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Abstract

We prove the existence of the fundamental solution of the degenerate second order partial differ-
ential equation related to Geman-Yor stochastic processes, that arise in models for option pricing
theory in finance.
We then prove pointwise lower and upper bounds for such fundamental solution. Lower bounds
are obtained by using repeatedly an invariant Harnack inequality and by solving an associated
optimal control problem with quadratic cost. Upper bounds are obtained by the fact that the
cost satisfies a specific Hamilton-Jacobi-Bellman equation.

Résumé

Nous démontrons l’existence de la solution fondamentale pour une equation différentielle dégénérée
d’ordre deux associée au processus stochastique de Geman-Yor. Ce dernier est utilisé dans des
modèles issus de la théorie du “pricing” des options financières.
Nous obtenons ensuite des bornes ponctuelles inférieures et supérieures pour cette solution fon-
damentale. Les bornes inférieures sont obtenues en utilisant de façon répétée une inégalité de
Harnack invariante et en résolvant un problème de commande optimale avec coût quadratique.
Les bornes supérieures sont quant à elles dérivées en utilisant le fait que le coût satisfait une
équation de Hamilton-Jacobi-Bellman.

Keywords: hypoelliptic operators, Geman-Yor stochastic process, Harnack inequality, optimal
control
2010 MSC: 35K57, 35K65, 35K70.

∗Corresponding author
Email addresses: gennaro.cibelli@unimore.it (Gennaro Cibelli), sergio.polidoro@unimore.it (Sergio

Polidoro), francesco.rossi@math.unipd.it (Francesco Rossi)

Preprint submitted to Elsevier August 30, 2018



1. Introduction

A keystone result in the theory of parabolic partial differential equations reads as follows: if
Γ = Γ(x, t, ξ, τ) denotes the fundamental solution of an uniformly parabolic PDE

∂tu(x, t) =
N∑

i,j=1

∂xi
(
aij(x, t)∂xju(x, t)

)
, (x, t) ∈ RN×]0, T ],

then there exist positive constants c−, C−, c+, C+ such that

c−

(t− τ)N/2
exp

(
−C− |x− ξ|

2

t− τ

)
≤ Γ(x, t, ξ, τ) ≤ C+

(t− τ)N/2
exp

(
−c+ |x− ξ|2

t− τ

)
, (1.1)

for every (x, t), (ξ, τ) ∈ RN×]0, T ] with τ < t. This result has been proved by Aronson [3] for
operators with bounded measurable coefficients aij , following the fundamental works of Nash
[49] and Moser [46, 47]. We also refer to the article of Fabes and Strook [25] for divergence form
parabolic operators, and to Krylov and Safonov [35] for non-divergence form operators.

The bounds (1.1) have been extended by many authors to subelliptic operators. We recall in
particular, the Gaussian upper bound proved by Davies in [20], and the upper and lower bounds
due to Jerison and Sánchez-Calle [34], and to Varopoulos, Saloff-Coste and Coulhon [58]. We also
recall that Kusuoka and Stroock in [36] extend (1.1) by probabilistic methods. In this setting, the
quantity |x−ξ| appearing in (1.1) is replaced by the the Carnot-Carathéodory distance dCC(x, ξ),
that is its natural counterpart in the subelliptic setting. See also [7]. Analogous results have been
proved in [23, 12, 19, 15, 39], where subelliptic parabolic operators with drift are considered. In
this case, not even the Carnot-Carathéodory distance is appropriate to express a bound of the
fundamental solution. Actually, the value function Ψ = Ψ(x, t, ξ, τ) of a suitable optimal control
problem substitutes the whole term |x−ξ|2

t−τ .
In this note we extend the method used in [23, 12, 19, 15, 39] to the study of the degenerate

parabolic operator

L u := x∂x
(
a(x, y, t)x∂xu

)
+ x b(x, y, t)∂xu+ x∂yu− ∂tu, (1.2)

with (x, y, t) ∈ R+×R×]0, T ]. The interest in the operator (1.2) arises in Finance as we consider
the problem of pricing Arithmetic Average Asian Options in the Black & Scholes setting. We
refer to the Black & Scholes [11] and to Merton [44] articles for the seminal works of this theory,
and to the books by Björk [10], Hull [33] and Pascucci [51] for its complete treatment. Section
1.2 of this article describes the application of our results to the Pricing Theory for Financial
Derivatives in the Black & Scholes setting.

The main achievements of this article are bounds analogous to (1.1) for the operator L .
Specifically, we prove the following inequalities for the fundamental solution Γ of L

c−ε
t2

exp
(
−C−Ψ(x, y + εt, t− εt

)
≤ Γ(x, y, t, 1, 0, 0) ≤ C+

ε

t2
exp

(
−c+Ψ(x, y − ε, t+ ε)

)
, (1.3)

for every (x, y, t),∈ R+ × R×]0, T ] with y + εt < 0, where ε ∈ (0, 1) is arbitrary. Here Ψ is the
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value function of the following optimal control problem

Ψ(x, y, t) := inf
ω∈L1([0,t])

∫ t

0
ω2(τ)dτ subject to constraint (1.4)

{
q̇1(s) = ω(s)q1(s), q1(0) = x, q1(t) = 1,
q̇2(s) = q1(s), q2(0) = y, q2(t) = 0.

In Theorem 1.3 we will give the precise statement of the bounds for Γ(x, y, t, ξ, η, τ) at any point
(x, y, t) belonging to a specific subset of R+ × R× [0, T ].

To emphasize the application of our main result to the existing literature for the operator L ,
and to the corresponding stochastic theory, we note that (1.1) can be alternatively written as

k−Γ−(x, t, ξ, τ) ≤ Γ(x, t, ξ, τ) ≤ k+Γ+(x, t, ξ, τ), (1.5)

where Γ± is the fundamental solution of the heat equation ∂tu = µ±∆u with singularity at ξ, τ ,
and the constants k±, µ± only depend on c±, C±. From this point of view, it would be natural
to write (1.3) in terms of the fundamental solution of a suitable constant coefficients operator
analogous to L . Actually, the simplest form of L appears by choosing a ≡ 1, and b ≡ 0:

L0u = x2∂xxu+ x∂xu+ x∂yu− ∂tu, (x, y, t) ∈ R+ × R×]0, T ]. (1.6)

The fundamental solution Γ0 of L0 has been first written by Yor [60] as the transition density
of the process

(
Wt, At

)
t≥0

, where (Wt)t≥0 is a Wiener process and

At =

∫ t

0
exp

(
2Ws

)
ds. (1.7)

As we will see in Section 1.1 (formula (1.19)), the expression of the fundamental solution Γ0 of
L0 is quite involved, and an estimate of the form (1.5) would be hard to handle. On the other
hand, our bound (1.3) applies in particular to Γ0 and provides us with explicit information about
it. Moreover, several authors point out that the explicit representation of the Asian option prices
given by Geman and Yor [30] is hardly numerically treatable, in particular when pricing Asian
options with short maturities or small volatilities (see [28, 57, 29, 24]).

Concerning the operator L in its general form, we recall that existence and regularity result
for the local transition density were established in the recent article of Lanconelli, Pagliarani and
Pascucci [37], under the assumption that the coefficients a and b belong to some space of Hölder
continuous functions.

A further consequence of (1.3) is the following result, again in the spirit of (1.5). By applying
(1.3) to Γ and to the fundamental solutions Γ± of the operators

L ±u = µ±x2∂xxu+ x∂xu+ x∂yu− ∂tu, (x, y, t) ∈ R+ × R×]0, T ], (1.8)

we obtain

k−Γ−
(
x, y + ε(t+ 1), t− ε(t+ 1)

)
≤ Γ(x, y, t, 1, 0, 0)

≤ k+Γ+

(
x, y − ε

1− ε
(t+ 1), t+

ε

1− ε
(t+ 1)

)
,
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for every (x, y, t),∈ R+×R×]0, T [ with y+ ε(t+ 1) < 0 and t > ε/(1− ε). This is an important
theoretical result, as it allows us to extend to L any quantitative information we know on the
fundamental solution of L ±. Clearly, the same result holds for the densities of the respective
stochastic processes. See more details in Proposition 1.5.

This article is organized as follows. In Section 1.1 we give the precise statements of our main
results. In Section 1.2 we explain the role which L plays in Mathematical Finance and we give
a comparison between our bounds and similar PDE’s estimates. In Section 2 we recall known
results about the operator L defined in (1.2) and we prove a sharp Harnack inequality for it. In
Section 3, we recall some basic facts of stochastic processes theory, of Malliavin Calculus and we
prove the existence of the density p of the stochastic process

(
Xt, Yt

)
t≥0

associated to L in (1.2).
In Section 4 we recall some basic tools of control theory, we solve the optimal control problem
(1.4), and we prove the lower estimate in (1.3). In Section 5 we prove the upper estimate in (1.3)
and the main Theorem 1.3.

1.1. Invariance properties and main results
This section contains the precise statement of our assumptions and our main results. In order

to introduce the geometrical setting useful for the study of L , we recall some properties of L0.
Monti and Pascucci observed in [45] that L0 is invariant with respect to the following group
operation on R+ × R2:

(x0, y0, t0) ◦ (x, y, t) = (x0x, y0 + x0y, t0 + t). (1.9)

Indeed, if we set
v(x, y, t) = u(x0x, y0 + x0y, t0 + t), (1.10)

then L0v = 0 if, and only if L0u = 0. We also note that

G :=
(
R+ × R2, ◦

)
(1.11)

is a Lie group, its identity 1G and the inverse of (x, y, t) are defined as

1G = (1, 0, 0), (x, y, t)−1 =

(
1

x
,−y

x
,−t
)
. (1.12)

Then, in particular, we have

(x0, y0, t0)−1 ◦ (x, y, t) =

(
x

x0
,
y − y0

x0
, t− t0

)
, (1.13)

so that (1.10) is equivalent to u(x, y, t) = v
(
x
x0
, y−y0

x0
, t− t0

)
.

We now introduce a further notation based on the invariance properties of L0 with respect to
G. As the zero of the group

(
R+ × R2, ◦

)
is (1, 0, 0), in the sequel we use the simplified notation

Γ(x, y, t) := Γ(x, y, t; 1, 0, 0). (1.14)

Then, thanks to the invariance with respect to the left translation of G, we have

x2
0 Γ(x, y, t;x0, y0, t0) = Γ((x0, y0, t0)−1 ◦ (x, y, t); 1, 0, 0) = Γ

(
x

x0
,
y − y0

x0
, t− t0

)
.
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Analogously, we denote by Ψ(x, y, t;x0, y0, t0) the function defined in (1.4), with the end point
(1, 0) replaced by (x0, y0), and t replaced by t− t0. Note that, in analogy with (1.14), we have

Ψ(x, y, t) = Ψ(x, y, t; 1, 0, 0).

The definition of Ψ is explicitly written in (4.4) below and is well posed only when t > t0 and
y0 > y, otherwise problem (1.4) has no solution. In this case we agree to set Ψ(x, y, t;x0, y0, t0) =
+∞. The following Proposition states its invariance properties with respect to the operation on
G.

Proposition 1.1. For every (x, y, t), (x0, y0, t0) ∈ R+ × R2, with t0 < t and y0 > y, and for
every r > 0 we have

Ψ(x, y, t;x0, y0, t0) = Ψ
(
x
x0
, y−y0

x0
, t− t0

)
; (1.15)

Ψ(x, y, t;x0, y0, t0) = 1
rΨ
(
x, yr ,

t
r ;x0,

y0

r ,
t0
r

)
. (1.16)

In particular, from (1.15) we find

Ψ(x, y, t;x0, y0, t0) = Ψ(rx, ry, t; rx0, ry0, t0),

whereas, rewriting (1.16) with r = t− t0, we obtain

Ψ(x, y, t;x0, y0, t0) = 1
t−t0 Ψ

(
x
x0
, y−y0

(t−t0)x0
, 1
)
.

We assume the following conditions on the coefficients of L . The functions a and b are
smooth, and there exist two positive constants λ,Λ such that

|a(x, y, t)| ≤ Λ, |∂x(xa(x, y, t))| ≤ Λ, |b(x, y, t)| ≤ Λ, |∂x(xb(x, y, t))| ≤ Λ,

a(x, y, t) ≥ λ for every (x, y, t) ∈ R+ × R+×]0, T ].
(1.17)

Remark 1.2. Unlike L0, the operator L is not invariant with respect to the left translation
(1.9). Indeed, as we apply the change of variable (1.10) to a solution u of L u = 0, then v is a
solution of Lz0v = 0, where z0 = (x0, y0, t0) and

Lz0v = x∂x
(
a(x0x, y0 + x0y, t0 + t)x∂xv

)
+ x b(x0x, y0 + x0y, t0 + t)∂xv + x∂yv − ∂tv. (1.18)

However, even if Lz0 does not agree with L , it satisfies the assumption (1.17) with the same
constants λ and Λ used for L . This property will be often used in the sequel and is the basis of
the invariant nature of our bounds (1.24) for the fundamental solution of L .

The smoothness of the coefficients a and b are needed to prove the existence of a fundamental
solution by using the stochastic theory (see Proposition 3.7 below). On the other hand, we prove
upper and lower bounds for Γ in terms of quantities only depending on the constants λ and
Λ appearing in (1.17). In a future study we plan to combine the bounds (1.3) with, either
pure PDEs methods, or with the local results established in [37], to prove the existence of a
fundamental solution of L under weaker regularity assumptions on a and b.
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We next compare our main results with the existing literature. Some results are available for
the operator L0. We quote [61] for an exhaustive presentation of the topic. We mainly refer to
Yor’s work [60] in this paper, where the author writes the density of the process (1.7) as follows:

p(w, y, t) =
e
π2

2t

π
√

2πt
exp

(
−1 + e2w

2y

)
ew

y2
ψ

(
ew

y
, t

)
, (1.19)

where
ψ (z, t) =

∫ ∞
0

e−
ξ2

2t e−z cosh(ξ) sinh (ξ) sin

(
πξ

t

)
dξ. (1.20)

Other works are due by Matsumoto, Geman and Yor [42, 43, 30], Carr and Schröder [14], Bally
and Kohatsu-Higa [5]. The fundamental solution Γ0 of L0 is

Γ0(x, y, t, x0, y0, t0) = 1
2xx0

p
(

1
2 log

(
x0
x

)
, y0−y

2x , t−t02

)
. (1.21)

In Section 3, we recall some known results from the Malliavin Calculus that provide us
with the existence of a fundamental solution of L defined in (1.2). In particular, we prove in
Proposition 3.7 that, if the coefficients a and b are smooth and satisfy suitable growth conditions,
then the fundamental solution of L exists and is expressed in terms of the density of a stochastic
differential equation of the form{

dXt = µ(Xt, Yt)Xtdt+ σ(Xt, Yt)XtdWt,

dYt = Xtdt.
(1.22)

For this reason, in our main result we assume the existence of a fundamental solution Γ of L .
We prove uniform bounds for Γ, that only depend on the constants λ and Λ appearing in (1.17),
and on the L∞ norms of a, b, ∂x(xa) and ∂x(xb).

The main result of this article is the following

Theorem 1.3. Let Γ be the fundamental solution of L . Then for every (x0, y0, t0), (x, y, t) ∈
R+ × R× [0, T ] we have

Γ(x, y, t, x0, y0, t0) = 0 ∀ (x, y, t) ∈ R+ × R2 \
{

]−∞, y0[×]t0, T [
}
. (1.23)

Moreover, for arbitrary ε ∈]0, 1[, there exist two positive constants c−ε , C+
ε depending on ε, on T

and on the operator L , and two positive constants C−, c+, only depending on the operator L
such that

c−ε
x2

0(t− t0)2
exp

(
−C−Ψ(x, y + x0ε(t− t0), t− ε(t− t0);x0, y0, t0)

)
≤

Γ(x, y, t;x0, y0, t0) ≤
C+
ε

x2
0(t− t0)2

exp
(
−c+Ψ(x, y − x0ε, t+ ε;x0, y0, t0)

)
,

(1.24)

for every (x, y, t) ∈ R+×]−∞, y0 − x0ε(t− t0)[×]t0, T ]. Here Ψ is the value function defined in
(1.4).

6



If we agree to set exp (−c±Ψ(x, y, t;x0, y0, t0)) = 0 whenever Ψ(x, y, t;x0, y0, t0) = +∞, then
(1.24) holds for every (x0, y0, t0), (x, y, t) ∈ R+ × R× [0, T ].

Clearly, the knowledge of the function Ψ is crucial for the application of our Theorem 1.3.
Section 4 of this article is devoted to the study of Ψ. We summarize here some of the quantitative
information about Ψ, that are written in terms of the function g defined as follows

g(r) =


sinh(

√
r)√

r
, r > 0,

1, r = 0,
sin(
√
−r)√
−r , −π2 < r < 0.

(1.25)

Proposition 1.4. For every (x, y, t), (x0, y0, t0) ∈ R+ × R2, with t0 < t and y0 > y, we have Ψ(x1, y1, t1;x0, y0, t0) = E(t1 − t0) + 4(x1+x0)
y0−y1

− 4
√
E + 4x1x0

(y0−y1)2 , if E ≥ − π2

t1−t0 ;

Ψ(x1, y1, t1;x0, y0, t0) = E(t1 − t0) + 4(x1+x0)
y0−y1

+ 4
√
E + 4x1x0

(y0−y1)2 , if − 4π2

t1−t0 < E < − π2

t1−t0 .
(1.26)

where
E =

4

(t− t0)2
g−1

(
y0 − y

(t− t0)
√
xx0

)
. (1.27)

Moreover,

Ψ(x, y, t;x0, y0, t0)
4

(t−t0) log2
( y0−y

(t−t0)
√
xx0

)
+ 4(x0+x)

y0−y

→ 1, as
y0 − y

(t− t0)
√
x0x
→ +∞; (1.28)

Ψ(x, y, t;x0, y0, t0)
4(
√
x+
√
x0)2

y0−y − 4π2

(t−t0)

→ 1, as
y0 − y

(t− t0)
√
x0x
→ 0. (1.29)

The lower bound in Theorem 1.3 is based on a Harnack inequality for positive solutions of
L u = 0. The repeated application of the Harnack inequality, combined with a suitable opti-
mization procedure, provides us with the lower bound of the fundamental solution. The proof of
the upper bound in Theorem 1.3 for Γ exploits the fact that the value function Ψ is a solution
of the relevant Hamilton-Jacobi equation.

As a corollary of Theorem 1.3, by applying (1.3) to Γ and to the fundamental solutions Γ±

of the operators (1.8), we obtain the following result. It essentially says that the fundamental
solutions of L and L0 have the same behavior.

Proposition 1.5. For every ε ∈]0, 1[, there exist Γ± in the form (1.8), and positive constants
k± such that

k−Γ−(x, y + x0ε(t− t0 + 1), t− ε(t− t0 + 1);x0, y0, t0) ≤
Γ(x, y, t,x0, y0, t0) ≤

k+Γ+

(
x, y − x0

ε

1− ε
(t− t0 + 1), t+

ε

1− ε
(t− t0 + 1), x0, y0, t0

)
,

for every (x, y, t), (x0, y0, t0) ∈ R+×R×]0, T ] with y+x0ε(t− t0 + 1) < y0 and t > t0 +ε/(1−ε).
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1.2. Applications to Finance
The operator L in (1.2) plays a crucial role in Mathematical Finance, since it occurs in the

classical problem of the Pricing of Arithmetic Average Asian Option. For this reason we briefly
recall in this section some notions and details about the classic Option Pricing Theory. We
start with the introduction of some simple financial derivatives, and after we briefly recall the
Black-Sholes Option Pricing Theory. We refer to the works of Barraquand and Pudet [8], and of
Barucci, Polidoro and Vespri [9] for a PDE approach to the pricing problem for Asian Options.

An European Put Option is a contract that gives the owner the right to sell an asset at
the expiry date T and at a prescribed price K. A Call Option gives him, instead, the right to
buy the same asset at the date T and at the price K. Clearly, the value of the Option at its
expiry date T is given by a function ϕ(ST ), where St denotes the price of the asset at time t.
For instance, the payoff of a call option is ϕC(ST ) = max (0, ST −K), while the payoff of a put
option is ϕP (ST ) = max (0,K − ST ). In their celebrated article [11], Black & Scholes solve the
problem of finding a fair price Z = Zt for this kind of contract, at every time t, with 0 ≤ t ≤ T .
They assume that the price of the underlying asset at time t, that is denoted by (St)0≤t≤T , is a
log-normal stochastic process,

St = S0 exp
((
µ− 1

2σ
2
)
t+ σWt

)
, t ∈ [0, T ], (1.30)

where (Wt)t≥0 denotes a standard Wiener process, µ and σ are given constants. They construct
a self-financing portfolio, that replicates at every time t the value (Zt)0≤t≤T of the Option. The
portfolio only contains an amount of the stock (St)0≤t≤T and an amount of a riskless bond with
constant interest rate r, whose price is Bt = B0 exp(rt). In this setting, Black & Scholes prove
that the value Zt = Z(St, t) of the Option is a solution of the Black & Scholes equation

1
2σ

2S2∂
2Z

∂S2
+ r

(
S
∂Z

∂S
− Z

)
+
∂Z

∂t
= 0, (S, t) ∈ R+×]0, T [, (1.31)

with final condition ZT = ϕ(ST ). We refer to Pascucci’s book [51] for an exhaustive and detailed
description of the Black & Scholes theory and of its recent developments.

Path dependent Options are characterized by the fact that their value also depends on some
average of the past price of the stock, that is Zt = Z(St, At, t) for 0 ≤ t ≤ T . For instance, in
an Arithmetic Average Floating Strike Option, the strike price of an option is computed as the
average of the stock price, then its payoff is

ϕC(ST , AT ) = max

(
0, ST −

1

T

∫ T

0
Stdt

)
, ϕP (ST , AT ) = max

(
0,

1

T

∫ T

0
Stdt− ST

)
,

(1.32)
while in the Arithmetic Average Fixed Strike Option the payoff is

ϕC(ST , AT ) = max

(
0,

1

T

∫ T

0
Stdt−K

)
, ϕP (ST , AT ) = max

(
0,K − 1

T

∫ T

0
Stdt

)
. (1.33)

When considering Geometric Average Options, the arithmetic average 1
T

∫ T
0 St dt is replaced by

exp
(

1
T

∫ T
0 log(St) dt

)
.
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We can summarize all the above cases by introducing the average variable (At)0≤t≤T , defined
as

At =

∫ t

0
f(Sτ ) dτ, t ∈]0, T [, (1.34)

for some given continuous function f . Following the Black & Scholes approach, we look for the
density of the process (St, At)t>0. We consider the stochastic differential equation of the process
(St, Bt, At)t>0, 

dSt = µStdt+ σStdWt,

dBt = rBtdt,

dAt = f (St) dt,

(1.35)

we construct the replicating portfolio, and we apply Itô’s formula. We obtain

1
2σ

2S2∂
2Z

∂S2
+ f(S)

