-Sketure considers an aggregate γ g

f to be latency sen-
sitive if it meets either one of the two following conditions:

1. If s and ′ ∈⎡⎣ ⎤⎦s S Svoip voipδ δ1 2, and c and ′ ∈⎡⎣ ⎤⎦c C Cvoip voipδ δ1 2, ,
where Svoip and Cvoip are, respectively, the average packet size
and average packet count of the VOIP classes defined in in-
dustrial VOIP standards5, while δ1 and δ2 denote the error
margins.

2. If s and ′ ∈⎡⎣ ⎤⎦s S Sdata dataδ δ1 2, and c and ′ ∈⎡⎣ ⎤⎦c C Cdata dataδ δ1 2, ,
where Sdata and Cdata are the average packet size and average
packet count from the previous three aggregates respec-
tively, while δ1 and δ2 denote the error margins.

As clearly shown from the two previous conditions, an ag-
gregate is considered latency sensitive if both itself and its
corresponding instance for the inverse flow exhibits a VOIP
typical behavior, and/or if they exhibit a temporal regularity
pattern. Otherwise, the aggregate is considered latency insen-
sitive. Thus, the aggregate tag field T, is set to LST if one of the
aforementioned conditions holds, and set to LIT otherwise.
When a given aggregate is tagged as either LST or LIT, its
corresponding flow and inverse flow alongside all the packets
that comprise the corresponding aggregates are tagged

5 http://www.cisco.com/c/en/us/support/docs/voice/voice-quality/
7934-bwidth-consume.html.
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accordingly. After tagging the very first aggregate, all subse-
quent aggregates together with their comprising packets retain
the same tag, until the next classification window arrives after
a given number of time units; at that time, the two LST con-
ditions are checked again using the current aggregate, then the
aggregate tag, together with the flow and its current and up-
coming packets either retain the previous value or obtain a new
one. Fig. 2 depicts the process via which F-Sketure tags the flows
it identifies.

3.2. The selective distributed intrusion detection
architectural framework

F-Sketure uses a multi-resolution time window to imple-
ment packet tagging; it trades off accuracy for cost and tries
to prioritize LST without overlooking the dynamic nature of
flows. The first aggregate in a flow gets examined alongside
its counterpart in the inverse flow to see whether it meets either
one of the aforementioned LST conditions; if that is the case,

Fig. 2 – The F-Sketure flowchart.
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its T field is set to “LST”, otherwise it gets set to “LIT”. Then,
every 3 seconds, the LST conditions get re-evaluated using the
current aggregate in f. However, if a flow gets tagged as “LIT”
at any given instance of time, it gets re-evaluated once every
3 minutes. This re-evaluation mechanism saves tagging time
and energy as it refrains the ingress router from tagging fre-
quently, while prioritizing LST flows. Reducing the tagging time
window would render F-Sketure tagging more accurate,
however, it would imply consuming more processing time and
energy at the ingress node. The proposed selective distrib-
uted intrusion detection architecture requires the presence of
at least a head router, which is a router endowed with a packet
inspection unit running the F-Sketure packet analysis engine,
followed by a set of Intrusion Prevention Routers (IPR) that are
only able to perform routing and security analysis. To clarify
the operations of our approach, we assume time is split into
slices, denoted by t.

The role of head routers is performing preliminary classi-
fication of each incoming packet as either LST or LIT, by properly
tagging and then forwarding it to the next IPR node. The head
router can also inspect LIT traffic for malicious packets if it has
enough residual energy resources and hence computational
capabilities. Clearly, each packet already analyzed for secu-
rity, is marked as checked by using the proper flag in its header.
On the other hand, a typical IPR node routes, and possibly, ana-
lyzes unchecked incoming packets by screening for security
threats and discarding dangerous packets/flows when needed.

As illustrated in Merlo et al. (2016), an IPR routing node i
has not only the task of routing incoming packets, but is also
capable of identifying malicious incoming packets. The fun-
damental role of its pre-processing unit, is determining the
maximum amount of packets that can be analyzed at a given
time slice t, whereas its Intrusion Prevention System (IPS) unit
is responsible for identifying malicious incoming packets when
needed. Since its latency will be not affected by the security
analysis process, LIT traffic will be assigned a higher priority
for being considered for analysis. Consequently, LST traffic will
be analyzed before being routed, only after all LIT traffic within
the same slice has been analyzed.

