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Abstract

In porosity models for urban flooding, artificial porosity is used as a statistical descriptor of the urban medium.
Buildings are treated as subgrid-scale features and, even with the use of relatively coarse grids, their effects on the flow
are accounted for. Porosity models are attractive for large-scale applications due to limited computational demand with
respect to solving the classical Shallow Water Equations on high-resolution grids. In the last decade, effective schemes
have been developed that allowed accounting for a wealth of sub-grid processes; unfortunately, they are known to suffer
from oversensitivity to mesh design in the case of anisotropic porosity fields, which are typical of urban layouts. In
the present study, a dual porosity approach is implemented into a two-dimensional Finite Element numerical scheme
that uses a staggered unstructured mesh. The presence of buildings is modelled using an isotropic porosity in the
continuity equation, to account for the reduced water storage, and a tensor formulation for conveyance porosity in
the momentum equations, to account for anisotropy and effective flow velocity. The element-by-element definition
of porosities, and the use of a staggered grid in which triangular cells convey fluxes and continuity is balanced at
grid nodes, allow avoiding undesired mesh-dependency. Tested against refined numerical solutions and data from a
laboratory experiment, the model provided satisfactory results. Model limitations are discussed in view of applications
to more complex, real urban layouts.

Keywords: Urban flooding, Anisotropic porosity model, Shallow flow, Large-scale inundation models, Mesh
independence, Subgrid model

1. Introduction

Floods are undoubtedly a major threat of our time (Blöschl et al., 2017; Doocy et al., 2013); of all the victims of
annual natural disasters, more than half are flood related (Douben, 2006). According to Syvitski et al. (2009), 85% of
world river deltas experienced severe flooding in the past decades, with the temporary submergence of 260,000 km2.
Furthermore, flooding of urban areas is, nowadays more than ever, an issue of relevant concern. This is a consequence
of the increasing world population, and of the increasing share of population residing in big cities located in flood-prone
areas along major rivers or in coastal lowlands (Ceola et al., 2014; United Nations, 2015). The situation is expected to
worsen in the near future owing to climate change (Dankers and Feyen, 2008; Muis et al., 2015; Whitfield, 2012).

In this view, a detailed knowledge of flooding dynamics in urban areas is important for several purposes, including
urban planning, defence strategies, civil protection plans, insurance policies, etc. Numerical modelling is a key tool
that has the potential to provide useful information such as water depth and flow velocity in real and hypothetical
scenarios (e.g., Viero et al., 2019). Yet, modelling urban floods is a challenging task, essentially because very different
spatial scales are involved in the hydrodynamic processes. Reliable analysis of flooding in large urban areas cannot
disregard local effects exerted on the flow field by buildings and by a wealth of other small-scale urban features such
as roads, curbs, drainage system, etc. (Meesuk et al., 2015; Mignot et al., 2013; Wang et al., 2018; Yu and Lane,
2011). Nonetheless, the excessively high precision of hyper-resolution approaches could actually mask the relatively
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low accuracy owing to other uncertainty sources, for example topography errors or GIS processing, modeller choices,
model parametrization, and boundary conditions (Abily et al., 2016; Cook and Merwade, 2009; Dottori et al., 2013).

A valid compromise for large-scale analyses of urban flooding is represented by the so-called porosity models.
Inspired by the concept of porous medium to model urban layouts, artificial porosity is used as a statistical descriptor
for the presence of buildings, which are then treated as subgrid-scale features. Preserving a reasonable accuracy even
with the use of relatively coarse computational grids, such models show a great advantage in terms of computational
time and resources with respect to high-resolution applications based on the classical two-dimensional Shallow Water
Equations (El Kadi Abderrezzak et al., 2009; Guinot et al., 2017; Noh et al., 2018). Hence, porosity models are
particularly suitable for inundation modelling in large areas, or when several runs are necessary to perform stochastic
or scenario analysis, and are attracting increasing attention.

Since the first appearance of porosity models more than twenty years ago (Defina et al., 1994), different formulations
have been proposed in order to capture the most salient features of the complex flow fields occurring in urban areas by
using coarse grids. In the Single Porosity (SP) approach, the two-dimensional Shallow Water Equations (2D SWEs)
are expressed in differential form using a single porosity field to account for buildings. SP models have been the subject
of numerous works (Benkhaldoun et al., 2016; Cea and Vázquez-Cendón, 2010; Chen et al., 2012a; Defina, 2000;
Ferrari et al., 2017; Finaud-Guyot et al., 2010; Guinot and Soares-Frazão, 2006; Petaccia et al., 2010; Soares-Frazao
et al., 2008; Velickovic et al., 2017).

While the SP approach is isotropic in nature, urban layouts are often characterized by a marked anisotropy, with
preferential flow directions owing to asymmetric building shapes and and spacing, and the alignment of buildings along
streets (Sanders et al., 2008; Bruwier et al., 2018). This means that obstacles, as well as the terrain elevation at a subgrid
scale, affect the direction of flow (McMillan and Brasington, 2007; Yu and Lane, 2006). In the multiple Porosity (MP)
model proposed by Guinot (2012), regions characterized by different porosity, flow depth and velocity coexist within
the same control volume; the scheme accounts for anisotropic effects and for head losses due to momentum exchanges.
The Integral Porosity (IP) model introduced by Sanders et al. (2008) uses an integral formulation of the SWEs to
properly account for discontinuities in the urban medium; a storage porosity represents the volume fraction available
for mass and momentum storage, and a connectivity porosity accounts for the areal fraction of cell-sides acting on the
computation of inter-cell fluxes. IP model was further improved with the introduction of a depth-dependent porosity
(Özgen et al., 2015, 2016). Finally, the Dual Integral Porosity (DIP) model (Guinot et al., 2017) definitely formalizes
the distinction between porosity and flux variables, with the former referring to control volumes, and the latter to
boundaries; simple closure relations relate these variables to each other. In the DIP scheme, a transient momentum
dissipation model is also introduced. Laboratory and numerical experiments (Kim et al., 2015) showed that the IP
approach outperforms the SP one. Wave propagation properties, flux and source term models, are further improved in
the DIP model (Guinot et al., 2017; Guinot, 2017b).

