
Eur. Phys. J. C  (2018) 78:415 
https://doi.org/10.1140/epjc/s10052-018-5892-z

Regular Article - Theoretical Physics

The minimal axion minimal linear σ model

L. Merlo1,a , F. Pobbe2,b , S. Rigolin2,c

1 Departamento de Física Teórica and Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid,
Spain

2 Dipartimento di Fisica e Astronomia, Università di Padova and INFN, Sezione di Padova, via Marzolo 8, 35131 Padua, Italy

Received: 16 November 2017 / Accepted: 14 May 2018
© The Author(s) 2018

Abstract The minimal SO(5)/SO(4) linear σ model is
extended including an additional complex scalar field, sin-
glet under the global SO(5) and the Standard Model gauge
symmetries. The presence of this scalar field creates the con-
ditions to generate an axion à la KSVZ, providing a solution
to the strong CP problem, or an axion-like-particle. Different
choices for the PQ charges are possible and lead to physi-
cally distinct Lagrangians. The internal consistency of each
model necessarily requires the study of the scalar potential
describing the SO(5) → SO(4), electroweak and PQ sym-
metry breaking. A single minimal scenario is identified and
the associated scalar potential is minimised including coun-
terterms needed to ensure one-loop renormalizability. In the
allowed parameter space, phenomenological features of the
scalar degrees of freedom, of the exotic fermions and of the
axion are illustrated. Two distinct possibilities for the axion
arise: either it is a QCD axion with an associated scale larger
than ∼ 105 TeV and therefore falling in the category of the
invisible axions; or it is a more massive axion-like-particle,
such as a 1 GeV axion with an associated scale of ∼ 200
TeV, that may show up in collider searches.
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1 Introduction

The last decade experienced a revival of interest for the so-
called Composite Higgs (CH) models: first introduced in the
middle of the 1980s [1–3], they have been reconsidered 20
years later with a more economical symmetry content [4–6].
The Minimal Composite Higgs Model (MCHM) [4] is based
on the non-linear realisation of the SO(5)/SO(4) sponta-
neous breaking, which relies on a not well identified strong
dynamics: the four Nambu–Goldstone bosons (GBs), orig-
inated from the global symmetry breaking, can be identi-
fied with the three would-be longitudinal components of the
Standard Model (SM) gauge bosons and the Higgs field. The
gauging of the SM symmetry group and the interactions with
the SM fermions produce an explicit mass term for the Higgs
field, which otherwise would be massless due to the underly-
ing GB shift symmetry. This mechanism provides an elegant
solution to the so-called Electroweak (EW) Hierarchy Prob-
lem.

A general drawback of these CH constructions is repre-
sented by its effective formulation: the generality of the effec-
tive approach comes together with its limited energy range
of application. References [7–10] attempted to improve in
this respect, providing a renormalisable description of the
scalar sector. Following for definiteness the treatment done
in Ref. [9], the Minimal SO(5)/SO(4) Linear σ model
(MLσM) is constructed extending the SM spectrum by the
introduction of an EW singlet scalar field σ and a specific set
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of vector-like fermions in the singlet and in the fundamental
representations of SO(5). In the limit of large σ mass, the
model falls back onto the usual effective non-linear descrip-
tion of the MCHM [4,7,11–13], that represents a specific
realisation of the so-called Higgs Effective Field Theory [14–
34] Lagrangian describing the most general Higgs couplings
to SM gauge bosons and fermions, which preserve the SM
gauge symmetry.

The MLσM can also be considered an optimal framework
where to look for a solution to the strong CP problem. Indeed,
extending the scalar spectrum with an additional complex
scalar field s, SO(5) and EW singlet, the symmetry content
of the model can be supplemented with an extra Peccei–
Quinn (PQ) U (1)PQ [35], eventually providing a realisation
of the KSVZ axion mechanism [36,37]: the angular com-
ponent of the extra scalar s may indeed represent an axion.1

This idea has been firstly developed in Ref. [39] and this class
of models will be dubbed Axion Minimal Linear σ Model
(AMLσM). Even in this simple setup, the choice of the PQ
charge assignment is not unique and different choices lead
to physically distinct Lagrangians.

In this paper, a “minimality criterium” in terms of num-
ber of parameters will be introduced and only one “minimal
scenario”, the minimal AMLσM, is identified among all the
constructions presented in Ref. [39]. In order to completely
fix the PQ charge assignment the following requirements are
imposed: the SM fermion masses are generated at tree-level
through the fermion partial compositeness mechanism [40–
43], which is the only explicit SO(5) breaking sector; the
PQ scalar field s couples to (part of) the exotic fermions
providing a portal between the axion and the colour inter-
actions. The angular component of s can be identified as a
QCD axion, requiring in addition that the contributions to
the colour anomaly allow to reabsorb the QCD-θ parameter
through a shift symmetry transformation, thus solving the
strong CP problem. If instead this requirement is relaxed,
then the PQ GB is dubbed axion-like-particle (ALP). Both
the possibilities are envisaged in the minimal AMLσM iden-
tified through the conditions aforementioned. Moreover, in
this scenario, all the SM fields do not transform under the PQ
symmetry and three distinct scales are present, that is the EW
scale, the SO(5)/SO(4) and PQ symmetry breaking scales,
the latter being independent from the first two.

A dedicated analysis of the scalar potential and its minima
is necessary in order to guarantee that SO(5) gets sponta-
neously broken down to SO(4), and that the EW symmetry
breaking (EWSB) mechanism occurs providing the correct
EW vacuum expectation value (VEV). This analysis requires
to take into account contributions to the scalar potential aris-

1 In Ref. [38] the MCHM has been enriched by an additional U (1)

symmetry, that is non-anomalous and therefore does not originate a
QCD axion.

ing at one one-loop from the fermions and the gauge bosons
of the model. The renormalisable scalar potential is identified
according to the aforementioned requirements. The associ-
ated parameter space is studied, both analytically for few lim-
iting cases and numerically, illustrating the main features of
this minimal model. The phenomenological analysis reveals
that modifications of the Higgs couplings to SM fermions
and gauge bosons are present, leading to possibly interesting
signals at colliders.

Turning the attention to the PQ GB sector, the axion
and the ALP cases are characterised by two distinct phe-
nomenologies. The axion is very light, with a mass gener-
ated by non-perturbative QCD effects as in the traditional
PQ models [35,44–47]. Its corresponding scale is larger than
∼ 105 TeV and therefore it enters into the category of the
invisible axion models [36,37,48,49]. On the other side, the
ALP can be much heavier, but at the price of invoking a soft
explicit breaking of the shift symmetry and not necessarily
solving the strong CP problem. As its characteristic scale can
be much lower, it may give rise to visible effects at colliders.

It is the aim of the present paper to illustrate in details the
minimal AMLσM and to analyse its phenomenological fea-
tures. In the next section, the construction of the AMLσM is
described, discussing the fermion content and the main char-
acteristics of the scalar potential, focussing on the renormal-
isability of the full Lagrangian. In Sect. 3, the minimal sce-
nario is identified, based on a minimality criterium in terms
of number of parameters of the whole Lagrangian. Section 4
is devoted to the analytical description of the scalar poten-
tial and the SO(5)/SO(4) spontaneous symmetry break-
ing mechanism, presenting few relevant limiting cases. The
phenomenological features of the model are described in
Sects. 4.3 and 6, with the later section dedicated to the anal-
ysis of the axion and of the ALP. Finally, conclusions are
drawn in Sect. 7, while more technical details are left for the
appendix.

2 The axion minimal linear σ model

The MLσM based on the linear SO(5)/SO(4) symmetry
breaking realisation has been analysed in Ref. [9]. As usual
in this class of minimal models, an additionalU (1)X is intro-
duced in order to ensure the correct hypercharge assignment.
The field content of the original MLσM is the following:

1. The four SM gauge bosons associated to the SM gauge
symmetry.

2. A real scalar field φ in the fundamental representation of
SO(5), which includes the three would-be-longitudinal
components of the SM gauge bosons πi , i = 1, 2, 3, the
Higgs field h and the additional complex scalar field σ ,
singlet under the SM gauge group:
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φ = (π1, π2, π3, h, σ )T
u.g.−−→ φ = (0, 0, 0, h, σ )T ,

(2.1)

where the last expression holds when selecting the unitary
gauge, which will be used throughout the next sections.

3. Exotic vector fermions, which couple directly to the
SO(5) scalar sector through SO(5) invariant proto-
Yukawa interactions. These fermions transform either in
the fundamental of SO(5), and they will be labelled as ψ ,
or in the singlet representation of SO(5), dubbed χ . For
both types of fermions, two distinct U (1)X assignments
are considered, 2/3 and −1/3, as they are necessary to
induce mass terms for both the SM up and the down quark
sectors.

4. SM fermions, which do not couple directly to the Higgs
field. SM fermion masses are originated through SM-
exotic fermion interactions in the spirit of the fermion
partial compositeness mechanism [40–43]. SM fermions
do not come embedded in a complete representation of
SO(5), leading to a soft explicit SO(5) symmetry break-
ing. Although the whole SM fermion sector could be con-
sidered, only the top and bottom quarks will be retained
in what follows. This simplification does not have rele-
vant consequences on the results presented here and the
three generation setup can be easily envisaged.

The AMLσM encompasses, in addition to the previous
content,

5. A complex scalar field s, singlet under the global SO(5)×
U (1)X and the SM gauge group. Adopting an exponential
notation,

s ≡ r√
2
eia/ fa , (2.2)

the degrees of freedom are defined as the radial compo-
nent r and the angular one a, to be later identified with
the physical axion. Following the philosophy adopted in
Ref. [9] any direct coupling between the scalar s and the
SM fermions is not introduced, as it will be discussed in
more details in the following.

The complete renormalisable Lagrangian for the AMLσM
can be written as the sum of three terms describing respec-
tively the pure gauge, fermionic and scalar sectors,

L = Lg + Lf + Ls. (2.3)

The explicit expression for each piece will be detailed in the
following subsections.

2.1 The gauge Lagrangian

The first term, Lg, contains the SM gauge kinetic and the
colour anomaly terms,

Lg = −1

4
GaμνGa

μν − 1

4
WaμνWa

μν − 1

4
BμνBμν

+ αs

8π
θGaμν

˜Ga
μν, (2.4)

with the indices summed over SU (3)c or SU (2)L , and

˜Gμν ≡ 1

2
εμνρσG

ρσ (with ε1230 = +1). (2.5)

The introduction of the axion will provide a natural explana-
tion for the vanishing of the QCD-θ term.

2.2 The fermionic Lagrangian

According to the spectrum and symmetries described in the
previous section, the fermionic part of the renormalisable
Lagrangian in agreement with Ref. [39], although with a
slightly different notation, reads

Lf = qLi /D qL + t Ri /D tR + bRi /D bR

+ψ
[

i /D − M5
]

ψ + χ
[

i /D − M1
]

χ

− [y1 ψ L φ χR + y2 ψ R φ χL + h.c.
]

− [z1 χ R χL s + z̃1 χ R χL s
∗

+ z5 ψ R ψL s + z̃5 ψ R ψL s
∗ + h.c.