Each node i has an amount of energy that is equally split
among time slices t. Thus, the amount of residual energy that
a router has available at t is denoted by Ei(t) and represents the
power P that can be drawn at a specific time t. As each packet
gets routed and/or analyzed, the available amount of energy
Ei(t) reduces accordingly. Clearly, the main operating priority
of an IPR node is routing packets rather than analyzing them.
Hence, it is not typically possible to analyze all incoming packets
within a slice at router i, Therefore, different packets will be
analyzed by different routers along the path to the destina-
tion, which adaptively distributes the intrusion detection
process throughout the network.

3.3. The energy consumption model

In modeling the energy consumption characterizing the for-
warding or traffic inspection activity of IPR or head nodes we
considered the energy-proportional behavior of modern elec-
tronic devices, whose energy demand is strongly influenced
by the actual load, which often influences its operating fre-
quency and voltage level.

Typically, a linear model can be used to describe how the
router requires power at different loads. Starting from real world
measurements (Chabarek et al., 2008), we can see that, when
a router is turned on but is still idle, it consumes about half
of its total power. When the incoming packet load grows, power
consumption linearly increases together with it, up to an upper
limit value that is reached when the router is fully loaded. The
slope describing the growth of power consumption function
with regard to the incoming traffic load is defined by a scaling
factor SF, that can be measured in W/Gbps.

As a general criterion, the power consumption Pr of a router,
associated to its packet forwarding activity, can be expressed
as a function of its load (d) by using the following equation:

P SF d Pr idle= ⋅ + , (6)

where Pidle is the fixed power consumption of the router
when idle, accounting for a significant part of the total power
required to keep the device on, mainly depending on the
switching matrix and control circuitry. Clearly, the greater
the node, the more complex its circuitry is, and hence, the
higher its static power demand. On the other side, the dynamic
component depends on the traffic load and on the interfaces
speed, characterizing the scaling factor, where faster inter-
faces require less power per bit than slower ones (Ricciardi et al.,
2011, 2013).

On the other hand, when considering the power Pa re-
quired by the packet inspection/analysis activity we have to
consider that it is essentially due to the associated process-
ing work, that in turn is due to state switching of electronic
gates and is proportional to their operating frequency f as well
as to the square of their supply voltage V:

P V fCa =≈ 1
2

2 (7)

where C denotes the average capacitance and the 1/2 factor
is a constant value (often indicated with γ) that depends on
the switching activity. Operating at a lower frequency can sig-
nificantly reduce the energy consumption by also allowing the
use of dynamic voltage scaling (DVS) for reducing the operat-
ing voltage. This allows energy consumption to scale
quadratically with operating frequency f.

In a typical circuitry performing deep packet inspection,
γ will depend on the number of gates flipping at each new
packet and hence on the capability of the processing system
to match the flow structure with specific templates, by adapt-
ing to them through comparison operations. That is, the lower
the degree of organization in the packet stream, the higher will
be the switching effort required by the hardware devices. It is
straightforward to consider that Pa is typically much greater
than Pr.

3.4. The IPR-router model

Let Mi(t) be the maximum number of packets that can be ana-
lyzed by the IPR i at a specific time slice t. Let also Ci(t) be the
processing capacity of IPR i at the time t, and Xi(t) be the ex-
pected number of incoming packets at the time t. In addition,
let us assume that routing a single packet requires R energy
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units. According to the considerations presented in the pre-
vious section and in Merlo et al. (2016), the energy needed for
performing security checks on a packet is higher than the one
needed for routing it. That is, the energy needed for analyz-
ing a packet is α times the energy needed for routing it, with
α > 1. If we also indicate as Bi(t) the number of incoming packets
buffered by IPR i at the start of time slice t, then we can de-
termine Mi(t) as follows

M t
C t X t B t

i
i i i( ) = ( ) − ( ) + ( )( )

α
(8)

Let us define Ai(t) as the number of packets analyzed during
the time slice t, Ki(t) as the number of already checked packets
observed during t, Ni(t) as the number of incoming packets ob-
served during t, and rLIT as the ratio of LIT packets observed
so far. Upon receiving a new packet p with the proper tag T
and already screened flag Checked in its header, one of the fol-
lowing scenarios will happen:

1. If Checked = 0 or 1, T = LST or LIT, and Ei(t) < R, then the packet
p is buffered until the next time slice, and Ni(t) is incremented
by 1.