Unfortunately, the IP and DIP approaches are known to be markedly mesh-dependent. As already observed by
Sanders et al. (2008), the IP approach is inherently mesh-dependent as the conveyance porosity is defined locally at
the cell sides. While the use of suitable unstructured meshes can limit this problem (Sanders et al., 2008; Schubert and
Sanders, 2012), Guinot (2017a) showed that oversensitivity to mesh design is due to a polarization of fluxes and to
cell edge orientation that emerge when the flux porosity field is anisotropic. Guidelines for a proper mesh design were
provided in Guinot (2017a), where it was also admitted that their fulfilment is not trivial in real-world applications.

It is interesting to observe that porosity models for urban floods have been typically implemented in the framework
of Finite Volume, collocated schemes (i.e., all the conserved variables refer to the barycentre of the cell, while fluxes
are evaluated at the cell sides). In the present study, a Finite Element numerical model is used (Defina, 2003; Viero
et al., 2013a), in which the 2D SWEs are discretized on an unstructured staggered mesh. Water levels are defined at the
grid nodes, where the continuity equation is solved, whereas triangular cells are devoted to convey fluxes according to
the momentum conservation equations. Staggered mesh schemes are known to possess good conservation properties
(Casulli, 2009; Perot, 2000). This Finite Element model was recently enhanced to account for anisotropic resistances
using a tensor formulation to evaluate the directionally dependent bottom shear stress. It was then applied to model
overland and shallow inundation flows in agricultural landscapes, where small-scale linear features (e.g., ditches) force
anisotropy in the flow (Viero and Valipour, 2017). The model did not show any oversensitivity to mesh design.

The tensor formulation adopted by Viero and Valipour (2017) to account for anisotropic resistance paved the
way to the development of a new, dual porosity approach for large-scale modelling of floods in urban areas. In the
present subgrid model, an isotropic porosity accounts for the reduced water storage in the continuity equation, and an

2



anisotropic conveyance porosity is introduced in the momentum equations to compute acceleration and bottom shear
stress based on the effective flow velocity. Anisotropy is accounted for as a function of the cross-sectional area actually
available to conveyance in a given direction. This area, suitably normalized, closely resembles the areal conveyance
porosity introduced in the IP/DIP approaches (Guinot et al., 2017; Sanders et al., 2008). However, in this case, the
conveyance porosity is not defined locally at the cell interfaces, but averaged over each cell, and it is defined along
principal, mutually orthogonal directions. In this way, mesh-dependency is avoided.

The numerical model is described (Section 2) and then applied to schematic and laboratory case studies (Section 3),
with the aim of highlighting the strengths and the limitations of the proposed approach. These are finally discussed
and summarized in Section 4.

2. The numerical model

2.1. The Finite Element numerical framework

The new dual porosity approach for urban floods is implemented in the framework of the 2DEF Finite Element
hydrodynamic model (D’Alpaos and Defina, 2007; Defina, 2003; Viero et al., 2013a, 2014; Viero and Defina, 2016).
The 2DEF model solves a modified version of the 2D SWEs, which is obtained through a phase averaging procedure
over a Representative Elementary Area (REA) in order to deal with flooding and drying over irregular topography
(Defina, 2000). Projected on the Cartesian frame (x, y), the 2D SWEs solved by the model read
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where g is gravity, D/Dt is the material (or Lagrangian) time derivative, u = (ux, uy) is the flow velocity, h is the
free-surface elevation over a datum, Y is the effective water depth defined as the volume of water per unit area (thus
accounting for porosity), q = (qx, qy) is the discharge per unit width, τ = (τx, τy) is the bottom shear stress, ρ is the
water density. The horizontal components of Reynolds turbulent and dispersion stresses, Re, are modelled according
to the Boussinesq approximation with the depth integrated model for the eddy viscosity proposed by Stansby (2003)
and Uittenbogaard and van Vossen (2004):
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In Eq. (4), to evaluate the eddy viscosity νe, the Smagorinsky model is used for horizontal turbulence and the Elder
model for vertical turbulence. In the last equation, Ae is the area of the computational element, u∗ is the bed-shear
velocity, and the two coefficients are assumed equal to CS = 0.2 and CE = 0.07, respectively.

The term ϑ(h) in Eq. (3) is a depth-dependent storage coefficient (Defina, 2000; Viero et al., 2014), defined as the
ratio between the wet and the total area of a cell for a given water surface elevation, h.

In Eqs. (1) and (2), local and advective accelerations are lumped into the material (or Lagrangian) time derivative
of the depth-averaged velocity components, taking advantage of the so-called Eulerian-Lagrangian methods in which
the standard finite element procedure is combined with the method of characteristics (Defina, 2003; Giraldo, 2000;
Walters and Casulli, 1998). In the model, the material time derivatives in Eqs. (1) and (2) are replaced by their finite
difference formulation
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Du

Dt
�

u − u0

∆t
(5)

in which the subscript “0” denotes a quantity evaluated at the previous time step and at the departure point, i.e.,
the position occupied by a fluid particle at the previous time step, located backward along the Lagrangian trajectory
(Defina, 2003). With the use of Eq (5), Eqs. (1) and (2) are conveniently linearised, solved for (ux, uy), and substituted
into the continuity equation 3, which is finally solved using an Eulerian, semi-implicit, Galerkin Finite Element scheme
(Defina, 2003; Viero and Valipour, 2017).

