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Abstract. We present an automata-theoretic framework for the model
checking of true concurrency properties. These are specified in a fix-
point logic, corresponding to history-preserving bisimilarity, capable of
describing events in computations and their dependencies. The models
of the logic are event structures or any formalism which can be given a
causal semantics, like Petri nets. Given a formula and an event struc-
ture satisfying suitable regularity conditions we show how to construct
a parity tree automaton whose language is non-empty if and only if the
event structure satisfies the formula. The automaton, due to the nature
of event structure models, is usually infinite. We discuss how it can be
quotiented to an equivalent finite automaton, where emptiness can be
checked effectively. In order to show the applicability of the approach,
we discuss how it instantiates to finite safe Petri nets. As a proof of
concept we provide a model checking tool implementing the technique.

1 Introduction

Behavioural logics with the corresponding verification techniques are a corner-
stone of automated verification. For concurrent and distributed systems, so called
true concurrent models can be an appropriate choice, since they describe not only
the possible steps in the evolution of the system but also their causal dependen-
cies. A widely used foundational model in this class is given by Winskel’s event
structures [1]. They describe the behaviour of a system in terms of events in
computations and two dependency relations: a partial order modelling causality
and an additional relation modelling conflict. A survey on the use of such causal
models can be found in [2]. Recently they have been used in the study of con-
currency in weak memory models [3,4], for process mining and differencing [5],
in the study of atomicity [6] and of information flow [7] properties.

Operational models can be abstracted by considering true concurrent equiv-
alences that range from hereditary history preserving bisimilarity to the coarser
pomset and step equivalences (see, e.g., [8]) and behavioural logics expressing
causal properties (see, e.g., [9–14] for a necessarily partial list and [15–19] for
some related verification techniques).

Event-based logics have been recently introduced [20,21], capable of uni-
formly characterising the equivalences in the true concurrent spectrum. Their for-
mulae include variables which are bound to events in computations and describe
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their dependencies. While the relation between operational models, behavioural
equivalences and event-based true concurrent logics is well understood, the cor-
responding model checking problem has received limited attention.

We focus on the logic referred to as Lhp in [20], corresponding to a classical
equivalence in the spectrum, i.e., history preserving (hp-)bisimilarity [22–24].

Decidability of model checking is not obvious since event structure models are
infinite even for finite state systems and the possibility of expressing properties
that depends on the past often leads to undecidability [25]. In a recent paper [26]
we proved the decidability of the problem for the alternation free fragment of
the logic Lhp over a class of event structures satisfying a suitable regularity
condition [27] referred to as strong regularity. The proof relies on a tableau-
based model checking procedure. Despite the infiniteness of the model, a suitable
stop condition can be identified, ensuring that a successful finite tableau can be
generated if and only if the formula is satisfied by the model.

Besides the limitation to the alternation free fragment of Lhp, a shortcoming
of the approach is that a direct implementation of the procedure can be extremely
inefficient. Roughly speaking, the problem is that in the search of a successful
tableau, branches which are, in some sense, equivalent are explored several times.

In this paper we devise an automata-theoretic technique, in the style of [28],
for model checking Lhp that works for the full logic, without constraints on the
alternation depth. Besides providing an alternative approach for model-checking
Lhp, amenable of a more efficient implementation, this generalises the decidabil-
ity result of [26] to the full logic Lhp. Given a formula in Lhp and a strongly
regular event structure, the procedure generates a parity tree automaton. Sat-
isfiability is reduced to emptiness in the sense that the event structure satisfies
the formula if and only if the automaton accepts a non-empty language.

The result is not directly usable for practical purposes since the automaton
is infinite for any non-trivial event structure. However an equivalence on states
can be defined such that the quotiented automaton accepts the same language
as the original one. Whenever such equivalence is of finite index the quotiented
automaton is finite, so that satisfaction of the formula can be checked effectively
on the quotient. We show that for all strongly regular event structures a canonical
equivalence always exists that is of finite index.

The procedure is developed abstractly on event structures. A concrete algo-
rithm on some formalism requires the effectiveness of the chosen equivalence on
states. We develop a concrete instantiation of the algorithm on finite safe Petri
nets. It is implemented in a tool, wishfully called True concurrency workbench
(TCWB), written in Haskell. Roughly, the search of an accepting run in the
automaton can be seen as an optimisation of the procedure for building a suc-
cessful tableau in [26] where the graph structure underlying the automaton helps
in the reuse of the information discovered. Some tests reveal that the TCWB is
way more efficient than the direct implementation of the tableau-based proce-
dure (which could not manage most of the examples in the TCWB repository).

The rest of the paper is structured as follows. In Sect. 2 we review event
structures, strong regularity and the logic Lhp of interest in the paper. In Sect. 3
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we introduce (infinite state) parity tree automata and we show how the model
checking problem for Lhp on strongly regular pes can be reduced to the non-
emptiness of the language of such automata. In Sect. 4 we discuss the instanti-
ation of the approach to Petri nets. Finally, in Sect. 5 we discuss some related
work and outline directions of future research. Due to space limitations, proofs
are only sketched.

2 Event Structures and True Concurrent Logic

We introduce prime event structures [1] and the subclass of strongly regular
event structures on which our model checking approach will be developed. Then
we present the logic for true concurrency of interest in the paper.

2.1 Prime Event Structures and Regularity

Throughout the paper E is a fixed countable set of events, Λ a finite set of labels
ranged over by a, b, c . . . and λ : E → Λ a labelling function.

Definition 1 (prime event structure). A (Λ-labelled) prime event structure
(pes) is a tuple E = 〈E,≤,#〉, where E ⊆ E is the set of events and ≤, #
are binary relations on E, called causality and conflict respectively, such that:
1. ≤ is a partial order and �e� = {e′ ∈ E | e′ ≤ e} is finite for all e ∈ E;
2. # is irreflexive, symmetric and inherited along ≤, i.e., for all e, e′, e′′ ∈ E, if
e#e′ ≤ e′′ then e#e′′.

