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Abstract. Let w be a group-word. Suppose that the set of all
w-values in a profinite group G is contained in a union of countably
many cosets of subgroups. We are concerned with the question to
what extent the structure of the verbal subgroup w(G) depends on
the properties of the subgroups. We prove the following theorem.

Let C be a class of groups closed under taking subgroups, quo-
tients, and such that in any group the product of finitely many
normal C-subgroups is again a C-subgroup. If w is a multilinear
commutator and G is a profinite group such that the set of all w-
values is contained in a union of countably many cosets giGi, where
each Gi is in C, then the verbal subgroup w(G) is virtually-C.

This strengthens several known results.

1. Introduction

A covering of a group G is a family {Si}i∈I of subsets of G such
that G =

⋃
i∈I Si. The famous result of B.H. Neumann states that if

{Si} is a finite covering of G by cosets of subgroups, then G is actually
covered by the cosets Si corresponding to subgroups of finite index in
G [9]. Therefore whenever a group G is covered by finitely many cosets
of subgroups it is natural to expect that some structural information
about G can be deduced from the properties of the subgroups. In other
words, the general question is to what extent properties of the covering
subgroups impact the structure of G.

In recent years some “verbal” variations of these questions became
a subject of research activity. Given a group-word w = w(x1, . . . , xn),
we think of it primarily as a function of n variables defined on any given
group G. We denote by w(G) the verbal subgroup of G generated by
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the values of w. When the set of all w-values in a group G is contained
in a union of finitely many subgroups (or cosets of subgroups) we wish
to know whether the properties of the covering subgroups have impact
on the structure of the verbal subgroup w(G). The present article deals
with the situation when G is a profinite group.

In the context of profinite groups all the usual concepts of group
theory are interpreted topologically. In particular, by a subgroup of
a profinite group we mean a closed subgroup. A subgroup is said to
be generated by a set S if it is topologically generated by S. Thus,
the verbal subgroup w(G) in a profinite group G is a minimal closed
subgroup containing the set of w-values. One important tool for dealing
with the “covering” problems in profinite groups is the classical Baire’s
category theorem (cf [10, p. 200]): If a locally compact Hausdorff space
is a union of countably many closed subsets, then at least one of the
subsets has non-empty interior. It follows that if a profinite group
is covered by countably many cosets of subgroups, then at least one
of the subgroups is open. Thus, in the case of profinite groups we can
successfully deal with problems on countable coverings rather than just
finite ones.

The reader can consult the articles [2, 3, 4, 6, 7, 12] for results
on countable coverings of word-values by subgroups. One of the results
obtained in [7] is that if w is a multilinear commutator and G is a
profinite group, then w(G) is finite-by-nilpotent if and only if the set
of w-values in G is covered by countably many finite-by-nilpotent sub-
groups (see Section 2 for the definition of multilinear commutator). It is
easy to see that the above result is no longer true if the set of w-values
in G is covered by countably many cosets of finite-by-nilpotent sub-
groups. This can be exemplified by any profinite group G having w(G)
virtually nilpotent but not finite-by-nilpotent. In the present article
we study groups in which the set of w-values is covered by countably
many cosets of C-subgroups, where C is a class of groups closed under
taking subgroups, quotients, and such that in any group the product
of finitely many normal C-subgroups is again a C-subgroup.

Our main result is as follows.

Theorem 1.1. Let C be a class of groups closed under taking sub-
groups, quotients, and such that in any group the product of finitely
many normal C-subgroups is again a C-subgroup. Let w be a multilin-
ear commutator word. The verbal subgroup w(G) of a profinite group
G is virtually-C if and only if the set of w-values in G is covered by
countably many cosets of C-subgroups.
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We note that many natural classes of groups have the properties
as the class C in the above theorem. For instance, C can be the class
of nilpotent, pronilpotent, locally nilpotent, or soluble groups. Fur-
ther examples include torsion groups and groups of finite rank. It is
been known for sometime that if w is a multilinear commutator and a
profinite group G has countably many soluble subgroups whose union
contains all w-values, then w(G) is virtually soluble [1, Theorem 7]. If
G has countably many torsion subgroups (or subgroups of finite rank)
whose union contains all w-values, then w(G) is torsion (or of finite
rank) [4]. Obviously, Theorem 1.1 extends these results. Moreover, in
the case where C is the class of all finite groups, we obtain that the set
of w-values in a profinite group G is countable if and only if w(G) is
finite. This was one of the main results in [5, Theorem 1.1].