]

+ [�1
(

qL�2×5
)

ψR + �2 ψ L

× (�5×1tR) + �3 χ L tR + h.c.
]

+ψ ′ [i /D − M ′
5

]

ψ ′ + χ ′ [i /D − M ′
1

]

χ ′

−
[

y′
1 ψ ′

L φ χ ′
R + y′

2 ψ ′
R φ χ ′

L + h.c.
]

−
[

z′1 χ ′
R χ ′

L s + z̃′1 χ ′
R χ ′

L s
∗

+ z′5 ψ ′
R ψ ′

L s + z̃′5 ψ ′
R ψ ′

L s
∗ + h.c.

]

+ [�′
1

(

qL�′
2×5

)

ψ ′
R

+�′
2 ψ ′

L
(

�′
5×1bR

)+ �′
3 χ ′

LbR + h.c.
]

. (2.6)

The first line contains the kinetic terms for the 3rd generation
SM quarks, being qL the left-handed (LH) SU (2)L doublet
and tR and bR the right-handed (RH) singlet counterparts.
The second line contains the kinetic and mass terms for the
exotic vector fermions, ψ and χ (with U (1)X charge 2/3).
The direct mass terms for the heavy fermions are denoted
by M1,5 respectively for the fermions in the singlet and
fundamental representations. The proto-Yukawa couplings
between the heavy fermions and the real scalar quintuplet
field φ are also present in the second line. In the third line,
the Yukawa-like couplings of the exotic fermions with the
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complex scalar singlet s are shown. Two distinct type of cou-
plings, z and z̃, have been introduced reflecting the freedom
in choosing the PQ charges of s and of the fermionic bilin-
ears. The fourth line contains the interactions between the
top quark and exotic fermions with U (1)X charge equal to
2/3.

While, the second and third lines of the Lagrangian explic-
itly preserve SO(5), the partial compositeness terms in the
fourth line, proportional to �1,2, explicitly break the global
SO(5) symmetry. The combinations �1�2×5 and �2�5×1

may play the role of spurions [50–54] that formally ensure
the SO(5) × U (1)X invariance of the operators. The exotic
fermion spinors can be decomposed under the SU (2)L quan-
tum numbers as follows:

ψ ∼ (K , Q, T5) , χ ∼ T1, (2.7)

being K and Q doublets while T1,5 singlets of SU (2)L . The
resulting interactions preserve the gauge EW symmetry, with
the hypercharge defined as

Y = �
(3)
R + X, (2.8)

with �
(3)
R the third component of the global SU (2)R (1/2 for

K and −1/2 for Q) and X the U (1)X charge of the spinor.
The last three lines describe the replicated sector associ-

ated to the bottom quark. The exotic vector fermions, ψ ′ and
χ ′ have U (1)X charge −1/3 to allow the direct partial com-
positness coupling with the bottom. Their decomposition in
terms of SU (2)L representations, reads

ψ ′ ∼ (Q′, K ′, B ′
5

)

, χ ′ ∼ B ′
1, (2.9)

being Q′ and K ′ doublets of SU (2)L (with �
(3)
R component

1/2 and −1/2 respectively) and B ′
1,5 singlets of SU (2)L .

The Lagrangian in Eq. (2.6) can be rewritten for later
convenience in terms of fermionic vectors regrouping all
the spinors components ordered accordingly of their elec-
tric charge,

� =
(

Ku, T , B, K ′d) , (2.10)

with

T =
(

t, Qu, Kd , T5, T1, Q′u) ,

B =
(

b, Q′d , K ′u, B ′
5, B ′

1, Qd
)

. (2.11)

The fermion mass terms in Eq. (2.6) can then be written as

LM = −�L M f (h, σ, r)�R, (2.12)

where the field dependent fermion mass matrix M f is a
14 × 14 block diagonal matrix,

M f (h, σ, r) = diag
(

M5(r), MT (h, σ, r),

MB(h, σ, r), M ′
5(r)
)

. (2.13)

For the top sector one has explicitly

MT (h, σ, r)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 �1 0 0 0 �′
1

0 M5(r) 0 0 y1
h√
2

0

0 0 M5(r) 0 y1
h√
2

0

�2 0 M5(r) y1σ 0
�3 y2

h√
2

y2
h√
2

y2σ M1(r) 0

0 0 0 0 0 M ′
5(r)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(2.14)

with

M1(r) = M1+(z1 + z̃1) r, M5(r) = M5+(z5 + z̃5) r.

(2.15)

The corresponding matrix for the bottom sector,MB(h, σ, r)
can be obtained from Eqs. (2.14) and (2.15) by replacing the
unprimed couplings with the corresponding primed ones.

Equations (2.6), (2.14), and (2.15) contain all the possi-
ble couplings invariant under SM gauge group and SO(5)×
U (1)X global symmetry that can be constructed following
the assumptions described in the previous section. However,
it is important to notice that the Lagrangian actually describ-
ing the AMLσM can be obtained only after the adoption of
a specific choice for the PQ charges: not all the terms are
simultaneously allowed. In fact, only one between the Mi , zi
and z̃i (and corresponding primed) terms is allowed once a
specific PQ charge assignment for the fermion chiral compo-
nents is chosen, assuming obviously a non-vanishing charge
for the scalar s field. In other words, exotic fermions acquire
masses either through the direct mass terms (Mi ) or through
the Yukawa-like interactions with s (zi or z̃i ) once the scalar
field s develops a VEV. In addition, following the assump-
tions outlined in the previous section, as the scalar quintuplet
φ does not transform under the PQ symmetry, the presence
of the proto-Yukawa interactions (yi ) necessarily depend on
the PQ charges of exotic fermions.

Finally, turning the attention to the interactions between
exotic and SM fermions, in the fourth and seventh lines of
Eq. (2.6), if only the exotic fermions have non-vanishing PQ
charges, then these operators are forbidden, unless the �i

couplings are either promoted to be spurions under the PQ
symmetry or substituted by a PQ dynamical field (s or s∗).
This would introduce explicit sources for the PQ symme-
try breaking or imply that the PQ sector contributes to the
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dynamics that originate these operators. These issues will be
discussed in the next sections, where the conditions that lead
to the minimal AMLσM charge assignment are illustrated.

2.3 The scalar Lagrangian

The scalar part of the Lagrangian introduced in Eq. (2.3)
describes scalar-gauge and scalar-scalar interactions:

Ls = 1

2
(Dμφ)T (Dμφ) + (∂μs

∗)(∂μs) − V (φ, s), (2.16)

where the SU (2)L ×U (1)Y covariant derivative of the quin-
tuple φ is given by

Dμφ =
(

∂μ + ig�(i)
L Wi

μ + ig′�(3)
R Bμ

)

φ, (2.17)

and �i
L and �i

R denote respectively the generators of the
SU (2)L × SU (2)R ∼ SO(4)′ subgroup of SO(5), rotated
with respect to the SO(4) group preserved from the sponta-
neous breaking.

It will be useful for later convenience to express the scalar
Lagrangian in Eq. (2.16) in the unitary gauge, making use of
Eqs. (2.1) and (2.2):

Ls = 1

2
(∂μh)(∂μh) + 1

2
(∂μσ)(∂μσ)

+ h2

4

[

g2 W+
μ W−μ + g2 + g′2

2
ZμZ

μ

]

+ 1

2
(∂μr)(∂

μr) + r2

2 f 2
a

(∂μa)(∂μa) − V (h, σ, r),

(2.18)

Notice that once the U (1)PQ gets spontaneously broken
through the VEV of r , the kinetic term of the axion field
a gets canonically normalised, by identifying

fa ≡ vr . (2.19)

The scalar potential V (φ, s) can then be written as:

V (φ, s) = V SSB(φ, s) + VCW(φ, s) + V c.t.(φ, s). (2.20)

The first part, V SSB(φ, s), describes the most general poten-
tial constructed out of φ and s, invariant under SO(5) ×
U (1)PQ symmetry, broken spontaneously to SO(4):

V SSB(φ, s) = λ(φTφ − f 2)2 + λs(2 s
∗s − f 2

s )2

−2λsφ (s∗s)
(

φTφ
)

, (2.21)

where λ, λs and λsφ are the dimensionless quartic coefficients
and the sign in front of λsφ has been chosen negative for
future convenience. Notice that λsφ plays the role of portal
between the SO(5) and the PQ sectors: if λsφ ∼ O(1) then

the SO(5)/SO(4) and PQ breaking mechanisms would be
linked and they would occur at similar scales; this would
represent a possible tension between the naturalness of the
AMLσM, which requires f not so much larger than EW scale
v = 246 GeV, in order to reduce the typical fine-tuning in CH
models, and the experimental data on the axion sector, which
suggests very high values of fs (see Sect. 6). In consequence,
values of λsφ smaller than 1 are favoured in the AMLσM.

The expression of V SSB in the exponential notation will
be useful in the following sections:

V SSB(h, σ, r) = λ(h2 + σ 2 − f 2)2 + λs(r
2 − f 2

s )2

− λsφ r
2 (h2 + σ 2). (2.22)

When the scalar fields h, σ and r take a non trivial VEV,
respectively vh , vσ and vr , a spontaneous symmetry break-
ing for the EW, the global SO(5) and the PQ symmetry, is
obtained.

The second term VCW(φ, s) is the Coleman–Weinberg
(CW) one-loop potential that provides an explicit and dynam-
ical breaking of the original symmetries. Its form depends
on the explicit structure of the fermionic and bosonic
Lagrangians and it will be outlined in the following sub-
section.

Finally, the term V c.t.(φ, s), includes all the couplings
that need to be introduced at tree-level in order to cancel
the divergences potentially arising from the one-loop CW
potential, so to make the theory renormalizable.

The Coleman–Weinberg one-loop potential
Explicit dynamical breaking of the tree-level symmetries

can be introduced at one-loop level through the CW mech-
anism [55]. Indeed, the presence of SO(5) breaking cou-
plings in both the fermionic and the gauge sectors generate
SO(5) breaking terms at one-loop level. Explicit U (1)PQ

breaking contributions may also be generated, depending on
the fermion PQ charge assignment.