2. If Checked = 1, T = LST or LIT, and Ei(t) ≥ R, then packet p is
routed. The residual energy is Ei(t) = Ei(t) − R, while Ni(t) and
Ki(t) are each incremented by 1.

3. If Checked = 0, T = LST or LIT, Ai(t) = Mi(t), and Ei(t) ≥ R, then
packet p is routed without being analyzed, Ei(t) = Ei(t) − R,
while Ni(t) is incremented by 1.

4. If Checked = 0, T = LIT, Ai(t) < Mi(t), and Ei(t) ≥ (1 + α)R, then
packet p is analyzed, if it is malicious router i drops it, oth-
erwise, its Checked flag is set to 1, and the packet is routed.
The residual energy is Ei(t) = Ei(t) − (1 + α)R, while Ai(t), Ni(t),
and Ki(t) are each incremented by 1.

5. If Checked = 0, T = LST, Ai(t) < Mi(t), and Ei(t) ≥ (1 + α)R, and
Ki(t) < rLITNi(t), then packet p is routed without analysis, as
K t r N ti LIT i( ) < ∗ ( ) implies that not all LIT traffic has been
already analyzed. The residual energy is Ei(t) = Ei(t) − R, while
Ni(t) is incremented by 1.

6. If Checked = 0, T = LST, Ai(t) < Mi(t), and Ei(t) ≥ (1 + α)R, and
Ki(t) ≥ rLITNi(t) then packet p is analyzed, as Ki(t) ≥ rLITNi(t)
implies that all LIT traffic has been already analyzed. If
packet p is found to be malicious, router i drops it, other-
wise, its Checked flag is set to 1, and the packet is routed.
The residual energy is Ei(t) = Ei(t) − (1 + α)R, while Ai(t), Ni(t),
and Ki(t) are each incremented by 1.

In summary, the behavior of a given IPR node depends on
the incoming traffic compared to the node’s own capacity. If
incoming packets are less than the node’s maximum routing
capacity, then it immediately routes incoming LST packets, and
then applies an intrusion detection technique to as much as
it can handle from remaining LIT packets. However, when the
router falls short of energy, it limits its actions to only routing
incoming packets without analysis. This implies that mali-
cious packets get dropped as soon as they are discovered which
is expected to reduce the overall energy consumption. The ex-
pected amount of traffic Xi(t) at a given time slice t, can be
estimated by using the average of the actual incoming packets
from the N most recent Ni(t) values, so that

X t
N t N t N

N
i

i i( ) = −( ) + + −( )1 …

Initially N is set to 1, then 2 and it grows up to the desired
number. In our experiments we set N to the value of 5.

3.5. The head router model

We can observe that the head router in our architecture can
use a similar model. Essentially, it estimates the maximum
number of packets Mh(t) it can tag at the beginning of each time
slice t, and behaves accordingly. The value of Mh(t) can be de-
termined as follows

M t
C t X t B t

h
h h h( ) = ( ) − ( ) + ( )( )

β

where Ch(t) represents the head node’s capacity, Xh(t) is the ex-
pected number of packets at time slice t, and Bh(t) is the number
of packets buffered at the head router at the beginning of t.
Moreover, the value β can be used to represent the ratio of the
energy needed for tagging one packet to the energy required
for routing it. Yet, the behavior of the head router is a bit dif-
ferent, since it needs to tag all incoming packets before they
get routed. The head router is presumably the first node, typi-
cally located on the network border, that observes the packets,
so that, all its incoming packets arrive initially untagged. Since
we need all packets to be tagged and use IPR nodes with ca-
pacity Ci(t) for further processing them for security analysis
purposes, we have to use more capable header nodes in order
to be able to deliver tagged packets at the underlying IPR
maximum capacity. To achieve this goal, the following inequal-
ity must be satisfied

C t C th i( ) > +( ) ( )1 β

As the reduction of energy consumption on the overall
network is pursued, it is recommended to choose head routers
characterized by a capacity Ch(t) equal to (1 + β)Ci(t). We can also
consider that the smaller the value of β is, the higher amount
of energy will be saved.