Unlike other well-known schemes that use staggered grids (e.g., Casulli, 2009, 2015; Kramer and Stelling, 2008),
in the present scheme the free surface elevation is defined at grid nodes; triangular cells link together adjacent nodes
and convey fluxes as a function of quantities defined on an element-by-element basis (free-surface gradient, stress
terms, etc.). The resulting staggered scheme naturally handles discontinuities in bottom elevation between adjacent
elements, but is not suitable to deal with supercritical flows and shock waves, nor with rapidly varying flows (Defina
et al., 2008a,b; Guinot, 2012; Viero et al., 2017).

2.2. Porosity treatment of urbanized areas

2.2.1. Isotropic storage porosity

It is worth noting that the particular form in which the model equations are expressed, naturally allows to account
for storage reduction due to the presence of buildings through a proper definition of the parameter ϑ in Eq. (3).

In the context of subgrid models, it has first to be noted that the terrain elevation is assumed to vary within each
computational element. To account for this variability, Defina (2000) enforced a statistically-based model for subgrid
macro-roughness and expressed the wet fraction of a partially dry area analytically as

η(h) =
1

2

[

1 + erf

(

2
d
ar

)]

(6)

where erf(·) is the error function, d = h − zb is the mean water depth, zb is the mean bottom elevation, and ar is
a characteristic macro-roughness height. Finally, for the h-dependent storage coefficient in Eq. (3), Defina (2000)
assumed ϑ(h) = η(h) (Fig. 1).
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Figure 1: Dashed line denotes η(h) (Eq. 6), dotted line represents Eq. (7), and solid line denotes ϑ(h) as a function of the non-dimensional water
depth, d/ar . In the figure, ϑ(h) is given by Eq. (8) with soil porosity ne = 0.1 and storage porosity φ = 0.7.

Viero et al. (2014), with the aim of modelling the hydrological response of agricultural catchments, modified the
storage coefficient to account for the porosity of topsoil layer, ne. It became

ϑ(h) = ne + (1 − ne) · η(h) (7)

In the above equation, ne acts as the lower limit for ϑ (dotted line in Fig. 1). A similar approach were used by
other researchers, for example to account for the presence of “porous” obstacles in the flow field (Liang et al., 2007),
to simulate the wet-dry moving boundary (Yuan et al., 2008), and for coupling surface and subsurface water flows
(Kong et al., 2010).
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In an urban layout, the isotropic porosity φ is defined as the fraction of space available to water storage (i.e., the
fraction of horizontal area not occupied by buildings). Considering that buildings occupy the same area on the ground
and on the topmost soil layer, the storage parameter in the continuity equation becomes

ϑ(h) = φ[ne + (1 − ne) · η(h)] (8)

where now φ and φ · ne are the upper and the lower limit of ϑ(h), respectively (solid line in Fig. 1).
The effects played by buildings in reducing the momentum storage are accounted for in the momentum equations

(1) and (2) through the effective water depth Y , which also depends on ϑ and, in turn, on φ. The effective water depth
Y , which is defined as (Defina, 2000)

Y =
∫ h

−∞

ϑ(z)dz (9)

tends to Y = φd when the mean water depth d is far greater than the macro-roughness height ar (note that both the
integrand and the integral in the above equation are spatially averaged quantities). By defining the discharge per unit
width as q = Yu (� φdu), the system of equations (1)-(3), together with Eq. (8), closely resembles that of the classical
single porosity (SP) model described in Guinot and Soares-Frazão (2006).

2.2.2. Anisotropic conveyance porosity

The SP model is isotropic by definition; yet, many urban layouts are characterized by markedly anisotropic patterns
(Bruwier et al., 2018; Mignot et al., 2006; Sanders et al., 2008; Velickovic et al., 2017). Moreover, a fraction of the
domain that is free of buildings does not contribute to transport due to the sheltering effect of buildings that results in
dead zones. The SP approach can thus be enhanced with the introduction of a conveyance (or connectivity) porosity,
Ψ , that scales the transport capacity (Arrault et al., 2016; Guinot et al., 2017; Sanders et al., 2008). Of course, to
account for dead zones, the conveyance porosity should be taken such that Ψ ≤ φ, the difference φ -Ψ thus representing
an estimate of the fraction of domain that does not contribute to transport (Sanders et al., 2008). Importantly, the
conveyance porosity must account for the directional dependence that typically characterizes urban media.

The usefulness of distinguishing between storage and conveyance porosities was clearly demonstrated in many
literature studies (Guinot et al., 2017; Kim et al., 2015; Sanders et al., 2008; Schubert and Sanders, 2012). However,
IP and DIP schemes were implemented using collocated FV schemes, in which conserved variables (defined on an
element-by-element basis) are “duplicated” at cell interfaces in order to compute fluxes; accordingly, while storage
porosity used to define the conserved variables refers to control volumes (i.e., grid cells, Defina, 2000; Guinot et al.,
2017), the conveyance porosity used to define fluxes only refers to cell interfaces (Guinot et al., 2017; Sanders et al.,
2008). Unfortunately, the point-based assessment of the connectivity porosity makes these models suffering from
oversensitivity to mesh design (Guinot, 2017a,b).

In the Finite Element staggered model used in this study, while continuity is balanced at grid nodes (storage porosity
at nodes is weighted-averaged from that of surrounding elements), fluxes are defined on an element-by-element basis.
Accordingly, conveyance porosity must refer to the entire cell and not to cell interfaces. This need can be seen as
an opportunity to better describe the conveyance porosity field by better reflecting the connectivity properties of the
urban medium within the cells and not only at the cell interfaces (Guinot, 2017a).