The pes E1 = 〈E1,≤1,#1〉, E2 = 〈E2,≤2,#2〉 are isomorphic, written E1 ∼
E2, when there is a bijection ι : E1 → E2 such that for all e1, e

′
1 ∈ E1, it holds

e1 ≤1 e′
1 iff ι(e1) ≤2 ι(e′

1) and e1 #1 e′
1 iff ι(e1) #2 ι(e′

1) and λ(e1) = λ(ι(e1)).

In the following, we will assume that the components of a pes E are named
as in the definition above, possibly with subscripts. The concept of concurrent
computation for pess is captured by the notion of configuration.

Definition 2 (configuration). A configuration of a pes E is a finite set of
events C ⊆ E consistent (i.e., ¬(e#e′) for all e, e′ ∈ C) and causally closed
(i.e., �e� ⊆ C for all e ∈ C). We denote by C(E) the set of configurations of E.

The evolution of a pes can be represented by a transition system over con-
figurations, with the empty configuration as initial state.

Definition 3 (transition system). Let E be a pes and let C ∈ C(E). Given
e ∈ E � C such that C ∪ {e} ∈ C(E), and X,Y ⊆ C with X ⊆ �e�, Y ∩ �e� = ∅
we write C

X,Y < e−−−−−→λ(e) C ∪ {e}. The set of enabled events at a configuration C

is defined as en(C) = {e ∈ E | C
e−→ C ′}. The pes is called k-bounded for some

k ∈ N (or simply bounded) if |en(C)| ≤ k for all C ∈ C(E).
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Fig. 1. (a) A pes EN associated with the net N in (b) via its unfolding (c).

Transitions are labelled by the executed event e. In addition, they report its label
λ(e), a subset of causes X and a set of events Y ⊆ C concurrent with e. When
X or Y are empty they are normally often, i.e., e.g., we write C

X < e−−−→λ(e) C ′

for C
∅ < e−−−→λ(e) C ′ and C

e−→λ(e) C ′ for C
∅,∅ < e−−−−→λ(e) C ′.

The pes modelling a non-trivial system is normally infinite. We will work on
a subclass identified by finitarity requirements on the possible substructures.

Definition 4 (residual). Let E be a pes. For a configuration C ∈ C(E), the
residual of E after C, is defined as E [C] = {e | e ∈ E �C ∧ C ∪{e} consistent}.

The residual of E can be seen as a pes, endowed with the restriction of causality
and conflict of E . Intuitively, it represents the pes that remains to be executed
after the computation expressed by C. Given C ∈ C(E) and X ⊆ C, we denote
by E [C] ∪ X the pes obtained from E [C] by adding the events in X with the
causal dependencies they had in the original pes E .

Definition 5 (strong regularity). A pes E is called strongly regular when
it is bounded and for each k ∈ N the set {E [C] ∪ {e1, . . . , ek} | C ∈ C(E) ∧
e1, . . . , ek ∈ C} is finite up to isomorphism of pess.

Strong regularity [26] is obtained from the notion of regularity in [27], by
replacing residuals with residuals extended with a bounded number of events
from the past. Intuitively, this is important since we are interested in history
dependent properties. We will later show in Sect. 4 that the pess associated
with finite safe Petri nets, i.e., the regular trace pess [27], are strongly regular.

A simple pes is depicted in Fig. 1a. Graphically, curly lines represent imme-
diate conflicts and the causal partial order proceeds upwards along the straight
lines. Events are denoted by their labels, possibly with superscripts. For instance,
in EN , the events a0 and b0, labelled by a and b, respectively, are in conflict.
Event c0 causes the events ai and it is concurrent with bi for all i ∈ N. It is
an infinite pes associated with the Petri net N in Fig. 1b in a way that will
be discussed in Sect. 4.1, hence it is strongly regular by Corollary 1. It has
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five (equivalence classes of) residuals extended with an event from the past
EN [{b0}]∪{b0}, EN [{c0, b0}]∪{b0}, EN [{c0, a0}]∪{c0}, EN [{c0, a0}]∪{a0}, and
EN [{c0, b0, a1}] ∪ {b0}.

2.2 True Concurrent Logic

The logic of interest for this paper, originally defined in [20], is a Hennessy-
Milner style logic that allows one to specify the dependencies (causality and
concurrency) between events in computation.

Logic formulae include event variables, from a fixed denumerable set Var ,
denoted by x, y, . . .. Tuples of variables like x1, . . . , xn will be denoted by a corre-
sponding boldface letter x and, abusing the notation, tuples will be often used as
sets. The logic includes diamond and box modalities. The formula 〈|x,y < a z|〉ϕ
holds in a configuration when an a-labelled event e is enabled which causally
depends on the events bound to x and is concurrent with those in y. Event e is
executed and then the formula ϕ must hold, with e bound to variable z. Dually,
[[x,y < a z]]ϕ is satisfied when all a-labelled events causally dependent on x and
concurrent with y bring to a configuration where ϕ holds.

For dealing with fixpoint operators we fix a denumerable set X a of abstract
propositions, ranged over by X, Y , . . . . Each abstract proposition X has an arity
ar(X) and it represents a formula with ar(X) (unnamed) free event variables.
Then, for x such that |x| = ar(X), we write X(x) to indicate the abstract
proposition X whose free event variables are named x.