The one-loop fermionic contributions can be calculated
from the field dependent fermion mass matrix M f (h, σ, r)
in Eq. (2.13), using the usual CW expression:

VCW
f = − 1

64π2

(

Tr
[

M fM†
f

]

�2 − Tr

[

(

M fM†
f

)2
]

× log

(

�2

μ2

)

+Tr

[

(

M fM†
f

)2
log

(

M fM†
f

μ2

)]

−1

2
Tr

[

(

M fM†
f

)2
])

, (2.23)

where � is the ultraviolet (UV) cutoff scale while μ is a
generic renormalisation scale. The two terms in the first line
are divergent, quadratically and logarithmically respectively,
while those in the second line are finite. For the model under
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discussion the possible divergent contributions read

Tr
[

M fM†
f

]

= c0 + c1(s
∗s) + c2 (φTφ), (2.24)

Tr

[

(

M fM†
f

)2
]

= d0 + d1 (s∗s) + d2 (φTφ)

+ d3 (s∗s)2 + d4 (φTφ)2 + d5 (φTφ)(s∗s)
+ d̃1σ + d̃2h

2 + d̂1σ(s + s∗) + d̂2(φ
Tφ)(s + s∗)

+ d̂3(φ
Tφ)(ss + s∗s∗). (2.25)

The terms in Eq. (2.24) are already present in the tree level
potential V SSB in Eq. (2.22) and therefore the quadratic
divergences can be absorbed by a redefinition of the initial
Lagrangian parameters. This is not the case for the logarith-
mic divergent term that contains five new couplings, denoted
with d̃1,2 and d̂1,2,3 in Eq. (2.25). The ones proportional to
d̃1,2 and d̂1 are SO(5) breaking terms, while the ones pro-
portional to d̂2,3 are SO(5) preserving. On the other side,
d̂1,2,3 terms also explicitly break the PQ symmetry. If in a
specific setup these terms were not vanishing, renormalis-
ability of the model would then require the introduction of
the corresponding structures in the tree-level potential.

The expressions for the top sector CW coefficients that
provide an explicit breaking of the SO(5) and/or of the PQ
symmetries read:

d̃1 = 4(y1M1 + y2M5)�2�3

d̃2 = y2
2�2

1 − 2 y2
1�2

2

d̂1 = 2 y1(z1 + z̃1)�2�3 + 2 y2(z5 + z̃5)�2�3

d̂2 = 2 y1y2(z1 + z̃1)M5 + 2 y1y2(z5 + z̃5)M1

d̂3 = 2 y1y2 (z1z5 + z̃1 z̃5). (2.26)

Similar contributions for the bottom sector are obtained by
substituting the unprimed couplings in Eq. (2.26) with the
corresponding primed ones. As stated before, once a specific
PQ charge assignment is assumed, some of the couplings
in the Lagrangian are forbidden, and consequently the cor-
responding CW coefficients vanish, as it will be explicitly
discussed in the next section.

In a similar way the one-loop gauge boson contributions to
the CW potential can be calculated through the CW formula
given in Eq. (2.23) just substituting the fermion mass matrix
M f with the gauge boson one Mg:

V CW
g = − 1

64π2
(

Tr
[

M2
g

]

�2 − Tr

[

(

M2
g

)2
]

log

(

�2

μ2

)

+ . . .

)

.

(2.27)

The quadratic and logarithmic divergent terms read

Tr
[

M2
g

]

= ã1h
2 Tr

[

(

M2
g

)2
]

= b0 + b̃1 h
4, (2.28)

with

ã1 = 1

8

(

g2 + g′2) b̃1 = 1

64

[

2 g4 +
(

g2 + g′2)2
]

,

(2.29)

both explicitly breaking the global SO(5) symmetry.
The two divergences associated to ã1 and d̃2 require the

introduction of an h2 term in the tree-level scalar potential,
in order to ensure the renormalisability of the model, while
the divergence proportional to the b̃1 coefficient requires an
additional h4 term.

3 The minimal model

There is a large zoology of possible U (1)PQ charges that
can be assigned to the spectrum discussed in the previous
sections (see Ref. [39] for details on more general charge
assignments). However, after requiring a few, strong physical
conditions, only one single set of charge assignments can be
identified, which lead to the identification of the minimal
AMLσM. The requirements are the following:

1. Mass terms for the SM quarks are originated at tree-level.
Generalising the result in Ref. [9], the leading order (LO)
contribution to the third generation quark masses is given
by

mt = y1�1�3vh

M1(vr )M5(vr ) − y1y2(v
2
h + v2

σ )

− y1y2�1�2vhvσ

M1(vr )M2
5 (vr ) − y1y2M5(vr )(v

2
h + v2

σ )
, (3.1)

and similarly for the bottom mass. In this expression,
M1,5(vr ) refer to the definitions in Eq. (2.14) substituting
the dependence on r with its VEV, vr . In order for this
expression not to be vanishing, the conditions y1 	= 0 and
�1 	= 0 should hold simultaneously. Then, either �3 	=
0 or y2 	= 0 ∧ �2 	= 0 should be verified, depending
on whether the leading or sub-leading term in the v/M
expansion is retained.

2. The dynamics that generate the partial-composite opera-
tors in the fourth line of Eq. (2.6) are associated only to
the SO(5)/SO(4) breaking sector. This implies that the
scales f and fs are distinct and independent.

In a completely generic model a third condition can be
also considered:
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Table 1 On the left-side, the PQ charge assignments where ni refers
to the i field, conventionally fixing the PQ charge of the complex scalar
field s, ns = 1. On the right-side, the parameters entering the fermionic

Lagrangian, together with the information on whether they are com-
patible (�) or not (×) with the PQ symmetry. This assignment can be
trivially extended to the bottom sector

nqL ntR nψL nψR nχL nχR y1 y2 �1 �2 �3 M5 M1 z1, z̃5 z̃1, z5

0 0 +1 0 0 +1 � � � × � × × � ×
0 0 −1 0 0 −1 � � � × � × × × �

3. No PQ explicit breaking is generated at one-loop from
the CW potential.2 This condition is satisfied by imposing
d̂i = 0, for i = 1, 2, 3 (and the equivalent ones for the
bottom sector).

This condition prevents the arising of large contributions to
the axion mass, and it is automatically verified in the class
of AMLσM constructions defined in Eq. (2.6), as it will be
explicitly shown in the following.

If one requires additionally to solve the strong CP problem
à la KSVZ a fourth condition is necessary:

4. The complex scalar field s needs to couple to at least one
of the exotic fermions (not necessarily to all of them)
and the net contribution to the QCD-θ term of the colour
anomaly needs to be non-vanishing.

This last condition, when satisfied, implies condition 3
and therefore for a QCD axion no PQ explicit breaking con-
tributions arise in the scalar potential, besides those due to
non-perturbative QCD effects.

The model identified with the PQ charge assignments in
Table 1 satisfies to all the previous conditions: using the free-
dom to fix one of the charges, i.e. the charge of the complex
scalar singlet ns = 1, the two cases shown in the table are
physically equivalent. This model is contained within the
classes of constructions recently presented in Ref. [39].

The model presents a series of interesting features. No
PQ charge is assigned to the SM particles and neither to
the exotic fermions ψR and χL . The Yukawa-like terms pro-
portional to y1,2 are invariant under U (1)PQ, while the term
proportional to �2 is not and then it cannot be introduced in
the Lagrangian. In consequence, the subleading contribution
to the SM fermion masses is identically vanishing and the
top mass is given only by the leading term in Eq. (3.1) (sim-
ilarly for the bottom mass). The Dirac mass terms M1,5 are
also forbidden and then the exotic fermions ψ and χ receive
mass of the order z5vr (or z̃5vr depending on the specific
sign of the PQ charge) and z1vr (or z̃1vr ), once r develops a

2 The discussion on the consequences of PQ explicit breaking contri-
butions, on its interest in cosmological studies, and on the case where
the SO(5)/SO(4) and PQ symmetry breaking occur at the same scale
is deferred to Ref. [56].

non-vanishing VEV. As vr is typically expected to be of the
order of fs , these fermions decouple from the spectrum when
fs � f . Finally, condition 2 implies that the couplings �i

are neither promoted to spurions nor substituted by a dynam-
ical field (i.e. s or s∗), and this represents a difference with
respect to the analysis in Ref. [39].

Accordingly to the charge assignment in Table 1, the PQ-
breaking terms in the fermionic CW potential, d̂i , are van-
ishing, while the SO(5) breaking terms read

d̃1 = 0, d̃2 = y2
2�2

1. (3.2)

In consequence, in this scenario, only a log-divergent SO(5)

breaking contribution to the h-mass term arises from the
fermionic part of the CW potential, while no σ tadpole con-
tribution is generated. This is different from the analysis per-
formed in Ref. [9], where the only SO(5) symmetry break-
ing terms considered have been the σ tadpole and the h2

terms. The minimisation of the scalar potential performed in
Ref. [9] does not apply to this model and a new analysis is in
order. To obtain a viable SO(5) and EW spontaneous symme-
try breaking at least two different SO(5) breaking terms are
necessary. Additional unavoidable sources of SO(5) break-
ing comes from the gauge sector, as shown in Eq. (2.27).
The minimal counter-term potential required at tree-level by
renormalisability of the theory, once the charge assignment
has been chosen, is then given in the unitary gauge by

V c.t.(h, σ ) = −β f 2h2 + γ h4. (3.3)

Other values for the PQ charges are possible by changing the
explicit value of ns , but they lead to the same physical model
presented above, at least for what concerns the SO(5)/SO(4)

phenomenology and the analysis of the scalar potential. The
physical dependence on the explicit value of ns , and then of
those of the exotic fermions, can be found in the couplings
between the axion and the gauge field strengths, whose coef-
ficients are determined by the chiral anomaly (see Refs. [57–
67] for other studies where the axion couplings are modified
with respect to those in the original KSVZ model).

The explicit expression describing the Lagrangian modi-
fication under generic PQ transformations are reported in the
Appendix 1. The coefficients of the axion couplings with the
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Table 2 The coefficients of the axion couplings to the gauge boson field
strengths in the physical basis are reported, where the normalisation is
defined in Eq. (3.4)

cagg caγ γ caZ Z caγ Z caWW

8 112/3 49.3 17.8 108.1

gauge boson field strengths in the physical basis,

δL ⊃ − αs

8π

a

fa
caggG

a
μν G̃

aμν − αem

8π

a

fa
caγ γ Fμν F̃

μν

− αem

8π

a

fa
caZ Z Zμν Z̃

μν

− αem

8π

a

fa
caγ Z Fμν Z̃

μν − αem

8π

a

fa
caWWW+

μνW̃
−μν,

(3.4)

are reported in Table 2 for the PQ scenario under considera-
tion.3 It will be useful for the future discussion to introduce
the notation of the effective couplings

gagg ≡ αs

2π

cagg
fa

gi ≡ αem

2π

ci
fa

, (3.5)

where i = {aγ γ, aZ Z , aγ Z , aWW }.
The charge assignment in Table 1 corresponds to the min-

imal setup among all the possible AMLσM constructions,
where the minimality refers to the number of new parameters
that are introduced with respect to the MLσM: the number
of parameters in the fermionic Lagrangian is the same; in the
scalar potential, only three additional parameters are consid-
ered, corresponding to the PQ sector ( fs , λs and λsφ), and in
particular only two SO(5) breaking terms are present (corre-
sponding to β and γ ); the PQ charges also represent degrees
of freedom and the minimal model in Table 1 is univocally
determined by fixing ns . Indeed, conditions 1 and 2 impose
that the difference between the charges of the LH and RH
components of the SM fermions is vanishing, nqL −ntR = 0,
and in consequence it is always possible to redefine the whole
set of PQ charges such that nqL = ntR = 0.