The estimation of an element-by-element conveyance porosity is in general not trivial for complex urban layouts,
and it is beyond the scope of the present study. Here, the conveyance porosity is defined and introduced in the model
under a number of simplifying hypotheses. With reference to the one-dimensional (1D) schematic case depicted in
Fig. 2a, Q denotes the total discharge and q = Q/W is the discharge per unit width, phase-averaged over the entire area
of the cell (Defina, 2000). The presence of buildings (shaded areas in Fig. 2a) results in a channel contraction, where
the actual flow velocity is

uc =
Q

d w
=

Q
W

︸︷︷︸

=q

·
W
w

︸︷︷︸

=1/Ψ

·
1

d φ
︸︷︷︸

=1/Y

·φ =
φ

Ψ

q
Y

(10)

In Eq. (10), Ψ = w/W is the conveyance porosity, which is assumed equal to the width ratio of the channel
contraction (Defina and Viero, 2010).
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Figure 2: Schematic definition of the conveyance porosity, Ψ , for a one-dimensional case (panel a) and for a two-dimensional case (panel b). Shaded
areas denote buildings.

Similarly to the previous 1D case, in the 2D schematic case of Fig. 2b the conveyance porosity can be estimated
along two principal, mutually orthogonal directions (say L − T), for which the conveyance porosity is respectively
maximum (ΨL) and minimum (ΨT ). Along each principal direction, conveyance porosities are evaluated with reference
to the narrowest cross-section (Fig. 2b); this allows to write the components of the effective flow velocity as

ucL =
φ

ΨL

qL

Y
; ucT =

φ

ΨT

qT
Y

(11)

2.2.3. Momentum equations in terms of effective velocity

In the dual porosity subgrid model, the momentum equations (1) and (2) are expressed in terms of effective velocity
uc, with significant consequences for the evaluation of temporal and spatial accelerations (lumped in the first terms of
Eqs. (1) and (2)) and of energy dissipation due to bottom shear stress (the third terms of Eqs. (1) and (2)).

The use of the velocity at the contraction, uc, in the momentum equations is equivalent to assume that water flows
within the narrowest cross-section for the length of the entire computational cell. This is a simplifying hypothesis
already assumed in other studies (Bruwier et al., 2017; Chen et al., 2012a; Dottori and Todini, 2013; Ferrari et al.,
2018), and justified by the fact that energy dissipation varies quadratically with the velocity and linearly with the
length of the path; most of the dissipation occurs where velocity is greater, and the jet developing downstream of the
contraction causes the velocity to decrease slowly along the flow direction (i.e., the effective length of the narrowest
section is longest than its purely geometrical length).

As the conveyance porosity is directionally dependent, it is convenient to resort to tensor notation, so as to express
the effective velocity as

uc = Aq (12)

with uc = (ucx, ucy), q = (qx, qy), and A a second-order tensor whose principal components are

AL =
φ

ΨLY
and AT =

φ

ΨTY
(13)

If the principal directions are rotated by some angle α relative to the model frame (Fig. 2b), the components of A

descend from the transformation law of a second-order tensor (Graebel, 2007)
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A =

[

Axx Axy

Axy Ayy

]

=

[

AL cos2 α + AT sin2 α (AL − AT ) cosα sinα
(AL − AT ) cosα sinα AL sin2 α + AT cos2 α

]

(14)

To properly account for the actual connectivity of the urban medium, the flow accelerations are expressed in terms
of effective velocity. Practically, the material derivative of the depth-averaged flow velocity (see Eq. 5) becomes

Duc

Dt
�

uc − uc0

∆t
=

Aq − Aq0

∆t
(15)

Similarly, the resistance terms τ = (τx, τy) are introduced in the model in tensor form (Viero and Valipour, 2017)

τ

ρgY
= Rq (16)

with R a second-order tensor. By denoting with nL and nT the Manning roughness coefficients along, respectively,
the L and T directions, the principal components of the tensor R are

RL =
τL

ρgY
=

n2
L

q

Ψ2
L

H10/3
and RT =

τT

ρgY
=

n2
T

q

Ψ2
T

H10/3
(17)

where q is the modulus of the phase-averaged discharge per unit width. H is a parameter derived from (Y/φ) according
to Appendix A in Defina (2000) and used to account for the effect of sub-grid scale macro-roughness on bottom shear
stress.

Again, if the principal directions are rotated by some angle α relative to the model frame (Fig. 2b), the components
of R become

R =

[

Rxx Rxy

Rxy Ryy

]

=

[

RL cos2 α + RT sin2 α (RL − RT ) cosα sinα
(RL − RT ) cosα sinα RL sin2 α + RT cos2 α

]

(18)

From here on, the model implementation closely resembles that presented in Viero and Valipour (2017) and is
detailed in Appendix A.

2.3. Additional remarks on the dual porosity subgrid model

Some aspects of the dual porosity subgrid model presented above need to be further discussed.
The model does not account for building drag, which could be included using a formulation of those presented and

discussed in other studies (Guinot et al., 2017; Guinot, 2017b; Velickovic et al., 2017). However, since the estimation
of drag coefficients mostly relies on calibration (Guinot et al., 2017; Velickovic et al., 2017), they are not considered in
this study, whose main aim is to check the ability of the subgrid dual porosity model in reproducing reference results
when porosities parameters are derived from geometrical information only.

The model does not account for transient momentum dissipation due to shock wave reflections that occur when
obstacles force a supercritical flow to change its direction (Guinot, 2012, 2017b; Guinot et al., 2017, 2018; Viero et al.,
2013b). This is consistent with the fact that the Finite Element model is not intended to deal with supercritical flows nor
with shock waves. It is well known, in fact, that shock-capturing schemes are needed to produce reliable results at the
local scale when the Froude number exceeds one, or when analysing markedly unsteady flows such as dam-break flood
waves (Teng et al., 2017). Nonetheless, in terms of broader results, models that are unable to deal with supercritical
flows (for instance, Finite Element, diffusive-wave, or raster-cell models) were shown to give similarly good results
(Dottori and Todini, 2013; Hunter et al., 2008; Neal et al., 2009; Neelz and Pender, 2007).

More importantly, the effectiveness of the tensor formulation for the conveyance porosity, the existence of (and
the possibility of detecting) two principal directions of maximum and minimum conveyance, and the computation
of hydraulically significant conveyance porosities in real urban layouts, are questionable and challenging tasks that
undoubtedly deserve further investigation. As a side note, the assumption of mutually orthogonal principal directions
in the definition of conveyance porosity can be removed by considering a different angle for each principal axis (Guinot
et al., 2017).

Finally, the present model can be seen as an improvement of the multi-layered model proposed by Chen et al.
(2012b), in that the present model solves the full 2D SWEs and allows modelling blocking features not aligned with the
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main axes of the model. The detection of blocking feature from high-resolution LiDAR surveys can be done following
the procedures proposed by Hodges (2015).

3. Model results

The dual porosity model presented in Sect. 2 is tested considering three different schematic applications (Tests
1, 2, and 3), in which the results from the dual porosity model are compared with those of a “reference simulation”,
i.e., a refined solution in which the buildings are explicitly resolved using the “building hole” technique (Schubert and
Sanders, 2012). In “Test 4”, the benchmark consists in reproducing a laboratory experiment reported in Velickovic
et al. (2017).

It has to be stressed that, in all the numerical applications showed thereafter, the additional parameters needed by
the dual porosity model (i.e., the storage porosity φ, the conveyance porosities ΨL and ΨT , and the rotation angle α)
have been derived geometrically, and not by calibration.

3.1. Steady flow through a schematic urban layout

In the first application (Test 1), an array of 2 × 3 aligned buildings (Fig. 3) is placed at the centre of a tilted plane
(bottom slope of 0.065% southward, Manning roughness coefficients nL = nT = 0.0286 m−1/3s, macro-roughness
height ar = 0.1 m). The storage and conveyance porosities are assumed constant within the area occupied by the
building array, and are estimated geometrically. Within the exact limits of the urban layout, the urban porous medium
is characterized by a storage porosity φ = 0.3 and, following Fig. 2b, by conveyance porosities ΨL = 0.25 and
ΨT = 0.067, with α = 50◦. A constant inflow discharge of 50 m3/s is prescribed at the centre of the northern boundary,
and a suitable rating curve is imposed at the southern boundary. Simulations are protracted until steady state conditions
are attained.

0.3

0.2

0.1

0

m
water depth

buildings explicitly resolved dual anisotropic porosity single porosity

velocity

buildings explicitly resolved dual anisotropic porosity single porosity

0.5

0.3

0.1

0

m/s
0.4

0.2

500 m

Figure 3: Test 1: steady flow through a schematic urban layout simulated using a “building hole” high resolution grid (left), the dual porosity model
(centre) and the single porosity model (right). The results are reported in terms of flow depth (upper panels) and velocity (lower panels).

In this test, a comparison is drawn between the dual porosity subgrid model, the reference simulation, and also with
the results from the single porosity (SP) version of the the model, which is obtained by simply assuming ΨL = ΨT = φ.
The reference solution is obtained using a suitably refined mesh, characterized by cell-sides about 5 m long. Based
on a set of preliminary simulations, no significant improvements in the numerical solution are expected from a further
refinement of the mesh. The dual and single porosity models are run over a much coarser mesh, with cell-sides about
20 m long within the patch of urbanized area. Note that each building in the urban layout has dimensions 100 × 350 m.
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The model results are shown in Fig. 3. The results from the refined solution (left panels) show that the flow is
mainly driven westward by the presence of buildings, and that the local maximum of flow velocity occurs downstream
of the urban layout at the western corner. From a macroscopic point of view, the solution from the dual porosity model
(central panels) closely resembles that of the reference simulation (left panels). On the contrary, the SP approach
(right panels) is unable to correctly characterize the markedly anisotropic flow field that is generated by the array of
aligned buildings.

3.2. Unsteady flow through a street grid

In the second application (Test 2), a hypothetical flood wave (Fig. 4) is routed over an initially dry, tilted plane.
The street grid extracted from a real urban layout is placed at the centre of the plane (Fig. 5, bottom slope of 0.065%
southward, Manning roughness coefficients nL = nT = 0.0154 m−1/3s along the streets and nL = nT = 0.0286 m−1/3s
elsewhere, macro-roughness height ar = 0.1 m). Flooding simulation in relatively dense urban layouts has been
successfully performed considering only the street grid by, e.g., Mignot et al. (2006).

0 60 120 180 240
time (min)

0

20

40

80

120

100

60

In
fl

ow
 d

is
ch

ar
ge

 (m
/s

)

Figure 4: Test 2: discharge hydrograph prescribed as inflow boundary condition.

As in Test 1, the storage and conveyance porosities are assumed constant within the patch of urban area, and
are estimated geometrically. Specifically, the storage porosity is computed as the fraction of street area to the total
urbanized area, which gives φ = 0.22; the conveyance porosities are computed in agreement with the definitions
sketched in Fig. 2b. The values obtained as the ratio between the width of the crossed streets to the total width, at the
narrowest cross-sections, are ΨL = 0.10 and ΨT = 0.08; principal axes are oriented at α = 65◦ to the model frame.
The discharge hydrograph (Fig. 4) is prescribed at the centre of the northern boundary, and a suitable rating curve is
imposed at the southern boundary.

The reference solution is obtained using a suitably refined mesh, characterized by cell-sides about 3 m long. A
set of preliminary simulations suggested that no significant improvements in the numerical solution are expected from
a further refinement of the mesh. The single and the dual porosity models are run over a mesh with cell-sides about
15 m long within the patch of urbanized area, i.e., much coarser than that used in the reference simulation.

The results from both the porosity models (middle and lower panels in Fig. 5) compare well with those obtained by
solving the classical 2D SWEs over a high-resolution grid (upper panels in Fig. 5), both in terms of water depth and of
the timing of flooding. The performance of the two subgrid models are similar because the street grid is characterized
by a slight anisotropy (ΨL and ΨT are close to each other). The main difference between the single and dual porosity
models is that the dual porosity approach slightly underestimates the propagation speed of the wetting front within the
urban layout, whereas the single porosity approach slightly underestimates the flow resistance.

3.3. Unsteady flow in urban areas with different storage and conveyance porosities

In this third application (Test 3), the same flood wave used in Test 2 (Fig. 4) is routed over a patch of urban area
in which storage and conveyance porosities are significantly different from each other. This may occur for example in
middle-density urban areas where houses and buildings are placed within relatively ample walled gardens. While water
is temporarily stored in gardens and courtyards in the course of a flooding event, only the streets actively contribute to
conveyance.
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Figure 5: Test 2: unsteady flow through the street grid of a real urban layout simulated using a high resolution grid (upper panels), the dual porosity
model (middle panels), and the single porosity model (lower panels). The results are reported in terms of flow depth at different time instants.
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To test the ability of the subgrid dual porosity approach in such a context, gardens and courtyards are added to
the patch of urban area previously analysed in Test 2 (Fig. 6). In the reference simulation, buildings and garden walls
are treated according to the “building hole” technique (Schubert and Sanders, 2012). Again, porosities are assumed
constant within the patch of urban area, and are estimated geometrically. In this Test 3, the storage porosity accounts
for the area occupied by both the streets and the garden yards, resulting equal to φ = 0.78 (a far greater value than in
Test 2, in which φ = 0.22); as only the streets are deputed to net conveyance, conveyance porosities are the same as in
the previous Test 2, i.e., ΨL = 0.10 and ΨT = 0.08, with α = 65◦. As in Test 2, the bottom slope is 0.065% southward,
the Manning roughness coefficients are nL = nT = 0.0154 m−1/3s along the streets and nL = nT = 0.0286 m−1/3s
elsewhere, and the macro-roughness height is ar = 0.1 m.

150 m

houses
garden walls

Figure 6: Test 3: patch of urban area characterized by the presence of houses (grey areas) and garden yards surrounded by walls (black lines).

The model results are plotted in Fig. 7 at three different times (40, 60, and 120 minutes). The upper panels show
the water depth obtained in the reference solution, in which the classical SWEs are solved over a mesh of about 63,000
triangular elements (cell-sides about 3 m long within the urban area). It can be seen that the urban patch produces
significant resistances, which retard the flood wave propagation and cause a larger water depth in the upstream part of
the domain. The middle panels show the results from the dual porosity model proposed in this study, which is run over
a coarse mesh of about 9,000 triangular elements (cell-sides about 15 m long within the urban area). The subgrid, dual
porosity model well reproduces the macroscopic effects exerted by the urban layout on the flood wave, and successfully
captures the most salient features of the flow field in the different phases of the flooding event. The lower panels
of Fig. 7 show the model results obtained on the same coarse mesh using a single porosity (SP) approach, i.e., by
assuming ΨL=ΨT=φ=0.78. In this case, resistances are significantly underestimated by the model, which provides
unreliable results compared to both the reference simulation and the dual porosity model.

In Fig. 8, the results from the different approaches are compared in terms of water discharge flowing through three
cross-sections located along the urban area (cross-sections are indicated as S1, S2, and S3 in the central panel of
Fig. 7). With respect to the reference simulation (thick solid lines in Fig. 8), the SP approach (dotted lines in Fig. 8)
overestimates the discharge hydrographs at all the three cross-sections (flow rates are up to three times greater than
in the reference simulation). Resistances are underestimated in the SP approach; in fact, while the single porosity
is set to correctly reproduce the storage capacity of the urban medium, it does not allow accounting for the reduced
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Figure 7: Test 3: unsteady flow through an urban layout with buildings and garden yards surrounded by walls, simulated using a high resolution
grid (upper panels), the dual porosity model (middle panels), and the single porosity approach (lower panels). The results are reported in terms of
flow depth at different time instants.

connectivity owing to the garden walls. The dual porosity approach (dashed lines in Fig. 8) well reproduces the overall
trend of discharges at the three cross-sections. The discrepancies between the results from the dual porosity approach
and the reference simulation can be explained considering that the sub-grid approach disregards important processes
that affect the flow dynamics at the local scale, for example the time actually needed by water to fill garden-yards
characterized by relatively small openings.

Finally, to test the mesh-independence of the proposed approach, two additional simulations are run with the dual
porosity model using different meshes with approximately the same resolution (Fig. 9). The propagation speed of
the wetting front and the flow field features are preserved notwithstanding the kind of mesh actually used. The mesh
independence is confirmed also by some additional simulations (not shown in the paper) in which the dimensions of
the structured computational elements within the urban layout are doubled in the L direction, and the diagonals are
swapped.

3.4. Comparison with laboratory experiment under steady flow conditions

As a final test, the performance of the dual porosity model is evaluated with respect to one of the laboratory
experiments described in Velickovic et al. (2017). It has to be said that the flow conditions in this “Test 4” are partly
beyond the scope of the Finite Element model used in the present study. In fact, the idealized urban layout here
considered forces subcritical to supercritical transitions in the flow (Froude number, F = |u| /

√

gd, up to about 2.0 is
found in the simulated flow field), which entails the occurrence of hydraulic jumps and oblique shock waves. Such
an application can be viewed as an opportunity to shed light on both the strengths and the limitations of the present
model.
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Figure 8: Test 3: water discharge computed in the reference simulation (solid lines), with the dual porosity subgrid model (dashed lines) and with
the single porosity approach (dotted lines) at the three cross-sections located in the central panel of Fig. 7 (S1 in black, S2 in red, S3 in green).

Among the many urban layouts tested by Velickovic et al. (2017), the “layout B wide rotated” (Fig. 10) is here
chosen. In the experimental set-up, Velickovic et al. (2017) placed an array of 5×5 square wooden blocks at the centre
of a 3.6 m wide flume, in order to represent buildings (Fig. 10a). The blocks formed a network of perpendicular streets
with different widths along, respectively, the L and the T principal directions (Fig. 10b). The selected experiment is
particularly suitable to test the present model for a twofold reason, i) the pattern of idealized buildings is characterized
by anisotropy (Fig. 10b) and, ii) the mutually orthogonal principal directions (L −T), as determined by the orientation
of the streets, are rotated clockwise by 22.5 degrees with respect to the direction of the main channel (i.e., the x axis
of the model frame).

As in the numerical experiments described above, and similarly to Velickovic et al. (2017), the parameters of
the dual porosity approach are assumed constant within the patch of urban area, and are estimated geometrically.
According to the dimensions reported in Fig. 10b, the storage porosity is φ = 0.4375 (actually, this parameter does not
play any significant role in this test as the comparison with experimental data is drawn under steady state conditions).
According to the definitions sketched in Fig. 2b, the conveyance porosities are computed as the ratio between the width
of the streets to the total width of the urban layout along the L and T directions, to give ΨL = 0.2647 and ΨT = 0.1525;
principal axes are oriented at α = −22.5◦ to the model frame.

Considering that the flume is characterized by smooth walls, Manning roughness coefficients are assumed equal
to nL = nT = 0.01 m−1/3s as in Velickovic et al. (2017). The macro-roughness height is ar = 0.001 m; in this way, the
subgrid model for irregular topography plays a negligible role on the computations.

In Velickovic et al. (2017), the “layout B wide rotated” is tested with two different flow discharges, respectively
Q=75 and Q=100 l/s; here, only Q=75 l/s is considered, as for Q=100 l/s the maximum Froude numbers are significantly
larger, and the overall flow conditions become prohibitive for the Finite Element model.

The numerical simulations, starting with water at rest, are protracted in time until steady state conditions are
attained. First, the classical SWEs are solved over a refined computational mesh with cell-sides about 0.02 m long
within the patch of urban area. The computed water surface profiles are shown in Fig. 11 (blue lines), where they are
compared with experimental data from Velickovic et al. (2017) (black lines). Both the modelled and the measured
profiles are extracted along Profile 1 (panel a) and Profile 4 (panel b); the location of these profiles are shown in the
plan view of Fig. 10. The model results are in fair agreement with experimental data, yet the water depth upstream of
the urban layout is underestimated.

As a first remark, the mesh used in the present study is by far coarser than that used by Velickovic et al. (2017) to
simulate the experimental data successfully. Indeed, it has to be recalled that the Finite Element numerical scheme is
not intended for high-resolution computation of rapidly varying (in space as in time) flows. A further increase in the
mesh resolution can only be seen as a theoretical exercise, which is meaningless in terms of practical applications of
the present Finite Element model. Moreover, the numerical scheme here used is not expected to deal with supercritical
flows effectively.

The dual porosity approach presented in Sect. 2.2 is then applied using a coarser mesh with cell-sides about 0.1 m
long within the patch of urban area. Compared with experimental data, the results from the dual porosity approach (red
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Figure 9: Test 3: unsteady flow through an urban layout with buildings and garden yards surrounded by walls, simulated using the dual porosity
model on different meshes with the same resolution (upper panels). The results are reported in terms of flow depth at 60 min (middle panels) and
at 100 min (lower panels).

lines in Fig. 11) are significantly poorer than those obtained by solving the classical SWEs over the finer mesh. This
is in line with Velickovic et al. (2017), who also obtained considerably poorer results using their subgrid model based
on directional dependent drag coefficients that were calibrated using data from different experimental conditions (see
Fig. 20a,b in Velickovic et al., 2017). The reason why the results from the dual porosity model are so unsatisfactory
is investigated in the following.

It has to be noted that the two additional blocks placed beside the idealized urban layout to prevent the flow from
by-passing it (black areas in Fig. 10a) significantly affect the flow field. Practically, water surface elevation is much
higher upstream of these blocks than just downstream of them. A significant fraction of water is expected to flow
through the shorter paths linking the upstream to the downstream part of the flume (red solid lines in Fig.12); along
these lines, the mean free-surface gradient is in fact the largest. However, both these paths are characterized by narrow
branches (those aligned with the T direction) and by 90° bends, which are known to cause significant head losses
(Arrault et al., 2016; El Kadi Abderrezzak et al., 2011; Luo et al., 2018; Mignot et al., 2008; Rivière et al., 2011,
2014; Weber et al., 2001). Hence, most of the water flows along the wider streets, i.e., along the L principal direction
(Fig. 10).

The above consideration holds for the experimental setup and also for the numerical results obtained by solving the
classical SWEs over the refined mesh. The picture is dramatically different when using subgrid porosity models. As
porosity parameters are kept constant within the entire patch of urban area, water can flow through the area occupied
by the two green blocks in Fig. 12 experiencing the same resistance it experiences elsewhere in the urban area, i.e.,
water can flow through significantly shorter and straight paths than in the real case. This entails a significant reduction
of the overall resistance, and thus a lower water surface elevation upstream of the urban layout.
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Figure 10: Test 4: plane view of the “layout B wide rotated” as described in Velickovic et al. (2017). a) The urban layout located at the center of
the flume, with gray areas denoting buildings and black areas denoting two additional blocks placed beside the idealized urban layout to prevent the
flow from by-passing it. b) Street width and dimensions of the squared blocks used to simulate buildings (in meters).
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Figure 11: Test 4: water depth profiles along profile 1 and 4 (panel a and b, respectively) for the “layout B wide rotated” laboratory experiment
described in Velickovic et al. (2017). The black lines denote measured experimental data. Model results refer to classical SWEs solved using a high
resolution grid (blue lines) and to the dual porosity model (red lines); green lines are obtained by excluding from the computational mesh the two
buildings (green squares in Fig. 12) adjacent to the additional blocks.

To prove this fact, an additional simulation is run by excluding from the mesh the computational elements covering
the two green blocks in Fig. 12. In this way, the shortest paths from the upstream to the downstream part of the flume
are similar in the simulation relying on the subgrid models as in the experiments. The model results, shown as green
solid lines in Fig. 11, well reproduce the measured water surface profiles from a macroscopic point of view.