Definition 6 (syntax). The syntax of Lhp over the sets of event variables Var,
abstract propositions X a and labels Λ is defined as follows:

ϕ ::= X(x) | T | ϕ ∧ ϕ | 〈|x,y < a z|〉ϕ | νX(x).ϕ
| F | ϕ ∨ ϕ | [[x,y < a z]]ϕ | μX(x).ϕ

For a formula ϕ we denote by fv(ϕ) its free event variables, defined in the
obvious way. Just note that the modalities act as binders for the variable rep-
resenting the event executed, hence fv(〈|x,y < a z|〉ϕ) = fv([[x,y < a z]]ϕ) =
(fv(ϕ) � {z}) ∪ x ∪ y. For formulae νX(x).ϕ and μX(x).ϕ we require that
fv(ϕ) = x. The free propositions in ϕ not bound by μ or ν, are denoted by
fp(ϕ). When both fv(ϕ) and fp(ϕ) are empty we say that ϕ is closed. When x
or y are empty are omitted, e.g., we write 〈|a z|〉ϕ for 〈|∅, ∅ < a z|〉ϕ.

For example, the formula ϕ1 = 〈|cx|〉(〈|x < a y|〉T ∧ 〈|x < b z|〉T) requires
that, after the execution of a c-labelled event, one can choose between a causally
dependent a-labelled event and a concurrent b-labelled event. It is satisfied by
EN in Fig. 1a. Instead ϕ2 = 〈|cx|〉(〈|x < a y|〉T ∧ 〈|x < b z|〉T) requiring both
events to be concurrent would be false. Moving to infinite computations, consider
ϕ3 = [[bx]]νZ(x).〈|c z|〉〈|z < b y|〉T∧ [[x < b y]]Z(y), expressing that all non-empty
causal chains of b-labelled events reach a state where it is possible to execute two
concurrent events labelled c and b, respectively. Then ϕ3 holds in EN . Another
formula satisfied by EN is ϕ4 = 〈|cx|〉〈|x < b y|〉νX(x, y).〈|y, x < b z|〉X(x, z)
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requiring the existence of an infinite causal chain of b-labelled events, concurrent
with a c-labelled event.

The logic Lhp is interpreted over pess. The satisfaction of a formula is defined
with respect to a configuration C and a (total) function η : Var → E, called
an environment, that binds free variables in ϕ to events in C. Namely, if EnvE
denotes the set of environments, the semantics of a formula will be a set of pairs
in C(E)×EnvE . The semantics of Lhp also depends on a proposition environment
π : X → 2C(E)×EnvE which provides an interpretation for propositions. In order to
ensure that the semantics of a formula only depends on the events associated with
its free variables and is independent on the naming of the variables, it is required
that if (C, η) ∈ π(X(x)) and η′(y) = η(x) pointwise, then (C, η′) ∈ π(X(y)).
We denote by PEnvE the set of proposition environments, ranged over by π.

We can now give the semantics of logic Lhp. Given an event environment η
and an event e we write η[x �→ e] for the updated environment which maps x
to e. Similarly, for a proposition environment π and S ⊆ C(E) × EnvE , we write
π[Z(x) �→ S] for the corresponding update.

Definition 7 (semantics). Let E be a pes. The denotation of a formula ϕ
in Lhp is given by the function {|·|}E : Lhp → PEnvE → 2C(E)×EnvE defined
inductively as follows, where we write {|ϕ|}E

π instead of {|ϕ|}E(π):

{|T|}E
π = C(E) × EnvE {|F|}E

π = ∅ {|Z(y)|}E
π = π(Z(y))

{|ϕ1 ∧ ϕ2|}E
π = {|ϕ1|}E

π ∩ {|ϕ2|}E
π {|ϕ1 ∨ ϕ2|}E

π = {|ϕ1|}E
π ∪ {|ϕ2|}E

π

{|〈|x,y < a z|〉 ϕ|}E
π = {(C, η) | ∃e. C

η(x),η(y) < e−−−−−−−−→a C′ ∧ (C′, η[z �→ e]) ∈ {|ϕ|}E
π}

{|[[x,y < a z]] ϕ|}E
π = {(C, η) | ∀e. C

η(x),η(y) < e−−−−−−−−→a C′ ⇒ (C′, η[z �→ e]) ∈ {|ϕ|}E
π}

{|νZ(x).ϕ|}E
π = gfp(fϕ,Z(x),π) {|μZ(x).ϕ|}E

π = lfp(fϕ,Z(x),π)

where fϕ,Z(x),π : 2C(E)×EnvE → 2C(E)×EnvE is defined by fϕ,Z(x),π(S) =
{|ϕ|}E

π[Z(x) �→S] and gfp(fϕ,Z(x),π) (resp. lfp(fϕ,Z(x),π)) denotes the correspond-
ing greatest (resp. least) fixpoint. We say that a pes E satisfies a formula ϕ and
write E |= ϕ if (∅, η) ∈ {|ϕ|}E

π for all environments η and π.

The semantics of boolean operators is standard. The formula 〈|x,y < a z|〉ϕ
holds in (C, η) when configuration C enables an a-labelled event e that causally
depends on (at least) the events bound to the variables in x and concurrent with
(at least) those bound to the variables in y and, once executed, it produces a new
configuration C ′ = C ∪ {e} which, paired with the environment η′ = η[z �→ e],
satisfies the formula ϕ. Dually, [[x,y < a z]]ϕ holds when all a-labelled events
executable from C, caused by x and concurrent with y bring to a configuration
where ϕ is satisfied.

The fixpoints corresponding to the formulae νZ(x).ϕ and μZ(x).ϕ are guar-
anteed to exist by Knaster-Tarski theorem, since the set 2C(E)×EnvE ordered by
subset inclusion is a complete lattice and the functions fϕ,Z(x),π are monotonic.
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3 Automata-Based Model Checker

We introduce nondeterministic parity tree automata and we show how the model
checking problem for Lhp on strongly regular pess can be reduced to the non-
emptiness of the language of such automata. The automaton naturally generated
from a pes and a formula has an infinite number of states. We discuss how the
automaton can be quotiented to a finite one accepting the same language and
thus potentially useful for model checking purposes.