It is worth mentioning that an alternative charge assign-
ment can be found satisfying to the conditions 1-4, but this
scenario is not minimal in terms of number of parameters.
In this case, the charges are such that ntR = nχL = nχR =
nψL = nψR ∓ ns = nqL ∓ ns , where the “−” or “+” refer to
the presence of z5 or z̃5 terms in the Lagrangian, respectively.
As discussed in Ref. [39], SM fermions transform under
the PQ symmetry, differently from the minimal AMLσM

3 In the present discussion, only one fermion generation has been con-
sidered. Once extending this study to the realistic case of three genera-
tions [56], the values reported in Table 2 will be modified: for example,
assuming that the same charges will be adopted for all the fermion gen-
erations, the numerical values in the table will be multiplied by a factor
3.

in Table 1. Moreover, the Dirac mass term M1 is allowed
in the Lagrangian, while the ψ fermions receive mass from
the Yukawa-like term proportional to z5 (or z̃5). Moreover,
the terms proportional to �1,2,3 and y1 are allowed, while
the one with y2 is forbidden. In consequence, the term d̃1 in
Eq. (2.26) is not vanishing and then a σ tadpole needs to be
also added into the counter term potential V c.t.(h, σ ). The
number of SO(5) breaking parameters is now increased by
one unit with respect to the minimal case discussed above.
For this reason, this second scenario is not considered in what
follows.

4 The scalar potential

As constructed in the previous section, the tree-level renor-
malisable scalar potential of the minimal AMLσM reads

V (h, σ, r) = λ(h2 + σ 2 − f 2)2 − β f 2h2 + γ h4

+ λs(r
2 − f 2

s )2 − λsφ r
2 (h2 + σ 2). (4.1)

When f 2 > 0 and f 2
s > 0, the minimum of the potential

allows for the SO(5), U (1)PQ and EW spontaneous symme-
try breaking with non-vanishing VEVs,

v2
h = β

2γ
f 2

v2
σ =

(

1 − λ2
sφ

4λλs

)−1

×
{

f 2

[

(

1 − β

2γ

)

+ β

2γ

λ2
sφ

4λλs

]

+ f 2
s

2

λsφ

λ

}

v2
r =

(

1 − λ2
sφ

4λλs

)−1 {

f 2
s + f 2

2

λsφ

λs

}

≡ f 2
a , (4.2)

where the condition vr ≡ fa is imposed to have canonically
normalised axion kinetic term, see Eqs. (2.18) and (2.19). For
sake of definiteness we will indicate in the following with ĥ,
σ̂ and r̂ the physical fields after SSB breaking. Assuming all
parameters non-vanishing, the following conditions on the
parameters must be imposed:

(i) λ > 0 and λs > 0 in order to lead to a potential bounded
from below.

(ii) β and γ should have the same sign in order to guaran-
tee a positive v2

h value. Following the sign convention
adopted in Eq. (4.1), when both parameters are posi-
tive, the explicit symmetry breaking terms sum “con-
structively” to the quadratic and quartic terms in the
potential in the broken phase, and a larger parameter
space is allowed. Moreover, the ratio β/2γ < 1 leads
to vh < f , corresponding to the expected ordering in
the symmetry breaking scales.
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(iii) λsφ should satisfy to

λ2
sφ < 4λλs (4.3)

in order to enforce positive v2
σ and v2

r values. For nega-
tive λsφ values, additional constraints could be enforced
depending on the values of the other parameters. The
sign convention chosen in Eq. (4.1) guarantees that no
cancellation in v2

σ and v2
r occurs for λsφ > 0.

Once the symmetries are spontaneously broken, mass
eigenvalues and eigenstates can be identified. While the gen-
eral case can be studied only numerically (see Sect. 4.3),
simple analytical expressions can be obtained in two specific
frameworks:

1. Integrating out the heaviest scalar dof, whose largest
component is the radial scalar field r , and studying the
LO terms of the Lagrangian;

2. Assuming fs ∼ f , expanding perturbatively in the small
β and λsφ parameters.

These two cases will be discussed in the following sections.

4.1 Integrating out the heaviest scalar field

A clear hierarchy between the three mass scalar eigenstates
is achievable for large values of λs and/or fs : the mass of the
heaviest scalar dof receives a LO contribution proportional
to

m3 ∝ √8λs fs . (4.4)

With increasing values of λs and/or fs , the contaminations
of ĥ and σ̂ to the heaviest scalar dof, in this region of the
parameter space, tend to vanish and the only relevant con-
stituent is the radial component, r̂ . From the expression in
Eq. (4.4), one can envisage two different ways for integrat-
ing out the heaviest dof, either taking the limit λs � 1 or
taking fs � f ∼ √

scm, being
√
scm the typical centre of

mass energy scale at LHC. These two cases represent two
physically different scenarios that are discussed separately.

The case for λs � 1, with fs of the same order of f ,
corresponds to theU (1)PQ non-linear spontaneous symmetry
breaking framework4: this is the traditional axion framework
where the only component of s in the low-energy spectrum
is the axion, while r̂ is integrated out. As the Yukawa-like
couplings of the exotic fermions do not depend on λs , the
decoupling of r̂ does not have any impact on the spectrum of

4 In the case where an UV strong interacting dynamics is responsible
of the largeness of λs , new resonances are expected at the scale � 4π fs
(see the naive dimensional analysis [68]).

the exotic fermions, that depends exclusively of the specific
value chosen for fs . One can then consider in detail the two
limiting cases: fs ∼ f or fs � f . Notice that in the second
scenario, when fs is much larger than any other mass scale,
the exotic fermion sector decouples at the same time as the
heavier scalar dof.

Considering the scalar sector, integrating out the r̂ com-
ponent, leads to an effective scalar potential that, at LO in
the appropriate expansion parameter, reads

V LO
R (h, σ ) = λR(h2 + σ 2 − f 2

R)2 − βR f 2
Rh

2 + γ h4 , (4.5)

in terms of conveniently renormalised couplings:

λR = kλλ, βR = kλ

k f
β, f 2

R = k f

kλ

f 2. (4.6)

The finite renormalisation constants kλ and k f are going to
be different in the two limiting cases as it will be detailed in
the following subsections.

The minimum of the effective scalar potential in Eq. (4.5)
corresponds to the following VEVs for the lighter dofs ĥ and
σ̂ :

v2
h = βR

2γ
f 2
R, v2

σ = f 2
R

(

1 − βR

2γ

)

, (4.7)

satisfying to

v2
h + v2

σ = f 2
R . (4.8)

The restrictions on the parameters that follow from Eq. (4.2)
hold for the expressions just obtained: βR/γ needs to be
positive in order to guarantee v2

h > 0; fR is required to be
larger than vh to ensure v2

σ > 0. Moreover, if vσ > vh then
the field ĥ is the largest component of the mass eigenstate that
can be interpreted as the physical Higgs particle originated
as a GB of the SO(5)/SO(4) SSB mechanism.

From Eq. (4.5) and using the relations of Eq. (4.7) one
derives the following mass matrix:

M2
s = 8 λR

(

(1 + γ /λR)v2
h vhvσ

vhvσ v2
σ

)

, (4.9)

whose diagonalisation is obtained by performing an SO(2)

rotation,

diag
(

m2
1, m

2
2

)

= U (ϑ)TM2
sU (ϑ)

with U (ϑ) =
(

cos ϑ sin ϑ

− sin ϑ cos ϑ

)

. (4.10)

The expressions for the masses and the mixing obtained from
the LO potential of Eq. (4.5) are given by
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m2
1,2 = 4λR

⎡

⎣

(

1 + γ

λR

)

v2
h + v2

σ ±
√

(

1 + γ

λR

)2

v4
h + 2

(

1 − γ

λR

)

v2
hv

2
σ + v4

σ

⎤

⎦ (4.11)

tan 2ϑ = 2vhvσ

v2
σ − (1 + γ /λR)v2

h

. (4.12)

The positivity of the two mass square eigenvalues is guar-
anteed imposing that both the trace and the determinant of
the mass matrix in Eq. (4.9) are positive: this leads to

λR > 0, γ > 0, βR > 0, (4.13)

where the last condition follows from the requirement that
γ and βR should have the same sign in order to guarantee a
positively defined v2

h value, as discussed below Eq. (4.2).
The following two subsections will describe in detail the

two limits λs � 1 and fs � f ∼ √
scm, focusing on the

scalar sector.
The large PQ quartic coupling: λs � 1 and fs ∼ f

For λs in the strongly interacting regime, the radial compo-
nent r can be expanded in inverse powers of λs (see Ref. [10]
for a similar analysis): at the NLO, one has

r = fs + 1

λs
r1. (4.14)

Solving the Equations Of Motion (EOMs) perturbatively
allows to determine r1:

r1 = λsφ

4 fs

(

h2 + σ 2
)

+ 1

8 f 3
s

(

∂μa
) (

∂μa
)

. (4.15)

The effective Lagrangian at the NLO reads

Ls = 1

2
(∂μh)(∂μh) + 1

2
(∂μσ)(∂μσ) − h2

4
Tr
(

VμVμ

)

+ 1

2
(∂μa)(∂μa) − λR

(

h2 + σ 2 − f 2
R

)2

+βR f 2
Rh

2 − γ h4 + δL NLO
s (4.16)

with λR , βR and f 2
R defined as in Eq. (4.6) with

kλ = 1, k f =
(

1 + 1

2

λsφ

λ

f 2
s

f 2

)

, (4.17)

and where the NLO correcting term is given by

δL NLO
s = 4

λs
f 2
s r

2
1 = λ2

sφ

4λs

[

(h2+σ 2)+ 1

2 f 2
s

(

∂μa
) (

∂μa
)

]2

.

(4.18)

In this scenario, fR is the new effective SO(5)/SO(4) break-
ing scale, while the SO(5) quartic coupling λ = λR remains

unchanged. The positivity of f 2
R translates into a constraint

on the couplings λsφ :

λsφ > −2λ
f 2

f 2
s

, (4.19)

where λ, f 2 and f 2
s are all positive (see the discussion at

the beginning of Sect. 4). The value λsφ = 0 is special:
λsφ represents the portal between the SO(5) and the PQ
sectors, and therefore once it is vanishing the two sectors are
completely decoupled.

A convenient limit that will be used to compare with the
numerical analysis, is when λs � λR � 1 and small β, for
which the expressions in Eqs. (4.11) and (4.12), reduce to

m2
1 = 4β f 2

(

1 − β

2γ

)

(4.20)

m2
2 = 8λ f 2

(

1 + β2

4γ λ

)

+ 4λsφ f 2
s (4.21)

with the mixing angle defined as

tan 2ϑ =
(

1 − β

γ

)−1
√

2β

γ

(

1 − β

2γ

)

. (4.22)

The large PQ SSB scale: fs � f ∼ √
scm

In the limit fs � f ∼ √
scm, being λs in either the per-

turbative or strongly interacting regimes, a similar expansion
as in the previous subsection can be performed on the field r ,
adopting as new dimensionless expanding parameter f/ fs .
Within this setup r at NLO reads

r = fs + f

fs
r1. (4.23)

Solving the EOMs in this case, one gets

r1 = λsφ

4λs f

(

h2 + σ 2
)

. (4.24)

Once substituting these expressions in Eq. (2.18), the effec-
tive Lagrangian in Eq. (4.16) is obtained with

δL NLO
s = λsφ

4λs

(

h2+σ 2
)

f 2
s

[

(

∂μa
) (

∂μa
)+λ2

sφ

4λs

(

h2+σ 2
)2
]

+ λ2
sφ

32λ2
s f

2
s

∂μ

(

h2 + σ 2
)

∂μ
(

h2 + σ 2
)

, (4.25)
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and λR and f 2
R defined in Eq. (4.6), with kλ and k f explicitly

given by

kλ =
(

1 − 1

4

λ2
sφ

λλs

)

, k f =
(

1 + 1

2

λsφ

λ

f 2
s

f 2

)

.