A few words about the tools employed in the proof of Theorem
1.1. Rather specific combinatorial techniques for handling multilinear
commutator words were developed in [8, 4, 6]. The present article
is based on further refinements of those techniques. It seems that
any attempt to prove a result of similar nature for words that are not
multilinear commutator words would require a different approach.

2. Preliminary results

Throughout, we use the same symbol to denote a group-theoretical
property and the class of groups with that property. If C is a class
of groups, a virtually-C group is a group with a normal C-subgroup of
finite index. The class of virtually-C groups will be denoted by CF .

Let C be a class of groups closed under taking subgroups, quo-
tients, and such that in any group the product of finitely many normal
C-subgroups is again a C-subgroup. For instance C is the class of nilpo-
tent, soluble, or finite groups. The next two lemmas are analogues of
Lemma 2.2 of [7] and Lemma 2.6 of [6], respectively. Therefore we
omit their proofs.

Lemma 2.1. In any group a product of finitely many normal CF-
subgroups is again in CF .

If A is a subset of a group G, we write 〈A〉 for the subgroup
generated by A. If B is another subset, we denote by AB the set
{ab | a ∈ A and b ∈ B}.

Lemma 2.2. Let L be a subgroup of a profinite group G such that
the normalizer NG(L) is open.

(1) If L is finite, then 〈LG〉 is finite.
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(2) If L is in C and H is a normal open subgroup of G contained
in NG(L), then 〈(L ∩H)G〉 is in C.

Throughout this section w = w(x1, . . . , xn) is a multilinear com-
mutator. Multilinear commutators are words which are obtained by
nesting commutators, but using always different variables. More for-
mally, the word w(x) = x in one variable is a multilinear commutator; if
u and v are multilinear commutators involving different variables then
the word w = [u, v] is a multilinear commutator, and all multilinear
commutators are obtained in this way.

An important family of multilinear commutators is formed by so-
called derived words δk, on 2k variables, defined recursively by

δ0 = x1, δk = [δk−1(x1, . . . , x2k−1), δk−1(x2k−1+1, . . . , x2k)].

Of course δk(G) = G(k) is the k-th term of the derived series of G.
We recall the following well-known result (see for example [11,

Lemma 4.1]).

Lemma 2.3. Let G be a group and let w be a multilinear commutator
on n variables. Then each δn-value is a w-value.

If A1, . . . , An are subsets of a group G, we write

Xw(A1, . . . , An)

to denote the set of all w-values w(a1, . . . , an) with ai ∈ Ai. Moreover,
we write w(A1, . . . , An) for the subgroup 〈Xw(A1, . . . , An)〉. Note that
if every Ai is a normal subgroup of G, then w(A1, . . . , An) is normal in
G.

Let I be a subset of {1, . . . , n}. Suppose that we have a family
Ai1 , . . . , Ais of subsets of G with indices running over I and another
family Bl1 , . . . , Blt of subsets with indices running over {1, . . . , n} \ I.
We write

wI(Ai;Bl)

for w(X1, . . . , Xn), where Xk = Ak if k ∈ I, and Xk = Bk otherwise.
On the other hand, whenever ai ∈ Ai for i ∈ I and bl ∈ Bl for l ∈
{1, . . . , n}\I, the symbol wI(ai; bl) stands for the element w(x1, . . . , xn),
where xk = ak if k ∈ I, and xk = bk otherwise.

Lemma 2.4. Assume that G is a group and A1, . . . , An, H are nor-
mal subgroups of G. Let ai ∈ Ai and hi ∈ H∩Ai for every i = 1, . . . , n.
Let j ∈ {1, . . . , n} and set I = {1, . . . , n} \ {j}. Then there exists an
element

x ∈ Xw(a1(H ∩ A1), . . . , an(H ∩ An))
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such that
w(a1h1, . . . , anhn) = x · wI(aihi;hj).