4. Experimental evaluation and results
analysis

The validation of our scheme has been performed through
several experiments based on data extracted from real traffic.
Our experiments allowed us to evaluate the performance of
our scheme both in terms of energy savings and in terms of
latency imposed to the packets flowing through the system.
First, we now describe the dataset we have adopted to evalu-
ate the traffic mix in terms of LST vs. LIT, then we illustrate
the F-Sketure tool by both providing some details about its
implementation and depicting its performance. Second, we il-
lustrate how we used the information obtained from the real
traffic dataset to define extended simulations capable of probing
the performance of our scheme in different scenarios. Finally,
we illustrate and discuss the results of our simulations.
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4.1. The padua dataset sample

In order to base our assessment of the performance capabili-
ties of F-Sketure on real traffic data we selected a 10-hour packet
trace from the Padua dataset (Baddar et al., 2016). In this dataset,
for each packet we explicitly collected:

• A timestamp in the form hh:mm:ss;
• source and destination addresses, properly obfuscated for

privacy reasons;
• the packet size

This subset of the whole dataset contains 1.48 GB of the
above listed packet information captured uninterruptedly in
the time window comprised from 1:00 am until 10:00 am on
Friday April 10th 2015.

4.2. The F-Sketure implementation

We implemented the The F-Sketure tool using the Java pro-
gramming language. F-Sketure, when processing the previously
mentioned traffic data, produces aggregates every second, and
re-evaluates their tags every 3 seconds. In our experiments, the
error margin parameters δ1 and δ2 have been set to 0.95 and
1.05, respectively.

Our experiments show that the traffic in our dataset can
be classified as 3% LST and 97% LIT. At the same time, our ex-
periments show that packet tagging once the aggregations have
been produced requires only 0.5 ns; re-evaluating all the ag-
gregation classes requires 0.273 ms, more than 500 times the
time needed to tag a single packet. This level of performance
is compatible with our experiments. Furthermore, it is impor-
tant to notice that, with the exception of the first evaluation,

all the subsequent re-evaluation can be done in parallel with
the tagging of packets using the previous set of classes. Hence,
the re-evaluation does not represent a significant perfor-
mance bottleneck in the flow of packets. Nonetheless, for energy
saving purposes, in future work we will assess the feasibility
of reducing the frequency at which the aggregation classes are
re-evaluated.

In Fig. 3 and Fig. 4 we show the time and memory con-
sumption required for running F-Sketure on the above
mentioned dataset. As depicted in Fig. 3, the time it took
F-Sketure to read packet headers, identify flows, generate ag-
gregates, and tag packets ranged from 8 seconds to handle 4M
packets up to 94 seconds to handle 32M packets. With regard
to F-Sketure memory consumption, Fig. 4 illustrates that the
amount of memory consumed to process packets ranged from
2.5 GB to 4.5 GB.

4.3. The simulation setup

In our simulations we considered the flow along a single path
of length 10 routers. Even if the number of hops a packet makes
to get to its destination is usually higher, our goal here is not
to check if we can achieve full traffic sanitization in just ten
hops, our goal is to assess that we have some effect on energy
saving while reducing the amount of malicious traffic and
without jeopardizing the QoS for LST; for this reason, the fact
that we do not achieve full sanitization of the traffic in just
10 hops is not significant. At the ingress node, we have the
packet tagging engine based on the F-Sketure tool. After that,
the whole traffic flows through the adaptive IDS enabled IP
routers. Fig. 5 depicts the arrangement of this scenario. While
F-Sketure operates at the head of the routing chain to provide
the next routers with tagged packets, the remaining IP routers

Fig. 3 – F-Sketure execution time.
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are fully dedicated to the task of routing packets, and, if pos-
sible, analyzing them according to the process depicted in
section 3.4. In our simulations, we assumed the routers to be
capable of processing 2 million packets per second and we
adopted a 1 ms time slice for calculating the predicted load and
the predicted energy available for security analysis. At first, we
assumed to use the Padua dataset as the input traffic of our
simulation, but we observed that:

1) the peak bandwidth of the Padua dataset was much lower
than the one we expected to inject in the system;

2) the percentage of LST was very low, just a 3%, and showed
no significant changes over time;

3) the traffic was very regular and not capable of injecting into
our system significant misprediction errors.