(4.26)

An increasing value of fs corresponds to an increasing value
of fR . However, caution is necessary in the case when λsφ is
exactly vanishing, as the SO(5) and PQ sectors are decou-
pled: in this specific case fR = f and the SO(5) SSB sector
is not affected by the integration out of the radial dof r .

Differently from the previous case, here also a new renor-
malised quartic couplings λR 	= λ is introduced. To ensure
a potential bounded from below both f 2

R and λR need to be
positive, leading to the following constraints on λsφ ,

λsφ > −2λ
f 2

f 2
s

∧ λ2
sφ < 4λλs . (4.27)

In the limiting case under discussion, the explicit values
for the two lightest mass eigenvalues and for their mixing in
Eqs. (4.11) and (4.12), assuming for simplicity λ2

sφ � λλs ,
simplify to

m2
1 = 4β f 2

(

1 − β

γ

λ

λsφ

f 2

f 2
s

)

,

m2
2 = 4λsφ f 2

s

(

1 + 2
λ

λsφ

f 2

f 2
s

)

(4.28)

with the mixing angle given by

tan 2ϑ = 2

√

β

γ

λ

λsφ

f

fs
. (4.29)

4.2 The case for fs ∼ f ∼ √
scm and β, λsφ � 1

For fs ∼ f ∼ √
scm, all the three scalar dofs are retained

in the low energy spectrum and in general a stronger mixing
between the three eigenstate is expected, compared to the pre-
vious setups. Complete analytical expression for the masses
and mixings cannot be written in particularly elegant and
condensed form. Nevertheless, simple analytic results can
be obtained under the assumption that β, λsφ � 1, which
are natural conditions in the AMLσM. The first condition
comes from the requirement that vh coincides with the EW

scale v, defined by v ≡ 2MW /g = 246 GeV, and it is much
smaller than the SO(5) SSB scale, i.e. vh < f . The smallness
of λsφ follows, instead, from the assumption that the SO(5)

and PQ sectors are determined by two distinct dynamics and
therefore the two breaking mechanisms occur independently.
A large λsφ would indicate, instead, a unique origin for the
two symmetry breaking mechanisms and would signal the
impossibility of disentangling the two sectors.

Expanding the expressions for the generic VEVs found
in Eq. (4.2) for small β and λsφ , it leads to the following
simplified expressions:

v2
h = β

2γ
f 2

v2
σ =

(

1 − β

2γ

)

f 2 + λsφ

λ

f 2
s

2
+ O

(

β2, βλsφ, λ2
sφ

)

v2
r = f 2

s + λsφ

λs

f 2

2
+ O

(

β2, βλsφ, λ2
sφ

)

, (4.30)

where in the brackets the dependence on β and λsφ of the
higher order corrections is reported. The scalar squared mass
matrix is given by the following expression

M2
s = 2

⎛

⎝

4(γ + λ)v2
h 4λvhvσ −2λsφvhvr

4λvhvσ 2λ(v2
h + 3v2

σ − f 2) − λsφv2
r −2λsφvσ vr

−2λsφvhvr −2λsφvσ vr −λsφ(v2
h + v2

σ ) + 6λsv
2
r − 2λs f 2

s

⎞

⎠

that can be diagonalised performing an orthogonal transfor-
mation,

diag
(

m2
1, m

2
2, m

2
3

)

= U (ϑ12, ϑ23)
TM2

sU (ϑ12, ϑ23)

(4.31)

with

U (ϑ12, ϑ23) = U (ϑ12)U (ϑ23), (4.32)

the product of a rotation in the 12 sector and in the 23 sec-
tor respectively, of angles ϑ12 and ϑ23. The resulting mass
eigenvalues read

m2
1 = 4β f 2

(

1 − β

2γ

)

+ O
(

β3, β2λsφ

)

m2
2 = 8λ f 2

(

1 + 1

2

λsφ

λ

f 2
s

f 2

)

+ O
(

β2, βλsφ, λ2
sφ

)

m2
3 = 8λs f

2
s

(

1 + 1

2

λsφ

λs

f 2

f 2
s

)

+ O
(

βλsφ, λ2
sφ

)

, (4.33)

while the mixing angles are given by

tan 2ϑ12 =
√

2β

γ

(

1 + O(β, λsφ)
)

,

tan 2ϑ23 = f fs
λs f 2

s − λ f 2 λsφ
(

1 + O(β, λsφ)
)

. (4.34)
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As for Eq. (4.30), only the first two relevant terms in the
expansion are reported in the expressions in Eqs. (4.33),
while the powers in β and λsφ of the expected next order
terms are shown in the brackets. Instead, in the formula for
the mixing angles in Eq. (4.34), only the first term is indi-
cated. Notice that, once considering the next order terms in
the masses expressions, a rotation in the 13 sector is also
necessary to exactly diagonalise the squared mass matrix.

4.3 Numerical analysis

This subsection illustrates the numerical analysis on the
parameter space of the scalar potential. The analytic results
of the specific cases presented in the previous subsection will
be used to discuss the numerical outcome. To this aim, a more
general notation with respect to the one previously adopted
is introduced. The scalar mass matrix Ms is real and can be
diagonalised by an orthogonal transformation,

diag(m2
1,m

2
2,m

2
3)

= U (ϑ12, ϑ23, ϑ13)
TM2

s U (ϑ12, ϑ23, ϑ13), (4.35)

where U (ϑ12, ϑ23, ϑ13) ≡ U (ϑ23)U (ϑ13)U (ϑ12) is the
product of three rotations in the 23, 13, and 12 sectors respec-
tively, of angles ϑ23, ϑ13 and ϑ12. The scalar mass eigenstates
ϕ1, ϕ2, and ϕ3 are defined by

⎛

⎝

ϕ1

ϕ2

ϕ3

⎞

⎠ = U (ϑ12, ϑ23, ϑ13)
T

⎛

⎝

ĥ
σ̂

r̂

⎞

⎠ (4.36)

in terms of the three physical shifts around the vacua. Unless
explicitly indicated, in the analysis that follows, ϕ1 will be
identified with the Higgs particle and the deviations of its cou-
plings from the SM predicted values are interesting observ-
ables at colliders. The ϕ1 couplings to the SM gauge bosons
can be deduced from the couplings of ĥ, as σ̂ and r̂ are sin-
glets under the SM gauge group. The composition of ĥ in
terms of ϕi is explicitly given by

ĥ = c12c13ϕ1 + c13s12ϕ2 + s13ϕ3 ≡ C1ϕ1 + C2ϕ2 + C3ϕ3,

(4.37)

where ci j and si j stand for cos θi j and sin θi j , and the coeffi-
cients Ci in the last equality have been introduced for short-
ness. The couplings with the SM gauge bosons can be written
as

g2

4
(ĥ + vh)

2W+
μ W−μ

= m2
W

(

C1
ϕ1

vh
+ C2

ϕ2

vh
+ C3

ϕ3

vh
+ 1

)2

W+
μ W−μ,

g2 + g′2

8
(ĥ + vh)

2ZμZ
μ

= m2
Z

2

(

C1
ϕ1

vh
+ C2

ϕ2

vh
+ C3

ϕ3

vh
+ 1

)2

ZμZ
μ. (4.38)

Finally, the ϕ1 couplings to the longitudinal components of
W and Z are modified with respect to the SM predictions for
the Higgs particle by factor of C1.

To have a clear comparison with CHM predictions, one
can write the expression for the C1 parameter obtained inte-
grating out all the scalar dofs of our model, but the physical
Higgs. The most immediate way to obtain such a result is to
start from Eq. (4.12) and expanding it for λR � 1, giving

C1 � 1 − 1

2

v2
h

v2
σ

≡ 1 − ξ

2
, (4.39)

The last term on the right-hand side introduces the param-
eter ξ , that customary defines the tension between the EW
and the composite scales. This parameter often appears in
CHMs to quantify the level of non-linearity of the model. The
expression in Eq. (4.39) agrees with previous MCHM results
present in literature, see for example Ref. [72]. Therefore, the
corresponding bounds on ξ , as the ones from Refs. [12,70],

ξ � 0.18 @ 2σ, (4.40)

strictly apply to the model presented here only in the MCHM
limit, i.e. when all the scalar fields, but the Higgs, are
extremely massive and can be safely integrated out. If this is
not the case, the coefficient C1 is a complicate function of all
the scales and parameters effectively present in the model.
The scalar potential parameter space

The parameter space of the scalar sector is spanned by
seven independent parameters: five dimensionless coeffi-
cients λ, λs , β, γ , λsφ , and two scales f and fs . By using
the known experimental values of the Higgs VEV, vh = v ≡
246 GeV, and massm1 = mh ≡ 125 GeV, two of these coef-
ficients can be eliminated in terms of the remaining five. The
adopted procedure for the numerical analysis is to express
γ as function of β and f , by inverting the v2

h expression in
Eq. (4.2):

γ =
(

f

vh

)2
β

2
. (4.41)

and then extract β, in terms of the remaining five parameters,
by numerically solving the equation m1(β, λ, λs, λsφ, f, fs)
= mh . Consequently, predictions for all the remaining
observables can be obtained by choosing specific values for
(λ, λs, λsφ, f, fs).

In Fig. 1 the bounds on the |C1| parameter in the ( fs, f )
plane for λ = λs = 1 and λsφ = 0.1 are shown. The
dark green region corresponds to |C1| < 0.90, while the
light green one to 0.90 < |C1| < 0.95. In the white region
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Fig. 1 C1 contours in the ( fs , f ) plane, for λ = λs = 1 and λsφ = 0.1.
The dark green region corresponds to |C1| < 0.90, while the light green
one to 0.90 < |C1| < 0.95. In the white region |C1| > 0.95. The two
red curves correspond to values for the next to lightest scalar m2 = 1
TeV and m2 = 2 TeV respectively, being the Higgs mass fixed to the
reference value mh = 125 GeV

|C1| > 0.95. From this plot one can have an order of magni-
tude comparison with present/future experimental bound on
the Higgs-gauge boson interaction. The following bounds on
hZ Z and hWW couplings are obtained by [71], using the so
called κ-framework5:

|κZ | = 0.89 + 0.09 − 0.08 @ 1σ

|κW | = 1.00 + 0.00 − 0.05 @ 1σ (4.42)

The expressions in Eq. (4.38) enforce the relation κZ =
κW = C1.