Proof. The proof is by induction on the number of variables n
appearing in w. If n = 1 then w(a1h1) = a1h1 and the statement is
trivially true.

So assume that n ≥ 2 and let w = [w1, w2] where w1, w1 are multi-
linear commutators in s and n− s variables, respectively. Write

y = w(a1h1, . . . , anhn) = [y1, y2]

where y1 = w1(a1h1, . . . , ashs), and y2 = w2(as+1hs+1, . . . , anhn).
Assume also that j > s. Then by induction y2 = xh, where x ∈

Xw2(as+1(H ∩ As+1), . . . , an(H ∩ An)) and

h = w2(as+1hs+1, . . . , aj−1hj−1, hj, aj+1hj+1, . . . , anhn).

So

y = [y1, y2] = [y1, xh] = [y1, h][y1, x]h = [y1, x]h[y1,h]−1

[y1, h].

Since h̃ = h[y1, h]−1 ∈ H and ai ∈ Ai, clearly [ai, h̃] ∈ H ∩ Ai and so

(aih̃i)
h̃ = ai[ai, h̃]hh̃i ∈ ai(H ∩ Ai),

for every h̃i ∈ H ∩ Ai and every i. As x = w2(as+1h̃s+1, . . . , anh̃n), for

some h̃i ∈ H ∩ Ai, it follows that

[y1, x]h̃ = w(a1h1, . . . , ashs, as+1h̃s+1, . . . , anh̃n)h̃

= w((a1h1)h̃, . . . , (ashs)
h̃, (as+1h̃s+1)h̃, . . . , (anh̃n)h̃)

belongs to Xw(a1(H ∩ A1), . . . , an(H ∩ An)), as desired.
The case 1 ≤ j ≤ s is similar. By induction y1 = xh, where

h = w1(a1h1, . . . , aj−1hj−1, hj, aj+1hj+1, . . . , ashs)

and x ∈ Xw1(a1(H ∩ A1), . . . , as(H ∩ As)). So

y = [y1, y2] = [xh, y2] = [x, y2]h[h, y2].

Note that h ∈ H and ai ∈ Ai, therefore, as above, (aih̃i)
h ∈ ai(Ai ∩H)

for every h̃i ∈ H ∩ Ai and every i. So

[x, y2]h ∈ Xw(a1(H ∩ A1), . . . , an(H ∩ An))

and the result follows. �

Lemma 2.5. Let H,A1, . . . , An be normal subgroups of a group G.
Let V be a subgroup of G and g ∈ G. Assume that for some elements
ai ∈ Ai, the following holds:

Xw(a1(H ∩ A1), . . . , an(H ∩ An)) ⊆ gV.



6 E. DETOMI, M. MORIGI, AND P. SHUMYATSKY

Let I be a proper subset of {1, . . . , n}. Then

wI(ai(H ∩ Ai);H ∩ Al) ≤ V.

Proof. The proof is by induction on n− |I|, so first assume that
I = {1, . . . , n} \ {j} for some index j.

We will write for short Hi = H ∩ Ai, for every i = 1, . . . , n.
Consider w(g1, . . . , gn), where gi ∈ aiHi for every i 6= j and gj ∈ Hj.

By Lemma 2.4 we have

w(g1, . . . , gj−1, ajgj, gj+1, . . . , gn) = xw(g1, . . . , gn),

for some x ∈ Xw(a1H1, . . . , anHn) ⊆ gV . As

w(g1, . . . , ajgj, . . . , gn) ∈ Xw(a1H1, . . . , anHn),

it follows that w(g1, . . . , gn) ∈ V . Since V is subgroup, we deduce that
wI(aiHi;Hl) ≤ V and this concludes the case |I| = n− 1.

Now assume that |I| ≤ n − 2 and let I∗ = I ∪ {j} for some j /∈ I.
Consider w(g1, . . . , gn), where gi ∈ Hi for every i ∈ I and gi ∈ aiHi

for every i 6∈ I. Then the element w(g1, . . . , gj−1, ajgj, gj+1, . . . , gn)
belongs to wI∗(aiHi;Hl). By Lemma 2.4 we have

w(g1, . . . , gj−1, ajgj, gj+1, . . . , gn) = xw(g1, . . . , gn),

for some

x ∈ Xw(g1H1, . . . , gj−1Hj−1, ajHj, gj+1Hj+1, . . . , gnHn).