For these reasons, we decided to adopt a synthetic trace for
our simulations.We used as a traffic shaping function the shape
of the traffic flowing through the Milan Internet eXchange

(MIX)6; then, we added to that a Gaussian distributed burstiness
to make it more difficult to predict. We adopted Suricata
signature-based intrusion detection system as the intrusion
detection technique deployed in simulated IP routers, and, ac-
cording to Merlo et al. (2016), α is set to 4.5. As for β, according
to the experiments executed using F-Sketure, it was set to 0.35.

We ran our simulation at steady state (i.e., after the flow
of packets had reached the last router and without stopping
the flow getting into the first router) for 10, 20, 30, 40, 50 and
60 seconds; As the different durations showed no effects on
the observed variables, we will describe the results for the
longest duration only. We used a fixed malicious packet ratio
set to 6%. We varied LST ratio from 5% to 20%; we decided to
stress our system with percentages of LST up to almost 7 times
the ratio we have observed in the real world traffic from the

6 http://www.mix-it.net/statistics/cgi-bin/14all-Totale_globale.cgi?
log=totaltraffic_global.

Fig. 4 – Memory consumed by F-Sketure.

Fig. 5 – The network setup used in the simulation.

ARTICLE IN PRESS

Please cite this article in press as: Sherenaz Al-Haj Baddar, Alessio Merlo, Mauro Migliardi, Francesco Palmieri, Saving energy in aggressive intrusion detection through
dynamic latency sensitivity recognition, Computers & Security (2017), doi: 10.1016/j.cose.2017.12.003

10 c om pu t e r s & s e cu r i t y ■ ■ ( 2 0 1 7 ) ■ ■ –■ ■

790bs_bs_query

791bs_bs_query

792bs_bs_query

793bs_bs_query

794bs_bs_query

795bs_bs_query

796bs_bs_query

797bs_bs_query

798bs_bs_query

799bs_bs_query

800bs_bs_query

801bs_bs_query

802bs_bs_query

803bs_bs_query

804bs_bs_query

805bs_bs_query

806bs_bs_query

807bs_bs_query

808bs_bs_query

809bs_bs_query

810bs_bs_query

811bs_bs_query

812bs_bs_query

813bs_bs_query

814bs_bs_query

815bs_bs_query

816bs_bs_query

817bs_bs_query

818bs_bs_query

819bs_bs_query

820bs_bs_query

821bs_bs_query

822bs_bs_query

823bs_bs_query

824bs_bs_query

825bs_bs_query

826bs_bs_query

827bs_bs_query

828bs_bs_query

829bs_bs_query

830bs_bs_query

831bs_bs_query

Original Text
Toppan Best-set
 
-

Original Text
Toppan Best-set
 
(

http://www.mix-it.net/statistics/cgi-bin/14all-Totale_globale.cgi?log=totaltraffic_global
http://www.mix-it.net/statistics/cgi-bin/14all-Totale_globale.cgi?log=totaltraffic_global
https://doi.org/10.1016/j.cose.2017.12.003


Padua dataset. We varied the amount of traffic entering the
system from 50% of the nominal capacity of the routers (ac-
tually 1 million packets per second) up to the full nominal
capacity of 2 million packets per second with an intermedi-
ate step of 1.5 million packets per second. Besides, we changed
the percentage of time slices in which traffic was bursty (i.e.,
from 1/5 to 1/2 positively or negatively different from the traffic
shape observed in MIX) to values of 50% and 75%. We intro-
duce burstiness because a regular traffic will be correctly
predicted and there is hence no risk to spend in analysis more
resources than those actually available. Burstiness stresses the
capabilities of our system forcing prediction errors. For each
simulation, we calculated the average number of:

1) routed packets;
2) analyzed packets;
3) malicious packets dropped;
4) predicted incoming packets;
5) actual incoming packets;
6) LIT packets delayed to next time slice;
7) LST packets delayed to next time slice.

Furthermore, we added another variation to the scheme.
Since the direct routing or analyzing decision is taken once per
slice, it is possible that a concentration of unpredicted LST
packets toward the ends of the slice leads to the delay of those
same packets. To minimize that possibility we tried to add a
safeguard to our scheme; to do so, in each time slice we tried
to not use the whole amount of resources available once the
routing of all LST packets have been taken into account, but
to use that amount reduced by 10% of the available resources.
This safeguard obviously reduced the level of aggressiveness

in hunting down the bad packets and the amount of energy
saved, yet, it also reduced the likelihood of delaying LST packets.