Figure 1 gives the idea of the interplay between the two
scales f and fs for fixed values of the remaining adimen-
sional parameters. For fs = 1 TeV, LHC can already start
to exclude values of f � 0.7 TeV. However, for the larger
value fs = 3 TeV, even values of f ≈ 0.5 TeV will lie out-
side LHC exclusion reach and no precise bound separately
on f or fs can be inferred from the sole measurement of the
Higgs couplings to gauge bosons, for most of the parame-
ter space.6 Only when λ, λs � 1 are taken, the extra scalar
dofs are decoupled and the CHM relation of Eq. (4.39) can
be exploited. These results are compatible with the ones of
Ref. [9], where a detailed study on the allowed range for f has
been performed in the context of the MLσM. For complete-
ness in Fig. 1 also the curves corresponding to two values
of the mass of the next to lightest scalar, m2 = 1 TeV and
m2 = 2 TeV, have been depicted.

In the following analysis the value f = 2 TeV has been
chosen as benchmark. The parameter space for the remain-

5 Notice that in the κ-framework one assumes that there are no new
particles contributing to the ggH production or H → γ γ decay loops.
6 Limits on the scale f from EWPO will be discussed in the following
section.

ing four variable, λ, λs, λsφ, fs , can be studied, plotting the
behaviour of the scalar mass eigenvalues mi and of the mix-
ing coefficients squared C2

i .
In Fig. 2, the masses m2 and m3 are shown as a function

of λsφ (upper left), or λ = λs (upper right), or λ (lower).
The mass m1 is fixed at mh , while the scale f is taken at
2 TeV. Three distinct values for fs are considered, fs =
1 TeV, 103 TeV, 106 TeV, and are shown in the same plot
spanning a different region of the parameter space. In the plot
in the upper left, the values for λ and λs are taken to be equal
to 10; in the plot in the upper right, λsφ = 0.1; in the lower
plot, λsφ = 0.1 and λs = 10.

All these plots present features discussed in the different
limiting cases of the previous section. In the three plots, the
lines corresponding to fs = 103 TeV and fs = 106 TeV well
represent the expressions for the masses in Eq. (4.28). In the
upper left plot, the red-dashed line represents the heaviest
dof with a constant mass according with Eq. (4.4); the blue-
continue line corresponds to the second heaviest dof and it
shows an increasing behaviour with a constant slope, corre-
sponding to the expression for m2

2 that in first approximation
is proportional to λsφ . In the upper right plot, the red area is
excluded according to Eq. (4.3): close to this region, the ana-
lytic expressions do not closely follow the numerical results,
as it appears in the behaviour of the red-dashed line that
increases with a constant slope according to Eq. (4.4) only
for λ = λs � 0.1. The blue-continue line is almost constant,
as expected from the expression of m2

2 in Eq. (4.28), except
for the region with small λ = λs . In the lower plot, both
the red-dashed and the blue-continue lines are horizontal, as
expected having fixed both λs and λsφ .

When fs = 1 TeV, the numerical results agree with
the analytic expressions in Eqs. (4.21) and (4.33). In the
upper left plot, the red-dashed and the blue-continue lines
are exchanged with respect to the lines for fs = 103 TeV
and fs = 106 TeV: this is in agreement with Eq. (4.33), as
indeed for f > fs the heaviest dof is ϕ2 and the next-to-
heaviest is ϕ3. Moreover, the two lines are almost horizontal
as the dependence on λsφ only enters at higher orders. In
the upper right plot, both the lines increase with a constant
slope, as expected from Eq. (4.33), except for small values of
λ = λs , that is close to the excluded region. In the lower plot,
the red-dashed line is almost horizontal, according to m2

3 in
Eq. (4.33), while the blue-continue line increases with λ, as
shown by the expression for m2

2. For λ = 2.5 the two lines
cross and ϕ2 becomes the heaviest dof. The same conclu-
sions are expected by analysing the expressions in Eq. (4.21),
where ϕ3 is integrated out: the comparison is however more
difficult as m2

2 depends explicitly on β and γ , which are only
numerically computed in terms of λ, λs, λsφ, fs . Moreover,
when λ > 2.5, ϕ2 should also be integrated out from the
low-energy spectrum as its mass reaches the value of the one
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Fig. 2 The profiles of the scalar masses m2 and m3 as a func-
tion of λsφ (upper left), λ = λs (upper right), and λ (lower). The
other parameters are chosen at fixed values: f = 2 TeV; fs =
1 TeV, 103 TeV, 106 TeV; λ = λs = 10 (upper left); λsφ = 0.1 (upper
right); λs = 10 and λsφ = 0.1 (lower). The red-dashed line represents

the heaviest dof with mass m3, while the blue-continue line the next-
to-heaviest dof with mass m2. The lightest dof is identified with the
Higgs particle with mass m1 = mh . The red area is excluded from the
constraint in Eq. (4.3)

of ϕ3, and not consistent description is expected for these
values of λ.

The mixing coefficientsC1,C2 andC3 are shown in Fig. 3:
the green-dot-dashed line describes C2

1 , the blue-continue
line C2

2 and the red-dashed line C2
3 . Both plots clearly show

that the largest component to ĥ is ϕ1, that is identified to the
physical Higgs particle. The contaminations from ϕ2 and ϕ3

are much smaller and at the level of ∼ 1% at most. This is
a typical feature in almost all the parameter space, and in
particular for fs � f , whose corresponding plots are very
similar to the one in Fig. 3 on the right. The only substan-
tial difference between the two plots shown is the exchange
behaviour between C2

2 and C2
3 : as far as fs > f the largest

contamination is given by ϕ2, while for f < fs it is given by
ϕ3, as it is confirmed by Eq. (4.34).

The results on the mixing coefficients can be compared to
the ones for the equivalent quantities in the MLσM: in the
latter, only two scalar states are present and then only one
mixing can be defined, that is between ĥ and σ̂ ; for increas-
ing masses of ϕ2, which almost coincides with σ̂ , the sibling
ofC2

2 asymptotically approaches the ratio v2/ f 2 and a bench-
mark value of 0.06 has been taken in the phenomenological
analysis. From Fig. 3, the maximal value that C2

2 (or C2
3 )

can take is of 0.015: this means that some differences are
expected between the two models when discussing the EW
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Fig. 3 The profiles of the coefficients squared C2
1 , C2

2 and C2
3 , as a

function of λ = λs . The other parameters are chosen at fixed values:
f = 2 TeV; λsφ = 0.1; fs = 1 TeV on the left and fs = 3 TeV on

the right. The green-dot-dashed line describes C2
1 , the blue-continue

line C2
2 and the red-dashed line C2

3 . The red area is excluded from the
constraint in Eq. (4.3)

precision observables (EWPO) and the impact of the exotic
fermions.

In a tiny region of the parameter space, ϕ2 can be lighter
than ϕ1, with m1 still fixed at the value mh . This is consis-
tent with the results in Ref. [9]. Although this possibility is
experimentally viable, from the theoretical perspective it is
not appealing asm2 < m1 requires λsφ � 10−7, correspond-
ing to a highly tuned situation. Similarly, mixing parameters
larger than the typical values shown in Fig. 3, for example
C2

2 ∼ 0.1, can only be achieved for λsφ � 10−4, another
tuned region of the parameter space. Another possibility for
relatively large mixing parameters is for f ∼ 100 GeV and
fs � 1 TeV, that is very unlikely as it would correspond to
the case with the EWSB occurring before the SO(5)/SO(4)

symmetry breaking. In consequence, only the case with ϕ2

heavier than ϕ1 and values of λsφ � 0.01 will be considered
in the following.

5 Collider phenomenology and exotic fermions

Within a specific CH model setup, defined by a coset, the
Higgs couplings to fermions depend on the kind of exotic
fermions that enrich the spectrum and the chosen symmetry
representations. A recent review on the SO(5)/SO(4) con-
text has been presented in Ref. [12] and the impact at colliders
of different realisations has been analysed in Ref. [74]. The
MLσM, and therefore also the AMLσM, seems an interpo-
lation between the so-called MCHM4 and MCHM5 sce-
narios considered in Ref. [74], once only the physical Higgs
is retained in the low-energy theory. Typical observables of
interest at colliders are the EWPO, the Zbb̄ coupling, cou-

plings of the scalar dofs to gluons and photons [7,8], and the
interactions with fermions. As they have been studied for the
MLσM in Refs. [9,10], the aim of this section is to extend
those results to the AMLσM.

EWPO
Deviations to the SM predictions for the T and S param-

eters [75] (or equivalently ε1 and ε3 [76]) are expected to
be relevant. In the MLσM, the mixing between ĥ and σ̂ can
reach relatively large values, ∼ 0.1, and relevant scalar con-
tributions to T and S are indeed expected. However, these
contributions can always be compensated, in some allowed
region of the parameters space, once exotic fermion contri-
butions are included.

In the AMLσM, for the benchmark values chosen in
the previous section, the values of the scalar sector mix-
ing parameters result very small, see Fig. 3, and then the
contributions to T and S are expected to be much less rel-
evant. For smaller values of f consistent with Fig. 1, the
ĥ-σ̂ mixing slightly increases, and then larger contributions
to T and S are expected. In addition, relevant contributions
to the EWPO from the fermionic sector can also be present.
However, exactly as happens in the MLσM case, it is always
possible to evade the T and S bounds in a non negligible part
of the full (fermionic + bosonic) parameter space.

Zbb̄ coupling
The modification of the Z couplings to bb̄ is a very good

observable to test a model. The most relevant contributions
arise from the top-partner fermion, while the ones from the
heavier scalar dofs turn out to be negligible. The top-partner
induces deviations from the SM prediction of this coupling
only at the one-loop level, and the effect of these contri-
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butions is soften with respect to those to the EWPO previ-
ously discussed. This result holds for both the MLσM and
the AMLσM. As illustrated in Ref. [9], it is easy to accom-
modate the experimental measure of the Zbb̄ coupling in a
large part of the parameter space, and therefore no relevant
constraint can be deduced from this observable.

Couplings with gauge bosons and σ production at collid-
ers

As in the SM, no tree level ĥgg and ĥγ γ couplings
are present in the AMLσM. However, effective interactions
with gluons and with photons may arise at the one-loop
level. In consequence, all the three scalar mass eigenstates,
ϕ1,2,3, do couple with gluons and photons, with their interac-
tions weighted by the corresponding mixing coefficients C2

i ,
according to Eq. (4.37).

As worked out in details in Ref. [9], the Higgs coupling
with two gluons, ϕ1gg, is mainly due to the top contribution,
as the bottom one is negligible and the exotic fermion ones
tend to cancel out (due to their vector-like nature). On the
other hand, the ϕ2gg and ϕ3gg couplings are suppressed by
C2

2 and C2
3 respectively, and therefore are typically at least

10−2 smaller than ϕ1gg. Moreover, as the top quark is lighter
than ϕ2 and ϕ3, its contribution to their couplings are also
suppressed, and the dominant terms arise from the exotic
fermion sector.

The couplings to photons receive relevant contributions,
not only from loops of top quark and of exotic fermions,
but also from loops of massive gauge bosons. The latter are
the dominant ones in the case of the physical Higgs particle,
i.e. for ϕ1γ γ , while they are suppressed by C2

2 and C2
3 for

the heavier scalar dofs and the most relevant contributions to
ϕ2γ γ and ϕ3γ γ are those from the exotic fermions.