In particular x ∈ wI∗(aiHi;Hl). Since, by induction, wI∗(aiHi;Hl) ≤
V , it follows that w(g1, . . . , gn) ∈ V , as we wanted. The proof is
complete. �

By applying the previous lemma with I = ∅ and Ai = G for each i,
we obtain the following corollary.

Corollary 2.6. Let G be a group, H and V subgroups of G, and
g ∈ G. Assume that H is normal and

Xw(a1H, . . . , anH) ⊆ gV

for some elements a1, . . . , an ∈ G. Then w(H) ⊆ V .

The next lemma is Lemma 4.1 in [6].

Lemma 2.7. Let A1, . . . , An and H be normal subgroups of a group
G. Let I be a subset of {1, . . . , n}. Assume that for every proper subset
J of I

wJ(Ai;H ∩ Al) = 1.



COVERINGS BY COSETS 7

Suppose we are given elements gi ∈ Ai with i ∈ I and elements hk ∈
H ∩ Ak with k ∈ {1, . . . , n}. Then we have

wI(gihi;hl) = wI(gi;hl).

We will now introduce some more notation to handle some partic-
ular properties of multilinear commutators. We denote by I the set of
n-tuples (i1, . . . , in), where all entries ik are non-negative integers. We
will view I as a partially ordered set with the partial order given by
the rule that

(i1, . . . , in) ≤ (j1, . . . , jn)

if and only if i1 ≤ j1, . . . , in ≤ jn.
Given i = (i1, . . . , in) ∈ I, we write

w(i) = w(G(i1), . . . , G(in))

for the subgroup generated by the w-values w(g1, . . . , gn) with gj ∈
G(ij). Further, let

w(i+) =
∏

w(j),

where the product is taken over all j ∈ I such that j > i.

Lemma 2.8. [4, Corollary 6] Let w = w(x1, . . . , xn) be a multilinear
commutator and let i ∈ I. If w(i+) = 1, then w(i) is abelian.

The following lemma is Proposition 7 in [4].

Lemma 2.9. Let i = (i1, . . . , in) ∈ I and suppose that w(i+) = 1. If
aj ∈ G(ij) for j = 1, . . . , n, and bs ∈ G(is) then

w(a1, . . . , as−1, bsas, as+1, . . . , ak)

= w(ã1, . . . , ãs−1, bs, ãs+1, . . . , ãk)w(a1, . . . , as−1, as, as+1, . . . , ak),

where ãj is a conjugate of aj and moreover ãj = aj if ij ≤ is .

Corollary 2.10. Assume that w(i+) = 1 and let aj ∈ G(ij) for
j = 1, . . . , n. Let l be an integer. Then w(a1, . . . , an)l = w(b1, . . . , bn)
for some b1, . . . , bn with bj ∈ G(ij).

Proof. Let is be maximal among all ij’s, with j = 1, . . . , k. Note
that by Lemma 2.9 for every aj ∈ G(ij), where j = 1, . . . , n, and every
bs ∈ G(is) we have:

w(a1, . . . , as−1, bsas, as+1, . . . , ak)

= w(a1, . . . , as−1, bs, as+1, . . . , ak)w(a1, . . . , as−1, as, as+1, . . . , ak).

It follows that

w(a1, . . . , as−1, as, as+1, . . . , ak)l = w(a1, . . . , as−1, a
l
s, as+1, . . . , ak)

for every integer l. This proves the result. �
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Recall that an element of a group G is called an FC-element if it
has only finitely many conjugates in G. The next result is Lemma 2.7
in [7].

Lemma 2.11. Let G = 〈H, a1, . . . , as〉 be a profinite group, where
H is an open abelian normal subgroup and a1, . . . , as are FC-elements.
Then G′ is finite.

3. Proof of the main theorem

Recall that C is a class of groups closed under taking subgroups,
quotients, and such that in any group the product of finitely many
normal C-subgroups is again a C-subgroup.