3.1 Infinite Parity Tree Automata

Automata on infinite trees revealed to be a powerful tool to various problems in
the setting of branching temporal logics. Here we focus on nondeterministic par-
ity tree automata [29], with some (slightly) non-standard features. We work on
k-trees (rather than on binary trees), a choice that will simplify the presentation,
and we allow for possibly infinite state automata.

When automata are used for model checking purposes it is standard to
restrict to unlabelled trees. A k-bounded branching tree or k-tree, for short, is a
subset T ⊆ [1, k]�, such that

1. T is prefix closed, i.e., if wv ∈ T then w ∈ T
2. w1 ∈ T for all w ∈ T
3. for all i ∈ [2, k] if wi ∈ T then w(i − 1) ∈ T .

Elements of T are the nodes of the tree. The empty string ε corresponds to
the root. A string of the form wi corresponds to the i-th child of w. Hence by
(2) each branch is infinite and by (3) the presence of the i-th child implies the
presence of the j-th children for j ≤ i.

Definition 8 (nondeterministic parity automaton). A k-bounded nonde-
terministic parity tree automaton (NPA) is a tuple A = 〈Q,−→, q0,F〉 where Q

is a set of states, −→⊆ Q ×
k⋃

i=1

Qk is the transition relation, q0 ∈ Q is the initial

state, and F = (F0, . . . , Fh) is the acceptance condition, where F0, . . . , Fh ⊆ Q
are mutually disjoint subsets of states.

Transitions are written as q −→ (q1, . . . , qm) instead of (q, (q1, . . . , qm)) ∈−→.
Given a k-tree T , a run of A on T is a labelling of T over the states r : T → Q

consistent with the transition relation, i.e., such that r(ε) = q0 and for all u ∈ T ,
with m children, there is a transition r(u) −→ (r(u1), . . . , r(um)) in A. A path in
the run r is an infinite sequence of states p = (q0, q1, . . .) labelling a complete
path from the root in the tree. It is called accepting if there exists an even
number l ∈ [0, h] such that the set {j | qj ∈ Fl} is infinite and the set
{j | qj ∈

⋃
l<i≤h Fi} is finite. The run r is accepting if all paths are accepting.
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Definition 9 (language of an NPA). Let A be an NPA. The language of A,
denoted by L(A), consists of the trees T which admit an accepting run.

Observe that for a k-bounded NPA, the language L(A) is a set of k-trees.
The possibility of having an infinite number of states and the associated

acceptance condition are somehow non-standard. However, it is easy to see that
whenever an NPA is finite, the acceptance condition coincides with the standard
one requiring a single state with maximal even priority to occur infinitely often.

Since NPAs are nondeterministic, different runs (possibly infinitely many)
can exist for the same input tree. Still, the non-emptiness problem, also for our
k-ary variant, is decidable when the number of states is finite (and solvable by
a corresponding parity game [30]).

3.2 Infinite NPAs for Model Checking

We show how, given a pes and a closed formula in Lhp, we can build an NPA in
a way that, for strongly regular pess, the satisfaction of ϕ in E reduces to the
non-emptiness of the automaton language. The construction is inspired by that
in [28] for the mu-calculus.

The acceptance condition for the automaton will refer to the fixpoint alterna-
tion in the formulae of Lhp. We adapt a definition from [28]. A fixpoint formula
αX(y).ϕ′, for α ∈ {ν, μ}, is called an α-formula. Hereafter α ranges over {ν, μ}.
Given an α-formula ϕ = αX(y).ϕ′, we say that a subformula ψ of ϕ is a direct
active subformula, written ψ �d ϕ, if the abstract proposition X appears free in
ψ. The transitive closure of �d is a partial order and when ψ �∗

d ϕ we say that
ψ is an active subformula of ϕ. We denote by sf (ϕ) the set of subformulae of a
formula ϕ and by sfα(ϕ) the set of active α-subformulae.

The alternation depth of a formula ϕ in Lhp, written ad(ϕ), is defined, for
a ν-formula ϕ, as ad(ϕ) = max{1 + ad(ψ) | ψ ∈ sfμ(ϕ)} and dually, for a
μ-formula ϕ, as ad(ϕ) = max{1 + ad(ψ) | ψ ∈ sfν(ϕ)}. For any other formula ϕ,
ad(ϕ) = max{ad(ψ) | ψ ∈ sf (ϕ) \ {ϕ}}. It is intended that max ∅ = 0. E.g., by
the first clause above, the alternation depth of νX(x). ϕ is 0 in absence of active
μ-subformulae.

Hereafter we assume that in every formula different bound propositions have
different names, so that we can refer to the fixpoint subformula quantifying an
abstract proposition. This requirement can always be fulfilled by alpha-renaming.

Hereafter, if X and X ′ are abstract propositions quantified in α-subformulae
αX(x). ϕ and α′X ′(x′). ϕ′, we will write ad(X) for ad(αX(x). ϕ) and X �d X ′

for αX(x). ϕ �d α′X ′(x′). ϕ′. Moreover, given a pes E , for a pair (C, η) ∈
C(E) × EnvE and variables x, y, z, we define (x,y < az)-successors of (C, η), as

Succx,y<az(C, η) = {(C ′, η[z �→ e]) | C
η(x),η(y)< e−−−−−−−−→a C ′}.

We can now illustrate the construction of the NPA for a formula and a pes.