These results impact on the production mechanisms of
the heavier dofs at collider, that are gluon fusion or vector
boson fusion. From Fig. 2, the masses for ϕ2 and ϕ3 are
typically larger than the TeV scale, within the whole range
of values for f and fs shown in Fig. 1. The lowest mass values
are then potentially testable at colliders, although it strongly
depends on the couplings with gluons and the massive gauge
bosons. Ref. [9] concluded that, in the presence of only two
scalar dofs, the heaviest one would be constrained only for
masses lower than 0.6 TeV and mixing coefficient C2

2 > 0.1.
Extending this result to the three scalar dofs described in the
AMLσM and considering the results presented in Fig. 2,
the present LHC data and the future prospects (LHC run-
2 with total luminosity of 3ab−1) are not able to put any
relevant bound, or in other words the heavier scalar dofs have
production cross sections too small to lead to any signal in
the present and future run of LHC.

Impact of the exotic fermions
The exotic fermion masses partially depend on a distinct

set of parameters with respect to those entering the scalar

potential. While this is particularly true for the MLσM, where
two arbitrary mass parameters M (′)

1,5 are introduced in the
Lagrangian, in the minimal AMLσM the exotic fermion
masses are controlled by fs , through the parameters z(′)1,5

(and/or z̃(′)1,5). The largeness of fs corresponds to large masses
for these exotic fermions, consistent with the fermion par-
tial compositeness mechanism. Direct detections would be
probably very unlikely, while their effect would manifest in
deviations from the SM predictions of SM field couplings.
In Ref. [9], the exotic fermions have been integrated out and
the induced low-energy operators have been identified. The
mayor expected effects consist in decorrelations between
observables that are instead correlated in the SM, and the
appearance of anomalous couplings: these effects are very
much typical of the HEFT setup, where the EWSB is non-
linearly realised and the Higgs originates as a GB. For an
overview of these analyses see Refs. [21–23,29,32,77,78].

Besides the effects discussed above, it is worth to mention
the possibility to investigate the Higgs nature through the
physics of the longitudinal components of the SM massive
gauge bosons. As the MLσM and AMLσM deal with the
same symmetry of the SM, no additional effects are expected
with respect to the analyses carried out in Refs. [79–83].

6 The axion and ALP phenomenology

The axion couplings to SM gauge bosons and fermions have
been bounded from several observables [84–116]. Two recent
summaries can be found in Refs. [117,118]. In the following,
only the couplings with bosons will be taken into consider-
ation, as in the minimal AMLσM described here no direct
interaction is present with SM fermions.7 The axion cou-
plings strongly depend on its mass, that moreover determines
whether the axion is expected to decay or not inside the col-
lider. On the other side, for the ALP, mass and couplings are
not related.

The following constraints hold for both a QCD axion and
an ALP.

Coupling to photons
The axion coupling to photons is bounded from both astro-

physical and low-energy terrestrial data, and they depend
on the axion mass. The most recent summary on these con-
straints can be found in Refs. [117,118], while the last update
for masses below tens of meV is given in Ref. [115]: the upper

7 Indirect couplings arise from the same mechanism that generate SM
fermion masses. However, experimental constraints are present on axion
couplings with only light SM fermions, the strongest being on axion
couplings with two electrons. As in the minimal AMLσM only the
third generation fermions are considered, no relevant bound can be
deduced considering these constraints. This analysis is postponed to
further investigation [56].
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bounds can be summarised as

|gaγ γ | � 7 × 10−11 GeV−1 for ma � 10 meV

|gaγ γ | � 10−10 GeV−1 for 10 meV � ma � 10 eV

|gaγ γ | � 10−12 GeV−1 for 10 eV � ma � 0.1 GeV

|gaγ γ | � 10−3 GeV−1 for 0.1 GeV � ma � 1 TeV.

(6.1)

For masses between 10 eV and 0.1 GeV, and in particu-
lar for the so-called MeV window, the coupling gaγ γ is
constrained by (model dependent) cosmological data [107].
These bounds can be translated in terms of fa/|caγ γ | through
Eq. (3.5): taking αem = 1/137.036,

fa
|caγ γ | � 2 × 107 GeV for ma � 10 meV

fa
|caγ γ | � 107 GeV for 10 meV � ma � 10 eV

fa
|caγ γ | � 109 GeV for 10 eV � ma � 0.1 GeV

fa
|caγ γ | � 1 GeV for 0.1 GeV � ma � 1 TeV.

(6.2)

In Ref. [39] a dedicated analysis of the axion coupling to pho-
tons within the AMLσM is presented, including constraints
and prospects from current experiments.

Coupling to gluons
The axion coupling to gluons has been constrained by

axion-pion mixing effects [84,87] and mono-jet searches at
colliders [104,105,109,113]. The bounds can be summarised
as follows:

|gagg|�1.1 × 10−5 GeV−1 for ma � 60 MeV

|gagg|�10−4 GeV−1 for 60 MeV�ma �0.1 GeV

(6.3)

that can be translated in terms of fa/|cagg| as

fa
|cagg| �2×103 GeV for ma � 60 MeV

fa
|cagg| �2×102 GeV for 60 MeV�ma �0.1 GeV

(6.4)

taking αs(M2
Z ) = 0.1184.

Couplings to massive gauge bosons
Rare meson decays provide strong constraints of axion

couplings to two W gauge bosons (as already discussed, no
axion-SM fermion couplings are present at tree-level in the
minimal AMLσM). The most relevant observable for axion
masses below ∼ 0.2 GeV is K+ → π+ + a whose branch-

ing ratio has been bounded by the E787 and E949 experi-
ments [92]:

BR(K+ → π+ + a) < 7.3 × 10−11. (6.5)

For larger masses up to a few GeV’s, the B+ → K+ + a
decay provides the most stringent bound: BaBar experiment
has proven that [96]

BR(B+ → K+ + a) � 3.2 × 10−5. (6.6)

In Refs. [112,113,118], meson decays, with the axion sub-
sequently decaying into photons, have also been considered:
these observables are not relevant in the minimal AMLσM,
being the axion–photon coupling so strongly bounded that
no signals for these observables are expected in present or
future experiments.

The induced bounds on gaWW effective coupling read
[112]:

|gaWW | � 3 × 10−6 GeV−1 for ma � 0.2 GeV

|gaWW | � 10−4 GeV−1 for 0.2 GeV � ma � 5 GeV

(6.7)

that can be translated in terms of fa/|caWW | as

fa
|caWW | � 4 × 102 GeV for ma � 0.2 GeV

fa
|caWW | � 10 GeV for0.2 GeV � ma � 5 GeV.

(6.8)

Collider searches are able to put independent constraints on
gaWW as well as on couplings with other gauge bosons.
Following Ref. [113], considering LHC data with

√
scm =

13 TeV and for axion masses ma � 1 GeV, the mono-W,
pp → aW (W → μνμ), and mono-Z, pp → aZ(Z → ee),
signals put the following constraints:

|gaWW | � 5 × 10−7 GeV−1, |gaZ Z | � 3 × 10−7 GeV−1.

(6.9)

The Z boson width allows to put a conservative bound on
Z → aγ interaction:

|gaZγ | � 1.8 × 10−3 GeV−1. (6.10)

The corresponding bounds on fa/|ci | are given by:

fa
|caWW | � 2 × 103 GeV,

fa
|caZ Z | � 4 × 103 GeV,

fa
|caZγ | � 0.6 GeV. (6.11)
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The axion mass
There are two distinct contributions to the axion mass

(gravitational and/or Planck-scale sources [119–122] will not
be discussed here). The first is due to purely QCD effects
(axion mixing with neutral pions), which is estimated to
be [37,46,47]

ma ∼ 6μeV

(

1012 GeV

fa/cagg

)

, (6.12)

for values of fa typically taken to be larger than 106 GeV.
The second is due to the extra fermions that couple to the
axion, such as in the KSVZ invisible axion model [36,37]:

ma =
√
Z

1 + Z

α2
s

π2

fπ
fa
mπ ln

(

m2
ψ

mumd

)

, (6.13)

where Z � mu/md and fπ ∼ 94 MeV is the pion decay
constant and mψ is the generic mass of the exotic fermions.
This contribution is a decreasing function with fa for values
of fa > 10 MeV: considering similar values of fa and mψ ,
it follows that

ma ∼ 100 keV for fa ∼ 1 GeV

ma ∼ 0.2 keV for fa ∼ 103 GeV

ma ∼ 0.3 eV for fa ∼ 106 GeV

ma ∼ 0.004 eV for fa ∼ 108 GeV. (6.14)

Notice that, for the last two cases, the QCD mass in Eq. (6.12)
is relevant and provides the dominant contributions of 60 eV
and 0.6 eV respectively. These benchmarks are interesting
for the discussion that follows.

6.1 QCD axion or axion-like-particle?

In Sect. 4.3, three values for fs have been considered: fs =
1 TeV, fs = 103 TeV and fs = 106 TeV. Eq. (2.19) links
the axion scale fa to the VEV of the radial component of
s, and in consequence fa � fs in first approximation. The
corresponding induced axion mass belongs to the window
from tens of meV to the keV, according to Eq. (6.14). For
this range of values, the strongest constraints on fa come
from the axion coupling to two photons gaγ γ , Eqs. (6.1) and
(6.2): specifying the value of caγ γ for the minimal AMLσM
charge assignment as reported in Table 2, one gets

fs � 3.7 × 108 GeV. (6.15)

It follows that a QCD axion, consistent with all the present
data, can only be generated in the minimal AMLσM if the
scale fs , associated to the PQ breaking, is of the order of
108 GeV or larger. As discussed in Ref. [39], the result-
ing axion falls into the category of the so-called invisi-

ble axions [36,37,48,49], as such a large fs scale strongly
suppresses all the couplings with SM fermions and gauge
bosons, preventing any possible detection at colliders or at
low-energy (flavour) experiments.

The difference with respect to the traditional invisible
axion models resides partly in the axion couplings to pho-
tons and gluons, and in the EWSB sector. As underlined in
Ref. [39], adding a KSVZ axion to the MLσM narrows the
range of possible values that the ratio caγ γ /cagg may take:
the minimal AMLσM presented here provides a very sharp
prediction for this ratio,

caγ γ

cagg
= 14

3
. (6.16)

Moreover, in the minimal AMLσM with fs � 108 GeV the
low-energy theory is not exactly the SM, but the EWSB
mechanism is non-linearly realised and the Higgs parti-
cle originates as a GB. This model may be confirmed, or
excluded, by a precise measure of caγ γ /cagg and by a dedi-
cated analysis of the EW sector. In particular, this case corre-
sponds to the scenario where only the physical Higgs remains
in the low-energy spectrum, while the other two scalar dofs
are very massive. In consequence, only indirect searches on
Higgs couplings or the physics associated to the longitudinal
components of the SM gauge bosons may have the potential
to constrain the minimal AMLσM.

