
HARNESS� A Next Generation Distributed

Virtual Machine

Micah Beck a� Jack J� Dongarra a�b� Graham E� Fagg a�

G� Al Geist b� Paul Gray c� James Kohl b� Mauro Migliardi c�

Keith Moore a� Terry Moore a� Philip Papadopoulous b�

Stephen L� Scott b and Vaidy Sunderam c

aDepartment of Computer Science�
University of Tennessee�

��� Ayres Hall� Knoxville� Tennessee
TN���		
������ USA

bOak Ridge National Laboratory
cEmory University

Abstract

HARNESS �Heterogeneous Adaptable Recon�gurable Networked SystemS� is an
experimental metacomputing system���� built around the services of a highly cus�
tomizable and recon�gurable distributed virtual machine �DVM�	 The successful
experience of the HARNESS design team with the Parallel Virtual Machine �PVM�
project has taught us both the features which make the DVM model so valuable to
parallel programmers and the limitations imposed by the PVM design	 HARNESS
seeks to remove some of those limitations by taking a totally di
erent approach to
creating and modifying a DVM	

Keywords� metacomputing� message�passing libraries� distributed applications� dis�
tributed virtual machines� PVM

� Introduction

Virtual machine �VM� terminology� borrowed from PVM���� refers to the fact
that the computing resources on which a system runs can be viewed as a
single large distributed memory computer� The virtual machine is a software
abstraction of a distributed computing platform consisting of a set of cooper�
ating daemon processes� Applications obtain VM services by communicating
with daemon processes through system�speci	c mechanisms encapsulated by

Preprint submitted to Elsevier Preprint �� June ����

a portable API� We de	ne a DVM to be a cooperating set of daemons that
together supply the services required to run user programs as if they were on
a distributed memory parallel computer� These daemons run on �often hetero�
geneous� distributed groups of computers connected by one or more networks�

There are three key principles that have guided the design and implementa�
tion of existing distributed virtual machine systems� such as PVM
 a simple
API� transparent heterogeneity� and dynamic system con	guration� The simple
API allows messaging� virtual machine control� task control� event noti	cation�
event handlers� and a message mailbox all to be accessed and controlled using
only about �� user�level library routines� Transparent heterogeneity makes it
easy to construct programs that interoperate across dierent machine archi�
tectures� networks� programming languages� and operating systems� Dynamics
allow the virtual machine con	guration to change and the number of tasks that
make up a parallel�distributed computation to grow and shrink under program
control� Proponents of PVM have exploited these features and learned to live
within the boundaries that the system provides� For example� PVM has always
traded o achieving peak performance for heterogeneity and ease of use�

Our next�generation environment will focus on dynamic extensibility while
supplying standard MPI���� and PVM APIs to the user� The ability to adapt
and recon	gure the features of the operating environment will enable several
signi	cant new classes of applications� The challenge is to implement a recon�
	gurable substrate that is simultaneously e�cient� dynamic� and robust� The
initial challanges addressed by the design of the HARNESS DVM are the cre�
ation and management of the constituent VM daemons and the core services
implemented by the cooperating set of daemons�

��� PVM limitations

In PVM� the initial kernel process �or PVM daemon� that is created is the
master� and all subsequent daemons are started by the master daemon using
the remote shell �rsh� protocol� All system con	guration tables are maintained
by the master� which must continue running in order for the VM to operate�
The communication space of the virtual machine is restricted to the scope of
the running set of daemons� therefore� no PVM messages can �ow outside the
VM� for example� to other VM or outside processes�

The set of services implemented by the PVM kernel is de	ned by the PVM
source code� and the user has only a limited ability to add new services or to
change the implementation of standard services� For examples of where such
�exibility is needed� consider that the availability of Myrinet interfaces ��� and
Illinois Fast Messages ���� has recently led to new models for closely coupled

�

PC clusters� Similarly� multicast protocols and better algorithms for video and
audio codecs have led to a number of projects focusing on telepresence over
distributed systems� In these instances� the underlying PVM software would
need to be changed or re�constructed for stream data� and this would not be
trivial�

We see a common theme in all popular distributed computing paradigms� in�
cluding PVM
 eachmandates a particular programming style� such as message�
passing� and builds a monolithic operating environment into which user pro�
grams must 	t� MPI��� for example� prefers an SPMD�style static process
model with no job control� This maximizes performance by minimizing dy�
namics and works very well in static environments� Programs that 	t into
the MPI system are well served by its speed and rich messaging semantics�
PVM� on the other hand� allows programs to dynamically change the num�
ber of tasks and add or subtract resources� However� programs in general pay
a performance penalty for this �exibility� Even though MPI and PVM pro�
vide very useful environments� some programs simply are not able to 	nd the
right mix of tools or are paying for unwanted functionality� Here� the mono�
lithic approach breaks down and a more �exible pluggable substrate is needed�
This idea is certainly not unique and has been successfully applied in other
areas
 the Mach operating system ���� is built on the microkernel approach�
Linux has pluggable modules to extend functionality� and Horus ���� uses a
�Lego Block� analogy to build custom network protocols� By extending and
generalizing these ideas to parallel�distributed computing� programs will be
able to customize their operating environment to achieve their own custom
performance�functionality tradeos�

��� The HARNESS approach

HARNESS de	nes kernel creation in a much more �exible way than existing
monolithic systems� viewing a VM as a set of components connected not by
shared heredity to a single master process� but by the use of a shared registry
which can be implemented in a distributed� fault tolerant manner� Any par�
ticular kernel component thus derives its identity from this robust distributed
registry�

Flexibility in service components comes from the fact that the HARNESS
daemon supplies VM services by allowing components which implement those
services to be created and installed dynamically� Thus the daemon process�
while 	xed� imposes only a minimal invocation structure on the VM�

The HARNESS distributed registry service is used to hold all VM state� When
components are added to the VM at invocation or runtime� this information

�

is added to the registry� Similarly� the components of two VMs can be merged
en mass by merging their respective registries� and some set of components
can be split from a VM by creating a new registry for them and deleting their
entries from the old one� These notions of merging and splitting are quite
general� but their practicality will be determined by the ease with which a
system can be built which is resilient to such dynamic recon	guration�

When adding a component or set of components to a VM� the services may
be of a kind that already exists within the VM or they may be entirely new�
The addition of a new component can de	ne a new service� or may replace
the implementation of a previously de	ned service by taking its place in the
registry� Such extensibility and recon	gurability allows us to consider the new
components to be a kind of plug�in� much as operating systems have con�
	gurable device drivers and Web browsers have plug�ins for displaying new
object types� The addition of a new component may even require applications
to load new libraries to make use of them� and we consider such recon	gu�
ration to be a user level component of the plug�in� HARNESS will support
a call�back feature from kernel components to the user�s HARNESS runtime
system to enable such recon	guration to be performed automatically� Thus�
a plug�in can be de	ned as a modi	cation to the HARNESS DVM which is
composed of a kernel module and�or an application library which seamlessly
replace or extend existing system functionality and which can be con	gured
through calls to other system components and changes to the registry�

� Design Objectives

The HARNESS DVM allows a distributed set of resources to be �exibly man�
aged and exploited for high performance computation� The most important
design criteria for HARNESS are

��� Flexible management of the components which make up one or more
DVMs�

��� The ability to dynamically modify and extend DVM services �recon	g�
urable via plug�ins��

��� The ability of applications �or tools� to collaborate within a DVM�
��� Management of interactions between multiple DVM users�

HARNESS diers from distributed operating systems in that it is not based
on a native kernel that controls the fundamental resources of the constituent
computers� Instead� it is built on an operating environment kernel that can
be implemented as a process running under some host operating system� The
set of user level kernels is said to form a distributed virtual machine �DVM��
borrowing the terminology of PVM�

�

The need for dynamic recon	guration of the environment is a challenging
design objective that aects the system architecture at every level� At the
lowest levels �kernel loading of executable components and an environment of
data bindings�� we choose very �exible mechanisms for the loading of system
components and for the maintenance of system state� These mechanismsmake
pluggability possible by placing as few limitations as possible on the evolution
of the system as it executes� The key features of these low level mechanisms
are

��� The use of �exible naming schemes for the dynamically changeable sets
of system elements�

��� Minimal set of core functions�
��� Few restrictions on the types of extensions permitted�

These �exible mechanisms do not de	ne a pluggable system� but merely en�
able the creation of one� The HARNESS implementation will include default
system components that together constitute a complete working system� It
will also include additional resource management and communication com�
ponents to provide �exible functionality not possible in existing systems like
PVM� The more di�cult challenge is the creation of system components that
can make use of this �exible infrastructure� The general problem of dynamic
system con	guration is a very di�cult one that we do not claim to solve� The
additional system structures that may have to be created and conventions
that must be adopted to achieve overall system recon	gurability remain to be
empirically determined by component designers�

� Architecture

The key architectural features of HARNESS are

��� The kernel is implemented as a set of core functions for loading and
running components either locally or remotely� Each component is im�
plemented as a set of calls� processes or threads�

��� A HARNESS daemon is composed of a kernel and a set of required com�
ponents� The daemon is an event�driven HARNESS application that re�
sponds to requests from a local application or a remote daemon to execute
one of its functions� The required components provide message passing�
the ability to start processes or threads� the ability to add to the system
registry� and the ability to start other kernels�

��� A HARNESS DVM is composed of a set of cooperating daemons which
together present the basic services of communication� process control�
resource management� and fault detection�

��� A robust registry service is implemented for storing data in a form acces�

�

sible to any component or application in the DVM�
��� Mechanisms are provided for the dynamic management of system com�

ponents� constituting a DVM� through operations on the registry service�

��� The HARNESS Kernel

The HARNESS kernel is designed for modularity and extensibility� The kernel
itself is a container into which components can be loaded and run� The kernel
API is minimal� implementing only a handful of operations on components

VMcontext � registerUser�arg�list�

status � load�VMcontext� component� flags�

status � unload�VMcontext� component�

status � run�VMcontext� component� arg�list�

status � stop�VMcontext� component�

msg � getinfo�VMcontext� key�

where

� VMcontext is a binding of a particular virtual machine ID and a user� This
construct allows the kernel to be able to determine authorization and scope
of the other operations� This ability becomes even more important when
multiple virtual machines �with multiple users� are merged together�

� status returns an error code if the function fails and a handle to the com�
ponent on successs�

� component is an identi	er of a component� Initial implementations use URI�s
as component names�

� getinfo returns a message associated with the registry entry tied to key� an
example query is to list components currently loaded at a particular kernel�

The most basic service provided by a DVM is an abstract communication
method among programs� tools� and virtual machine components� Depending
upon the facilities required and the programming environment to be sup�
ported in a given HARNESS con	guration� dierent communication com�
ponents might be used� By default a reliable� ordered delivery of untyped
messages to identi	able end�points will be supplied by the communication
components within the executing DVM� By rigidly de	ning inquiry and ser�
vice interfaces� the HARNESS kernel can determine if requested components
meet the requirements of other components in the protocol stack� The research

�

challenge in this regard will be to evolve a methodology for the semantic de	�
nition of the interfaces that each plug�in will provide� in a manner that permits
interchange and negotiation�

Layered on low level communication �but at a functionally equivalent level in
the application interface� are the machine con	guration and process control
components� For machine con	guration� module functionality consists primar�
ily of initialization functions and architecture reconciliation with the rest of
the DVM� Our initial HARNESS resource management component will pro�
vide a means to add and delete hosts� and to detect host failures within a
single DVM� Additional functionality will be developed to add the capability
of merging two DVMs based on direct user input� or based on a con	guration
	le that speci	es access restrictions�

Process management components will constitute the infrastructure for spawn�
ing application task units� and for naming and addressing tasks in the dynamic
DVM� Process control modules� similar to ones used in PVM� are under de�
velopment to provide functions for spawning and terminating groups of tasks
across the DVM� using a simple load�balancing algorithms for task placement�

� The HARNESS Registry Service

The key organizing construct used by kernel components is that of a robust
shared registry that maps names to values encoded in a standard format� This
registry is used for sharing information between system elements �components
and applications� and particularly for system con	guration� The registry is
implemented by a core component that must be present in at least one ker�
nel� The HARNESS registry is modeled after the PVM ��� message mailbox
facility����

Some uses of the registry in the con	guration of the HARNESS system include
using it to store

��� the list of hosts which constitute a DVM�
��� the components which must be present in order for a kernel to participate

in the current DVM �system level plug�ins��
��� the list of libraries which applications must load to participate �user level

plug�ins��
��� the list of the dynamic groups of tasks that constitute parallel applica�

tions�

In this sense� the HARNESS registry is similar to the con	guration 	les in the
Unix �etc directory� or the MicroSoft Windows registry�

�

The PVM equivalent to the registry were tables kept within the address space
of the master PVM daemon� leading to a centralized model which was not
robust to the failure of the master as shown in Figure �� In HARNESS� we
require that the registry be robust� meaning that it must be implemented
in a distributed� fault tolerant manner� Because of the scope of uses for the
registry within HARNESS� we made a design choice regarding the consistency
of replicas which speci	es that updates to the HARNESS state are seen in the
same order everywhere in the system�

The HARNESS registry is an internal tuple space implemented by a dis�
tributed set of kernel components� Tasks can use standard routines to encode
an arbitrary data item in an architecture�neutral format and then place it into
the registry with an associated name� Copies of this data item can be retrieved
by any client that knows the name� And if the name is unknown or changing
dynamically� then the registry can be queried to 	nd the list of names active
in the registry�

The four functions that make up the HARNESS registry API are

index � putinfo� name� itembuf� flag �

recvinfo� name� index� flag �

delinfo� name� index� flag �

getinfo� pattern� names��� struct info�� �

The �ag de	nes the properties of the stored data items� such as who is allowed
to delete this item� including control over multiple instances of data items� such
as if putinfo�� may overwrite an existing message instance�

While the tuple space could be used as a distributed�shared memory� similar
to the Linda��� system� the granularity of the message�box implementation is
better suited to large grained data storage�

Beyond HARNESS system con	guration� there are many potential registry
uses� including the following

��� A visualization tool spontaneously comes to life and 	nds out where and
how to connect to a large distributed simulation�

��� A scheduling tool retrieves information left by a resource monitor�
��� A new team member learns how to connect to an ongoing collaboration�
��� A debugging tool retrieves a message left by a performance monitor that

indicates which of the thousands of tasks is most likely a bottleneck�

Many of these capabilities are directly applicable to the HARNESS environ�

�

ment� and some method to have persistent messages will be a part of the
HARNESS design�

Com

Com

Com

Com

by remote
access.

Client that

Client
Registry

Registry

shares a registry

Distributed

Reg

Reg

Reg

Name Res Debug

Name Res

RM

Visualization

Sharing of registry metadata.

Fig	 �	 Distributed Registry and Client Usage	

The addition of communication contexts� message handlers� and message boxes
to the parallel virtual machine environment allows developers to take a big
leap forward in the capabilities of their distributed applications� HARNESS
is a useful tool for the development of much more dynamic� fault tolerant dis�
tributed applications� but as illustrated above� it is also a testbed for software
and features that will make up the next generation heterogeneous distributed
computing environment�

��� Merging and Splitting DVM

Important HARNESS design goals include the ability to merge two DVMs to
create a single DVM and the ability to split an existing DVM into distinct�
functional sub�environments� Understanding a DVM as being de	ned by its
registry� this amounts to judicious manipulation of the registry�

The implementation will need to address issues such as

� Can merging and splitting of the environment occur at any time� or is
explicit synchronization with the components and even applications of the
constituent machines necessary�

� What view does each resource in a merged environment hold of the envi�
ronment� Is this view symmetric amongst resources in distinct groupings�

� What restrictions are placed on utilization of resources in complementary
groupings�

�

� What are the semantics of merging and splitting� and are they uniform
across the extent of a DVM� Can merging and splitting be asymmetric�

� Once two DVMs have merged� can one or both retain its original registry�
or do both have the new merged registry� How are the registries eected
upon splitting of the environments�

� Who in the merged resource pool has the authority to split a conglomerate
DVM into sub�environments�

� How can a subsidiary DVM be created� perhaps having the identity of one
of the constituent in a merging of DVM �splitting��

Consider some of the more fundamental issues related to simply merging two
distinct environments� An immediate concern is how to provide an environ�
ment with an awareness of other environments� Next is the protocol for making
	rst contact� After handshaking� what protocols� are to be used so that indi�
vidual components �computational resources� process� and the like� may have
uninhibited communication with any or all components of the complement�

For insight on dealing with these issues� approaches taken by other systems
such as PVM� Legion����� Globus���� and IceT���� provide initial prototypes
for this merging of environments�

Issues of how messages are to be passed across environmental boundaries
notwithstanding� issues of mutual con	guration also need to be addressed�
Dynamic installation of required modules already present in the complement
environment or perhaps joint installation of additional modules may be needed
in order to achieve a given level of functionality in the combined environment�

Moreover� once the two systems are joined together in communication and
su�ciently con	gured for functionality� there is an additional and unique func�
tionality goal of HARNESS� Once two environments are merged� HARNESS
will provide seamless process creation on any host in the combined resource
pool� Here� the issue is how a process which is part of one virtual environ�
ment is to be ferried across distributed environmental boundaries for execu�
tion on a possibly foriegn operating system or architecture� There have been
some preliminary results at implementing this cross�environment functionality
in IceT� IceT� in an early prototype� utilizes aspects of portability found in
the Java programming language to port both Java�based and C�Fortran pro�
cesses across system boundaries� However� the applicability of IceT�s process
location� process creation� and security implementations relative to the more
broadly�de	ned goals and objectives of HARNESS have yet to be determined�

Merging of environments will be prefaced by the need to gain information
on where and how to handshake with outside environments� For this task�
a standard �white pages� server which would store such information would
be provided� An environment wishing to attach to another would query the

��

white pages server for information on listening ports� communication proto�
cols� module con	guration� and security restrictions� With this information�
the environments may initiate contact� share state information� and update
the white pages registry to re�ect the new state of the system� The state infor�
mation which is passed between environments includes information about the
components of the computational resources enrolled in the respective environ�
ments� Information about the computational components is in tableau form�
with provides information for each resource� such as �operating system�� �ar�
chitecture�� �modules loaded�� �modules available�� �host name�� �listening
ports�� and �accessibility levels��

Splitting a DVM into distinct� yet functional� sub environments is much more
of a challenge� As such� splitting functionality will be incorporated into the
distributed environment vis�a�vis a �splitting plug�in�� This splitting plug�in
de	nes which of the entities will be allowed to secede from the environment�
which entities will have the authority to sub�divide resources� what to do
with messages intended for resources recently split apart� etc� For example�
one might con	gure the splitting module to hold messages sent to split�o
resources in a message box which would be passed along once the sub�DVMs
rejoin �re�merge�� or to disallow secession of groups involving local networked
resources and nonlocal resources�

� Con�guring HARNESS� Communication

As distributed computing has developed� it has become clear that no one
monolithic system can handle e�ciently all the desired communication styles�
Extensibility of a core system is essential to achieve critical performance and
gives a practical method to manage multiple communication styles� Because
messaging is extremely important to system performance and evaluation� the
lowest layers must be able to be swapped out for dierent scenarios� For exam�
ple� send�receive message passing is quite dierent from one�sided communica�
tion semantics� Low�level performance can be signi	cantly aected if support
for both is automatically installed when not needed by an application� The
ine�ciency comes from the fact that incoming messages need to be checked
among dierent communication methods to determine the correct handling
sequence� If a particular message style �e�g� a put� is never used� then elimi�
nating this as a checked�for style can make a reduction in overhead� On MPPs�
for example� is it unnecessary to fragment messages or provide reliable trans�
mission because it is usually guaranteed by the message system� On the other
hand� communicating over a WAN requires fragmentation� timeouts�retries�
and connection failure monitoring� A user should be able to write a distributed
application and have the runtime system select which method�s� are needed
for the particular run� The key to success will be to design plug�in commu�

��

nication stacks �similar to those found in Horus ����� that can be traversed
quickly and e�ciently� To get optimumperformance� it may require the user to
use strongly�typed messaging like MPI� However� runtime con	gurability can
still give signi	cant advantages without requiring users to dramatically change
code� For example� one may desire to encrypt certain communication links only
if the virtual machine spans several domains� Runtime con	gurability will al�
low an encrypted link to be installed without user code modi	cation� The next
generation DVM will have to strike a better balance among performance �or
the ability to optimize performance�� extensibility� and interoperability� Due
to the large body of research on communication methods� this lowest level of
pluggability is probably the most straightforward goal to achieve�

� Name Resolution

While HARNESS focuses on the management of distributed resources within
a DVM� in today�s computing environment it is also necessary to deal with
network resources outside of the DVM� PVM did not support any access to
outside resources� leaving each application process to implement such access
independently� HARNESS is more general than PVM� allowing for the com�
munication with and assimilation of resources outside the DVM�

The goal of the HARNESS system is to provide a scalable and robust name
resolution service such as the resolution scheme implemented by the Resource
Catalog ����� The Resource Catalog is a simple� highly available� and very
scalable distributed resolution service�

By resolution service� we mean a service for mapping a resource name onto a
set of attributes or characteristics of a resource� which are sometimes called
metadata� A resolution service diers from a directory service such as X����
����� in that a resolution service maps a name onto its associated attributes�
while a directory service is intended to allow searching of the attributes them�
selves to identify matching resources� Common resolution services include the
Domain Name System �DNS����� used in the Internet and the Network In�
formation Services �NIS� used on UNIX systems� In contrast to these� the
Resource Catalog was designed to be simple� �exible� e�cient� reliable� fault�
tolerant� secure� and very scalable�

The Resource Catalog is distributed in that the set of resource characteristics
are maintained by an arbitrary number of servers on an arbitrary number of
network hosts� Each server contains the resource metadata for each of the
resources in a well�de	ned subset of the resource name space� The metadata
for any resource may be replicated across several servers to improve scalability
and availability� Updates to a resource�s metadata may be made to any of the

��

servers that maintains that resource�s metadata� using a discipline that ensures
that any client will see all of the updates from any one source in the same
order� Multiple parties may update the metadata for a single resource �given
the proper permission and security credentials�� Each party�s updates to a
particualar resource characteristic are kept separate and returned together in
the same response� no party�s updates may override another�s�

The resource names used by the Resource Catalog are in the form of Uniform
Resource Identi	ers �URIs�� URIs are a slight generalization of Uniform Re�
source Locators �URLs�� and the set of URLs is a subset of URIs� URLs are
generally understood to refer to a particular location of a resource �e�g� a spe�
ci	c 	le on a speci	c host�� less can be assumed about a URI
 it is merely the
name of a resource� Rather than parsing a URL to determine a particular pro�
tocol� host� port� and 	lename� an application submits a URI to the Resource
Catalog to determine information about that resource� Various kinds of infor�
mation may be returned� for example
 the current location�s� of the resource�
the owner of the resource� the permissions associated with the resource� the
public key to be used when securely communicating with the resource� the
date that the resource was last modi	ed�

The metadata for a resource consists of a set of assertions� Each assertion is
a characteristic consisting primarily of a name� which is a NUL�terminated
string� and a value� which is an opaque string of octets� A type 	eld is also
provided to aid applications that might wish to display or otherwise interpret
the data� Each assertion also contains the identify of the party that made
the particular assertion about the resource� the date and time at which the
assertion was made� the serial number of that assertion �i�e� the number of
times that that party had changed the value associated with the assertion��
Finally� each assertion contains a time�to�live 	eld and an expiration date that
can be used to determine the amount of time that metadata is cached�

Harness uses the Resource Catalog to store information about DVMs �includ�
ing the set of hosts in the DVM� and the means by which other DVMs� or
external processes� can communicate with the DVM�� individual hosts �in�
cluding host characteristics� public keys� and other information used during
negotiation of network connections with that host�� mobile processes �includ�
ing their current location and contact information�� and plug�ins �their current
locations� host requirements� and digital signatures��

	 Results

The HARNESS system is based on the ability to perform three operations�

��

��� Plug�in new features or functionality into the kernel of a DVM
��� Have two independently started applications discover each other and co�

operate
��� Merge two DVM together

We have demostrated each of these capabilities in separate DVM prototypes
and our eort in HARNESS is to incorporate all these capabilities into a single
compact system�

Version ��� of PVM has three speci	c plug�in interfaces�one for task schedul�
ing� one for task creation� and one for adding hosts to a virtual machine� These
plug�ins allow these three capabilities to be dynamically replaced with user
written modules during runtime� Several groups both industrial and academic
use these plug�in interfaces to intergrate their own software into the virtual
machine environment supplied by PVM� The goal of HARNESS is to now
generalize this result and create an environment where nearly every feature
in a DVM can be replaced with a user supplied version and where new fea�
tures previously not available in the DVM can be added� We have a working
prototpe of this generalized plug�in interface running at Emory University�

We have spent the last two years working on a remote computational steering
environment called Cumulvs ����� In Cumulvs any number of independent
�viewer� applications can spontaneously come to life� discover if there are any
distributed applications running on the DVM that are Cumulvs enabled� and
attach to their applications� Once attached these �viewers� can extract data
for viewing� or change physical parameters inside the running application�
These capabilities� which fall under the second class of operations needed in
HARNESS� are made possible by the addition of message�box features in PVM
���� It is these same features we plan to leverage in the HARNESS project�
One major change needed for HARNESS is to make this registry both robust�
and able to guarantee a consistent order of updates across the distributed
copies�

IceT ���� developed to be the computation framework for the Collaborative
Computing Framework project at Emory University has demonstrated the ca�
pability to merge two DVM� We plan to leverage both the experience and
software technology developed for IceT in the HARNESS system� The IceT
system serves as a prototype and proof of concept that multiple DVM can
be merged together in temporary cooperative environments� The next chal�
lenge for HARNESS development in this area is how to merge the multiple
distributed registries� Another challenge in HARNESS is how to integrate this
capability� which brings multiple users and administrative domains� with the
other plug�in features in HARNESS�

��

 Related Work

Metacomputing frameworks have been popular for nearly a decade� when the
advent of high end workstations and ubiquitous networking in the late ���s
enabled high performance concurrent computing in networked environments�
PVM was one of the earliest systems to formulate the metacomputing con�
cept in concrete virtual machine and programming�environment terms� and
explore heterogeneous network computing� PVM is based on the notion of a
dynamic� user�speci	ed host pool� over which software emulates a generalized
concurrent computing resource� Dynamic process management coupled with
strongly typed heterogeneous message passing in PVM provides an eective
environment for distributed memory parallel programs� PVM however� is in�
�exible in many respects that can be constraining to the next generation of
metacomputing and collaborative applications�

Legion���� is a metacomputing system that began as an extension of the Men�
tat project� Legion can accommodate a heterogeneous mix of geographically
distributed high�performance machines and workstations� Legion is an ob�
ject oriented system where the focus is on providing transparent access to
an enterprise�wide distributed computing framework� As such� it does not at�
tempt to cater to changing needs and it is relatively static in the types of
computing models it supports as well as in implementation�

The Globe project���� is related to Legion in that it deals with distributed
objects that are used to build large�scale distributed systems� Local object
representatives hide details like replication and mobility� Local objects have
a standard internal structure that makes it easier to reuse code components�
One of Globes major features is a hierarchical distributed location service that
adapts dynamically to dierent usage patterns�

The model of the Millennium system ��� being developed by Microsoft Re�
search is similar to that of Legion�s global virtual machine� Logically there is
only one global Millennium system composed of distributed objects� However�
at any given instance it may be partitioned into many pieces� Partitions may
be caused by disconnected or weakly�connected operations� This could be con�
sidered similar to the HARNESS concept of dynamic joining and splitting of
DVMs�

Globus��� is a metacomputing infrastructure which is built upon the Nexus���
communication framework� The Globus system is designed around the con�
cept of a toolkit that consists of the pre�de	ned modules pertaining to com�
munication� resource allocation� data� etc� Globus even aspires to eventually
incorporate Legion as an optional module� This modularity of Globus remains
at the metacomputing system level in the sense that modules aect the global

��

composition of the metacomputing substrate�

SNIPE��� is to metacomputing systems as Unix is to operating systems� It is a
distributed systems testbed that provides much of the functionality of systems
like PVM without the rigid de	nition of a virtual machine� It provides process
control like PVM based on daemons and resource managers� Communication
based on both socket and message based abstractions are built on a layered
substrate similiar to that of Nexus� Naming� registry and resource information
storage is built using a modi	ed version of RCDS that provides global naming
based on URIs� Many of the lessons learnt building SNIPE will go towards the
naming� registry� resource discovery and multi�path communications sections
of Harness research�

The above projects envision a much wider�scale view of distributed resources
and programming paradigms than HARNESS� HARNESS is not being pro�
posed as a world�wide infrastructure� but more in the spirit of PVM� it is a
small heterogeneous distributed computing environment that groups of col�
laborating scientists can use to get their science done� HARNESS is also seen
as a research tool for exploring pluggability and dynamic adaptability within
DVMs�

� Conclusions

The account we have given of HARNESS both motivates the need for a next
generation DVM model and presents primitive mechanisms that address key
requirements of this new model� HARNESS� modular kernel architecture sup�
ports a level of �exibility in the set of system components that is not available
under monolithic operating environments such as PVM and MPI� HARNESS�
system registry allows distributed control of the system con	guration in order
to enable the dynamic addition of new components and libraries� as well as the
merging and splitting of distinct virtual machines� These �exible mechanisms
do not fully de	ne how dynamic recon	guration will proceed� but merely make
such a recon	gurable DVM possible� The more di�cult challenge is the cre�
ation of system components that can make use of this �exible infrastructure�
and that is the enterprise in which we are now engaged�

References

��� M	 Baker� G	 Fox� and H	 Yau	 Cluster Computing Review� Northeast
Parallel Architectures Center� Syracuse University� November ��� New York�
http���www	npar	syr	edu�techreports�index	html	

