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Abstract: One of the ultimate goals of hydrological studies is to assess whether or not the dynamics
of the variables of interest are changing. For this purpose, specific statistics are usually adopted: e.g.,
overall indices, averages, variances, correlations, root-mean-square differences, monthly/annual
averages, seasonal patterns, maximum and minimum values, quantiles, trends, etc. In this work,
a distributional multivariate approach to the problem is outlined, also accounting for the fact that
the variables of interest are often dependent. Here, the Copula Theory, the Failure Probabilities,
and suitable non-parametric statistical Change-Point tests are used in order to provide an assessment
of the hazard. A hydrological case study is utilized to illustrate the issue and the methodology
(viz., assessment of a dam spillway), considering the bivariate dynamics of annual maximum flood
peak and volume observed at the Ceppo Morelli dam (located in the Piedmont region, Northern Italy)
over a 50-year period. In particular, several problems—often present in hydrological analyses—are
debated: namely, (i) the uncertainties due to the presence of heavy tailed random variables,
and (ii) the hydrological meaning/interpretation of the results of statistical tests. Furthermore,
the suitability of the procedures proposed to fulfill the goals of the study (viz., detecting and
interpreting non-stationarity) is discussed. Overall, the main recommendation is that statistical
(multivariate) investigations may represent a necessary step, though they may not be sufficient to
assess hydrological (environmental) hazards.

Keywords: copula; hazard assessment; distributional change-point; climate change

1. Introduction

In the current hydrological practice, water engineering works, including dams, levees, detention
basins, and sewers, are designed under the hypothesis of stationarity of the random variables at play.
This assumption entails the time invariance of the probability distribution of the variables (strong
stationarity), which implies that the family of distribution and its parameters are fixed and constant,
or the time invariance of the statistical moments (weak stationarity)—see [1,2].

In hydrological literature, the stationarity assumption has mainly been investigated under a
univariate framework [3]. For instance, this is the case of streamflow, traditionally considered as the
design variable. In some cases, stationarity can be considered as a valuable working assumption,
and as a valid approximation of the reality [4,5]. In turn, possible departures from stationarity are
judged to slightly affect the results [3].

Water 2018, 10, 751; doi:10.3390/w10060751 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0003-4953-8955
https://orcid.org/0000-0002-4899-1080
http://dx.doi.org/10.3390/w10060751
http://www.mdpi.com/journal/water
http://www.mdpi.com/2073-4441/10/6/751?type=check_update&version=2


Water 2018, 10, 751 2 of 15

However, in addition to possible environmental factors, in [6], it is claimed that many human
activities, like urbanization, deforestation, change of agricultural practice, anthropogenic emissions,
and river engineering constructions, may contribute to introduce significant changes in the components
of the hydrological cycle, including streamflow. In particular, it is argued that these activities might
have compromised the assumption of stationarity in hydrology.

Should the stationarity assumption not be valid, then the probability distribution of the variables
at play would be time-varying, with a possible presence of trends or abrupt shifts, entailing changes in
hazard evaluation and assessment. In such a case, a revision of the design criteria may be necessary,
in order to avoid underestimation or overestimation of design variables, with a consequent inadequacy
of the designed works on the one hand, or an increase of costs of the structure on the other hand [7,8].
Thus, testing the stationarity may represent a fundamental step.

Several techniques are used to test stationarity in hydrologic time series: e.g., trend analysis,
spectral analysis, multi-resolution methods, etc.—see [3] for a review. In this work, we outline a further
possible approach of distributional nature, involving the multivariate probability distribution of the
variables at play, by using statistical procedures recently introduced in literature—see the discussion
after Equation (1) below: indeed, according to [9], the full distributional (probabilistic) features of
hydrologic time series are rarely explored.

Furthermore, we focus the attention on the possible consequences of violating the stationarity
assumptions from a hazard assessment perspective. Specifically, Change-Point identification and
hazard management are carried out by exploiting the Theory of Copulas, and the notion of Failure
Probability, respectively. Thanks to the separability of the dependence structure and the marginal
distributions (via Sklar’s Theorem—see Equation (1) later), the copula approach may simplify the
assessment of the impact of potential violations of the stationarity assumption on the joint hazard,
as well as on the marginal profiles. As an illustration, maximum annual flood peak and volume are
used as the variables of interest for the assessment of a dam spillway, and related problems typical of
hydrological analyses are discussed (e.g., how heavy tailed variables may affect the analyses, and the
interpretation of the statistical tests).