For much lighter values of the fs scale, instead, the astro-
physical bounds on gaγ γ coupling can be satisfied only
assuming that the axion mass and its characteristic scale fs
are not correlated. This corresponds to the ALP scenario:
differently from the QCD axion, an ALP has a mass that is
independent from its characteristic scale fs , due to additional
sources of soft shift symmetry breaking with respect to those
in Eqs. (6.12) and (6.13), and does not necessarily solve the
strong CP problem.8 As an example, a benchmark point that
passes all the previous bounds corresponds to a 1 GeV axion
with fs ∼ 200 TeV. The most sensitive observables for this
particle are its couplings with two W ’s, two Z ’s and Zγ , see
Eq. (6.11), than can be analysed in collider searches. The
other class of constraints arising from meson decays are not
relevant in this case: the K+ → π+ + a decay is kinemati-
cally forbidden for this axion mass, while the prediction for
the branching ratio of B+ → K+ + a is of � 10−13, much
below the future expected sensitivity at Belle II [123].

8 In the ALP scenario, a solution to the Strong CP problem is not guar-
anteed and therefore the condition 4 is not required. An additional sce-
nario satisfying conditions 1, 2, and 3, can be considered: in this case,
nqL = nψL = nψR = nχR = ntR ±ns = nχL ±ns (with the “+” or “−”
are associated to the presence of the z1 or z̃1 terms in the Lagrangian,
respectively), and the induced renormalisable scalar potential turns out
to be the same as in Eq. (4.1).
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By increasing the axion mass, its decay length decreases
and this may open up to another class of observables: if the
axion decays inside the detector, then it would not show up as
missing energy, but as a couple of gauge bosons, as discussed
in Refs. [112,113,118]. The distance travelled by the axion
after being produced may be casted as follows [113],

d ≈ 104

c2
i

(

MeV

ma

)4 ( fs
GeV

)2 ( |pa |
GeV

)

m, (6.17)

where ci are the couplings in Table 2 and the typical momen-
tum considered is � 100 GeV. For the selected benchmark
considered, ma ∼ 1 GeV and fs ∼ 200 TeV, the decay
length is of tens of meters for decays into two photons. This
axion can therefore evade detection at colliders, although for
a slightly larger masses this is not guaranteed.

For this value of fs , the heaviest scalar dofs, despite being
much smaller than in the previous scenario, are expected to
have so large masses and so small couplings that will be very
unlikely to detect any signal at present or even future LHC
runs. Instead, the model can be tested through deviations
from the SM predictions of the Higgs couplings or through
pure gauge boson observables.

Finally, the difference with respect to the previous sce-
nario is mainly that a massive axion is likely to give signals
at colliders, due to the present sensitivity on its couplings
with massive gauge bosons. On the other side, no signal at
all is expected in the flavour sector, as the expected future
improvements in the experimental precision are still very far
from the predicted theoretical values.

The fine-tuning problem
The presence of different scales in the scalar potential

leads to a fine-tuning problem in the model. As already men-
tioned, the parameter ξ measures the tension between the
EW scale and the SO(5) SSB scale, as shown in Eq. (4.39).
In models where axions or ALPs are dynamically originated,
a new scale fs is present and typically much larger than the
EW scale. Once the scalar field s develops a VEV, the scale
f receives a contribution proportional to

√
λsφ fs , as can be

read in Eq. (2.21). This leads to f ≈ fs � v, or λsφ � 1:
this represents two sides of the same fine-tuning problem.

In the ALP model presented here fs ∼ 200 TeV and there-
fore a value of λsφ � 10−4 would be necessary to not modify,
excessively, the scale f . In generic AMLσM, much larger
values for fs are typically necessary to pass the different
experimental bounds on the axion/ALP couplings and then a
much stronger fine-tuning on λsφ has to be invoked.9

9 In Ref. [56], an ALP model in the MLσM will be presented where
the fine-tuning problem is solved, but at the price of renouncing to one
of the assumptions listed in Sect. 2.

7 Concluding remarks

The AMLσM [39] represents a class of models that extend
the MLσM [9] by the introduction of a complex scalar sin-
glet, that allows to supplement the SO(5) and EW symme-
tries with an extra U (1)PQ.

The spectrum of the AMLσM encodes: i) the SM gauge
bosons and fermions; ii) three real scalar dofs, one of
them, the Higgs particle, being the only uneaten GB of the
SO(5)/SO(4) breaking; iii) two types of vectorial exotic
fermions respectively in the fundamental and in the singlet
representation of SO(5); iv) the PQ GB originated by the
spontaneous breaking of the U (1)PQ symmetry. The scale f
of the SO(5)/SO(4) breaking is expected to be in the TeV
region, in order to solve the Higgs hierarchy problem, while
the PQ-breaking scale, fs , is in principle independent from
f , spanning over a large range of values.

A detailed analysis of the scalar potential and its minima
has been presented for the first time. The appearance of possi-
ble SO(5) and PQ explicit breaking terms arising from 1-loop
fermionic and gauge contributions has been extensively dis-
cussed. The type and number of the additional terms required
by renormalisability depends on the PQ charges assigned to
the fields of the model.

A minimal AMLσM has been identified by introducing
few general requirements with the intent to minimize the
number of parameters in the whole Lagrangian. In partic-
ular, the parameter space of the minimal AMLσM scalar
sector is determined by 7 parameters. Two of them can be
fixed by identifying one scalar dof with the physical Higgs
particle and its VEV with the EW scale. The remaining free
parameters correspond to: the quartic couplings λ and λs
that control the linearity of the EWSB and the PQ symme-
try breaking mechanisms, respectively; the scales f and fs
related to the symmetry breaking; the mixed quartic coupling
λsφ that represents the portal between the EW and PQ sec-
tors. Simplified analytical expressions can be obtained for the
scalar sector by integrating out the highest mass dof, either
in the strongly interacting regime, λs � 1, keeping free the
scales fs and f either in the perturbative regime, λs � 1,
but assuming instead a large hierarchy between the scales,
fs � f . Interesting analytical expression for the scalar sec-
tor in the regime fs ∼ f can be obtained also in the limit
β, λsφ � 1.

The analytical and numerical analysis of the parameter
space points out that for f, fs � 1 TeV the heavier scalar
dofs are unlikely to give signals at the present and future LHC
run, while only the non-linearity of the EWSB mechanism
would lead to interesting deviations from the SM predictions
in Higgs and gauge boson sectors.

The analysis of the PQ GB phenomenology reveals two
possible scenarios: a light QCD axion or a heavy ALP. In the
first case, the axion mass is expected in the range [meV, keV]
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and the strong bounds present on the axion coupling to two
photons require that its characteristic scale fa ∼ fs must
be larger than 105 TeV, strongly suppressing all its inter-
actions. This model represents a minimal invisible axion
construction, where the EWSB mechanism is non-linearly
realised and the physical Higgs particle arises as a GB. As
can be realised from Eqs. (4.6)–(4.26), invisible axion mod-
els are, in general, strongly fine-tuned. In fact, the typical
SO(5)/SO(4) breaking scale of the effective theory obtained
integrating out the heavy degrees of freedom “naturally runs”
to the highest scale, fR ∼ fs , reintroducing the EW hierar-
chy problem, ξ � 1. Alternatively, the tuning λsφ = 0 can be
introduced: this is, however, rather unnatural as no symmetry
protects it.

In the second scenario, the ALP typically has a much larger
mass, independent from the value of its characteristic scale.
The benchmark ma = 1 GeV and fs = 200 TeV has been
considered for concreteness. Such an ALP would be free
from the strong bounds on aγ γ and it is likely to be detected
at LHC, the best sensitivity being on the aWW and aZ Z
couplings, while no signals are expected in flavour observ-
ables such as meson decays. Values of fs close to 200 TeV
introduce a mild fine-tuning on the model, compared to the
one that may be encountered in traditional axion models.
To obtain more natural ALP models, the minimality condi-
tions stated in this analysis should be, in some way, relaxed,
attempting to suppress the aWW and aZ Z couplings (see
Ref. [56] for such possibility).
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Generic PQ Transformations

The Lagrangian containing the axion couplings, in the basis
where fermionic terms are shift-symmetry preserving, can
be written as

La = 1

2
∂μa∂μa + �ψ

∂μa

2 fa
ψγ μγ 5ψ + �χ

∂μa

2 fa
χγ μγ 5χ

+�ψ ′
∂μa

2 fa
ψ ′γ μγ 5ψ ′ + �χ ′

∂μa

2 fa
χ ′γ μγ 5χ ′ +

− αs

8π

a

fa

∑
[

5
(

�ψ + �ψ ′
)+ (�χ + �χ ′

)

]

Ga
μν G̃

aμν +
− α2

8π

a

fa

∑

6
(

�ψ + �ψ ′
)

Wa
μνW̃

aμν +

− α1

8π

a

fa

∑
[

6�ψ

(

2Y 2
X +2Y 2

Q+Y 2
T5

)

+6�χY
2
T1

+

+6�ψ ′
(

2Y 2
X ′ + 2Y 2

Q′ + Y 2
B5

)

+6�χ ′Y 2
B1

]

Bμν B̃μν , (A.1)

where Yi are the Hypercharges of the components of ψ and
χ (see Eq. (2.9)) and � f ≡ n fL − n fR . The sum is meant
over the different generations: in the specific setup considered
here, it reduces to the third family only.

Moving to the gauge boson physical basis, the axion cou-
plings to the gauge field strengths are given by:

− αs

8π

a

fa

∑
[

5
(

�ψ + �ψ ′
)+ (�χ + �χ ′

)

]

Ga
μν G̃

aμν+

− αem

8π

a

fa

∑
[

6�ψ

(

1 + 2Y 2
X + 2Y 2

Q + Y 2
T5

)+ 6�χY
2
T1

+

+ 6�ψ ′
(

1 + 2Y 2
X ′ + 2Y 2

Q′ + Y 2
B5

)

+ 6�χR Y
2
B1

]

Fμν F̃
μν ,

− αem

8π

a

fa

∑

{

6�ψ

[

1

tan θ2
W

+ tan2 θW
(

2Y 2
X + 2Y 2

Q + Y 2
T5

)

]

+ 6�χ tan2 θW Y 2
T1

+
+ 6�ψ ′

[

1

tan2 θW
+ tan2 θW

(

2Y 2
X ′ + 2Y 2

Q′ + Y 2
B5

)

]

+ 6�χ ′ tan2 θW Y 2
B1

}

Zμν Z̃
μν ,

− αem

8π

a

fa

∑

{

12�ψ

[

1

tan θW
− tan θW

(

2Y 2
X + 2Y 2

Q + Y 2
T5

)

]

− 12�χ tan θW Y 2
T1

+
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+ 12�ψ ′
[

1

tan θW
− tan θW

(

2Y 2
X ′ + 2Y 2

Q′ + Y 2
B5

)

]

− 12�χ ′ tan θW Y 2
B1

}

Fμν Z̃
μν ,

− αem

8π

a

fa

12

sin2 θW

(

�ψ + �ψ ′
)

W+
μν W̃

−μν (A.2)

where θW is the Weinberg angle.
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