Definition 10 (NPA for a formula). Let E be a bounded pes and let ϕ ∈ Lhp

be a closed formula. The NPA for E and ϕ is AE,ϕ = 〈Q,−→, q0,F〉 defined
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as follows. The set of states Q ⊆ C(E) × EnvE × sf (ϕ) is Q = {(C, η, ψ) |
η(fv(ψ)) ⊆ C}. The initial state q0 = (∅, η, ϕ), for some chosen η ∈ EnvE . The
transition relation is defined, for any state q = (C, η, ψ) ∈ Q, by:

– if ψ = T or ψ = F, then q −→ (q);
– if ψ = ψ1 ∧ ψ2, then q −→ (q1, q2) where qi = (C, η, ψi), i ∈ {1, 2};
– if ψ = ψ1 ∨ ψ2, then q −→ (q1) and q −→ (q2) where qi = (C, η, ψi), i ∈ {1, 2};
– if ψ = [[x,y < a z]]ψ′ and Succx,y<az(C, η) = {(C1, η1), . . . , (Cn, ηn)} �= ∅

then q −→ (q1, . . . , qn) where qi = (Ci, ηi, ψ
′) for i ∈ [1, n], otherwise q −→ (q);

– if ψ = 〈|x,y < a z|〉ψ′ and Succx,y<az(C, η) = {(C1, η1), . . . , (Cn, ηn)} �= ∅
then q −→ (qi) where qi = (Ci, ηi, ψ

′) for i ∈ [1, n], otherwise q −→ (q);
– if ψ = αX(x).ψ′ then q −→ (q′) where q′ = (C, η,X(x));
– if ψ = X(y) and ψ′ ∈ sf (ϕ) is the unique subformula such that ψ′ =

αX(x).ψ′′ then q −→ (q′) where q′ = (C, η[x �→ η(y)], ψ′′).

The acceptance condition is F = (F0, . . . , Fh) where h = ad(ϕ) + 1 and the
Fi are as follows. Consider A0, . . . , Ah ⊆ sf (ϕ) such that for i ∈ [0, h], if i is
even (odd) then Ai contains exactly all propositions quantified in ν-subformulae
(μ-subformulae) with alternation depth i or i − 1. Then F0 = (C(E) × EnvE ×
(A0 ∪ {T})) ∪ B where B = {(C, η, [[x,y < a z]]ψ) | Succx,y<az(C, η) = ∅} is
the set of all subformulae of ϕ in a context where they are trivially true, and
Fi = C(E) × EnvE × Ai, for i ∈ [1, h].

States of AE,ϕ are triples (C, η, ϕ) consisting of a configuration C, an envi-
ronment η and a subformula ψ of the original formula ϕ. The intuition is that a
transition reduces the satisfaction of a formula in a state to that of subformulae
in possibly updated states. It can just decompose the formula, as it happens
for ∧ or ∨, check the satisfaction of a modal operator, thus changing the state
consequently, or unfold a fixpoint.

The automaton AE,ϕ is bounded but normally infinite (whenever the pes E
is infinite and the formula ϕ includes some non-trivial fixpoint).

We next show that for a strongly regular pes the satisfaction of the formula
ϕ on the pes E reduces to the non-emptiness of the language of AE,ϕ.

Theorem 1 (model checking via non-emptiness). Let E be a strongly reg-
ular pes and let ϕ̌ be a closed formula in Lhp. Then L(AE,ϕ̌) �= ∅ iff E |= ϕ̌.

We next provide an outline of the proof. A basic ingredient is an equivalence
that can be defined on the NPA. As a first step we introduce a generalised notion
of residual in which the relation with some selected events in the past is kept.

Definition 11 (pointed residual). Given a pes E and a set X, a X-pointed
configuration is a pair 〈C, ζ〉 where C ∈ C(E) and ζ : X → C is a function. We
say that the X-pointed configurations 〈C, ζ〉, 〈C ′, ζ ′〉 have isomorphic pointed
residuals, written E [〈C, ζ〉] ≈ E [〈C ′, ζ ′〉] if there is an isomorphism of pess ι :
E [C] → E [C ′] such that for all x ∈ X, e ∈ E [C] we have ζ(x) ≤ e iff ζ ′(x) ≤ ι(e).
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Then two states are deemed equivalent if they involve the same subformula
(up to renaming of the event variables) and the configurations, pointed by the
free variables in the formulae, have isomorphic residuals. This resembles the
notion of contextualised equivalence used on tableau judgments in [26].

Definition 12 (future equivalence). Let E be a pes, ϕ be a formula and
let qi = (Ci, ηi, ψi), i ∈ {1, 2} be two states of the NPA AE,ϕ. We say that q1
and q2 are future equivalent, written q1 ≈f q2, if there exists a formula ψ and
substitutions σi : fv(ψ) → fv(ψi) such that ψσi = ψi, for i ∈ {1, 2}, and the
fv(ψ)-pointed configurations 〈Ci, ηi ◦ σi〉 have isomorphic pointed residuals.

It can be shown that, given qi = (Ci, ηi, ψi), i ∈ {1, 2} as above, for all
proposition environments π (satisfying a technical property of saturation) we
have that (C1, η1) ∈ {|ψ1|}E

π if and only if (C2, η2) ∈ {|ψ2|}E
π. Additionally, using

strong regularity, one can prove that the semantics of fixpoint formulae is prop-
erly captured by finite approximants and that equivalence ≈f is of finite index.
These are fundamental building bricks in the proof of Theorem 1 which, roughly,
proceeds as follows.

Assume that the language L(AE,ϕ) �= ∅. Then there is an accepting run r over
some k-tree T . Since ϕ is finite, in each infinite path there are infinitely many
states qih = (Cih , ηih , ψih) where ψih is the same subformula, up to renaming.
Since ≈f is of finite index, infinitely many such states are equivalent. Then
one deduces that, for some h, the subformula ψih is satisfied in (Cih , ηih). For
fixpoint subformulae, this requires to show that, since the run is accepting, the
subformula of maximal alternation depth that repeats infinitely often is a ν-
formula and use the fact that, as mentioned before, its semantics can be finitely
approximated. Then, by a form of backward soundness of the transitions, we get
that all the nodes, including the root, contain formulae which are satisfied.

For the converse implication, assume that E |= ϕ. Starting from the initial
state q0 = (∅, η, ϕ) where the formula is satisfied, and using the automaton
transitions, we can build a k-tree T and a run where for each state (C ′, η′, ψ) the
subformula ψ is satisfied in (C ′, η′) and such run can be proved to be accepting.

3.3 Quotienting the Automaton

In order to have an effective procedure for checking the satisfaction of a formula
we need to build a suitable quotient of the NPA, with respect to an equivalence
which preserves emptiness. A simple but important observation is that it is
sufficient to require that the equivalence is a bisimulation in the following sense.
An analogous notion is studied in [31] in the setting of nondeterministic tree
automata over finite trees.

Definition 13 (bisimulation). Given an NPA A, a symmetric relation R ⊆
Q × Q over the set of states is a bisimulation if for all (q, q′) ∈ R

1. for all i ∈ [0, h], q ∈ Fi ⇐⇒ q′ ∈ Fi;
2. if q −→ (q1, . . . , qm) then q′ −→ (q′

1, . . . , q
′
m) with (qi, q

′
i) ∈ R for i ∈ [1,m].
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Given an NPA A and an equivalence ≡ on the set of states which is a
bisimulation, we define the quotient as A/≡ = 〈Q/≡,−→/≡, [q0]≡,F/≡〉 where
[q]≡−→/≡([q1]≡, . . . , [qm]≡) if q −→ (q1, . . . , qm) and F/≡ = (F0/≡, . . . , Fh/≡). An
NPA and its quotient accept exactly the same language.

Theorem 2 (language preservation). Let A be an NPA and let ≡ be an
equivalence on the set of states which is a bisimulation. Then L(A/≡) = L(A).

When ≡ is of finite index, the quotient AE,ϕ/≡ is finite and, exploiting
Theorems 1 and 2, we can verify whether E |= ϕ by checking the emptiness
of the language accepted by AE,ϕ/≡. Clearly a concrete algorithm will not first
generate the infinite state NPA and then take the quotient, but it rather per-
forms the quotient on the fly: whenever a new state would be equivalent to one
already generated, the transition loops back to the existing state.

Whenever E is strongly regular, the future equivalence on states (see
Definition 12) provides a bisimulation equivalence of finite index over AE,ϕ.

Lemma 1 (≈f is a bisimulation). Let E be a strongly regular pes and let
ϕ be a closed formula in Lhp. Then the future equivalence ≈f on AE,ϕ is a
bisimulation and it is of finite index.

An obstacle towards the use of the quotiented NPA for model checking pur-
poses is the fact that the future equivalence could be hard to compute (or even
undecidable). In order to make the construction effective we need a decidable
bisimulation equivalence on the NPA and the effectiveness of the set of successors
of a state. This is further discussed in the next section.

4 Model Checking Petri Nets

We show how the model checking approach outlined before can be instantiated
on finite safe Petri nets, a classical model of concurrency and distribution [32],
by identifying a suitable effective bisimulation equivalence on the NPA.

4.1 Petri Nets and Their Event Structure Semantics

A Petri net is a tuple N = (P, T, F,M0) where P , T are disjoint sets of places
and transitions, respectively, F : (P ×T )∪ (T ×P ) → {0, 1} is the flow function,
and M0 is the initial marking, i.e., the initial state of the net. We assume that
the set of transitions is a subset of a fixed set T with a labelling λN : T → Λ.

A marking of N is a function M : P → N, indicating for each place the
number of tokens in the place. A transition t ∈ T is enabled at a marking M
if M(p) ≥ F (p, t) for all p ∈ P . In this case it can be fired leading to a new
marking M ′ defined by M ′(p) = M(p) + F (t, p) − F (p, t) for all places p ∈ P .
This is written M [t〉M ′. We denote by R(N ) the set of markings reachable in N
via a sequence of firings starting from the initial marking. We say that a marking
M is coverable if there exists M ′ ∈ R(N ) such that M ≤ M ′, pointwise. A net
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N is safe if for every reachable marking M ∈ R(N ) and all p ∈ P we have
M(p) ≤ 1. Hereafter we will consider only safe nets. Hence markings will be
often confused with the corresponding subset of places {p | M(p) = 1} ⊆ P . For
x ∈ P ∪ T the pre-set and post-set are defined •x = {y ∈ P ∪ T | F (y, x) = 1}
and x• = {y ∈ P ∪ T | F (x, y) = 1} respectively.

An example of Petri net can be found in Fig. 1b. Graphically places and tran-
sitions are drawn as circles and rectangles, respectively, while the flow function is
rendered by means of directed arcs connecting places and transitions. Markings
are represented by inserting tokens (black dots) in the corresponding places.

The concurrent behaviour of a Petri net can be represented by its unfolding
U(N ), an acyclic net constructed inductively starting from the initial marking
of N and then adding, at each step, an occurrence of each enabled transition.

Definition 14 (unfolding). Let N = (P, T, F,m0) be a safe net. Define the
net U (0) = (P (0), T (0), F (0)) as T (0) = ∅, P (0) = {(p,⊥) | p ∈ m0} and F (0) = ∅,
where ⊥ is an element not belonging to P , T or F . The unfolding is the least
net U(N ) = (P (ω), T (ω), F (ω)) containing U (0) and such that

– if t ∈ T , the set of places X ⊆ P (ω) is coverable and π1(X) = •t, then
e = (t,X) ∈ T (ω);

– for any e = (t,X) ∈ T (ω), the set Z = {(p, e) | p ∈ π1(e)•} ⊆ P (ω) where
π1(u, v) = u; moreover •e = X and e• = Z.

Places and transitions in the unfolding represent tokens and firing of transi-
tions, respectively, of the original net. The projection π1 over the first component
maps places and transitions of the unfolding to the corresponding items of the
original net N . The initial marking is implicitly identified as the set of minimal
places. For historical reasons transitions and places in the unfolding are also
called events and conditions, respectively.

One can define causality ≤N over the unfolding as the transitive closure of
the flow relation. Conflict is the relation e#e′ if •e ∩ •e′ �= ∅, inherited along
causality. The events T (ω) of the unfolding of a finite safe net, endowed with
causality and conflict, form a pes, denoted E(N ). The transitions of a configura-
tion C ∈ C(E(N )) can be fired in any order compatible with causality, producing
a marking C◦ = (P (0) ∪

⋃
t∈C t•) \ (

⋃
t∈C

•t) in U(N ); in turn, this corresponds
to a reachable marking of N given by M(C) = π1(C◦). As an example, the
unfolding U(N ) of the running example net N and the corresponding pes can
be found in Figs. 1c and a.

4.2 Automata Model Checking for Petri Nets

The pes associated with a safe Petri net is known to be regular [27]. We next
prove that it is also strongly regular and thus we can apply the theory developed
so far for model checking Lhp over safe Petri nets.

Let N = 〈S, T, F,M0〉 be a safe Petri net. A basic observation is that the
residual of the pes E(N ) with respect to a configuration C ∈ C(E(N )) is uniquely
determined by the marking produced by C. This correspondence can be extended
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to pointed configurations by considering markings which additionally record, for
the events of interest in the past, the places in the marking which are caused by
such events. This motivates the definition below.

Definition 15 (pointed marking). Let N = 〈S, T, F,M0〉 be a safe Petri net.
Given a set X, a X-pointed marking is a pair 〈M, r〉 with r : X → 2M .

A X-pointed configuration 〈C, ζ〉 induces an X-pointed marking M(〈C, ζ〉) =
〈M(C), r〉 where r(x) = {π1(b) | b ∈ C◦ ∧ ζ(x) < b}. Pointed configurations
producing the same pointed marking have isomorphic pointed residuals.

Proposition 1 (pointed markings vs residuals). Let N = 〈S, T, F,M0〉 be a
safe Petri net. Given a set X and two X-pointed configurations 〈C1, ζ1〉, 〈C2, ζ2〉
in U(N ), if M(〈C1, ζ1〉) = M(〈C2, ζ2〉) then E(N )[〈C1, ζ1〉] ≈ E(N )[〈C2, ζ2〉].

By the previous result the pes associated with a finite safe Petri net is
strongly regular. Indeed, the number of residuals of X-pointed configurations,
up to isomorphism, by Proposition 1, is smaller than the number of X-pointed
markings, which is clearly finite since the net is safe.

Corollary 1 (strong regularity). Let N be finite safe Petri net. Then the
corresponding pes E(N ) is strongly regular.

In order to instantiate the model checking framework to finite safe Petri
nets, the idea is to take an equivalence over the infinite NPA by abstracting the
(pointed) configurations associated with its states to pointed markings.

Definition 16 (pointed-marking equivalence on NPA). Let N be a finite
safe Petri net and let ϕ be a closed formula in Lhp. Two states q1, q2 in the NPA
AE(N ),ϕ are pointed-marking equivalent, written q1 ≈m q2, if qi = 〈Ci, ηi, ψ〉,
i ∈ {1, 2}, for some ψ ∈ sf (ϕ) and M(〈C1, η1|fv(ψ)〉) = M(〈C2, η2|fv(ψ)〉).

Using Proposition 1 we can immediately prove that ≈m refines ≈f . Moreover
we can show that ≈m is a bisimulation in the sense of Definition 13.

Proposition 2 (marking equivalence is a bisimulation). Let N be a finite
safe Petri net and let ϕ be a closed formula in Lhp. The equivalence ≈m on the
automaton AE(N ),ϕ is a bisimulation and it is of finite index.

Relying on Propositions 1 and 2 we provide an explicit construction of the
quotient automaton AE(N ),ϕ/≈m

. We introduce a convenient notation for tran-
sitions between pointed markings. Given the variables x, y, a set X such that
x∪y ⊆ X and an X-pointed marking 〈M, r〉, we write 〈M, r〉 x,y < t−−−−→a,z 〈M ′, r′〉
if M [t〉M ′, λN (t) = a, for all x ∈ x we have r(x) ∩ •t �= ∅ and for all y ∈ y it
holds r(y)∩ •t = ∅ and r′ is defined by r′(z) = t• and r′(w) = (r(w)∩M ′)∪{s |
r(w) ∩ •t �= ∅ ∧ s ∈ t•}, for w �= z. In words, from the pointed marking 〈M, r〉
transition t is fired and “pointed” by variable z. Transition t is required to con-
sume tokens caused by x and not to consume tokens caused by y, in order to be
itself caused by x and independent from y. After the firing, variables which were
causes of some p ∈ •t become causes of the places in t• and, clearly, z causes t•.
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Construction 1 (quotient NPA). Let N be a finite safe Petri net and let
ϕ ∈ Lhp be a closed formula. The quotient NPA AE(N ),ϕ/≈m

is defined as follows.
The set of states Q = {(M, r, ψ) | M ∈ R(N ) ∧ r : fv(ψ) → 2M ∧ ψ ∈ sf (ϕ)}.
The initial state q0 = (M0, ∅, ϕ). The transition relation is defined, for any state
q = (M, r, ψ) ∈ Q, by:

– if ψ = T or ψ = F, then q −→ (q)
– if ψ = ψ1 ∧ ψ2, then q −→ (q1, q2) where qi = (M, r, ψi), i ∈ {1, 2}
– if ψ = ψ1 ∨ ψ2, then q −→ (q1) and q −→ (q2) where qi = (M, r, ψi), i ∈ {1, 2}
– if ψ = [[x,y < a z]]ψ′, let S = {(M ′, r′

|fv(ψ′)) | 〈M, r〉 x,y < t−−−−→a,z 〈M ′, r′〉};
if S = {(M1, r1), . . . , (Mn, rn)} �= ∅ then q −→ (q1, . . . , qn) where qi =
(Mi, ri, ψ

′) for i ∈ [1, n], otherwise q −→ (q);
– if ψ = 〈|x,y < a z|〉ψ′, let S = {(M ′, r′

|fv(ψ′)) | 〈M, r〉 x,y < t−−−−→a,z 〈M ′, r′〉}; if
S = {(M1, r1), . . . , (Mn, rn)} �= ∅ then q −→ (qi) where qi = (Mi, ri, ψ

′) for
i ∈ [1, n], otherwise q −→ (q);

– if ψ = αX(x).ψ′ then q −→ (q′) where q′ = (M, r,X(x));
– if ψ = X(y) and ψ′ ∈ sf (ϕ) is the subformula such that ψ′ = αX(x).ψ′′ then

q −→ (q′) where q′ = (M, r[x �→ r(y)], ψ′′).

The acceptance condition is as in Definition 10.

4.3 A Prototype Tool

The algorithm for model checking Petri nets outlined before is implemented
in the prototype tool TCWB (True Concurrency Workbench) [33], written in
Haskell. The tool inputs a safe Petri net N and a closed formula ϕ of Lhp

and outputs the truth value of the formula on the initial marking of N . The
algorithm builds the quotient NPA AE(N ),ϕ/≈m

“on demand”, i.e., the states
of the automaton are generated when they are explored in the search of an
accepting run. A path is recognised as successful when it includes a loop where
a �∗

d-maximal subformula is T, a [[ ]]-subformula or a ν-subformula. In this way
only the fragment of AE(N ),ϕ/≈m

relevant to decide the satisfaction of ϕ is built.
Given a net N = (P, T, F,M0) and a formula ϕ, the number of states in the

quotient automaton AE(N ),ϕ/≈m
can be bounded as follows. Recall that a state

consists of a triple (M, r, ψ) where ψ ∈ sf (ϕ), M is a reachable marking and r :
fv(ψ) → 2M is a function. This leads to an upper bound O(|sf (ϕ)|·|R(N )|·2|P |·v),
where v = max{|fv(ψ)| : ψ ∈ sf (ϕ)} is the largest number of event variables
appearing free in a subformula of ϕ. In turn, since |R(N )| ≤ 2|P |, this is bounded
by O(|sf (ϕ)|·2|P |·(v+1)). The size of the automaton is thus exponential in the size
of the net and linear in the size of the formula. Moving from the interleaving
fragment of the logic (where v = 0) to formulae capable of expressing true
concurrent properties thus causes an exponential blow up. However, note that
the worst case scenario requires all transitions to be related by causality and
concurrency to all places in any possible way, something that should be quite
unlikely in practice. Indeed, despite the fact that the tool is very preliminary
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and more tweaks and optimisations could improve its efficiency, for the practical
tests we performed the execution time seems to be typically well below than the
theoretical worst case upper bound.

5 Conclusions

We introduced an automata-theoretic framework for the model checking of the
logic for true concurrency Lhp, representing the logical counterpart of a classical
true concurrent equivalence, i.e., history preserving bisimilarity. The approach is
developed abstractly for strongly regular pess, that include regular trace pess.
A concrete model-checking procedure requires the identification of an effective
bisimulation equivalence for the construction of the quotient automaton. We
showed how this can be done for finite safe Petri nets. The technique is imple-
mented in a proof-of-concept tool.

We proved that the class of regular trace pess is included in that of strongly
regular pess which in turn is included in the class of regular pess. The precise
relation of strongly regular pess with the other two classes is still unclear and
interesting in view of [34] that recently showed that regular trace pess are strictly
included in regular pess, disproving Thiagarajan’s conjecture.

Several other papers deal with model checking for logics on event structures.
In [35] a technique is proposed for model checking a CTL-style logic with modal-
ities for immediate causality and conflict on a subclass of pess. The logic is quite
different from ours as formulae are satisfied by single events, the idea being that
an event, with its causes, represents the local state of a component. The pro-
cedure involves the construction of a finite representation of the pes associated
with a program which has some conceptual relation with our quotienting phase.
In [19] the author shows that first order logic and Monadic Trace Logic (MTL),
a restricted form of monadic second order (MSO) logic are decidable on regular
trace event structures. The possibility of directly observing conflicts in MTL and
thus of distinguishing behaviourally equivalent pess (e.g., the pess consisting of
a single or two conflicting copies of an event), and the presence in Lhp of propo-
sitions which are non-monadic with respect to event variables, make these logics
not immediate to compare. Still, a deeper investigation is definitively worth to
pursue, especially in view of the fact that, in the propositional case, the mu-
calculus corresponds to the bisimulation invariant fragment of MSO logic [36].

The work summarised in [18] develops a game theoretic approach for model-
checking a concurrent logic over partial order models. It has been observed in [20]
that such logic is incomparable to Lhp. Preliminary investigations shows that our
model-checking framework could be adapted to such a logic and, more generally,
to a logic joining the expressive power of the two. Moreover, further explor-
ing the potentialities of a game theoretic approach in our setting represents an
interesting venue of further research.

Compared to our previous work [26], we extended the range of the technique
to the full logic Lhp, without limitations concerning the alternation depth of
formulae. Relaxing the restriction to strongly regular pess, instead, appears to
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be quite problematic unless one is willing to deal with transfinite runs which,
however, would be of very limited practical interest.

The tool is still very preliminary. As suggested by its (wishful) name (inspired
by the classical Edinburgh Concurrency Workbench [37]) we would like to bring
the TCWB to a more mature stage, working on optimisations and adding an
interface that gives access to a richer set of commands.

Acknowledgements. We are grateful to Perdita Stevens for insightful hints and
pointers to the literature and to the anonymous reviewers for their comments.
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