The need of modifying the computational mesh to obtain reliable results highlights a crucial aspect in the use
of subgrid models for urban areas. Specifically, the flow field cannot be well reproduced using a subgrid approach
(which in fact provide only a macroscopic description of the flow field) when the flow field is crucially affected by
hydrodynamic effects acting locally at the building spatial scale.

4. Discussion and conclusions

In the present study, a dual porosity model for urban floods was developed and implemented within the framework
of a Finite Element numerical scheme that solves the Shallow Water Equations on unstructured, staggered meshes. It
was then validated by comparing the model results with numerical reference solutions and with data from a laboratory
experiment.

Undoubtedly, the model presented in this study has a number of limitations, owing partly to the numerical
framework in which the subgrid porosity model has been implemented, and partly to the subgrid dual porosity model
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Figure 12: Test 4: shortest flow paths linking the upstream with the downstream part of the flume in the “layout B wide rotated” (red solid lines) and
in the subgrid model representation when using constant porosity coefficients within the urban area (red dashed lines). The two buildings coloured
in green are then excluded from the computational mesh in order to highlight the role played by the change in shorter paths when passing from the
explicit simulation of buildings to the use of the subgrid model.

itself. Concerning the first point, the Finite Element numerical scheme used in this study is neither suitable to deal
with shock waves, nor with rapidly varying flows. It is in fact well-known that, in the case of supercritical flows,
shock capturing models solving the full SWEs must be used to account for depth and velocity variations at the building
scale (Costabile et al., 2017; Sanders et al., 2008). As for the second point, the porosity treatment of the urban
medium is likely too simplistic to capture the complexity of real urban settlements under general conditions. The
use of two principal directions to model conveyance porosity may reveal as a poor framework to characterize the
actual directional dependence of resistance due to buildings and obstacles. For example, in urban layouts with aligned
buildings, resistances are greater when the flow direction is not aligned with any of the principal directions (i.e., the
street directions); this is due to building drag, head losses in crossways and, on average, longer pathways. Suitable
amplification coefficients could be introduced that depend on the flow direction, similar to that proposed by Velickovic
et al. (2017) and discussed by Guinot (2017b).

Moreover, for real urban layouts, the evaluation of effective values of conveyance porosity is undoubtedly a hard
task from both the geometric and hydraulic points of view. In the present study, porosity values and principal directions
were determined at a district level. This choice was justified by the fact that the considered urban layouts were relatively
small and their properties quite homogeneous. In principle, porosities and principal directions could be evaluated
from the underlying geometry at a cell level, i.e., on an element-by-element basis. Further research is needed.

Notwithstanding these limitations, the results provided by the dual porosity model are promising. The comparison
with numerical reference simulations obtained by solving the classical 2D SWEs on high-resolution grids showed
that the dual porosity model accounts for the effects exerted by urban layouts on the flow field properly, and without
the need of calibration. The use of computational meshes with different resolutions confirmed that the dual porosity
subgrid model is not oversensitive to mesh design, also in presence of anisotropic porosity fields. The comparison
with laboratory experiments confirmed the effectiveness of the proposed model, even if the simulated conditions were
partly beyond the scope of the Finite Element model owing to the presence of patches of supercritical flows.

Acknowledgements. Francesco Ballarin is gratefully acknowledged for carrying out preliminary simulations and
model testing.

Appendix A. Numerical model implementation.

Following Defina (2003) and Viero and Valipour (2017), convection is treated using a semi-implicit mixed Eulerian-
Lagrangian approach. In Eqs. (1) and (2), the material derivatives are replaced by their finite difference formulation
according to Eq. (15), and the energy dissipation due to bottom shear stress is expressed as in Eq. (16). Suitably
rearranged, Eqs. (1) and (2) become
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C1qx + C2qy = −
∂h
∂x
+ Fx

C2qx + C3qy = −
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(A.1)

where

C1 =
Axx

g∆t
+ Rxx

C2 =
Axy

g∆t
+ Rxy

C3 =
Ayy

g∆t
+ Ryy

Fx =
ucx0

g∆t
+

1

gY

(

Rexx + Rexy
)

Fy =
ucy0

g∆t
+

1

gY

(

Rexy + Reyy
)

(A.2)

In the above equations, the effective velocity at the departure point along the Lagrangian trajectory, uc0 =

(ucx0, ucy0) (see Sect. 2.1 and Defina, 2003), can be evaluated as u0 = Aq0, where the flow rate per unit width q0 again
refers to the departure point at the previous time step.

The flow rates per unit width qx and qy can be isolated from Eqs. (A.1), to yield

qx = Ψxx

∂h
∂x
+ Ψxy

∂h
∂y
+ Φx

qy = Ψyx

∂h
∂x
+ Ψyy

∂h
∂y
+ Φy

(A.3)

where

Ψxx =
−C3

C1C3 − C2
2

Ψxy =
C2

C1C3 − C2
2

= Ψyx

Ψyy =
−C1

C1C3 − C2
2

Φx = −ΨxxFx − ΨxyFy

Φy = −ΨxyFx − ΨyyFy

(A.4)

Under the assumption of slow varying flow, the momentum equations along the x− and y−axes are easily linearised
by estimating the above coefficients Ψ and Φ at the previous time step. Alternatively, a mildly non-linear system can
be efficiently solved following Casulli and Zanolli (2012).

The flow rates qx and qy , as they appear in Eqs. (A.3), are introduced in the continuity equation (3), leading to a
diffusive-like, second order, partial differential equation (Defina, 2003). The continuity equation (3) is solved through
a standard finite element Galerkin method, to yield a symmetric, positive-definite linear system with unknown the
nodal free-surface elevations h. Finally, flow rates qx and qy are computed by back substitution of h into Eqs. A.3.
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