��

��� N	 J	 Boden at al	� �MYRINET� A gigabit per second local area network��
IEEE�Micro� Vol	 ��� No	�� February ��� pp	����	

��� William J	 Bolosky� Richard P	 Draves� Robert P	 Fitzgerald� Christopher W	
Fraser� Michael B	 Jones� Todd B	 Knoblock� and Rick Rashid	 �Operating
System Directions for the Next Millennium�	 Position paper of MicroSoft
Research� January ��	

��� Nicholas Carriero� David Gelernter� and Jerrold Leichter	 Distributed Data
Structures in Linda� Thirteenth ACM Symposium on Principles of Programming
Languages Conf�� St	 Petersburg� Florida� Jan	 ���� pp	 �������	

��� Graham E	 Fagg� Keith Moore� Jack J	 Dongarra and Al Geist� Scalable
Networked Information Processing Environment SNIPE�� Proceeding of
SuperComputing �� San Jose� CA	� November ��	

��� I	 Foster� C	 Kesselman and S	 Tuecke	 �The Nexus approach to integrating
Multithreading and Communication�� Parallel and Distributed Computing� Vol	
��� pp ������ ��	

��� I	 Foster and C	 Kesselman	 Globus� A metacomputing infrastructure toolkit	
International Journal of Supercomputer Applications� Vol	 ������ summer ��	

��� A	 Geist� A	 Beguelin� J	 Dongarra� W	 Liang� B	 Manchek� and V	 Sunderam�
PVM� Parallel Virtual machine � A User�s Guide and Tutorial for Network
Parallel Computing� MIT Press� ��	

�� G	 A	 Geist II� J	 A	 Kohl� R	 Manchek� P	 M	 Papadopoulos� �New Features of
PVM �	�� � �		� EuroPVM User�s Group Meeting� Lyon� France� Pub	 Hermes�
pp	 ��� September ��	

���� P	 Gray and V	 Sunderam� IceT� Distributed Computing and Java�
Concurrency� Practice and Experience� ed	 Geo
rey C	 Fox� Vol	 ����� pp
���������� Nov	 ��	

���� A	 S	 Grimshaw and W	 A	 Wulf	 The Legion vision of a worldwide virtual
computer	 CACM� Vol	 ������ pp����� January ��	

���� S	 Heker� J	 Reynolds� and C	 Weider	 Technical overview of directory services
using the x	��� protocol	 RFC ���	� FY��� IETF� ����� �	

���� Philip Homburg� Maarten van Steen� and Andrew S	 Tanenbaum	 �An
Architecture for a Wide Area Distributed System	� In Proceedings of the
Seventh ACM SIGOPS European Workshop� Connemara� Ireland� September
��	

���� J	 Kohl� P	 Papadopoulos� and A	 Geist	 �CUMULVS� Collaborative
Infrastructure for Developing Distributed Simulations	�� In Proc� Eigth SIAM
Conf� on Par� Proc� and Sci� Comp�� Minneapolis� MN� March ��	

���� Message Passing Interface Forum� MPI� A message�passing interface standard�
International Journal of Supercomputer Applications� ������� ��	

��

���� Message Passing Interface Forum� MPI�� Extensions to the Message�Passing
Interface� University of Tennessee� Knoxvile� Tennessee� ��	

���� P	 Mockapetris� �Domain Names � Concepts and Facilities	�� RFC ����� Internet
Network Information Center� ���	

���� K	 Moore� S	 Browne� J	 Cox and J	 Gettler� The Resource Cataloging
and Distribution System� Technical report� Computer Science Department�
University of Tennessee� December ��	

��� Pakin� Karamcheti and Chien	 �Fast Messages �FM�� E�cient� Portable
Communication for Workstation Clusters and Massively�Parallel Processors	�
IEEE Concurrency� Vol	 ����� ��� pp	 �����	

���� Richard Rashid� Robert Baron� Alessandro Forin� David Golub� Michael Jones�
Daniel Julin� Douglas Orr and Richard Sanzi	 �Mach� A Foundation for Open
Systems�� Proceedings of the Second Workshop on Workstation Operating
SystemsWWOS��� September ��	

���� Robbert van Renesse� Kenneth P	 Birman and Silvano Ma
eis� Horus� a �exible
Group Communication System� Communications of the ACM� April ��	

���� L	 Smarr and C	E	 Catlett	Metacomputing� Communications of the ACM� Vol	
������ ��� pp	 �����	

��

