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Abstract. We consider the problem of modelling the term structure of defaultable bonds, under

minimal assumptions on the default time. In particular, we do not assume the existence of a default

intensity and we therefore allow for the possibility of default at predictable times. It turns out that

this requires the introduction of an additional term in the forward rate approach by Heath, Jarrow

and Morton (1992). This term is driven by a random measure encoding information about those

times where default can happen with positive probability. In this framework, we derive necessary

and sufficient conditions for a reference probability measure to be a local martingale measure for

the large financial market of credit risky bonds, also considering general recovery schemes.

1. Introduction

The study of the evolution of the term structure of bond prices in the presence of default risk

typically starts from a forward rate model similar to the classical approach of Heath, Jarrow and

Morton (HJM) in [30]. In this approach, bond prices are assumed to be absolutely continuous

with respect to the lifetime of the bond (maturity). This assumption is typically justified by the

argument that, in practice, only a finite number of bonds are liquidly traded and the full term

structure is obtained by interpolation, hence is smooth.

In markets with default risk, however, discontinuities are the rule rather than the exception:

the seminal work of Merton [44] clearly shows such a behavior, as do many other structural models

(see, e.g., [3, 27, 28]). A default event usually occurs in correspondence of a missed payment

by a corporate or sovereign entity and, in many cases, the payment dates are publicly known in

advance. The missed coupon payments by Argentina on a notional of $29 billion (on July 30,

2014; see [31]) and by Greece on a notional of e1.5 billion (on June 30, 2015; see [14]) are prime

examples of credit events occurring at predetermined payment dates. It is therefore natural to

expect the term structure of default risky bonds to exhibit discontinuities in correspondence of

such payment dates.1

On the other side, reduced-form models (see [2, 12, 19, 34, 42] for some of the first works in

this direction) are less ambitious about the precise mechanism leading to default and neglect this

phenomenon. Reduced-form models generally assume the existence of a default intensity, thus

implying that the probability of the default event occurring at any predictable time vanishes.

Accordingly, reduced-form HJM-type models for defaultable term structures typically postulate

that, prior to default, bond prices are absolutely continuous with respect to maturity, i.e., under
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the assumption of zero recovery, credit risky bond prices P pt, T q are described by

(1.1) P pt, T q “ 1tτątu exp

ˆ

´

ż T

t
fpt, uqdu

˙

,

with τ denoting the random default time and pfpt, T qq0ďtďT an instantaneous forward rate. This

approach has been studied in numerous works and up to a great level of generality, beginning with

the first works [13, 36, 50, 51] and extended in various directions in [15, 16, 45, 49] (see [4, Chapter

13] for an overview of the relevant literature).

It turns out that, assuming absence of arbitrage, the presence of predictable times at which

the default event can occur with strictly positive probability is incompatible with an absolutely

continuous term structure of the form (1.1). This fact, already pointed out in 1998 in [51], has

motivated more general approaches such as [3] and [25] (see Section 3.6 for an overview of the

related literature). In particular, in the recent paper [25], the classical reduced-form HJM ap-

proach is extended by allowing the default compensator to have an absolutely continuous part,

corresponding to a default intensity, as well as a discontinuous part with a finite number of jumps.

The presence of jumps allows the default event to occur with strictly positive probability at the

predictable jump times, which in [25] are assumed to be revealed in advance in the market. In

this context, in order to exclude arbitrage possibilities, the term structure equation (1.1) has to

be extended by introducing discontinuities in correspondence of those times.

In the present paper, we introduce a general framework for the modelling of defaultable term

structures under minimal assumptions, going significantly beyond the intensity-based approach

and generalizing the setting of [25]. More specifically, we refrain from making any assumption on

the default time τ as well as on the default compensator, allowing in particular the default event

to occur with strictly positive probability at predictable times. To the best of our knowledge,

previous approaches to the modelling of defaultable term structures have always imposed some

assumptions on τ . A natural and general way to represent the term structure of credit risky

bonds, also allowing for discontinuities, is to extend (1.1) to the following specification:

(1.2) P pt, T q “ 1tτątu exp

ˆ

´

ż T

t
fpt, uqdu´

ż

pt,T s
gpt, uqµtpduq

˙

,

where pµtpduqqtě0 is a measure-valued process with possibly singular and jump parts and where

pfpt, T qq0ďtďT and pgpt, T qq0ďtďT are two random fields representing instantaneous forward rates.

The additional term
ş

pt,T s gpt, uqµtpduq can be interpreted as the impact of the information received

up to date t about possible “risky dates” (i.e., periods at which the default event can occur with

strictly positive probability) in the remaining lifetime pt, T s of the bond. We refer to Section 3.2

for a simple illustration of the term structure specification (1.2).

In this general setting, we obtain necessary and sufficient conditions for a reference probability

measure Q to be a local martingale measure for the infinite-dimensional financial market consisting

of all credit risky bonds, thereby ensuring absence of arbitrage in a sense to be precisely specified

below. Furthermore, we also study the extension of (1.2) to the case of a general recovery process

over successive credit events. In overall terms, the present paper can be regarded as a general

HJM-type framework bridging the gap between intensity-based and structural models. Moreover,

despite the level of generality, our HJM-type conditions admit a clear economic interpretation and

can be further simplified in several special cases of practical interest, notably in the case where

the process pµtpduqqtě0 is generated by an integer-valued random measure.
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The importance of allowing for jumps at predictable times is widely acknowledged in the finan-

cial literature. This is due to the fact that jumps in prices typically occur in correspondence of

macroeconomic announcements (see, e.g., [39]) and macroeconomic announcements are released

at scheduled (predictable) dates. In this direction, an econometric model allowing for jumps in

correspondence of the meeting dates of the Federal Open Market Committee has been developed

and tested in [46]. It is shown that the introduction of policy-related jumps improves bond pricing

and allows to generate realistic volatility patterns. This is further substantiated by the analysis

of [40] and [21], where it is shown that macroeconomic announcements have a particularly strong

effect on maturities of one to five years. Recent political events like the Brexit and the election

of the American president in 2016 have highlighted the significance of discontinuities occurring

at scheduled dates in financial markets. In this perspective, the present paper contributes to the

financial literature by providing for the first time a general theory of defaultable term structure

modelling in the presence of jumps occurring at scheduled dates.

The paper is structured as follows. Section 2 contains a description of the setting and the main

technical assumptions and presents a general decomposition of the default compensator process.

The main results of the paper are presented in Section 3, first in the case of zero recovery at default

and then for a general recovery process. Special cases and examples are also discussed, together

with relations to the literature (see Section 3.6). Section 4 contains the proofs of all our results.

2. General defaultable term structure models

2.1. Setting. Let pΩ,A,Qq be a probability space endowed with a filtration F “ pFtq0ďtďT sat-

isfying the usual conditions (i.e., F is right-continuous and, if A Ď B P A and QpBq “ 0, then

A P F0), with T ă `8 denoting a final time horizon.2 We assume that the filtered probability

space pΩ,A,F,Qq is sufficiently rich to support an n-dimensional Brownian motion W “ pWtq0ďtďT

and an optional non-negative random measure µpds, duq on r0,Ts ˆ r0,Ts. Throughout the paper,

the probability measure Q will represent a reference probability measure. We follow the notation

of [33] and refer to this work for details on stochastic processes which are not laid out here.

2.2. The default time. We consider an abstract economy containing an entity (e.g., a company or

a sovereign) which may default at the random default time τ . The filtration F is meant to represent

all information publicly available in the market. The default event is publicly observable, which

implies that the random time τ is an F-stopping time. We define the associated default indicator

process H “ pHtq0ďtďT by Ht :“ 1tτďtu, for t P r0,Ts. We will also make use of the survival process

1´H. The process H “ 1rrτ,Tss is F-adapted, bounded, right-continuous and increasing on r0,Ts.
Hence, by the Doob-Meyer decomposition (see, e.g., [33, Theorem I.3.15]), there exists a unique

predictable, integrable and increasing process Hp “ pHp
t q0ďtďT with Hp

0 “ 0, called the default

compensator (or dual predictable projection of H), such that the process H ´Hp is a uniformly

integrable martingale on pΩ,F,Qq. Note also that Hp
t “ Hp

τ^t, for all t P r0,Ts.
Apart from the minimal assumption of being an F-stopping time, we do not introduce any

further assumption on τ . In this general setting, the default compensator Hp is not necessarily

absolutely continuous (i.e., a default intensity may fail to exist) and may also contain both singular

and jump parts, as shown in the following lemma (proofs are given in Section 4).

2The infinite time horizon case can be dealt with in a similar way and leads to analogous results, provided that

µ is a random measure on R2
` satisfying a suitable version of Assumption 2.4.
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Lemma 2.1. The default compensator Hp admits the unique decomposition

(2.1) Hp
t “

ż t

0
hsds` λt `

ÿ

0ăsďt

∆Hp
s , for all 0 ď t ď T,

where phtq0ďtďT is a non-negative predictable process such that
şT
0 hsds ă `8 a.s. and pλtq0ďtďT

is an increasing continuous process with λ0 “ 0 such that dλspωq K ds, for a.a. ω P Ω.

We denote by t∆Hp ‰ 0u “
Ť

iPNrrUiss the thin set of the jump times of the default compensator

Hp, where pUiqiPN is a family of predictable times (see [33, Proposition I.2.24]). By [33, § I.3.21],

it holds that

Qpτ “ Ui ď Tq “ Er∆HUis “ Er∆Hp
Ui
s ą 0, for all i P N,

meaning that the default event has a strictly positive probability of occurrence in correspondence of

the predictable dates pUiqiPN. The classical intensity-based approach can be obtained as a special

case by letting λ “ ∆Hp “ 0 in decomposition (2.1). Typical examples where the continuous

singular part λ is non-null are provided by last passage times (see, e.g., [19, Section 4]).

2.3. The term structure of credit risky bonds. A credit risky bond with maturity T P r0,Ts
is a contingent claim promising to pay one unit of currency at maturity T , provided that the

defaultable entity does not default before date T . We denote by P pt, T q the price at date t of a

credit risky bond with maturity T , for all 0 ď t ď T ď T. As a first step, we restrict our attention

to the zero-recovery case, meaning that we assume that the credit risky bond becomes worthless as

soon as the default event occurs, i.e., P pt, T q “ 0 if Ht “ 1, for all 0 ď t ď T ď T (see Section 3.5

for the analysis of general recovery schemes).

The family of stochastic processes tpP pt, T qq0ďtďT ; T P r0,Tsu describes the evolution of the

term structure T ÞÑ P pt, T q over time. Following the extended HJM-framework suggested in [25],

we assume that the term structure of credit risky bonds is of the form

P pt, T q “ p1´Htq exp

ˆ

´

ż T

t
fpt, uqdu´

ż

pt,T s
gpt, uqµtpduq

˙

, for all 0 ď t ď T ď T,(2.2)

corresponding to equation (1.2) in the introduction. Here µpduq “ pµtpduqq0ďtďT is the measure-

valued process defined by µtpduq :“ µpr0, ts ˆ duq, for t P r0,Ts, with µpds, duq being the random

measure introduced in Section 2.1. The processes f and g are assumed to be of the form3

fpt, T q “ fp0, T q `

ż t

0
aps, T qds`

ż t

0
bps, T qdWs,(2.3)

gpt, T q “ gp0, T q `

ż t

0
αps, T qds`

ż t

0
βps, T qdWs,(2.4)

for all 0 ď t ď T ď T. The precise technical assumptions on the random measure µ as well as on

the processes appearing in (2.3)-(2.4) will be given in Section 2.4 below. For the moment, let us

briefly comment on the interpretation of the term structure equation (2.2).

Remark 2.2 (On the role of g and µ). In comparison with the classical HJM framework applied

to credit risk (see, e.g., [13, 36, 50, 51]), the novelty of the term structure equation (2.2) consists in

the presence of the random measure µ and the associated forward rate g. The random measure µ

3We want to point out that our results can be extended to the case where f and g are more general semimartingale

random fields. Since our main goal consists in studying defaultable term structures driven by general random

measures, we prefer to let f and g be of the simple form (2.3)-(2.4), in order not to obscure the presentation by too

many technical issues.
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encodes the information received over time about possible “risky dates” or “risky periods” where,

on the basis of the available information, the default event is perceived to be more likely to happen

(explicit examples will be provided below). More specifically, the first argument of µ represents

as usual the running time, while the second argument of µ identifies the possible risky dates and

periods. Hence, the integral with respect to µtpduq appearing in (2.2) represents the effect of all

the information received up to date t concerning the likelihood of default in the remaining lifetime

pt, T s of the bond. The assumption that µ is an optional random measure simply captures the fact

that this information about future risky dates is publicly available, but may suddenly arrive in the

market (since µ is not necessarily predictable). As will be shown below, absence of arbitrage will

imply a precise relationship between the default compensator Hp and the random measure µ.

The forward rate g decodes the impact of this information on the term structure. In some cases

it is possible to represent
şT
t fpt, uqdu`

ş

pt,T s gpt, uqµtpduq by a single term of the form
ż

pt,T s
f̃pt, uqµ̃tpduq,(2.5)

for example when µ is deterministic, see Section 3.4.2. However, this may not always be feasible

or convenient, see Example 2.3. In this article we decided to cover the general case (2.2), while

term structure models based on (2.5) clearly allow for a simpler mathematical treatment. ˛

The following example illustrates the modelling of bad news which may lead to discontinuities in

the term structure. As pointed out in [25, 37], the failure of e1.5 billion of Greece on a scheduled

debt repayment to the International Monetary fund as well as Argentina’s missed coupon payment

on $29 billion debt are prominent examples of such cases.4

Example 2.3 (Sovereign credit with surprising bad news). Consider a credit from a country in

the best rating class. Under normal circumstances, this could be interpreted as no default risk in

the considered time horizon (i.e., τ “ `8). However, it might be the case that the country is hit

by an unexpected event, which could be a catastrophe, a market crash or other unthought risks.

Assume that news about this risk arrive at a random time S. The next expected payment of the

credit is due at some random time U ą S and we denote the probability that the payment will be

missed by p P r0, 1s. Hence,

τ “

$

&

%

U with probability p;

`8 with probability 1´ p.

Let the filtration G “ pGtq0ďtďT be generated by the process p1tSďtup1 ` Uqq0ďtďT, properly

augmented. The filtration F “ pFtq0ďtďT is given by the progressive enlargement of G with τ , i.e.,

Ft “
č

sąt

pGs _ σpτ ^ sqq, for all 0 ď t ď T.

Then, on tt ă Su, no additional information is available and, hence, τ “ `8 with probability

p1´ pq. Therefore, for all A P Bpr0,Tsq
Ť

t`8u,

1ttăSuQpτ P A|Gtq “ 1ttăSu

´

pQpU P A|Gtq`p1´pqδ8pAq
¯

“ 1ttăSu

´

pQpU P Aq`p1´pqδ8pAq
¯

.

Otherwise, on tt ě Su, the risky date U is Gt-measurable, so that

1ttěSuQpτ P A|Gtq “ 1ttěSu

´

p δU pAq ` p1´ pqδ8pAq
¯

,

4See the announcements in [31] and [48], as well as [14].
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with δa denoting the Dirac measure in correspondence of point a. This example can be included in

our framework by letting µpds, duq “ 1rrS,`8rrpdsq δU pduq. Assume, for simplicity, that the random

variable U has a density, so that QpU ą T |U ą tq can be written as an integral with respect to

the Lebesgue measure. Then, credit risky bond prices following (2.2) turn out to be of the HJM

form: P pt, T q “ 1tτątue
´
şT
t fpt,uqdu for t ă S, and

P pt, T q “ 1tτątu exp

ˆ

´

ż T

t
fpt, uqdu´ gpt, Uq1ttăUďT u

˙

,

for t P rS, T s. On the other hand, if the random variable U is discrete, one may consider the

generalized Merton model studied in Corollary 3.9. ˛

2.4. Technical assumptions and preliminaries. The following assumptions are needed for the

analysis of the term structure model, and we begin with assumptions on the random measure µ.

Assumption 2.4. The random measure µpds, duq is a non-negative optional random measure in

the sense of [33, Definition II.1.3] on r0,Ts ˆ r0,Ts satisfying the following properties:

(i) µpω; ds, duq “ 1tsăuuµpω; ds, duq, for all ps, uq P r0,Ts ˆ r0,Ts and ω P Ω;

(ii) there exists a sequence pσnqnPN of stopping times increasing a.s. to infinity and such that

Erµσnpr0,Tsqs ă `8 a.s. for every n P N.

According to the interpretation given in Remark 2.2, part (i) of Assumption 2.4 represents the

fact that the new information received at date s only concerns the likelihood of default in the future

(and not in the past). In view of (2.2), this assumption comes without loss of generality. Part (ii)

ensures that the random measure µ is predictably σ-finite, in the sense of [33, Definition II.1.6],

and that the random variable µtpr0,Tsq is a.s. finite, for all t P r0,Ts. Part (ii) of Assumption

2.4 is equivalent to requiring that the increasing process pµtpr0,Tsqq0ďtďT is locally integrable

(see e.g. [32, Remark 3.9]). Apart from Assumption 2.4, the random measure µ is allowed to

be general. The following lemma presents a first consequence of Assumption 2.4. We define the

process µ̄ “ pµ̄tq0ďtďT by

µ̄t :“ µ
`

r0,Ts ˆ r0, ts
˘

, for all t P r0,Ts.

Lemma 2.5. Suppose that Assumption 2.4 holds. Then µ̄ is a predictable and increasing process,

admitting the unique decomposition

(2.6) µ̄t “

ż t

0
msds` νt `

ÿ

0ăsďt

∆µ̄s, for all 0 ď t ď T,

where pmtq0ďtďT is a non-negative predictable process such that
şT
0 msds ă `8 a.s. and pνtq0ďtďT

is an increasing continuous process with ν0 “ 0 such that dνspωq K ds, for almost all ω P Ω.

The random variable µ̄t measures the existence of risky dates in the period r0, ts, on the basis

of all available information over r0,Ts, compare Remark 2.2. In a similar way, the quantity

∆µ̄t “ µpr0,Ts ˆ ttuq encodes whether time t is perceived as a risky date, on the basis of all

available information. As we shall see in Theorem 3.4, the absence of arbitrage implies a precise

relationship between the terms appearing in the decompositions (2.1) and (2.6).

The following mild technical assumptions ensure that all (stochastic) integrals are well-defined

and that we can apply suitable versions of the (stochastic) Fubini theorem. In the following, we

denote by O (P, resp.) the optional (predictable, resp.) σ-field on pΩ,A,Fq.
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Assumption 2.6. The following conditions hold a.s.:

(i) The initial forward curves T ÞÑ fpω; 0, T q and T ÞÑ gpω; 0, T q are F0bBpr0,Tsq-measurable,

real-valued, continuous and integrable on r0,Ts:
ż T

0
|fp0, uq|du ă `8 and

ż T

0
|gp0, uq|µtpduq ă `8, for all t P r0,Ts;

(ii) the drift processes apω; s, uq and αpω; s, uq are O b Bpr0,Tsq-measurable and real-valued,

apω; s, uq “ 0 and αpω; s, uq “ 0 for all 0 ď u ă s ď T, the maps u ÞÑ apω; s, uq and

u ÞÑ αpω; s, uq are differentiable and satisfy
ż T

0

ż T

0

`

|aps, uq| ` |Buaps, uq|
˘

ds du ă `8,

ż T

0

ż T

0
|Buαps, uq|ds du ă `8 and

ż T

0

ż T

0
|αps, uq|dsµtpduq ă `8, for all t P r0,Ts;

(iii) the volatility processes bpω; s, uq and βpω; s, uq are O b Bpr0,Tsq-measurable and Rn-valued,

bpω; s, uq “ 0 and βpω; s, uq “ 0 for all 0 ď u ă s ď T, the maps u ÞÑ bpω; s, uq and

u ÞÑ βpω; s, uq are differentiable and satisfy
ż T

0

ż T

0

`

}bps, uq} ` }Bubps, uq}
˘2
ds du ă `8

ż T

0

ż T

0
}Buβps, uq}

2ds du ă `8 and

ż T

0

ż T

0

›

›βps, uq
›

›

2
µspduqds ă `8

It is easy to check that Assumption 2.6 implies that both the ordinary and the stochastic integrals

appearing in (2.3)-(2.4) are well-defined. Arguing similarly as in the proof of [20, Proposition

6.1], the processes pfpt, tqq0ďtďT and pgpt, tqq0ďtďT are continuous, hence predictable and locally

bounded. By an analogous argument, it can be shown that, for any fixed t P r0,Ts and for a.a.

ω P Ω, the maps u ÞÑ fpω; t, uq and u ÞÑ gpω; t, uq are continuous. Together with part (ii) of

Assumption 2.4, this implies that both integrals appearing in the term structure equation (2.2)

are a.s. finite. Finally,
ş¨

0 gps, sqdµ̄s is well-defined as a predictable process of finite variation.

3. HJM-type conditions for general defaultable term structures

This section contains our main results and provides a characterization of the absence of arbitrage

in the context of general term structure models as introduced in Section 2. After making precise

in Section 3.1 the description of the financial market and the notion of arbitrage we consider, we

discuss in Section 3.2 a simple formulation of our main result, in order to illustrate in a transparent

and easy setting the meaning of the HJM-type conditions. Section 3.3 contains the statement of

our main theorem, while Section 3.4 deals with several special cases of interest and Section 3.5

presents the extension to general recovery schemes. Finally, we discuss related works in Section 3.6.

The proofs of all the results are given in Section 4.

3.1. The large financial market of credit risky bonds. The considered financial market is

assumed to contain a numéraire, whose price process is strictly positive, càdlàg and adapted, and

denoted by X0 “ pX0
t q0ďtďT. Without loss of generality, we assume that X0

0 “ 1. Moreover, we

make the classical assumption that X0 is absolutely continuous, i.e., there exists a predictable

integrable short rate process r “ prtq0ďtďT such that X0
t “ expp

şt
0 rsdsq, for all t P r0,Ts. For

practical applications, one would typically use the overnight index swap (OIS) rate for constructing

the numéraire.
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The credit risky bond market consists of the uncountable family tpP pt, T qq0ďtďT ;T P r0,Tsu,
representing the price processes of all basic traded assets. In particular, this financial market

is infinite-dimensional and, therefore, can be treated as a large financial market, in the spirit

of [8, 41]. This corresponds to considering sequences of trading strategies, each strategy only

consisting of portfolios of finitely many but arbitrary credit risky bonds, and taking the limits of

those. If the limit is taken in Émery’s semimartingale topology, this leads to the notion of no

asymptotic free lunch with vanishing risk (NAFLVR) recently introduced in a general setting in

[8]. In particular, NAFLVR holds in our context if the probability measure Q is a local martingale

measure for the family tpP pt, T qq0ďtďT ;T P r0,Tsu with respect to the numéraire X0, i.e., if the

process P p¨, T q{X0 is a Q-local martingale, for every T P r0,Ts. In the following, we will derive

necessary and sufficient conditions for this property to hold, thus ensuring that the credit risky

bond market is arbitrage-free in the sense of NAFLVR.

Remark 3.1. (i) The present setting can be extended to consider the case where the numéraire

X0 is a general strictly positive semimartingale (not necessarily absolutely continuous), along the

lines of [41]. In this case, one can obtain generalized versions of Theorems 3.4 and 3.12, at the

expense of a more complex formulation.

(ii) Under the additional hypothesis of locally bounded bond prices, [41, Theorem 5] shows that

the existence of an equivalent local martingale measure is equivalent to the no asymptotic free lunch

(NAFL) condition. In the present setting, NAFL is equivalent to NAFLVR. This implies that,

under this additional hypothesis, our results allow to deduce necessary and sufficient conditions

for NAFLVR to hold in the large financial market of credit risky bonds. However, in the general

setting introduced in Section 2, the local boundedness property does not necessarily hold.

3.2. A first result. Before stating our main result (Theorem 3.4 below), let us first present a

special case which sheds some light on the no-arbitrage restrictions for a defaultable term structure

model of the form (2.2)-(2.4). Consider an integer-valued random measure µpds, duq in the sense of

[33, Definition II.1.13], satisfying Assumption 2.4. Then, by [33, Proposition II.1.14], there exist a

sequence of stopping times pσnqnPN and a r0,Ts-valued optional process γ “ pγtq0ďtďT such that,

defining the Fσn-measurable random variable τn :“ γσn , for all n P N, it holds that

µpds, duq “
`8
ÿ

n“1

δpσn,τnqpds, duq.(3.1)

Note that, since µpds, duq “ 1tsăuuµpds, duq by Assumption 2.4, we have that τn ą σn, for all

n P N. This setting allows for an intuitive economic interpretation:

‚ each stopping time σn represents an announcement date. At an announcement date new

information concerning the future likelihood of default is released in the market. Since σn

is a general stopping time, announcements may come as a surprise;

‚ each stopping time τn represents a risky date in the future which is revealed at the an-

nouncement date σn. A risky date is a date where default is perceived to be possible with

positive probability. This date itself does not come as a surprise (as τn is Fσn-measurable

and τn ą σn), while whether default occurs at τn or not remains unpredictable in general.

Such risky dates naturally lead to discontinuities in the term structure, thus violating (1.1). The

representation (3.1) allows to simplify the defaultable term structure equation (2.2) to

P pt, T q “ p1´Htq exp

˜

´

ż T

t
fpt, uqdu´

ÿ

σnďt

1tτnPpt,T sugpt, τnq

¸

, 0 ď t ď T ď T.
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Note that the price P pt, T q of a defaultable bond depends on all the announcements received up to

date t concerning future risky dates in the remaining lifetime pt, T s of the bond. In this setting, we

can formulate the following proposition, which represents a special case of Corollary 3.7 below (see

Section 3.4.1). We summarize as follows the assumptions introduced in the present subsection.

Assumption 3.2. Suppose that

(i) µpds, duq is an integer-valued random measure in the representation (3.1) and with a com-

pensator of the form µppds, duq “ ξspduqds, where ξspduq is a positive finite measure on

pr0,Ts,Bpr0,Tsqq, for all s P r0,Ts;
(ii) Qpτ “ σnq “ 0, for all n P N;

(iii) the continuous singular process λ appearing in (2.1) vanishes.

In particular, part (ii) of Assumption 3.2 requires that no new information arrives simultaneously

with the default event. We set, for all 0 ď t ď T ď T,

(3.2)

āpt, T q “

ż T

t
apt, uqdu, b̄pt, T q “

ż T

t
bpt, uqdu,

ᾱpt, T q “

ż

pt,T s
αpt, uqµtpduq, β̄pt, T q “

ż

pt,T s
βpt, uqµtpduq.

Note that, as long as Assumptions 2.4 and 2.6 are satisfied, all the above integrals are well-defined.

Proposition 3.3. Suppose that Assumptions 2.4, 2.6 and 3.2 hold. Then, the probability measure

Q is a local martingale measure for tpP pt, T qq0ďtďT ;T P r0,Tsu with respect to X0 if and only if

the following conditions hold a.s.:

(i) fpt, tq “ rt ` ht, for Lebesgue-a.e. t P r0,Ts;
(ii) t∆Hp ‰ 0u Ď

Ť

nPNrrτnss and ∆Hp
τn “ 1´ e´gpτn,τnq, for all n P N;

(iii) for all T P r0,Ts and Lebesgue-a.e. t P r0, T s, it holds that

´āpt, T q ´ ᾱpt, T q `
1

2
}b̄pt, T q ` β̄pt, T q}2 `

ż T

t

`

e´gpt,uq ´ 1
˘

ξtpduq “ 0.

The necessary and sufficient conditions stated in Proposition 3.3 admit a clear interpretation:

‚ condition (i) requires the instantaneous yield fpt, tq on the defaultable bond to be equal to

the risk-free rate rt plus a default risk compensation term given by ht. This corresponds

to a classical no-arbitrage restriction in intensity-based models (see, e.g., [51, Theorem 2]);

‚ condition (ii) requires that all the predictable times at which the default event can happen

with strictly positive probability are announced as risky dates. Moreover, the second part

of condition (ii) means that, at every risky date τn, the defaultable bond price exhibits a

jump satisfying Er∆P pτn, T q|Fτn´s “ 0 a.s.;

‚ condition (iii) corresponds to the classical HJM drift restriction. The additional term
şT
t pe

´gpt,uq ´ 1qξtpduq represents a compensation for the movements in the term structure

due to the arrival of news concerning possible future risky dates.

3.3. The main result. Let us now proceed to the statement of our main result, exploiting the

full generality of the setting. For each T P r0,Ts, we introduce the process Y pT q “ pY
pT q
t q0ďtďT

defined by

(3.3) Y
pT q
t :“

ż t

0

ż T

0
gps, uqµpds, duq, for all 0 ď t ď T.
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It will come as a consequence of Lemma 4.1 that Y pT q is a.s. finite and well-defined as a finite

variation process. We denote by µpY
pT q,Hq the jump measure associated to the two-dimensional

semimartingale pY pT q, Hq, in the sense of [33, Proposition II.1.16], with compensator µp,pY
pT q,Hq.

By [33, Theorem II.1.8], there exist an increasing integrable predictable process ApT q “ pA
pT q
t q0ďtďT

and a kernel KpT qpω, t; dy, dzq from pΩˆ r0,Ts,Pq into pRˆ t0, 1u,BpRˆ t0, 1uqq such that

(3.4) µp,pY
pT q,Hqpω; dt, dy, dzq “ KpT qpω, t; dy, dzqdA

pT q
t pωq.

Due to part (i) of Assumption 2.4, it holds that ∆Y
pT q
T “ Y

pT q
T ´Y

pT q
T´ “

şT
0 gpT, uqµptT uˆduq “ 0.

Hence, we can assume without loss of generality that 1ty‰0uK
pT qpω, T ; dy, dzq “ 0, for all pω, T q P

Ω ˆ r0,Ts. Let µp be the compensator of µ, which exists by part (ii) of Assumption 2.4 together

with [33, Theorem II.1.8]. As shown in Lemma 4.3 below, the compensating measure µp,pY
pT q,Hq

is linked to µp via the following relation, for all 0 ď t ď T ď T:

(3.5) ∆A
pT q
t

ż

R
y KpT qpt; dyˆt0, 1uq “

ż

R
y µp,pY

pT q,Hqpttuˆdyˆt0, 1uq “

ż

pt,T s
gpt, uqµppttuˆduq.

Finally, we define the function Ψ : Ωˆ r0,Ts ˆ Rˆ r0, 1s Ñ R as

(3.6) Ψpω; t, y, zq :“ egpω;t,tq∆µ̄tpωq
`

e´y ´ 1
˘

p1´ zq.

Note that, since the two processes pgpt, tqq0ďtďT and pµ̄tq0ďtďT are predictable, the function Ψ is

P b BpR ˆ r0, 1sq-measurable. Following the notation of [33], we denote by “˚” integration with

respect to a random measure. Moreover, for an arbitrary process V “ pVtq0ďtďT of finite variation,

we denote by V c its continuous part, which can be further decomposed as V c “
ş¨

0 V
ac
s ds ` V sg,

similarly as in Lemma 2.1. We will also make use of the notation introduced in (3.2).

We are now in a position to state the following theorem, which gives necessary and sufficient

conditions rendering the reference probability measure Q a local martingale measure for the family

tpP pt, T qq0ďtďT ;T P r0,Tsu with respect to the numéraire X0. As mentioned above, this represents

a cornerstone for ensuring absence of arbitrage in the sense of NAFLVR. The proof of the theorem

will be given in Section 4.2.

Theorem 3.4. Suppose that Assumptions 2.4 and 2.6 hold. Let Ψ be defined as in (3.6) and

gpT qpω; s, uq :“ 1tuďT ugpω; s, uq, for each T P r0,Ts. Then, the probability measure Q is a local

martingale measure for tpP pt, T qq0ďtďT ;T P r0,Tsu with respect to X0 if and only if the following

conditions hold a.s.:

(i) fpt, tq ` gpt, tqmt “ rt ` ht, for Lebesgue-a.e. t P r0,Ts;
(ii) ∆Hp

t “ 1´ e´gpt,tq∆µ̄t, for all t P r0,Ts;
(iii) ∆pΨ ˚ µp,pY

pT q,Hqqt “ 0 , for all 0 ď t ď T ď T.

(iv) for all T P r0,Ts and for Lebesgue-a.e. t P r0, T s, it holds that

´ āpt, T q ´ ᾱpt, T q `
1

2
}b̄pt, T q ` β̄pt, T q}2 ´ pgpT q ˚ µqac

t ` pΨ ˚ µ
p,pY pT q,Hqqac

t “ 0;

(v) for all 0 ď t ď T ď T, it holds that
ż t

0
gps, sqdνs ´ pg

pT q ˚ µqsgt ` pΨ ˚ µ
p,pY pT q,Hqq

sg
t “ λt.

Due to the generality of the setting, the conditions given in Theorem 3.4 are rather complex.

However, as we are now going to explain, each of them has a precise financial interpretation,

similarly to the case of Proposition 3.3. These conditions will be further discussed in Section 3.4

in the context of several examples and special cases of practical interest.
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Condition (i) in Theorem 3.4 requires the instantaneous yield fpt, tq` gpt, tqmt accumulated by

the credit risky bond to be equal to the risk-free rate of interest rt plus a default risk compensa-

tion term given by ht, which corresponds to the density of the absolutely continuous part of the

default compensator Hp (see Lemma 2.1). This condition is therefore analogous to condition (i)

in Proposition 3.3.

Condition (ii) is a precise matching condition between the jumps of the default compensator

Hp and the jumps of the process µ̄ introduced in Lemma 2.5. In particular, letting the predictable

times pUiqiPN represent the jump times of Hp, condition (ii) implies that

 

pω, tq P Ωˆ r0,Ts : gpω; t, tq∆µ̄tpωq ‰ 0
(

“
 

pω, tq P Ωˆ r0,Ts : ∆Hp
t pωq ‰ 0

(

“
ď

iPN
rrUiss.(3.7)

Since the predictable times pUiqiPN correspond to possible default dates (i.e., Qpτ “ Ui ď Tq ą 0,

for all i P N) and the jumps of µ̄ correspond to “risky dates”, relation (3.7) means that “false

alarms” (i.e., the possibility that a date for which there is no possibility of default is announced

as a risky date) cannot happen. Moreover, observe that condition (ii) implies that, in order to

exclude arbitrage, the credit risky term structure must exhibit discontinuities in maturity at the

jump times pUiqiPN of the default compensator. In other words, credit risky bond prices must

be discontinuous in correspondence of the risky dates (recall that ∆µ̄t “ µpr0,Ts ˆ ttuq, for all

t P r0,Ts). This condition is analogous to condition (ii) in Proposition 3.3.

Condition (iii) requires that the overall effect of new information about future risky dates

arriving at predictable times and not coinciding with the default event vanishes. This can be seen

by rewriting condition (iii) in the equivalent form

0 “ ∆pΨ ˚ µp,pY
pT q,Hqqt “ egpt,tq∆µ̄t∆A

pT q
t

ż

Rˆt0,1u
pe´y ´ 1qp1´ zqKpT qpt; dy, dzq

“ E
”

egpt,tq∆µ̄t
`

e´∆Y
pT q
t ´ 1

˘`

1´∆Ht

˘ˇ

ˇFt´

ı

ðñ E
”´

e´
şT
t gpt,uqµpttuˆduq ´ 1

¯

`

1´∆Ht

˘ˇ

ˇFt´

ı

“ 0,

where we have used [33, § II.1.11] and the predictability of the processes pgpt, tqq0ďtďT and µ̄.

Note that this condition is always satisfied if the process Y pT q is quasi-left-continuous, for every

T P r0,Ts (see [33, Corollary II.1.19]).

Condition (iv) represents the extension to a general defaultable setting of the classic HJM drift

condition. This condition is analogous to condition (iii) in Proposition 3.3. Let us decompose

Ψpω; t, y, zq “ egpω;t,tq∆µ̄tpωq
`

e´y ´ 1
˘

´ egpω;t,tq∆µ̄tpωqz
`

e´y ´ 1
˘

“: Ψp1qpω; t, yq ´Ψp2qpω; t, y, zq,

so that

(3.8) Ψ ˚ µp,pY
pT q,Hq “ Ψp1q ˚ µp,Y

pT q
´Ψp2q ˚ µp,pY

pT q,Hq,

where µp,Y
pT q

is the compensator of the jump measure µY
pT q

of Y pT q, for T P r0,Ts. The terms

Ψp1q˚µp,Y
pT q

and gpT q˚µ represent a compensation for the information received at time t concerning

the likelihood of default in the future time period pt, T s, while the term Ψp2q ˚ µp,pY
pT q,Hq accounts

for the possibility of news arriving simultaneously to the default event.

Finally, condition (v) relates the continuous singular part λ of the default compensator Hp

to the continuous singular processes appearing in the semimartingale decomposition of the term
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ş

pt,T s gpt, uqµtpduq in (2.2). Note also that, making use of (3.4), the term pΨ ˚ µp,pY
pT q,Hqq

sg
t ap-

pearing in condition (v) can be equivalently rewritten as

pΨ ˚ µp,pY
pT q,Hqq

sg
t “

ż t

0

ż

Rˆt0,1u
pe´y ´ 1qp1´ zqKpT qps; dy, dzqdApT q,sgs .

Remark 3.5 (On the impossibility of predictable default). Condition (ii) of Theorem 3.4 implies

that ∆Hp
t ă 1 a.s., for all t P r0,Ts, since the term gpt, tq∆µ̄t is a.s. finite. In particular, this

implies that the default time τ cannot be a predictable time (in the sense of [33, Definition I.2.7]).

Intuitively, it is clear why a predictable default time is incompatible with an arbitrage-free term

structure of the form (2.2), provided that
şT
t fpt, uqdu `

ş

pt,T s gpt, uqµtpduq ă `8 a.s., for all

0 ď t ď T ď T. Indeed, if τ was a predictable time with Qpτ ď T q ą 0, for some T P r0,Ts, then

the elementary strategy ´1rrτ ss1tτďT u would realize an arbitrage opportunity, since P pτ, T q “ 0

and P pτ´, T q ą 0 hold on tτ ď T u. This is related to the fact that absence of arbitrage necessarily

excludes jumps of predictable size occurring at predictable times (see [22]). Note, however, that

this argument does only exclude the case where the default time τ is a predictable time, but

does not exclude the case where τ can occur with strictly positive (but not unit) probability at

predictable times (i.e., τ can be an accessible time, see [29, Definition 3.34]).

3.4. Special cases. In this section, we present several special cases of Theorem 3.4 of practical

interest. Further examples related to the existing literature are given in Section 3.6. We start

with the following simple lemma, which shows that conditions (iii)-(iv)-(v) of Theorem 3.4 can be

simplified under a rather mild additional assumption on the news arrival process, encoded by the

random measure µ.

Lemma 3.6. Suppose that Assumptions 2.4 and 2.6 hold and assume furthermore that

(3.9) µ
`

ttu ˆ r0,Ts
˘

∆Ht “ 0 a.s. for all t P r0,Ts.

Then, the term Ψ ˚ µp,pY
pT q,Hq appearing in conditions (iii)-(iv)-(v) of Theorem 3.4 coincides with

the term Ψp1q ˚ µp,Y
pT q

introduced in (3.8), for every T P r0,Ts.

In particular, recalling decomposition (3.8), this lemma shows that the term Ψp2q ˚ µp,pY
pT q,Hq

only plays the role of a compensation for the risk of news arriving simultaneously to the default

event. Condition (3.9) can equivalently be phrased as a “no default by news” condition. In view

of practical applications, this certainly represents a plausible assumption.

3.4.1. Integer-valued random measures. We now consider the case where condition (3.9) holds and

the random measure µpds, duq is integer-valued. As already explained in Section 3.2, this additional

assumption corresponds to the situation where, at each date t, the new information arriving at

that date only concerns a single time point (a possible “risky date”) in the future time period

pt, T s, see equation (3.1). In view of practical applications, this case is still sufficiently general

and, as shown in Corollary 3.7 below, allows for a substantial simplification of Theorem 3.4. In

particular, Proposition 3.3 will follow as a direct consequence of Corollary 3.7.

Recall from Section 3.2, that for an integer-valued random measure µpds, duq on r0,Ts ˆ r0,Ts
satisfying Assumption 2.4, there exist a thin random set D “

Ť

nPNrrσnss and associated random

variables pτnqnPN, where τn is Fσn-measurable and τn ą σn, such that representation (3.1) holds.

Clearly, condition (3.9) holds if and only if Qpτ “ σnq “ 0 for all n P N. By [33, Theorem II.1.8],

the compensator µppds, duq of µpds, duq admits a decomposition of the form

µppω; ds, duq “ F pω, s; duqdJspωq,
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where J “ pJtq0ďtďT is an increasing integrable predictable process and F pω, s; duq is a kernel from

pΩˆ r0,Ts,Pq into pr0,Ts,Bpr0,Tsqq.

Corollary 3.7. Suppose that Assumptions 2.4 and 2.6 hold and suppose furthermore that condition

(3.9) holds and that the random measure µpds, duq is integer-valued. Then, the probability measure

Q is a local martingale measure for tpP pt, T qq0ďtďT ;T P r0,Tsu with respect to X0 if and only if

the following conditions hold a.s.:

(i) fpt, tq “ rt ` ht, for Lebesgue-a.e. t P r0,Ts;
(ii) t∆Hp ‰ 0u Ď

Ť

nPNrrτnss and ∆Hp
τn “ 1´ e´gpτn,τnq, for all n P N;

(iii) ∆Jt
ş

pt,T spe
´gpt,uq ´ 1qF pt; duq “ 0, for all 0 ď t ď T ď T;

(iv) for all T P r0,Ts and Lebesgue-a.e. t P r0, T s, it holds that

´āpt, T q ´ ᾱpt, T q `
1

2
}b̄pt, T q ` β̄pt, T q}2 ` Jac

t

ż T

t
pe´gpt,uq ´ 1qF pt; duq “ 0;

(v)
şt
0

ş

ps,T spe
´gps,uq ´ 1qF ps; duqdJ sg

s “ λt, for all 0 ď t ď T ď T.

In particular, the additional assumptions that condition (3.9) holds and that µ is integer-valued

imply that the default compensator Hp can have a singular part λ if and only if the compensating

measure µp admits a singular part (condition (v) of the above corollary). Furthermore, condition

(i) simply requires the short end of the riskless forward rate fpt, tq to be equal to the risk-free

rate rt plus the instantaneous compensation ht for the risk of default. Observe also that, in the

above corollary, the formulation of the necessary and sufficient conditions does not require the

introduction of the auxiliary jump measure µp,pY
pT q,Hq. Moreover, if the compensator µp has the

form µppds, duq “ ξspduqds, for some positive finite measure ξspduq (this is for instance the case

when µ is a homogeneous Poisson random measure, see [33, Definition II.1.20]), then conditions

(iii) and (v) of Corollary 3.7 are automatically satisfied if λ “ 0. In view of these observations,

Proposition 3.3 follows as a special case of the above corollary.

Theorem 3.4 allows to recover the two special cases originally considered in [25]. The first

corollary below considers a tractable setting where there is a finite number pτnqn“1,...,N of risky

dates (defined in Section 3.2) at which default can occur with strictly positive probability and each

of which is publicly announced at some previous announcement time σn, 1 ď n ď N . This result

can also be seen as a generalization of Example 2.3.

Corollary 3.8. Suppose that Assumption 2.6 holds and assume furthermore that

(a) the default compensator Hp satisfies λ “ 0 and t∆Hp ‰ 0u “
ŤN
i“1rrτiss, for some N P N, and

∆Hp
τi is Fσi-measurable, where pσiqi“1,...,N is a sequence of strictly increasing stopping times

such that σi ă τi a.s., for all i “ 1, . . . , N ;

(b) µpds, duq “
řN
i“1 δtσi,τiupds, duq;

(c) the compensator µp has the form µppds, duq “ ξspduqds;

(d) Qpτ “ σiq “ 0, for all i “ 1, . . . , N .

Then, the probability measure Q is a local martingale measure for tpP pt, T qq0ďtďT ;T P r0,Tsu with

respect to X0 if and only if the following conditions hold a.s.:

(i) fpt, tq “ rt ` ht, for Lebesgue-a.e. t P r0,Ts;
(ii) ∆Hp

τi “ 1´ e´gpτi,τiq, for all i “ 1, . . . , N ;

(iii) for all T P r0,Ts and Lebesgue-a.e. t P r0, T s, it holds that

´āpt, T q ´ ᾱpt, T q `
1

2
}b̄pt, T q ` β̄pt, T q}2 `

ż T

t

`

e´gpt,uq ´ 1
˘

ξtpduq “ 0.
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3.4.2. Generalized Merton models. In the seminal model proposed by R. Merton in [44], debt of size

K has to be repaid at some (deterministic) date u1 ą 0. Extensions to more sophisticated capital

structures have been proposed, amongst others, in [27, 28]. In these cases, the credit structure may

be incorporated by denoting the dates where obligatory payments are due by 0 ă u1 ă . . . ă uN

(such information is often publicly available5). Clearly, it is natural to expect discontinuities in the

term structure at the dates tu1, . . . , uNu. The following corollary deals with this simple setting,

to which we refer as generalized Merton model (see also [26]).

Corollary 3.9. Suppose that Assumption 2.6 holds and assume furthermore that

(a) the default compensator Hp satisfies λ “ 0 and t∆Hp ‰ 0u “
ŤN
i“1rruiss, where puiqi“1,...,N is

a sequence of deterministic times, for some N P N;

(b) µpds, duq “
řN
i“1 δp0,uiqpds, duq.

Then, the probability measure Q is a local martingale measure for tpP pt, T qq0ďtďT ;T P r0,Tsu with

respect to X0 if and only if the following conditions hold a.s.:

(i) fpt, tq “ rt ` ht, for Lebesgue-a.e. t P r0,Ts;
(ii) ∆Hp

ui “ 1´ e´gpui,uiq, for all i P N;

(iii) āpt, T q ` ᾱpt, T q “ 1
2}b̄pt, T q ` β̄pt, T q}

2, for all T P r0,Ts and Lebesgue-a.e. t P r0, T s.

In particular, comparing condition (iii) of Corollary 3.8 with condition (iii) of Corollary 3.9,

we see that there is no compensation for the arrival of news concerning future risky dates. This

is simply due to the fact that, under the assumptions of Corollary 3.9, all risky dates are already

publicly known at the initial date t “ 0.

3.5. General recovery schemes. We have so far considered the case where the credit risky

bond becomes worthless as soon as the default event occurs. In this section, taking up ideas from

[3, 4, 10], we generalize the above framework to include general recovery schemes, where the credit

risky bond is supposed to lose part of its value in correspondence of a sequence of successive credit

events. Before presenting the general theory, let us consider the following example.

Example 3.10 (Recovery of market value). Consider an F-adapted marked point process pτn, enqnPN,

meaning that pτnqnPN are stopping times and each random variable en is Fτn-measurable. Each

stopping time τn denotes a default time where the credit risky bond loses a fraction en of its market

value. We assume that the fractional losses en take values in r0, 1s (with the special case of zero

recovery corresponding to en “ 1). Note that, in line with [51], the loss at default en is possibly

unpredictable, but known at the corresponding default time τn. Under this assumption (fractional

recovery of market value), the term structure of credit risky bond prices can be assumed to be of

the form

P pt, T q “
ź

τnďt

`

1´ en
˘

¨ exp

ˆ

´

ż T

t
fpt, uqdu´

ż

pt,T s
gpt, uqµtpduq

˙

, for all 0 ď t ď T ď T.

In this case, we can define the recovery process ξ “ pξtq0ďtďT by

ξt “
ź

τnďt

`

1´ en
˘

, for all 0 ď t ď T.

5See, for example http://graphics.wsj.com/greece-debt-timeline/ for the debt structure of Greece collected

by the Wall Street Journal.

http://graphics.wsj.com/greece-debt-timeline/
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Note that the recovery process ξ is adapted, starts at ξ0 “ 1 and is decreasing. In this example,

strongly inspired by de-facto behavior of bond prices, the recovery process is piecewise constant.

In the following, however, we shall allow for a more general structure. ˛

Inspired by the above example, let us consider a general recovery process ξ “ pξtq0ďtďT satisfying

the following assumption. We denote τ :“ inftt P r0,Ts : ξt “ 0u.

Assumption 3.11. The recovery process ξ “ pξtq0ďtďT is an adapted càdlàg decreasing non-

negative process with ξ0 “ 1 such that ξ “ ξ1rr0,τ rr and ξτ´ ą 0 a.s.

Assumption 3.11 is clearly satisfied by the vast majority of recovery schemes typically considered

in practice. In view of [29, Theorem 9.41], there exists a càdlàg decreasing process R “ pRtq0ďtďT

satisfying ´1 ď ∆R ď 0 such that ξ “ EpRq. We denote by µR the jump measure of R and by

µp,R its compensator. Since R admits limits from the left and has bounded jumps, it is locally

bounded and, hence, special. [33, Corollary II.2.38] then implies that the process R admits the

canonical representation

Rt “
`

x ˚ pµR ´ µp,Rq
˘

t
´ Ct, for all 0 ď t ď T,

where pCtq0ďtďT is an increasing predictable process such that ∆Ct “ ´
ş

r´1,0s xµ
p,Rpttuˆ dxq, for

all t P r0,Ts.
Introducing the general recovery process ξ “ EpRq, we extend the term structure (2.2) as follows:

P pt, T q “ EpRqt exp

ˆ

´

ż T

t
fpt, uqdu´

ż

pt,T s
gpt, uqµtpduq

˙

, for all 0 ď t ď T ď T.(3.10)

The main goal of the present section consists in obtaining necessary and sufficient conditions for

Q to be a local martingale measure for the family tpP pt, T qq0ďtďT ;T P r0,Tsu with respect to the

numéraire X0 “ expp
ş¨

0 rtdtq, thus extending Theorem 3.4 to general recovery schemes.

Letting the process Y pT q be defined as in (3.3), for every T P r0,Ts, we denote by µpY
pT q,´Rq the

jump measure associated to the two-dimensional semimartingale pY pT q,´Rq, with corresponding

compensator µp,pY
pT q,´Rq. We are now in a position to state the following theorem. Similarly as

above, we use the decomposition C “
ş¨

0C
ac
s ds ` Csg `

ř

0ăsď¨∆Cs, with Cac and Csg denoting

respectively the density of the absolutely continuous part and the singular part of Cc.

Theorem 3.12. Suppose that Assumptions 2.4, 2.6 and 3.11 hold. Let Ψ be defined as in (3.6),

and gpT qpω; s, uq :“ 1tuďT ugpω; s, uq, for all T P r0,Ts. Then, the probability measure Q is a local

martingale measure for tpP pt, T qq0ďtďT ;T P r0,Tsu with respect to X0 if and only if the following

conditions hold a.s.:

(i) fpt, tq ` gpt, tqmt “ rt ` C
ac
t for Lebesgue-a.e. t P r0,Ts;

(ii) ∆Ct “ 1´ e´gpt,tq∆µ̄t, for all t P r0,Ts;
(iii) ∆pΨ ˚ µp,pY

pT q,´Rqqt “ 0, for all 0 ď t ď T ď T;

(iv) for all T P r0,Ts and for Lebesgue-a.e. t P r0, T s, it holds that

´ āpt, T q ´ ᾱpt, T q `
1

2

›

›b̄pt, T q ` β̄pt, T q
›

›

2
´ pgpT q ˚ µqac

t ` pΨ ˚ µ
p,pY pT q,´Rqqac

t “ 0;

(v) for all 0 ď t ď T ď T, it holds that
ż t

0
gps, sqdνs ´ pg

pT q ˚ µqsgt ` pΨ ˚ µ
p,pY pT q,´Rqq

sg
t “ Csg

t .

The interpretation of the five necessary and sufficient conditions stated in the above theorem is

analogous to the case of Theorem 3.4.
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3.6. Related literature. As mentioned in the introduction, the two classical approaches to credit

risk modelling are the structural approach, starting with Merton [44] and its extensions [27, 28], and

the reduced-form approach, introduced in early works of Jarrow, Lando and Turnbull [36, 42] and

in Artzner and Delbaen [2]. It was a long time that these approaches co-existed in the literature but

no model was bridging them (see however [11, 35, 23, 24] for information-based models connecting

structural and reduced-form models). In more recent years, some of the features of structural and

reduced-form models have been combined in hybrid models, as considered for instance in [6, 7, 43].

In particular, in hybrid models the default compensator has an absolutely continuous part and

a discontinuous part, thus showing once more the importance of considering the possibility that

default occurs in correspondence of predictable times. The model considered in [1] also shows a

similar behavior. However, no general theory of term structure modelling was available for hybrid

models so far. The present paper intends to fill this gap. In the remaining part of this section, we

discuss in detail the relation with the works [3] and [37, 38], which are especially related to our

framework.

3.6.1. The relation to Bélanger, Shreve and Wong (2004). The remarkable paper [3] considers

a first-passage-time model over a random boundary for the default time and points towards an

extension of the reduced-form approach beyond intensity-based models. The framework may be

seen as a structural approach where the debt level is random and we give a short account. In [3],

the authors consider a filtration G, given by the augmented filtration generated by a Brownian

motion W . Additionally, there is a càdlàg non-decreasing G-predictable process pΛtq0ďtďT and the

default time τ is defined as

τ :“ inf
 

t P r0,Ts : Λt ě Θ
(

,

where Θ is a strictly positive random variable independent of G. The filtration F is then defined

as the progressive enlargement of G with respect to τ . Depending on the choice of the process

pΛtq0ďtďT, it is shown that the default compensator Hp may contain jumps as well as a singular

continuous part, thus exploiting the generality of decomposition (2.1) and going beyond classical

intensity-based models. However, the HJM approach to the modelling of defaultable term struc-

tures is only considered in [3, Section 5] in an intensity-based setting (i.e., assuming that the

default compensator Hp is absolutely continuous).

3.6.2. The relation to Jiao and Li (2015). More recently, extensions of the intensity-based ap-

proach have been pursued via methods of enlargements of filtrations, see [17, 18]. This approach

has been extended in [37] to the case where the default compensator exhibits discontinuities. Start-

ing from a background filtration G, [37] consider a finite family tτ1, . . . , τnu of G-stopping times,

which can be chosen strictly increasing without loss of generality. The filtration F is constructed

as the progressive enlargement of G with respect to the default time τ . Letting pαtq0ďtďT be a

G-optional process taking values in the space of measurable functions on R`, [37] propose the

following generalized density hypothesis:

E

«

1tτă`8uhpτq
n
ź

i“1

1tτ‰τiu

ˇ

ˇ

ˇ

ˇ

Gt

ff

“

ż

R`
hpuqαtpuqηpduq a.s. for all 0 ď t ď T,

for any bounded measurable function hp¨q, where η is assumed to be a non-atomic σ-finite Borel

measure on R`. In [37, Section 3], the default compensator Hp is computed under this hypothesis.

It is shown that Hp contains an integral with respect to the measure η, which may not necessarily

be absolutely continuous and, in addition, Hp depends on the G-compensators of the processes



GENERAL DYNAMIC TERM STRUCTURES UNDER DEFAULT RISK 17

1rrτi,`8rr which are allowed to be fully general and may therefore exhibit a jumping behavior.

Clearly, this specification can be covered by the general decomposition (2.1).

As an example, [37] consider the case τ :“ τ1 ^ E, where E is exponentially distributed and τ1

is the first passage time of a Brownian motion at the level a ă 0. In this case it, follows that

Hp
t “

ż t

0
hsds` 1tτ1ďtu∆H

p
τ1 , for all 0 ď t ď τ.(3.11)

Our results can be applied to this setting and permit to describe the general class of arbitrage-free

term structure models compatible with this structure of the default compensator.

The approach of [37] has been recently extended to the context of sovereign default risk in [38].

Consider a sequence of increasing thresholds 0 ă a1 ă a2 ă . . . ă an and denote by pτiqi“1,...,n the

(increasing) first-passage times of a Brownian motion of these levels. Let E1 be an independent

exponentially distributed random variable. The times τi represent critical political events where

the sovereign seeks financial aid to avoid immediate default. If τi ą E1, this attempt was not

successful and default occurs. Furthermore, [38] consider an additional doubly-stochastic random

time with an intensity and let the default time τ be the minimum of such times. In summary, the

authors show that Hp
t “

şt
0 hsds `

řn
i“1 1tτiďtu∆H

p
τi , for all 0 ď t ď τ . The authors also study

the case where the Brownian motion is replaced by a diffusive Markov process and obtain explicit

formulas for geometric Brownian motion and for the CEV process.

4. Proofs

This section contains the proofs of all our results. After giving the proof of two technical

lemmata stated in Section 2, we present the proof of Theorem 3.4, while the proofs of the results

stated in Section 3.4 are given in Section 4.3. Finally, Section 4.4 contains the proof of Theorem

3.12.

4.1. Proofs of the results of Section 2.

Proof of Lemma 2.1. Since Hp is a predictable process of finite variation, it can be decomposed

as Hp “ pHpqc `
ř

0ăsď¨∆H
p
s , where pHpqc is an increasing continuous process. [9, Theorem 2.1]

then yields the existence of an integrable predictable process phtq0ďtďT such that

pHpqct “

ż t

0
hsds`

ż t

0
1N psqdpH

pqcs, for all 0 ď t ď T,

where N is a predictable subset of Ωˆ r0,Ts such that the sections Nω :“ tt P r0,Ts : pω, tq P Nu

have Lebesgue measure zero, for a.a. ω P Ω. The result follows by letting λ :“
ş¨

0 1N psqdpH
pqcs. �

Proof of Lemma 2.5. Note first that, due to Assumption (2.4), it holds that, for every t P r0,Ts,

µ̄t “ µ
`

r0,Ts ˆ r0, ts
˘

“ µ
`

r0, ts ˆ r0, ts
˘

“

ż t

0

ż T

0
1tuďtuµpds, duq.

For any measurable bounded function ϑ : r0,Ts ˆ r0,Ts Ñ R`, the process pΘpt, vqq0ďtďT defined

by Θpt, vq :“
şt
0

şT
0 ϑpv, uqµpds, duq is optional and increasing, for every v P r0,Ts, since µpds, duq is

a non-negative optional random measure. Being increasing, pΘpt, vqq0ďtďT admits limits from the

left, so that the process pΘpt´, vqq0ďtďT is adapted and left-continuous, hence predictable, for every

v P r0,Ts. In turn, this implies that the processes pΘpt, tqq0ďtďT and pΘpt´, tqq0ďtďT are optional

and predictable, respectively. Indeed, this is obvious for functions of the form ϑpt, uq “ pptqqpuq,

with p, q : r0,Ts Ñ R` bounded and measurable and the general case follows by a monotone
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class argument. Letting ϑpt, uq “ 1tuďtu, this shows that the process pµ̄tq0ďtďT is optional and

increasing. Moreover, due to part (i) of Assumption (2.4), it holds that

µ̄t “ µ
`

r0, ts ˆ r0, ts
˘

“ µ
`

r0, tq ˆ r0, ts
˘

“ Θpt´, tq,

thus showing the predictability of µ̄. The right-continuity of µ̄ follows by the upper semicontinuity

of the measure. Decomposition (2.6) can be obtained by the same arguments used in the proof of

Lemma 2.1. �

4.2. Proof of Theorem 3.4. Since the proof of Theorem 3.4 requires several intermediate steps,

let us first give an outline of the main ideas involved. The starting point consists in representing

the pre-default price (i.e., on the set tH “ 0u) of a credit risky bond as an exponential of a

semimartingale admitting an explicit decomposition into a predictable finite variation part, a

continuous local martingale part and an integral with respect to the random measure µ. As a

second step, we conveniently transform the ordinary exponential into a stochastic exponential. The

desired local martingale property of (discounted) credit risky bond prices will then be equivalent

to the local martingale property of the process defining the stochastic exponential. By computing

the canonical decomposition of the latter, the local martingale property will hold if and only if all

predictable finite variation terms vanish. This will lead to the conditions stated in Theorem 3.4.

We start by rewriting the defaultable bond price P pt, T q in the following form:

(4.1) P pt, T q “ p1´HtqF pt, T qGpt, T q,

where

F pt, T q :“ exp

ˆ

´

ż T

t
fpt, uqdu

˙

and Gpt, T q :“ exp

˜

´

ż

pt,T s
gpt, uqµtpduq

¸

,

for all 0 ď t ď T ď T. By Assumption 2.6 and following the original arguments of [30], the term

F pt, T q admits the representation

(4.2) F pt, T q “ exp

ˆ
ż t

0
fps, sqds´

ż t

0
āps, T qds´

ż t

0
b̄ps, T qdWs

˙

,

see, e.g., [20, Lemma 6.1] (note that, in comparison to this work, we rely on a slightly weaker

assumption on the volatility process b for the application of the stochastic Fubini theorem by

virtue of [47, Theorem IV.65] or [5, Proposition A.2]).

The next lemma, which extends [25, Lemma 2.3] to the present general setting, derives a repre-

sentation analogous to (4.2) for the term Gpt, T q.

Lemma 4.1. Suppose that Assumptions 2.4 and 2.6 hold. Then, for each T P r0,Ts, the process

plogGpt, T qq0ďtďT is a semimartingale admitting the decomposition

(4.3) logGpt, T q “

ż t

0
gps, sq dµ̄s ´

ż t

0
ᾱps, T qds´

ż t

0
β̄ps, T qdWs ´

ż t

0

ż

ps,T s
gps, uqµpds, duq.

Proof. We first show that the stochastic integral
ş¨

0 β̄ps, T qdWs is well-defined, for every T P r0,Ts.
To this effect, Hölder’s inequality and Assumptions 2.4 and 2.6 imply that, for every T P r0,Ts,

ż T

0
}β̄ps, T q}2ds “

ż T

0

›

›

›

›

ż

ps,T s
βps, uqµspduq

›

›

›

›

2

ds ď

ż T

0

ˆ

µspr0, T sq

ż T

0
}βps, uq}2µspduq

˙

ds

ď µT pr0, T sq

ż T

0

ż T

0
}βps, uq}2µspduqds ă `8 a.s.
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thus proving the well-posedness of the stochastic integral
ş¨

0 β̄ps, T qdWs. In turn, since the term

Gpt, T q is a.s. finite for every 0 ď t ď T ď T, the decomposition (4.3) implies that the term
şt
0

ş

ps,T s gps, uqµpds, duq “ Y
pT q
t is a.s. finite and well-defined as a finite variation process.

Observe that, by the definition of µtpduq,

(4.4) ´ logGpt, T q “

ż t

0

ż

pt,T s
gpt, uqµpds, duq “

ż t

0

ż T

0
1tuątugpt, uqµpds, duq.

The product rule, together with equation (2.4) and the continuity of g, yields that

1r0,uqptqgpt, uq “ gp0, uq `

ż t

0
1r0,uqpvq dgpv, uq `

ż t

0
gpv, uqd

`

1r0,uqpvq
˘

“ gp0, uq `

ż t

0
1r0,uqpvqαpv, uqdv `

ż t

0
1r0,uqpvqβpv, uqdWv ´ gpu, uq1tuďtu,(4.5)

where both integrals are well-defined by Assumption 2.6. Equations (4.4)-(4.5) imply that

´ logGpt, T q “

ż t

0

ż T

0
gp0, uqµpds, duq `

ż t

0

ż T

0

ż t

0
1r0,uqpvqαpv, uqdvµpds, duq

`

ż t

0

ż T

0

ż t

0
1r0,uqpvqβpv, uqdWv µpds, duq ´

ż t

0

ż T

0
gpu, uq1tuďtuµpds, duq

“: p1q ` p2q ` p3q ` p4q.(4.6)

Due to part (ii) of Assumption 2.6, we can apply for each ω P Ω the classical Fubini theorem to

the term p2q, so that

p2q “

ż t

0

ż T

0

ż s

0
1r0,uqpvqαpv, uqdvµpds, duq `

ż t

0

ż T

0

ż t

s
1r0,uqpvqαpv, uqdvµpds, duq

“

ż t

0

ż T

0

ż s

0
1r0,uqpvqαpv, uq dvµpds, duq `

ż t

0

ż v

0

ż T

0
1r0,uqpvqαpv, uqµpds, duq dv.

As shown in Lemma A.1 in the appendix, Assumptions 2.4 and 2.6 allow to perform an analogous

change of the order of integration in the term (3), so that

p3q “

ż t

0

ż T

0

ż s

0
1r0,uqpvqβpv, uq dWvµpds, duq `

ż t

0

ż v

0

ż T

0
1r0,uqpvqβpv, uqµpds, duq dWv.

Note also that
ż t

0

ż v

0

ż T

0
1r0,uqpvqαpv, uqµpds, duq dv “

ż t

0

ż

pv,T s
αpv, uqµvpduq dv “

ż t

0
ᾱpv, T qdv,

ż t

0

ż v

0

ż T

0
1r0,uqpvqβpv, uqµpds, duq dWv “

ż t

0

ż

pv,T s
βpv, uqµvpduq dWv “

ż t

0
β̄pv, T qdWv,

where both integrals are well-defined by Assumption 2.6. Moreover, due to equation (4.5), it holds

that
ż s

0
1r0,uqpvqαpv, uqdv `

ż s

0
1r0,uqpvqβpv, uqdWv “ 1r0,uqpsqgps, uq ´ gp0, uq ` gpu, uq1tuďsu,

so that equation (4.6) can be rewritten as

´ logGpt, T q “

ż t

0
ᾱpv, T qdv `

ż t

0
β̄pv, T qdWv

`

ż t

0

ż T

0
1r0,uqpsqgps, uqµpds, duq ´

ż t

0

ż T

0
1ps,tspuqgpu, uqµpds, duq.
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Finally, part (i) of Assumption 2.4 and the definition of the process µ̄ imply that
ż t

0

ż T

0
1ps,tspuqgpu, uqµpds, duq “

ż t

0

ż t

0
gpu, uqµpds, duq “

ż T

0

ż t

0
gpu, uqµpds, duq “

ż t

0
gpu, uq dµ̄u.

As already remarked at the end of Section 2.4, the process
ş¨

0 gpu, uq dµ̄u is predictable and of finite

variation. This implies the semimartingale property of the process plogGpt, T qq0ďtďT , for every

T P r0,Ts. �

For each T P r0,Ts, let us define the process pX
pT q
t q0ďtďT by

(4.7)

X
pT q
t :“ log

`

F pt, T q
˘

` log
`

Gpt, T q
˘

“

ż t

0
fps, sqds´

ż t

0
āps, T qds´

ż t

0
b̄ps, T qdWs

`

ż t

0
gps, sqdµ̄s ´

ż t

0
ᾱps, T qds´

ż t

0
β̄ps, T qdWs ´

ż t

0

ż

ps,T s
gps, uqµpds, duq,

so that P pt, T q “ p1´Htq exppX
pT q
t q. In the following lemma, we give an alternative representation

of the defaultable bond price P pt, T q as a stochastic exponential.

Lemma 4.2. Suppose that Assumptions 2.4 and 2.6 hold. Then, for each 0 ď t ď T ď T, the

credit risky bond price P pt, T q can be represented as

(4.8) P pt, T q “ E
`

rXpT q ´H ´ r rXpT q, Hs
˘

t
,

where, for each T P r0,Ts, the process p rX
pT q
t q0ďtďT is defined as

rX
pT q
t :“ X

pT q
t `

1

2

ż t

0
}b̄ps, T q ` β̄ps, T q}2ds

`
ÿ

0ăsďt

ˆ

e´
şT
s gps,uqµptsuˆduq`gps,sq∆µ̄s ´ 1`

ż T

s
gps, uqµptsu ˆ duq ´ gps, sq∆µ̄s

˙

.(4.9)

Proof. Since the process pHtq0ďtďT is a single jump process with jump size equal to one, it follows

that, by the definition of stochastic exponential,

1´Ht “ eH0´Ht
ź

0ăsďt

p1´∆Hsqe
∆Hs “ Ep´Hqt, for all t P r0,Ts.

[33, Theorem II.8.10] implies that exppX
pT q
t q “ Ep rXpT qqt, for all 0 ď t ď T ď T, where rXpT q is

defined as in (4.9). Representation (4.8) then follows by Yor’s formula (see [33, § II.8.19]). �

Our next goal consists in developing a more tractable representation of the process appearing

in the stochastic exponential in (4.8). To this effect, let us analyze in more detail the jumps of the

semimartingale rXpT q ´H ´ r rXpT q, Hs:

∆
`

rXpT q ´H ´ r rXpT q, Hs
˘

t
“ ∆ rX

pT q
t ´∆Ht ´∆Ht∆ rX

pT q
t

“ e´
şT
t gpt,uqµpttuˆduq`gpt,tq∆µ̄t ´ 1´∆Ht ´∆Ht

´

e´
şT
t gpt,uqµpttuˆduq`gpt,tq∆µ̄t ´ 1

¯

“ egpt,tq∆µ̄t
´

e´
şT
t gpt,uqµpttuˆduq ´ 1

¯

p1´∆Htq `

´

egpt,tq∆µ̄t ´ 1
¯

p1´∆Htq ´∆Ht.(4.10)

Let us rewrite this last expression in a more compact way by using the notation introduced in Sec-

tion 3.3. To this end, for each T P r0,Ts, we make use of the processes Y pT q “
ş¨

0

şT
0 gps, uqµpds, duq

and H and of the corresponding jump measure µpY
pT q,Hq, so that

(4.11)
ÿ

0ăsďt

egps,sq∆µ̄s
´

e´
şT
s gps,uqµptsuˆduq ´ 1

¯

p1´∆Hsq “ pΨ ˚ µ
pY pT q,Hqqt,
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with Ψpω; s, y, zq “ egpω;s,sq∆µ̄spωq pe´y ´ 1q p1´ zq. Note that the function Ψ is P b BpRˆ r0, 1sq-
measurable and Ψ ˚ µpY

pT q,Hq makes sense as an integral with respect to the random measure

µpY
pT q,Hq. Indeed, (4.11) is well-defined, since H is a single jump process and

ÿ

0ăsďt

egps,sq∆µ̄s
ˇ

ˇ

ˇ
e´

şT
s gps,uqµptsuˆduq ´ 1

ˇ

ˇ

ˇ

ď
ÿ

0ăsďt

ˇ

ˇ

ˇ
e´

şT
s gps,uqµptsuˆduq`gps,sq∆µ̄s ´ 1

ˇ

ˇ

ˇ
`

ÿ

0ăsďt

ˇ

ˇ

ˇ
egps,sq∆µ̄s ´ 1

ˇ

ˇ

ˇ
ă `8 a.s.(4.12)

In fact, the first sum appearing in (4.12) is finite as a consequence of (4.9) together with the

fact that the two processes Y pT q and
ş¨

0 gps, sqdµ̄s are of finite variation, which in turn implies

that
ř

0ăsď¨

şT
s gps, uqµptsu ˆ duq and

ř

0ăsď¨ gps, sq∆µ̄s are a.s. finite. Moreover, the process
ş¨

0 gps, sqdµ̄s is predictable and of finite variation, hence locally bounded (see [33, Lemma I.3.10])

and exponentially special, so that the second term appearing in (4.12) is a.s. finite by [33, Propo-

sition II.8.26]. This shows that the summations of the jump terms appearing in (4.10) are well-

defined and a.s. finite. We have thus obtained the representation:
ÿ

0ăsďt

∆
`

rXpT q ´H ´ r rXpT q, Hs
˘

s
“

ÿ

0ăsďt

´

egps,sq∆µ̄s ´ 1
¯

p1´∆Hsq ´Ht ` pΨ ˚ µ
pY pT q,Hqqt.

In turn, together with the definition of the process rXpT q (see (4.9)) and decomposition (2.6), this

implies that the semimartingale rXpT q ´ H ´ r rXpT q, Hs defining the stochastic exponential (4.8)

admits the following decomposition:

rX
pT q
t ´Ht ´ r rX

pT q, Hst “

ż t

0
fps, sqds´

ż t

0
āps, T qds´

ż t

0
ᾱps, T qds

`
1

2

ż t

0
}b̄ps, T q ` β̄ps, T q}2ds`

ż t

0
gps, sqmsds`

ż t

0
gps, sqdνs

´

ż t

0
b̄ps, T qdWs ´

ż t

0
β̄ps, T qdWs ´ pg

pT q ˚ µqct(4.13)

`
ÿ

0ăsďt

`

egps,sq∆µ̄s ´ 1
˘

p1´∆Hsq ´Ht ` pΨ ˚ µ
pY pT q,Hqqt,

where gpT qpω; s, uq :“ 1tuďT ugpω; s, uq and pgpT q ˚ µqc denotes the continuous part of the finite

variation process gpT q ˚ µ “ Y pT q.

We are now in a position to complete the proof Theorem 3.4.

Proof of Theorem 3.4. Recall that, in view of Lemma 2.5, the process pgpt, tq∆µ̄tq0ďtďT is pre-

dictable and locally bounded, since pgpt, tqq0ďtďT is continuous and pµ̄tq0ďtďT is locally bounded,

being a predictable process of finite variation. Hence, by compensating the process H and using

decomposition (2.1), it follows that

ÿ

0ăsďt

`

egps,sq∆µ̄s ´ 1
˘

∆Hs “

ż t

0

`

egps,sq∆µ̄s ´ 1
˘

dHs

“ (local martingale)t `

ż t

0

`

egps,sq∆µ̄s ´ 1
˘

dHp
s

“ (local martingale)t `
ÿ

0ăsďt

`

egps,sq∆µ̄s ´ 1
˘

∆Hp
s .

Recall that, for each T P r0,Ts, the random measure µp,pY
pT q,Hq denotes the compensator of

µpY
pT q,Hq, in the sense of [33, Theorem II.1.8]. Hence, by relying on (4.13) together with Lemma
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2.1, we obtain that

(4.14)

rX
pT q
t ´Ht ´ r rX

pT q, Hst “ (local martingale)t

`

ż t

0
fps, sqds´

ż t

0
āps, T qds´

ż t

0
ᾱps, T qds

`
1

2

ż t

0
}b̄ps, T q ` β̄ps, T q}2ds`

ż t

0
gps, sqmsds`

ż t

0
gps, sqdνs

´ pgpT q ˚ µqct ´

ż t

0
hsds´ λt

´
ÿ

0ăsďt

∆Hp
s `

ÿ

0ăsďt

pegps,sq∆µ̄s ´ 1qp1´∆Hp
s q

` pΨ ˚ µp,pY
pT q,Hqqt,

where we have used the fact that the finite variation process pgpT q˚µqc is predictable, being adapted

and continuous. Taking into account equation (4.8) and by [33, Corollary I.3.16], this implies that

the discounted defaultable bond price pP pt, T q{X0
t q0ďtďT is a local martingale, for every T P r0,Ts,

if and only if the predictable finite variation part in (4.14) coincides with
ş¨

0 rsds. To this effect, let

us analyze separately the absolutely continuous, singular and jump parts, for all 0 ď t ď T ď T.

Beginning with the jump terms, it must hold that

(4.15) ´∆Hp
t ` pe

gpt,tq∆µ̄t ´ 1qp1´∆Hp
t q `∆pΨ ˚ µp,pY

pT q,Hqqt “ 0.

Let t “ T and note that, in view of [33, Proposition II.1.17], it holds that

∆pΨ ˚ µp,pY
ptq,Hqqt “ E

“

∆pΨ ˚ µpY
ptq,Hqqt

ˇ

ˇFt´

‰

“ egpt,tq∆µ̄tE
“`

e´∆Y
ptq
t ´ 1

˘

p1´∆Htq
ˇ

ˇFt´

‰

“ 0,

since ∆Y
ptq
t “ 0, for all t P r0, T s. Therefore,

´∆Hp
t ` pe

gpt,tq∆µ̄t ´ 1qp1´∆Hp
t q “ 0,

which corresponds to condition (ii) of Theorem 3.4. In view of (4.15), condition (iii) also follows.

Considering now the continuous singular terms of the finite variation part of (4.14), it must hold

that
ż t

0
gps, sqdνs ´ pg

pT q ˚ µqsgt ´ λt ` pΨ ˚ µ
p,pY pT q,Hqq

sg
t “ 0,

for all 0 ď t ď T ď T, which yields condition (v). Finally, considering the densities of the absolutely

continuous terms of the finite variation part of (4.14) and letting t “ T , it must hold that

(4.16) fpt, tq ` gpt, tqmt ´ pg
ptq ˚ µqac

t ´ ht ` pΨ ˚ µ
p,pY ptq,Hqqac

t “ rt,

for Lebesgue-a.e. t P r0,Ts. However, denoting by ApT q,ac the density of the absolutely continuous

part of the predictable integrable process ApT q appearing in (3.4), for T P r0,Ts, it holds that

pΨ ˚ µp,pY
ptq,Hqqac

t “ A
ptq,ac
t

ż

Rˆt0,1u
pe´y ´ 1qp1´ zqKptqpt; dy, dzq “ 0,

since 1ty‰0uK
ptqpt; dy, dzq “ 0 for all t P r0,Ts. Moreover, by the same arguments used in the proof

of [33, Theorem II.1.8] (but with respect to the optional σ-field), it can be shown that there exist a

kernel Npω, t; duq from pΩˆr0,Ts,Oq into pr0,Ts,Bpr0,Tsqq and a predictable integrable increasing

process D “ pDtq0ďtďT such that µpω; ds, duq “ Npω, t; duqdDspωq. Letting Dc “
ş¨

0D
ac
s ds `Dsg
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be the decomposition of the continuous part of the process D into an absolutely continuous part

and a singular continuous part, it then follows that, for all 0 ď t ď T ď T,

pgpT q ˚ µqct “

ż t

0

ż

ps,T s
gps, uqNps; duqDac

s ds`

ż t

0

ż

ps,T s
gps, uqNps; duqdDsg

s ,

so that pgptq ˚ µqac
t “ 0, for all t P r0,Ts. Therefore, we have shown that condition (4.16) reduces

to

fpt, tq ` gpt, tqmt ´ ht “ rt,

for Lebesgue-a.e. t P r0,Ts, which corresponds to condition (i) in Theorem 3.4. Condition (iv)

then follows by considering the remaining absolutely continuous terms and making use of condition

(i). Conversely, it can be easily checked that conditions (i)-(v) of Theorem 3.4 together imply that

all the finite variation terms appearing in (4.14) vanish. �

The following simple lemma proves relation (3.5).

Lemma 4.3. Suppose that Assumptions 2.4 and 2.6 hold. Then, for every T P r0,Ts, the com-

pensating measure µp,pY
pT q,Hq is related to the compensating measure µp as follows:

ż

R
y µp,pY

pT q,Hqpttu ˆ dy ˆ t0, 1uq “

ż

pt,T s
gpt, uqµppttu ˆ duq, for all 0 ď t ď T.

Proof. It suffices to remark that, in view of [33, § II.1.11] together with the definition of Y pT q and

the predictability of g,

ż

pt,T s
gpt, uqµppttu ˆ duq “ E

«

ż

pt,T s
gpt, uqµpttu ˆ duq

ˇ

ˇ

ˇ
Ft´

ff

“ E
“

∆Y
pT q
t

ˇ

ˇFt´

‰

“ E
„
ż

R
y µpY

pT q,Hqpttu ˆ dy ˆ t0, 1uq
ˇ

ˇ

ˇ
Ft´



“

ż

R
y µp,pY

pT q,Hqpttu ˆ dy ˆ t0, 1uq.

�

4.3. Proofs of the results of Section 3.4.

Proof of Lemma 3.6. By definition of the process Y pT q, the random set t∆Y pT q ‰ 0u is a subset of

tpω, tq P Ωˆr0, T s : µpω; ttuˆr0,Tsq ą 0u. Hence, condition (3.9) implies that, up to an evanescent

set, ∆Y pT q∆H “ 0, so that Ψ˚µpY
pT q,Hq “ Ψp1q ˚µY

pT q
, using the notation introduced in (3.8). �

Proof of Corollary 3.7. Observe first that

µ̄t “ µ
`

r0,Ts ˆ r0, ts
˘

“ µ
`

r0, ts ˆ r0, ts
˘

“
ÿ

nPN
1tτnďt,σnďtu “

ÿ

nPN
1tτnďtu

and, consequently, the decomposition (2.6) reduces to µ̄t “
ř

0ăsďt ∆µ̄s. This implies that con-

dition (i) of Theorem 3.4 reduces to condition (i) of the present corollary. Condition (ii) of the

corollary directly follows from condition (ii) of Theorem 3.4. Note also that

pgpT q ˚ µqt “
ÿ

nPN
g pσn, τnq1tτnďT u1tσnďtu,

so that the continuous part pgpT q ˚ µqc is null. Moreover, by the definition of the process Y pT q,

∆Y
pT q
t “

ż T

0
gpt, uqµpttu ˆ duq “ 1Dptq1tγtďT ugpt, γtq,
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where D “
Ť

nPNrrσnss and γ is an optional process such that τn “ γσn , for all n P N, so that

pΨp1q ˚ µY
pT q
qt “

ÿ

0ăsďt

egps,sq∆µ̄s
`

e´∆Y
pT q
s ´ 1

˘

“

ż t

0

ż T

0
egps,sq∆µ̄s

`

e´gps,uq ´ 1
˘

µpds, duq.

Condition (iii) then follows from Lemma 3.6, which implies that Ψ ˚ µp,pY
pT q,Hq “ Ψp1q ˚ µp,Y

pT q
.

Conditions (iv)-(v) of the corollary follow from conditions (iv)-(v) of Theorem 3.4. �

Proof of Corollary 3.8. Under the present assumptions, the random measure µpds, duq is an integer-

valued random measure. Since Qpτ “ σiq “ 0, for all i “ 1, . . . , N , condition (3.9) holds, so that

the assumptions of Corollary 3.7 are satisfied. The process pµ̄tq0ďtďT is given by

µ̄t “ µ
`

r0,Ts ˆ r0, ts
˘

“

N
ÿ

i“1

1tτiďtu, for all 0 ď t ď T,

so that conditions (i)-(ii) of the present corollary follow from conditions (i)-(ii) of Corollary 3.7.

Condition (iii) of the present corollary corresponds to condition (iv) of Corollary 3.7, noting that

Jac
t “ 1 and F pt; duq “ ξtpduq, for all t P r0,Ts. Finally, under the present assumptions, conditions

(iii) and (v) of Corollary 3.7 are always satisfied. �

Proof of Corollary 3.9. Note first that Assumption 2.4 is clearly satisfied under the present as-

sumptions. Moreover, the process pµ̄tq0ďtďT is simply given by

µ̄t “ µ
`

r0,Ts ˆ r0, ts
˘

“ µ
`

t0u ˆ r0, ts
˘

“

N
ÿ

i“1

1tuiďtu, for all 0 ď t ď T.

Conditions (i)-(ii) then follow from conditions (i)-(ii) of Theorem 3.4. Moreover, for all 0 ď t ď

T ď T, it holds that

Y
pT q
t “ pgpT q ˚ µqt “

ż T

0
gp0, uqµ

`

t0u ˆ du
˘

“

N
ÿ

i“1

gp0, uiq1tuiďT u,

so that Y
pT q
t “ Y

pT q
0 , for all 0 ď t ď T ď T. In particular, ∆Y pT q “ 0, so that conditions (iii) and

(v) of Theorem 3.4 are automatically satisfied, since λ “ 0. Condition (iii) of the corollary then

immediately follows from condition (iv) of Theorem 3.4. �

4.4. Proof of Theorem 3.12.

Proof of Theorem 3.12. In view of Lemma 4.1, credit risky bond prices admit the representation

P pt, T q “ EpRqt exppX
pT q
t q, for all 0 ď t ď T ď T, where the process XpT q is defined as in (4.7).

By the same arguments of Lemma 4.2, we have that

P pt, T q “ E
`

rXpT q `R` r rXpT q, Rs
˘

t
.

Note that r rXpT q, Rs “
ř

0ăsď¨∆
rX
pT q
s ∆Rs, since R is of finite variation. Moreover, arguing similarly

as in (4.10), it holds that

∆ rX
pT q
t p1`∆Rtq “

`

e∆X
pT q
t ´ 1

˘

p1`∆Rtq

“ egpt,tq∆µ̄t
´

e´
şT
t gpt,uqµpttuˆduq ´ 1

¯

ˆ

1`

ż

r´1,0s
xµRpttu ˆ dxq

˙

`

´

egpt,tq∆µ̄t ´ 1
¯

ˆ

1`

ż

r´1,0s
xµRpttu ˆ dxq

˙

.
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Hence,

ÿ

0ăsďt

∆ rXpT qs p1`∆Rsq “
`

Ψ ˚ µpY
pT q,´Rq

˘

t
`

ÿ

0ăsďt

´

egps,sq∆µ̄s ´ 1
¯

ˆ

1`

ż

r´1,0s
xµRptsu ˆ dxq

˙

.

Note that all the terms appearing in the last expression are a.s. finite, by the same arguments used

after equation (4.12) together with the fact that the process R has bounded jumps. Moreover,

ÿ

0ăsďt

´

egps,sq∆µ̄s ´ 1
¯

ż

r´1,0s
xµRptsu ˆ dxq

“ plocal martingaleqt `
ÿ

0ăsďt

´

egps,sq∆µ̄s ´ 1
¯

ż

r´1,0s
xµp,Rptsu ˆ dxq.

Hence, similarly as in the proof of Theorem 3.4, we obtain that

rX
pT q
t `Rt ` r rX

pT q, Rst “ plocal martingaleqt

`

ż t

0
fps, sqds´

ż t

0
āps, T qds´

ż t

0
ᾱps, T qds`

1

2

ż t

0

›

›b̄ps, T q ` β̄ps, T q
›

›

2
ds

`

ż t

0
gps, sqmsds`

ż t

0
gps, sqdνs ´ pg

pT q ˚ µqct

´ Ct `
`

Ψ ˚ µp,pY
pT q,´Rq

˘

t

`
ÿ

0ăsďt

´

egps,sq∆µ̄s ´ 1
¯

ˆ

1`

ż

r´1,0s
xµp,Rptsu ˆ dxq

˙

.

Conditions (i)-(v) then follow by a similar analysis as in the proof of Theorem 3.4. �

Appendix A. A variant of the stochastic Fubini theorem

In this appendix, we show that Assumptions 2.4 and 2.6 imply that it is possible to interchange

the order of integration in the term (3) appearing in equation (4.6) in the proof of Lemma 4.1.

As a preliminary, following [32, Exercise 3.6], we write the following unique decomposition of µ:

µpω; ds, duq “ µpcqpω; ds, duq ` µpdqpω; ds, duq “ µpcqpω; ds, duq `
`8
ÿ

k“1

1tTkpωqďTuδTkpωqpdsqFkpω; duq,

where µpcq is a random measure satisfying µpcqpttu ˆ r0,Tsq “ 0 for all t P r0,Ts, pTkqkPN is a

family of disjoint stopping times and, for every k P N, Fkpω; duq is a kernel from pΩ,FTkq into

pr0,Ts,Bpr0,Tsqq satisfying supωPΩ Fkpω; r0,Tsq ă `8, for all k P N. Furthermore, by the same

arguments used in part (d) of the proof of [33, Theorem II.1.8], we can write

µpcqpω; ds, duq “ Kpω, s; duqdAspωq,

where pAtq0ďtďT is an integrable increasing predictable process and Kpω, s; duq is a kernel from

pΩ ˆ r0,Ts,Pq into pr0,Ts,Bpr0,Tsqq. Moreover, since µpcqpttu ˆ r0,Tsq “ 0 for all t P r0,Ts, the

process pAtq0ďtďT is continuous. Summing up, we get the general decomposition

(A.1) µpω; ds, duq “ Kpω, s; duqdAspωq `
`8
ÿ

k“1

1tTkpωqďTuδTkpωqpdsqFkpω; duq.

Lemma A.1. Suppose that Assumptions 2.4 and 2.6 hold. Then, for all 0 ď t ď T ď T, it holds

that
ż t

0

ż T

0

ż t

s
1r0,uqpvqβpv, uqdWv µpds, duq “

ż t

0

ż v

0

ż T

0
1r0,uqpvqβpv, uqµpds, duq dWv.
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Proof. We first consider the integral with respect to the purely discontinuous part µpdq of µ:

ż t

0

ż T

0

ż t

s
1r0,uqpvqβpv, uqdWv µ

pdqpds, duq “
`8
ÿ

k“1

1tTkďtu

ż T

0

ż t

Tk

1r0,uqpvqβpv, uqdWv Fkpduq.

For each k P N, let us define the filtration Fk “ pF k
t q0ďtďT by F k

t :“ FpTk`tq^T, for all t P r0,Ts,
and the stochastic process W k “ pW k

t q0ďtďT by W k
t :“WpTk`tq^T ´WTk^T, for all t P r0,Ts. The

strong Markov property implies that W k is a Brownian motion in the filtration Fk, for each k P N.

Therefore, for each k P N, we can write:

1tTkďtu

ż T

0

ż t

Tk

1r0,uqpvqβpv, uqdWv Fkpduq “ 1tTkďtu

ż T

0

ż t´Tk

0
hkpv, uqdW k

v Fkpduq,

where the process hkp¨, uq :“ 1r0,uqp¨ ` Tkqβp¨ ` Tk, uq is Fk-adapted and
şt´Tk
0 hkpv, uqdW k

v makes

sense as a Brownian stochastic integral parametrised by u in the filtration Fk. Since the kernel

Fkpduq is F k
0 -measurable, we can apply the stochastic Fubini theorem of [47, Theorem IV.65]6 in

the filtration Fk to obtain

1tTkďtu

ż T

0

ż t´Tk

0
hkpv, uqdW k

v Fkpduq “ 1tTkďtu

ż t´Tk

0

ż T

0
hkpv, uqFkpduq dW

k
v

“ 1tTkďtu

ż t

0
1tTkďvu

ż T

0
1r0,uqpvqβpv, uqFkpduq dWv

“

ż t

0

ż T

0
1tTkďvu1r0,uqpvqβpv, uqFkpduq dWv.

Applying this argument to every k P N, we get that

ż t

0

ż T

0

ż t

s
1r0,uqpvqβpv, uqdWv µ

pdqpds, duq “
`8
ÿ

k“1

ż t

0

ż T

0
1tTkďvu1r0,uqpvqβpv, uqFkpduq dWv

“ lim
NÑ`8

ż t

0
`N pv, T qdWv,

where `N p¨, T q :“
řN
k“1

şT
0 1tTkď¨u1r0,uqp¨qβp¨, uqFkpduq is an F-adapted process, integrable with

respect to the Brownian motion W . For each fixed v and T , the sequence p`N pv, T qqNPN converges

pointwise to

`8
ÿ

k“1

ż T

0
1tTkďvu1r0,uqpvqβpv, uqFkpduq “

ż v

0

ż

pv,T s
βpv, uqµpdqpds, duq “: β̄pdqpv, T q.

By Assumption 2.6, the process β̄pdqp¨, T q is integrable with respect to W (this follows exactly as

in the first part of the proof of Lemma 4.1). Moreover, it can be checked that

|`N,ipv, T q| _ |β̄pdq,ipv, T q| ď

ż

pv,T s
|βipv, uq|µpdqpr0, vs ˆ duq,

for each i “ 1, . . . , n, and the process p
ş

pv,T s |β
ipv, uq|µpdqpr0, vs ˆ duqq0ďvďT is integrable with re-

spect to W i, for each i “ 1, . . . , n. The dominated convergence theorem for stochastic integrals (see

6 A careful inspection of the proof of [47, Theorem IV.65] reveals that the stochastic Fubini theorem holds true

even if the measure Fkpduq is not deterministic but only F k
0 -measurable, since supωPΩ Fkpω; r0,Tsq ă `8. The

integrability condition
şT´Tk

0

şT

0
phk,i

pv, uqq2Fkpduqdv ă `8 a.s., for all i “ 1, . . . , n, required for the application of

[47, Theorem IV.65], is implied by the requirement
şT
0

şT
0
}βpv, uq}2µvpduqdv ă `8 a.s. appearing in Assumption 2.6.
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[47, Theorem IV.32]) implies that
ş¨

0 `
N pv, T qdWv converges uniformly on compacts in probability

to
ş¨

0 β̄
pdqpv, T qdWv as N Ñ `8. Putting together the above results, we have shown that
ż t

0

ż T

0

ż t

s
1r0,uqpvqβpv, uqdWv µ

pdqpds, duq “ lim
NÑ`8

ż t

0
`N pv, T qdWv

“

ż t

0
β̄pdqpv, T qdWv

“

ż t

0

ż v

0

ż T

0
1r0,uqpvqβpv, uqµ

pdqpds, duq dWv.

It remains to perform an analogous interchange of the order of integration with respect to the

continuous random measure µpcq in the term

(A.2)

ż t

0

ż T

0

ż t

s
1r0,uqpvqβpv, uqdWv µ

pcqpds, duq “

ż t

0

ż T

0

ż t

s
1r0,uqpvqβpv, uqdWvKps; duqdAs.

As a preliminary, we can assume without loss of generality that the process pAtq0ďtďT is strictly

increasing. Indeed, if µpcqpds, duq “ Kps; duqdAs is an arbitrary disintegration of the random

measure µpcq into a predictable kernel K and an increasing continuous process A, let us consider

the unique decomposition (compare with the proof of Lemma 2.1)

At “

ż t

0
asds`

ż t

0
1N psqdAs “:

ż t

0
asds`A

sg
t ,

where patq0ďtďT is a predictable non-negative integrable process and N is a predictable set such

that its sections have Lebesgue measure zero a.s. Let A1t :“ t ` Asg
t , for all t P r0,Ts, and

K 1pt; duq :“ pat1Ncptq ` 1N ptqqKpt; duq. It is clear that the process pA1tq0ďtďT is continuous and

strictly increasing and K 1pt; duq is a kernel from pΩ ˆ r0,Ts,Pq into pr0,Ts,Bpr0,Tsqq. Moreover,

it holds that K 1pt; duqdA1t “ Kpt; duqdAt. We can furthermore assume that Kps; r0,Tsq ď 1 for

all s P r0,Ts. Indeed, if µpcqpds, duq “ Kps; duqdAs is a disintegration of the random measure µpcq

with respect to a continuous and strictly increasing process pAtq0ďtďT, let

rKps; duq :“
Kps; duq

Kps; r0,Tsq ` ε
and rA :“

ż ¨

0

`

Kps; r0,Tsq ` ε
˘

dAs,

for some ε ą 0. Clearly, we have that rKps; r0,Tsq ď 1 for all s P r0,Ts and the process p rAtq0ďtďT is

continuous and strictly increasing (since pAtq0ďtďT is continuous and strictly increasing). Moreover,

it holds that rKps; duqd rAs “ Kps; duqdAs “ µpcqpds, duq. Summing up, in the disintegration

µpcqpds, duq “ Kps; duqdAs we can always assume that the kernel K satisfies Kps; r0,Tsq ď 1 for

all s P r0,Ts and that the process pAtq0ďtďT is continuous and strictly increasing. In the following,

we will make use of these two properties.

Consider the inner integral in (A.2):
şT
0

şt
s 1r0,uqpvqβpv, uqdWvKps; duq, for a fixed s P r0, ts. By

the same arguments used in the first part of the proof, we can use the stochastic Fubini theorem

(see [47, Theorem IV.65]7) to deduce that, for all 0 ď s ď t ď T ď T,
ż T

0

ż t

s
1r0,uqpvqβpv, uqdWvKps; duq “

ż t

s

ż T

0
1r0,uqpvqβpv, uqKps; duq dWv.

Hence:
ż t

0

ż T

0

ż t

s
1r0,uqpvqβpv, uqdWv µ

pcqpds, duq “

ż t

0
Xt,T
s dAs,

7The integrability condition
şt

s

şT

0
1r0,uqpvqpβ

i
pv, uqq2Kps; duqdv ă `8 a.s., for each 0 ď s ď t ď T ď T

and i “ 1, . . . , n, required for the application of [47, Theorem IV.65] is implied by the stronger condition
şT
0

şT
0
}βpv, uq}2µvpduqdv ă `8 a.s. appearing in Assumption 2.6.
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where the continuous process pXt,T
s q0ďsďt is defined by Xt,T

s :“
şt
s

ş

pv,T s βpv, uqKps; duq dWv, for

all s P r0, ts. Since the process pAtq0ďtďT is continuous and strictly increasing, the change of time

process pCtqtě0 defined by Ct :“ infts P r0,Ts : As ě tu, for t P R`, is continuous and strictly

increasing, so that ACt “ t and CAt “ t, for all t P r0,Ts. Moreover, arguing similarly as in the

proof of [33, Lemma I.3.12], we have that
ż t

0
Xt,T
s dAs “

ż 8

0
1tCsďtuX

t,T
Cs
ds,

meaning that
ż t

0

ż T

0

ż t

s
1r0,uqpvqβpv, uqdWv µ

pcqpds, duq “

ż 8

0
1tCsďtu

ż t

Cs

ż

pv,T s
βpv, uqKpCs; duq dWv ds

“

ż 8

0

ż t

0
1tCsďvu

ż

pv,T s
βpv, uqKpCs; duq dWv ds

“

ż 8

0

ż t

0
Lpv, sq dWv ds,

where the process pLpT qpt, sqq0ďtďT is defined by LpT qpt, sq :“ 1tCsďtu

ş

pt,T s βpt, uqKpCs; duq, for

every t P r0, T s and s P R`. Note that, since each Cs is a predictable time (due to the continuity

of A) and the kernel KpCs; duq if FCs´-measurable, the process pLpT qpt, sqq0ďtďT is predictable.

At this point, the stochastic Fubini theorem of [47, Theorem IV.65] implies that

(A.3)

ż 8

0

ż t

0
LpT qpv, sq dWv ds “

ż t

0

ż 8

0
LpT qpv, sq ds dWv.

The integrability requirement appearing in [47, Theorem IV.65] is satisfied. Indeed, using Hölder’s

inequality and recalling that Kps; r0,Tsq ď 1 for all s P r0,Ts, it holds that

ż T

0

ż 8

0
pLpT q,ipv, sqq2ds dv “

ż T

0

ż 8

0

ˆ

1tCsďvu

ż

pv,T s
βipv, uqKpCs; duq

˙2

ds dv

ď

ż T

0

ż 8

0
1tCsďvu

ż

pv,T s
pβipv, uqq2KpCs; duqds dv

“

ż T

0

ż v

0

ż

pv,T s
pβipv, uqq2Kps; duqdAs dv

“

ż T

0

ż

pv,T s
pβipv, uqq2µpcqpr0, vs ˆ duq dv

ď

ż T

0

ż T

0
}βpv, uq}2µvpduqdv ă `8,

for every i “ 1, . . . , n. Hence, continuing from (A.3), we get that

ż t

0

ż T

0

ż t

s
1r0,uqpvqβpv, uqdWv µ

pcqpds, duq “

ż t

0

ż 8

0
LpT qpv, sq ds dWv

“

ż t

0

ż 8

0
1tCsďvu

ż

pv,T s
βpv, uqKpCs; duq ds dWv

“

ż t

0

ż v

0

ż

pv,T s
βpv, uqKps; duq dAs dWv

“

ż t

0

ż v

0

ż T

0
1r0,uqpvqβpv, uqµ

pcqpds, duq dWv.
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Finally, by linearity of the integral, it holds that

ż t

0

ż T

0

ż t

s
1r0,uqpvqβpv, uqdWv µpds, duq

“

ż t

0

ż T

0

ż t

s
1r0,uqpvqβpv, uqdWv µ

pcqpds, duq `

ż t

0

ż T

0

ż t

s
1r0,uqpvqβpv, uqdWv µ

pdqpds, duq

“

ż t

0

ż v

0

ż T

0
1r0,uqpvqβpv, uqµ

pcqpds, duq dWv `

ż t

0

ż v

0

ż T

0
1r0,uqpvqβpv, uqµ

pdqpds, duq dWv

“

ż t

0

ˆ
ż v

0

ż T

0
1r0,uqpvqβpv, uqµ

pcqpds, duq `

ż v

0

ż T

0
1r0,uqpvqβpv, uqµ

pdqpds, duq

˙

dWv

“

ż t

0

ż v

0

ż T

0
1r0,uqpvqβpv, uqµpds, duq dWv,

thus completing the proof. �
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