2. Materials

The hydrological data investigated in the following are collected at the Ceppo Morelli dam
(Northern Italy), and are the same ones considered in [10–13], to which the reader is referred. Maximum
annual flood peaks Q and volumes V are identified and selected for 49 years, from 1937 to 1994 (some
years are missing—see Figure 1). In turn, the case study used to illustrate the general-purpose
methodology outlined in this paper—which can be adopted for investigating any environmental
hazard—concerns flood hazards involving the traditional variables peak and volume.
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Figure 1. Time series of the available Q and V data—see text. The vertical dashed line indicates the
possible Change-Point year (1971).
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Interestingly enough, this database represents an exceptional case study as compared to traditional
hydrological ones present in literature: in fact, in hydrological practice, usually the maximum annual
flood peak is first selected as a design variable, and then the volume associated with the same flood
event is considered, even if it does not represent the annual maximum volume—see, e.g., [14,15].
Instead, in our case, 48 out of 49 of the occurrence dates of the Qs and the Vs are the same (viz., they
took place during the same flood episode). In turn, on the one hand, the use of a Block Maxima
approach for the Extreme Value analysis is well justified (here, the blocks are the years), and, on the
other hand, the “hydrological consistency” of the database is preserved.

3. Methods

A convenient way to deal with multivariate phenomena, where the variables at play are generally
non-independent, is to use Copulas [16–18]. Since the publication of [19], a number of papers in
hydrology, as well as in other environmental areas, have shown the theoretical and practical advantages
of using a copula approach, and support its usage. For an overview concerning different ways of
quantifying the hazard of compound events, see, among others, [20–24]. In particular, concerning
selection/estimation/test statistical procedures for copulas, the interested reader may refer to [25–30],
and references therein. Note that valuable software for working with copulas, developed for the
R package [31], is freely available online [27,32]. The results presented later are obtained using the
methodologies outlined in the cited works, to which the reader is referred. In particular, in the
following, the same notation used in [11–13] is adopted.

Let X = (X1, . . . , Xd) be the random vector describing the phenomenon under investigation,
with univariate marginals Fis, i.e., Fi(xi) = P(Xi ≤ xi). According to Sklar’s Theorem [33], the joint
distribution function F of X can be written as

F(x) = P(X1 ≤ x1, . . . , Xd ≤ xd) = C(F1(x1), . . . , Fd(xd)), (1)

where C is the Copula (viz., the Dependence Structure) of the variables Xis, assumed to be continuous
to ensure the unicity of C (as is usually the case in hydrological applications).

As recently discussed in [34], the representation provided by Sklar’s Theorem provides a
valuable theoretical tool in order to assess the presence of possible changes of the distributions
of hydrological/climate variables (called Change-Points in Statistics)—see also [35–38] for previous
different approaches. In particular, the non-stationarity of F may be due to

• changes of any of the marginal distributions Fis, or
• changes of the copula C, or
• both of the previous cases.

In turn, non-parametric Change-Point statistical tests recently outlined in [39–42] (as well as
the corresponding software [43]) can be used to check whether the (multivariate) Null distributional
assumption “H0: F has no Change-Points” (viz., F does not change with time) should be rejected or
not, by investigating whether either the marginals, or the copula, or both, show Change-Points—see,
later, Section 4.

Furthermore, let I denote the unit interval [0, 1], and let Lt be the level set of F at t ∈ I: practically,
Lt is the set of points in the d-dimensional Euclidean space Rd such that F(x) = t—sometimes Lt is
also referred to as a “critical layer” of level t [11]. As will be made clear below, Lt plays the role as of a
(critical) multivariate threshold, with dimension d− 1.

Due to the assumption that the Fis are strictly increasing—as is the case of the distributions
traditionally used in hydrological practice, the Probability Integral Transform (hereinafter, PIT) viz.,
the relations

U = (U1, . . . , Ud) = (F1(X1), . . . , Fd(Xd)) = TF(X), (2)
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and
X = (X1, . . . , Xd) = (F−1

1 (U1), . . . , F−1
d (Ud)) = T −1

F (U), (3)

are one-to-one, where the Ui = Fi(Xi)s are Uniform random variables on I. These formulas map
the vector U living in Id onto the vector X living in the d-dimensional Euclidean space Rd (and
vice-versa)—see [16,17,44]. Since copulas are invariant for strictly increasing transformations of the
variables at play ([16] Theorem 2.4.3), U and X share the same copula. Note that the PIT uniquely
maps the probabilities of the events in Id (as induced by the copula C) onto Rd (as induced by
F = C(F1, . . . , Fd)), and vice-versa. The role played by the univariate marginals is only to geometrically
re-map such probabilities from Id onto suitable regions in the Euclidean space Rd (and vice-versa),
without affecting them. By the same token, alsoLt is uniquely mapped from Rd onto Id (and vice-versa),
thus becoming a level set of C.