Throughout this section we will work under the following hypothe-
sis:

Hypothesis 3.1. Let w = w(x1, . . . , xn) be a multilinear commu-
tator and let G be a profinite group in which the set of w-values is
contained in a union of countably many cosets tiGi of subgroups Gi,
where each Gi ∈ C.

Lemma 3.2. Assume Hypothesis 3.1. Then G contains an open
normal subgroup H such that w(H) is in C.

Proof. For each positive integer i consider the set

Si = {(g1, . . . , gn) ∈ G× · · · ×G | w(g1, . . . , gn) ∈ tiGi}.
Note that the sets Si are closed in G × · · · × G and cover the whole
group G × · · · × G. By the Baire category theorem at least one of
these sets has non-empty interior. Hence, there exist an open normal
subgroup H of G, elements a1, . . . an ∈ G, and an integer j such that
w(a1H, . . . , anH) ⊆ tjGj. By Corollary 2.6 we have w(H) ≤ Gj, so the
result follows. �

Lemma 3.3. Assume Hypothesis 3.1 and let a ∈ G be a w-value.
There exists a normal open subgroup Ha in G such that [Ha, a] is in C.

Proof. For each positive integer i let

Si = {x ∈ G | ax ∈ tiGi}.
Note that the sets Si are closed in G and cover the whole group G. By
the Baire category theorem at least one of these sets has non-empty
interior. Hence, there exist an open normal subgroup H of G, an
element b ∈ G, and an integer j such that ahb ∈ tjGj for any h ∈ H.
Of course we can assume that tj = ab, so that a−bahb ∈ Gj for every
h ∈ H. Thus a−1ah ∈ Gb

j for every h ∈ H. Hence, [a,H] = [H, a] ≤ Gb
j

is in C. �
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Recall that G(i) denotes the i-th term of the derived series of a
group G.

Proposition 3.4. Assume Hypothesis 3.1. Then G(2n) is in CF .

Proof. By Lemma 3.2 there exists an open normal subgroup H
such that w(H) is in C. Lemma 2.3 implies that H(n) is in C. Let K =
G(n) and L = K ∩H. Note that L is open in K. Choose a finite set of
δn-values a1, . . . , as such that K = 〈L, a1, . . . , as〉 and let Ha1 , . . . , Has

be normal open subgroups of G such that [Haj , aj] is in C for every j (see
Lemma 3.3). Note that for each j the subgroup [Haj , aj] is a normal
subgroup of Haj so 〈[Haj , aj]

G〉 is in C. Let N1 ≤ K be the subgroup

generated by L(n) and the subgroups 〈[Haj , aj]
G〉 for j = 1, . . . , s. Note

that N1 is in C. The images of a1, . . . , as in the quotient G/N1 are
FC-elements while the image of L in G/L′ is abelian. Therefore by
Lemma 2.11 the group KN1/L

′N1 has finite derived group. In other
words L′N1 has finite index in K ′N1. In particular there exist finitely
many δn-values b1, . . . , bt such that K ′N1 = 〈L′, b1, . . . , bt, N1〉.

As above, there exist normal open subgroups Hb1 , . . . , Hbt of G such
that 〈[Hbj , bj]

G〉 is in C for every j. Let N2 be the subgroup generated
by N1 and the subgroups 〈[Hbj , bj]

G〉 for j = 1, . . . , t. Note that N2 is
in C. Again, b1N2, . . . , btN2 are FC-elements in G/N2 and arguing as
before we obtain that L(2)N2 has finite index in K(2)N2. By iterating
this argument we get that L(n)Nn has finite index in K(n)Nn for some
normal C-subgroup Nn, so L(n)(K(n) ∩ Nn) has finite index in K(n) =
G(2n). As L(n) ≤ H(n) is in C it follows that G(2n) is in CF , as desired.

�

Recall the notation introduced in Section 2: whenever I is a subset
of {1, . . . , n} and Ai1 , . . . , Ais and Bl1 , . . . , Blt are families of subsets of
G with indices running over I and {1, . . . , n}\ I, respectively, we write

wI(Ai;Bl)

for the subgroup w(X1, . . . , Xn), where Xk = Ak if k ∈ I, and Xk = Bk

otherwise. Moreover, whenever ai ∈ Ai for i ∈ I and bl ∈ Bl for l ∈
{1, . . . , n}\I, the symbol wI(ai; bl) stands for the element w(x1, . . . , xn),
where xk = ak if k ∈ I, and xk = bk otherwise.