4.4. Discussion of the simulation results

We first analyze the effect of different percentage of LST traffic
on the energy saving our methodology can generate in the 10
routers. Fig. 6 shows the percentage of energy saved with dif-
ferent percentages of LST traffic, with different amounts of input
traffic, but with the level of burstiness fixed at 75%. Across dif-
ferent LST ratios, the energy saving percentage shows only
minor fluctuations. On the contrary, the level of energy saved
shows a significant dependency on the size of the input, varying
almost an order of magnitude when the amount of traffic in-
jected into the system ramps from 50% of the nominal routing
capacity of the nodes up to 100% of that same capacity. For
these reasons, we will now consider only the 5% LST case, ac-
tually the one that is most similar to what we observed in the
Padua dataset, while we will focus on the effects of different
input sizes and different level of input burstiness to study how
our methodology impacts on the delay imposed to LST packets.

We now analyze the number of LST packets that incur in
a delay with different amount of traffic and with different levels
of burstiness. Fig. 7 shows that our methodology is capable of
keeping the number of LST packets than incur a delay to less
than 1 every 10,000, even when the input traffic may go occa-
sionally over the router’s nominal capacity (i.e., when input
is 100% of nominal capacity and there are one half of the time
slices that are bursty).

We now analyze the system behavior when we inject a traffic
that is bursty in 75% of the time slices. Fig. 8 depicts the system
behavior in this second case. It is possible to see that, when

Fig. 6 – Percentage of energy savings with different LST percentages.
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the size of the input traffic goes beyond 50% of the nominal
capacity of the routers, the increased level of burstiness causes
an increase of the number of LST packets that incur a delay
of almost three times. Even if we can still keep the number
of delayed LST packets around 1 every 10,000 packets travel-
ing through the network, we now introduce a variation of our
scheme that allows overcoming the problems caused by the
increased level of burstiness. Then, we evaluate the impact on
the energy saving introduced by this variation in our meth-
odology. Obviously, the increased level of burstiness causes an
increase in the number of misprediction errors and makes the
system use more resources for analysis than the ones that are
actually available. When this occurs, some packets are not
routed in time and, as we update the decision about how many
LST packets to route before doing any analysis only at the be-

ginning of each time slice, some of the delayed packets may
be LST ones. To reduce this problem, we introduce a simple
safeguard, that is, we systematically underestimate the amount
of resources available for analysis by 10%. So, a router will
analyze packets only if its estimation shows that its load will
be less than 90% of its nominal capacity.

The amount of LST packets delayed with a 50% level of
burstiness in the input traffic is depicted in Fig. 9. It is easy
to see that, at this level of burstiness, the presence of the safe-
guard has no impact until the size of the input traffic reaches
the nominal capacity of the routers. At that point, it is capable
of introducing a minor reduction in the number of delayed LST
packets in comparison to the situation that can be observed
in Fig. 7.We now analyze the effects when the level of burstiness
is set to 75%. In Fig. 10 it is possible to observe that the pres-

Fig. 7 – The ratio between LST packets that incur into a delay and all packets or LST packets. Burstiness is 50%.

Fig. 8 – The ratio between LST packets that incur into a delay and all packets or LST packets. Burstiness is 75%.
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ence of the safeguard delays the increase in the number of
delayed LST packets that could be observed in Fig. 8 when the
traffic size reached 75% of the routes nominal capacity. On the
contrary, it even reduces it for that traffic size. However, when
the input traffic size goes to 100% of the router nominal ca-
pacity, the safeguard has no effect. We now analyze the effect
of the safeguard on the energy savings that the system can
achieve. As Tables 2 and 3 clearly show, the introduction of the
safeguard has a steep price energy-wise. At best it halves the
percentage of energy the system can save, while the worst case
is almost three orders of magnitude. At the same time, it is im-
portant to notice that when the reduction in the energy savings
is at its minimum, the effect of the safeguard on the amount
of LST packets that are delayed is also negligible, but it is not

true that the effect on the number of packets delayed in-
creases as it increases the energy cost. In Table 4 we provide
a synthesis of the effects of the safeguard both on the energy
costs and on the number of delayed LST packets. It is obvious
that the energy cost is always larger than the benefit related
to the reduction of LST packets delayed, however, our experi-
ments also show that there is a local maximum in the
convenience to apply the safeguard when the traffic size is 75%
of the router’s nominal capacity and the traffic has a 75% level
of burstiness. Hence, while a blanket introduction of a safe-
guard is not cost effective, it might be convenient to introduce
it adaptively, only when the traffic shows specific character-
istics. Furthermore, we adopted a single size, namely 10%,
for the safeguard, while different sizes may have different

Fig. 9 – The ratio between LST packets that incur into a delay and all packets or LST packets. Safeguard set to 10%.
Burstiness is 50%.