3.1. Hazard Scenarios

The notion of Hazard Scenario introduced in [13] is fundamental and is briefly recalled below.

Definition 1. Let X model the phenomenon of interest. A Hazard Scenario (hereinafter, HS) of level α ∈ (0, 1)
is any Upper Set S = Sα ⊆ Rd such that the following relation holds:

P(X ∈ S) = α. (4)

A Hazard Scenario is simply a set containing occurrences xs that may damage a structure. By the
very definition of Upper Set, if x ∈ S and y ≥ x component-wise, then also y could be considered as
dangerous, since it “exceeds” x.

Given a realization x ∈ Rd, there exist several ways [13] to associate x with a suitable HS Sx ⊆ Rd.
Note that, via Equations (2) and (3), there exists a one-to-one correspondence between Sx and a specific
region Su ⊆ Id. In turn, the knowledge of the copula at play may suffice to calculate the level of Su,
and hence of Sx (since they share the same probability).

In general (see, e.g., [13,23]), the choice of the HS should depend upon two criteria: (i) the type of
dangerous events, and (ii) their probabilities of occurrence. The approach of interest here is the “OR”
one [13], as defined below: in fact, it is sufficient that EITHER Q, OR V, OR both, be large in order to
affect/damage the dam (spillway) of interest.

Definition 2. Given x ∈ Rd, the associated d-dimensional “OR” Hazard Scenario S∨x is given by the region

S∨x =
d⋃

i=1

(R× · · · × (xi,+∞)× · · · × R), (5)

or, equivalently,

S∨x = {z ∈ Rd
+ : Ψx(z) = max

{
z1

x1
, . . . ,

zd
xd

}
≥ 1}, (6)

where the function Ψ (introduced in [45]) models and rules the occurrence of dangerous events (viz., when
Ψ ≥ 1). The corresponding level α is given by

α∨x = P
(
X ∈ S∨x

)
= 1− C(F1(x1), . . . , Fd(xd)). (7)

For the realization of the event {X ∈ S∨x }, it is sufficient that one (or more) of the variables Xis
exceed the corresponding critical threshold xi (which, usually, is specified by the Regulation, or is
inferred by the problem at hand).
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3.2. The Failure Probability Approach

A consistent way to assess the hydrological hazard is to compute the corresponding Failure
Probability (hereinafter, FP)—for a recent discussion, see [23,24,46]. In this section, the Failure
Probability is calculated for the “OR” Hazard Scenario of interest here.

Let X1, . . . , XT be the d-variate vectors describing the phenomenon of interest at times 1, . . . , T,
where T > 0 is an arbitrary design life time for a given structure: without loss of generality, here T
is measured in years. As an example, think of a series of floods (Qt, Vt)s, where Qt and Vt represent,
respectively, the annual maximum flood peak and volume observed in the t-th year.

Now, let x̃ denote a bivariate critical design threshold (e.g., the one prescribed by the Regulation).
Then, each occurrence xis can be associated with a precise “OR” HS, given by the region in the (Q, V)

plane where either the peak, or the volume, or both exceed the corresponding component of x̃. In turn,
a set S1, . . . ,ST of “OR” HSs is generated, and each Si has level αi given by Equation (7). From a
practical point of view, the floods occurring in the complementary regions S c

1 , . . . ,S c
T of the HS’s Sis

could be labelled as “safe”.
According to ([47] Chapter 12) and ([48] Chapter 9), the Failure Probability pT can be computed as

pT = 1− P (X1 ∈ S c
1 , . . . , XT ∈ S c

T) . (8)

In turn, considering the case of independent and identically distributed Xis, according to
Equations (7) and (8), the FP corresponding to the “OR” HS (the one of interest here), for events
sharing a common multivariate critical threshold x̃, is given by:

p∨T = 1− (C(F1(x̃1), . . . , Fd(x̃d)))
T , (9)

or, equivalently,

p∨T = 1− P (Ψx̃(X) ≤ 1) = 1− P
(

max
{

X1

x̃1
, . . . ,

Xd
x̃d

}
≤ 1

)
. (10)

In order to provide valuable information for the estimate of, e.g., suitable multivariate design
quantiles, further work may be required. In fact, all the infinite realizations lying on the critical layer
Lt are associated with the same value of the Failure Probability, since p∨T is constant over the level
set Lt [13]. This may leave undetermined the assignment of a specific design occurrence, once T and
pT have been chosen. In turn, valuable design values, associated with given Life Times and Failure
Probabilities, could be calculated via suitable strategies, e.g., mimicking those outlined in [11,30,49–51].
A practical example is given below in Section 4.

4. Results and Discussion

A thorough statistical analysis indicates that Generalized Extreme Value (hereinafter, GEV)
marginal distributions adequately fit the observations of both Q and V (see Table 1): this is coherent
with the Extreme Value approach adopted, since the variables are annual maxima. The Monte Carlo
p-Values of the Kolmogorov–Smirnov Goodness-of-Fit tests are larger than 10%, supporting the validity
of the assumed model from a statistical point of view.

Concerning the bivariate dependence structure of the (Q, V)s, the two variables turn out to be
non-independent: in fact, the estimates of the Kendall’s τQV ≈ 0.66 and the Spearman’s ρQV ≈ 0.80
are both statistically significantly positive at a 5% level. Here, a survival-Clayton 2-copula CQV is
selected among dozens of competing bivariate models, and provides a valuable fit (as indicated by the
results of the Goodness-of-Fit (GoF) tests shown in Table 2). Once the marginals and the copula have
been fixed, the joint distribution FQV can be computed via Sklar’s Theorem: Figure 2 shows selected
isolines of FQV .
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For the sake of illustration, critical bivariate design thresholds x̃s, to be used in
Equations (5), (7), and (9) for the calculation of the quantities of interest, are fixed as follows—clearly,
other criteria could be adopted, and other values could be chosen. Here, x̃1 and x̃2 are assigned the
empirical 90%, 95%, and 99% quantiles of, respectively, Q and V (see Table 3). Figure 3 shows the
three design pairs x̃s, as well as the corresponding critical layers and the “OR” Hazard Scenarios
of interest. The corresponding approximate levels α∨i = 1− CQV(FQ(x̃i,1), FV(x̃i,2)), with i = 1, 2, 3,
can be calculated via Equation (7), and are reported in Table 3. As expected, (component-wise) “larger”
x̃s yield smaller scenario levels α∨s.

As an example, in this work, a life time T, varying from one to 50 years, is chosen. In the
first instance, here it is assumed that the occurrences are independent and identically distributed
(i.i.d.): while physical and statistical reasons suggest accepting the independence of annual maxima,
by contrast the stationarity of their joint distribution might be questionable (e.g., due to a changing
climate or human activities), and will be discussed later.

Table 1. Maximum Likelihood estimates of the parameters of the GEV distributions fitting the variables
Q (in m3/s) and V (in 106 m3), either considering all the data, or only those collected, respectively,
before and after the Change-Point year (1971)—see text. Also shown are estimated standard errors and
approximate Monte Carlo Goodness-of-Fit test p-Values (based on Kolmogorov–Smirnov statistics).

Variable Shape Scale Position p-Value

All data

Q 0.37 36.21 59.36 77%
s.e. 0.11 5.04 5.71

V 0.61 1.52 1.72 91%
s.e. 0.13 0.25 0.24

Before Change-Point

Q 0.02 24.46 50.05 87%
s.e. 0.11 3.79 5.36

V 0.12 0.95 1.39 99%
s.e. 0.16 0.16 0.21

After Change-Point

Q 0.71 42.96 71.74 98%
s.e. 0.30 11.75 10.92

V 1.07 2.03 2.20 92%
s.e. 0.34 0.67 0.50

Table 2. Maximum Likelihood estimates of the survival-Clayton 2-copula parameter θ fitting the
pairs (Q, V)s, either considering all the data, or only those collected, respectively, before and after
the Change-Point year (1971)—see text. Also shown are estimated standard errors and approximate
p-Values (via a Multiplier Method) of the Cramér–von Mises Goodness-of-Fit test for Copulas based on
the copula empirical process [32].

All Data Before Change-Point After Change-Point

θ 4.33 1.53 11.69
s.e. 1.37 0.72 5.31

p-Value 9% 47% 44%
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Figure 2. Observed pairs (Q, V)s (markers), and selected isolines of the fitted distribution FQV—see text:
(Top panel) all data; (Bottom-left panel) the data before the Change-Point year; (Bottom-right panel)
the data after the Change-Point year.

Table 3. The design pairs x̃s—see text: the units are m3/s for Q, and 106·m3 for V. Also shown are the
corresponding estimates of the “OR” HS levels α∨s.

Quantile (%) Q V α∨

x̃1 90% 197 14 0.0880
x̃2 95% 282 17 0.0453
x̃3 99% 439 31 0.0172

The results under the i.i.d. assumption are shown in Figure 4(top): here, Monte Carlo Confidence
Bands (at a 90% level) for the Failure Probabilities p∨T s associated with the design pairs x̃s are
plotted. In all cases, the width of the bands is very large: the explanation is as follows. The shape
parameters of the fitted GEV marginals are close to (or larger than) 1/2—see Table 1: interestingly
enough, the parameters have also been estimated via the L-moments method, yielding comparable
results (not shown). In turn, the existence of the second order moments (i.e., the variances) may be
questionable, and large fluctuations during the simulations have to be expected, which may adversely
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affect the Monte Carlo procedure and yield very wide bands. Unfortunately, situations like these are
common in hydrological practice, but little can be done to reduce the uncertainties shown in the plots:
it is a problem intrinsic to the very structure of the available data.

Concerning the computation of suitable multivariate design quantiles, here a Most Likely strategy
is used [11,30]. Practically, the level set Lt associated with selected values of T and pT is considered,
and the occurrence δ∗ = (Q∗, V∗), which maximizes the density fQV over Lt, is taken as a design pair.
Figure 5(top) shows the design pairs corresponding to a lifetime T = 50 years and Failure Probabilities
of order, respectively, 10%, 5%, and 1%, as well as Monte Carlo Confidence Intervals at a 90% level:
as already discussed above, large unavoidable uncertainties are present. 
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Figure 3. Observed pairs (Q, V)s (full circles), “OR” Hazard Scenarios (the regions “above” the dashed
lines), the design pairs indicated in Table 3 (respectively, empty square, circle, and diamond), and isolines
of the fitted FQV crossing the design pairs—see text: (Top panel) all data; (Bottom-left panel) the data
before the Change-Point year; (Bottom-right panel) the data after the Change-Point year.
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Figure 4. Confidence bands (at a 90% level) for the Failure Probabilities p∨T s associated with the design
pairs x̃s plotted in Figure 3—see text: (Top panel) all data; (Bottom-left panel) before the Change-Point
year; (Bottom-right panel) after the Change-Point year.

As a second instance, it may be of interest to study how the previous results might be affected by a
change of the joint distribution FQV of the phenomenon under investigation (for a similar hydrological
case study see, e.g., [9,52]). Specifically, a distributional change of the behavior of the pair (Q, V) may
be due to:

• a change of the univariate distribution FQ (respectively, FV), or
• a change of the copula CQV associated with (Q, V), or
• both the previous instances.

Here, possible changes are detected according to different tests recently introduced in
literature—see [39–42], and implemented in the R package npcp [43].

In the present case, apparently, the overall stochastic behavior shown in Figure 1 might have
changed around the year 1971: see below, and Tables 1 and 2. More precisely, according to the
approximate p-Value of the test (about 4%), the Null hypothesis that the joint distribution FQV has not
changed could not be rejected at the standard 1% level, but should be rejected at the 5% and 10% ones.
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Actually, FQ might also have changed around 1971 (the p-Value is about 3%), as well as CQV around
1970 (the p-Value is about 2.5%), and FV around 1975 (the p-Value is about 2.8%). In turn, given the
intrinsic uncertainties of the test [39], the critical year associated with the Change-Point is reasonably
and practically assumed to be 1971 (also considering that, in hydrology, Q is traditionally indicated
as the regulation variable). Apparently, this is consistent with the claims of [53], stating that “. . . the
1970s are known as a period of major climate and environmental changes observed in several proxies
and several fields at the global scale, as attested to in many recent studies [54–59].”
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Figure 5. Observed pairs (Q, V)s (full circles), and mean “Most Likely” design pairs δ∗ = (Q∗, V∗)s
(markers) for different design Failure Probabilities—see text: (Top panel) all data; (Bottom-left panel)
before the Change-Point year; (Bottom-right panel) after the Change-Point year. Also shown are Monte
Carlo Confidence Intervals at a 90% level.

Whether or not the dynamics of the phenomenon has really changed (concerning this latter issue,
instructive is the recent work by [4]), it is however interesting to study the possible effects on the
strategies of hazard assessment, e.g., in terms of the Failure Probabilities discussed in this work. For this
purpose, both the marginals and the copula of the subsets of observations before and after 1971 were
computed: the results are reported in Tables 1 and 2, and illustrated in Figures 2 and 6. In turn, both the
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GEV univariate laws and the survival-Clayton 2-copula still provide valuable models for these data
sets, but the corresponding parameters have changed. More specifically, the observations can be fitted
by distributions and copulas showing two distinct regimes (before and after 1971), and modeled by the
same univariate and bivariate functions with different parameters. Note that no further Change-Points
are detected in each of the two sub-periods before and after 1971. 
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Figure 6. The available (Q, V) observations—see text: (Top panel) the data; (Bottom panel) the
pseudo-observations, viz. the normalized ranks. The occurrences before and after the possible
Change-Point year are indicated via different markers.

The behavior of the FPs, assuming that the joint probability distribution has changed in 1971,
is plotted in Figure 4(bottom): in general, the failure probabilities assuming stationarity are smaller
than the ones after 1971, while the uncertainties are again large. Apparently, there is a remodeling of the
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dynamics of the temporal series of floods: actually, both univariate and multivariate parameters change.
In particular, an increase of the statistical dependence between flood peak and flood volume may be
likely. These results may indicate an intensification of the flood events in the period 1971–1994, both in
the dependence structure and in the marginals, and consequently an increase of the corresponding
failure probabilities. Similar conclusions can be drawn concerning the computation of suitable design
pairs, as shown in Figure 5(bottom): again, for the same reasons mentioned above, large uncertainties
are present.

5. Conclusions

The possible presence of a distributional Change-Point in a hydrologic bivariate dataset
of maximum annual flood peaks and volumes has been investigated, in order to evaluate the
consequences of possible violations of the stationarity assumption from a hazard assessment
perspective. In particular, the assessment of the environmental hazard has been carried via the
theory of Copulas and the Failure Probabilities. The impact is evaluated adopting a risk-manager
perspective.

The investigation carried out in this work makes it evident that it may be important to test the
stationarity assumption, viz. to check whether (or not) the stochastic behavior of the variables at
play might have changed with time, in terms of a change of the families of marginal probability
distributions, and/or a change of the associated copula family, and/or a change of the corresponding
parameters’ values.

Apparently, considering the case study investigated here, the statistical analyses indicate that a
distributional Change-Point might be present around 1971: actually, the estimates of the parameters
of both the marginals and the copula are different in a time period before and after 1971 (whereas
the families of the distributions might not have changed). In turn, a due analysis (in terms of Failure
Probabilities) of the effects of the possible presence of a Change-Points on the hazard assessment has
been carried out.

As a conclusion, under the assumption that the hydrological regime has really changed,
the corresponding increase of the FPs yields a strengthening of the estimated threatening: clearly,
neglecting such a dynamics might provide an unrealistic hazard assessment. However, such a diagnosis
is essentially of a statistical nature: in our opinion, further physical considerations are needed in order
to correctly guide the decisions of the Water Managers, which only a proper and correct engineering
practice may provide. In our opinion, further analyses are needed in order to understand whether a
similar behavior is present also in other neighboring sites, and to check whether analogous conclusions
could be drawn also for, e.g., precipitation, droughts, etc. (see, e.g., the scenarios’ procedures outlined
in [60,61], as well as [62] for recent multivariate characterizations). Actually, combined together, such
pieces of information could provide valuable evidence concerning possible climate changes, and supply
indications about plausible future hydrologic scenarios. Finally, the presence of heavy tailed marginals
(a common situation in hydrological time series) further complicates the analyses by introducing
additional uncertainties, as discussed in the paper.

As a general recommendation, it is important to stress that the statistical outcomes should
always be “validated/supported/confirmed” via additional practical investigations, such as a regional
analysis of other relevant hydrological variables like discharge, precipitation, etc. In terms of flood
hazard management, the results presented here suggest that, for checking the adequacy and the
functionality of existing water works, a statistical (multivariate) survey represents a necessary step,
though it may not be sufficient.
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