Furthermore, given i = (i1, . . . , in) ∈ I, we write

w(i) = w(G(i1), . . . , G(in))

for the subgroup generated by the w-values w(g1, . . . , gn) with gj ∈ G(ij)

and we set w(i+) =
∏
w(j), where the product is taken over all j ∈ I

such that j > i.
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Lemma 3.5. Assume Hypothesis 3.1. Let A1, . . . , An be normal
subgroups of G and let I be a proper subset of {1, . . . , n}. Assume that
there exist a normal CF-subgroup T of G and an open normal subgroup
H such that:

(*) wJ(Ai;H ∩ Al) ≤ T for every proper subset J of I.

Then for any given set of elements {gi}i∈I , where gi ∈ Ai, there exist
an open normal subgroup U of G, contained in H, and a normal CF-
subgroup N of G, containing T , such that

wI(gi;U ∩ Al) ≤ N.

Proof. Consider the sets

Sj = {(h1, . . . , hn) | hk ∈ H ∩ Ak and wI(gihi;hl) ∈ gjGj}.
Note that the sets Sj are closed in the group (H ∩A1)×· · ·× (H ∩An)
and cover the whole group. By the Baire category theorem at least
one of these sets has non-empty interior. Hence, there exist an integer
r, open subgroups Vk of H ∩ Ak, and elements bk ∈ H ∩ Ak for every
k = 1, . . . , n such that

wI(gibivi; blvl) ∈ trGr,

for every vi ∈ Vi. Each subgroup Vk is of the form Vk = Uk ∩H ∩ Ak

where Uk is an open subgroup of G and we can assume that Uk is
normal in G. Let U = U1 ∩ · · · ∩ Un ∩ H. Note that U is an open
normal subgroup of G contained in H. Thus

wI(gibiui; blul) ∈ trGr,

for every ui ∈ U ∩ Ai. Now we apply Lemma 2.5 to pass from the
cosets bl(U ∩ Al) to the subgroups U ∩ Al, for every l /∈ I. It follows
from Lemma 2.5 that the subgroup

K = wI(gibi(U ∩ Ai);U ∩ Al)

is contained in Gr and so it is in CF . Note that K ≤ U . Since U has
finite index in G and normalizes K, by Lemma 2.1, 〈KG〉 is in C.

Set N = T 〈KG〉 and note that N ∈ C. Using (*) and the fact that
T ≤ N and bi(U ∩Ai) ⊆ H ∩Ai, we can apply Lemma 2.7 to the group
G/N . Therefore

wI(gi;U ∩ Al)N = wI(gibi(U ∩ Ai);U ∩ Al)N.

Since wI(gibi(U ∩ Ai);U ∩ Al) ≤ N , we deduce that

wI(gi;U ∩ Al) ≤ N,

as desired. �
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Lemma 3.6. Assume Hypothesis 3.1. Let A1, . . . , An be normal
subgroups of G and let I be a proper subset of {1, . . . , n}. Assume that
there exist a normal CF-subgroup T of G and an open normal subgroup
H such that:

(*) wJ(Ai;H ∩ Al) ≤ T for every proper subset J of I.

Then there exist an open normal subgroup U of G, contained in H, and
a normal CF-subgroup N of G, containing T , such that

wI(Ai;U ∩ Al) ≤ N.

Proof. For each i ∈ I choose a set Ri of coset representatives of
H ∩Ai in Ai. Note that all those sets are finite. We apply Lemma 3.5
to each choice of elements ḡ = {gi}i∈I , with gi ∈ Ri: let Uḡ and Nḡ be
normal subgroups of G such that wI(gi;Uḡ ∩ Al) ≤ Nḡ. The existence
of the subgroups Uḡ and Nḡ is guaranteed by Lemma 3.5. Remark that
there are only a finitely many subgroups Uḡ and Nḡ. Then U = ∩ḡUḡ

is a normal open subgroup of G contained in H and N =
∏

ḡNḡ is a
normal CF -subgroup containing T , such that

wI(gi;U ∩ Al) ≤ N

for every choice of gi ∈ Ri. Note that, by condition (*) and Lemma
2.7,

wI(gi(H ∩ Ai);U ∩ Al) = wI(gi;U ∩ Al) ≤ N.