Fig. 10 – The ratio between LST packets that incur into a delay and all packets or LST packets. Safeguard set to 10%.
Burstiness is 75%.
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characteristics. In future work we will analyze in further details
both the most convenient traffic characteristics and the most
effective safeguard size. Finally, we analyzed the size of delays
in the worst case scenario, i.e., nominal load, maximum
burstiness and no safeguard. As Fig. 11 shows, the size of the
delays imposed to packets is extremely limited. In fact, even
if LIT packets are almost always delayed, they are never delayed
by more than two time slices; furthermore, LST packets are very
seldom delayed and never by more than a single time slice.

5. Conclusions and future work

The need for a full sanitization of Internet traffic is becoming
more critical everyday as more types of potentially vulner-
able devices get connected. In past works it has been proven
that it is possible to leverage an aggressive, distributed intru-
sion detection to achieve both full traffic sanitization and a
reduction of the energy costs of networking, however, the impact
of this methodology on the delay imposed to packets had not
been fully evaluated. In this work we have introduced and evalu-
ated a methodology that, by prioritizing the type of traffic that
gets examined first, is capable of reducing the disruption that
delaying packets may cause. More in details, our approach is
based on the dynamic classification of traffic into latency sen-
sitive traffic (LST) and latency insensitive traffic (LIT) at the
source node.The knowledge about which class a packet belongs
allows routers along its path to modulate their resources so
that while LIT packets might be delayed as their security analy-
sis has priority over their forwarding, LST packets are analyzed
only if there are enough resources to also guarantee their timely
forwarding. To validate our methodology we have performed

Table 2 – Energy savings with 50% level of burstiness.

– No
safeguard

Safeguard Safeguard/
no safeguard

in50% 2.37192 0.83397 2.84414
in75% 1.62984 0.09240 17.63902
in100% 0.15419 0.00021 734.56149

Table 3 – Energy savings with 75% level of burstiness.

– No
safeguard

Safeguard Safeguard/
no safeguard

in50% 2.33335 0.90910 2.56667
in75% 1.68678 0.09632 17.51162
in100% 0.13384 0.00021 637.53426

Table 4 – Advantages and disadvantages of the
safeguard.

Burstiness 50% Energy
cost increase

Packet delay
reduction

in50% 2.84 1.02
in75% 17.64 1.02
in100% 734.56 1.52

Burstiness 75% Energy
cost increase

Packet delay
reduction

in50% 2.57 1.02
in75% 17.51 5.09
in100% 637.53 1.02

Fig. 11 – Distribution and size of delays of both LST and LIT packets in the worst case scenario (Burstiness 75%, nominal
load).
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a simulation campaign adopting a synthetic traffic sample based
on the characteristics of real world traffic captured at the Uni-
versity of Padua and at the Milan Internet eXchange. Our
simulations prove that our methodology allows keeping the
number of LST packets delayed to very low levels for network
loads that are not close to the network nominal forwarding ca-
pacity. In order to get the same low number of delayed LST
packets with higher network loads we have tested the intro-
duction of a systematic underestimation of the resources
available for security analysis as a safeguard against errors in
resource availability estimation. The presence of the safe-
guard provides better results in terms of the number of delayed
LST packets, yet its cost in terms of lost energy savings do not
call for its general adoption.

In this work, to dynamically identify what traffic flows are
sensitive to latency, we focused on a subset of commonly-
used symmetric VOIP traffic classes; in future work, we plan
to include additional categories of real-time LST traffic classes
such as tele-control and Internet gaming. Furthermore, given
the mixed results that the adoption of the safeguard provided
in our simulations, we also plan to study how to dynamically
adapt the size of the safeguard according to the QoS require-
ments of the LST traffic, the size of the traffic entering the
network and the level of burstiness of the traffic itself. Finally,
we also plan to study how to improve our approach by off-
loading the process of tagging packets to a co-processor unit
so that packet tagging and analysis can happen simultaneously.
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