Since Ai = ∪gi∈Ri
gi(H ∩ Ai) for every i ∈ I, we conclude that

wI(Ai;U ∩ Al) = 〈∪ḡwI(gi(H ∩ Ai);U ∩ Al)〉 ≤ N,

as desired. �

Lemma 3.7. Assume Hypothesis 3.1. Assume that there exist an n-
tuple i ∈ I, a normal CF-subgroup T of G and an open normal subgroup
H such that:

• w(i+) ≤ T .
• w(H) ≤ T.

Then w(i) is in CF .

Proof. Let i = (i1, . . . , in). We will write for short

Aj = G(ij),

for every j = 1, . . . , n. It is enough to prove the following statement:
for every subset I of {1, . . . , n}, there exist an open normal subgroup
UI of G contained in H and a normal CF -subgroup NI containing T
such that wI(Ai;UI ∩ Al) ≤ NI .
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The proof is by induction on the size k of I. If k = 0, then I = ∅
and

w∅(Ai;H ∩ Ai) = w(H ∩ A1, . . . , H ∩ An) ≤ w(H) ≤ T.

So assume k > 0. Let J1, . . . Js be all the proper subsets of I. By
induction, for each t = 1, . . . , s there exist an open normal subgroup Ut

of G contained in H and a normal CF -subgroup Nt containing T such
that wJt(Ai;Ut ∩ Al) ≤ Nt. Let U = ∩tUt and N = 〈Nt|t = 1, . . . , s〉.
Then

wJ(Ai;U ∩ Al) ≤ N

for every proper subset J of I.
If k 6= n we can apply Lemma 3.6 to I. We obtain that there exist

an open normal subgroup UI of G contained in H and a normal CF -
subgroup NI containing T such that wI(Ai;UI ∩ Al) ≤ NI , as desired.

So we are left with the case when k = n, and thus, by definition,
w(A1, . . . , An) = w(i).

For each i ∈ I choose a set Ri of coset representatives of H ∩ Ai

in Ai. Note that all those sets are finite. We pass to the quotient
Ḡ = G/N . By Lemma 2.7 for each choice of elements ḡ1, . . . , ḡn with
ḡi ∈ R̄i and for each h̄1, . . . , h̄n ∈ Ū ∩ Āi, we have

w(ḡ1h̄1, . . . , ḡnh̄n) = w(ḡ1, . . . , ḡn).

So the set

Xw(Ā1, . . . , Ān)

is finite.
By Lemma 2.10 every power of an element in Xw(Ā1, . . . , Ān) is

again in Xw(Ā1, . . . , Ān). So every element in Xw(Ā1, . . . , Ān) has finite
order. Therefore w(Ā1, . . . , Ān) is generated by finitely many elements
of finite order, and being abelian by Lemma 2.8, it is actually finite. It
follows that w(A1, . . . , An) is in CF , as desired. �

We are now ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1 Obviously, if w(G) is in CF then the set of
w-values in G is covered by countably many cosets of C-subgroups.
Therefore we only need to show that if the set of w-values is covered
by countably many C-subgroups then w(G) is in CF .

Thus, assume that the set of w-values in G is covered by countably
many C-subgroups. Proposition 3.4 states that G(2n) is in CF .

Let H be as in Lemma 3.2. Then w(H) is in C. Let T = G(2n)w(H).
Then T is in CF by Lemma 2.1. Since G(2n) ≤ T it follows that G/T
is soluble.
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Thus there exist only finitely many i ∈ I such that w(i)T/T 6= 1.
By induction on the number of such n-tuples i, we will prove that every
subgroup w(i) is in CF .

Choose i = (i1, . . . , in) ∈ I such that w(i)T/T 6= 1 while w(j)T/T =
1 whenever i < j. Now we apply Lemma 3.7 and we obtain that w(i)
is in CF . Let N = w(i)T . Then induction on the number of j ∈ I such
that w(j) 6≤ N leads us to the conclusion that w(G) is in CF . �
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