∂Z

∂A
+ r

(
S
∂Z

∂S
− Z

)
+
∂Z

∂t
= 0 (S,A, t) ∈ R+ × R+×]0, T [, (1.36)

with final condition ZT = ϕ(ST , AT ).
We also remind that a numerical solution of the pricing problem can be obtained by a Monte

Carlo method based on the Feynman-Kac formula

Z(S,A, t) = EQ
[
e−r(T−t)ϕ(ST , AT )|(St, At) = (S,A)

]
,

where Q is a measure such that the process e−rtZt is a martingale under Q.

When considering Geometric Average Asian Option, we have f(S) = log(S), then the sim-
ple change of variable v (ex, y, T − t) := Z(S,A, t) transforms the PDE (1.36), with its final
condition, into the following Cauchy problem{

1
2σ

2
(
∂2v
∂x2 − ∂v

∂x

)
+ x∂v∂y + r

(
∂v
∂x − v

)
= ∂v

∂t

v(x, y, 0) = ϕ (ex, y) ,

which, in turns, after the change of variable u(x, y, t) := ertv
(
σ√
2
x+

(
1
2σ

2 − r
)
t, y, t

)
, can be

written as follows {
∂2u
∂x2 + x∂u∂y = ∂u

∂t

u(x, y, 0) = ϕ
(
e
σx√

2 , y
)
.

(1.37)

In PDEs theory, the solution of (1.37) is given in terms of its fundamental solution as follows

u(x, y, t) =

∫
R2

Γ(x, y, t, ξ, η, 0)ϕ
(
e
σξ√

2 , η
)
dξdη. (1.38)

The explicit expression of the fundamental solution Γ for the operator in (1.37) is

Γ(x, y, t, ξ, η, τ) =

√
3

2π(t− τ)2
exp

(
− |x− ξ|

2

4(t− τ)
− 3
|y − η + t−τ

2 (x+ ξ)|2

(t− τ)3

)
(1.39)

if t > τ , while Γ(x, y, t, ξ, η, τ) = 0 if t ≤ τ (see [40] and the references therein).
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The function f(S) = S appears in (1.36) as we consider Arithmetic Average Asian Option.
In this case the function v(x, y, t) = e−rtZ(x, y, t) is a solution of the following PDE with final
condition {

1
2σ

2x2 ∂2v
∂x2 + x∂v∂y + rx ∂v∂x + ∂v

∂t = 0,

v(x, y, T ) = ϕ (x, y) .
(1.40)

This problem can be further simplified by the change of variable

u(x, y, t) = xmem
2tv

(
x,

2y

σ2
, T − 2t

σ2

)
m =

r

σ2
− 1

2

that leads to the Cauchy problem for L0{
L0u = x2 ∂2u

∂x2 + x∂u∂x + x∂u∂y −
∂u
∂t = 0, (x, y, t) ∈ R+ × R+×]0, σ

2

2 T ];
u(x, y, 0) = ϕ(x, y) (x, y, t) ∈ R+ × R+,

(1.41)

whose solution writes as

u(x, y, t) =

∫
R+×R

Γ0(x, y, t, ξ, η, 0)ϕ(ξ, η)dξdη, (1.42)

with Γ0 defined in (1.21).

The PDE approach adopted in this work allows us to consider more general problems. Among
them, we can consider an option on a basket containing n assets St =

(
S1
t , . . . , S

n
t

)
whose dynamic

is

dSjt = Sjtµj(St, At, t) + Sjt

n∑
k=1

σjk(St, At, t)dW
k
t , j = 1, . . . , n, (1.43)

where
(
W 1
t , . . . ,W

n
t

)
t≥0

is a n-dimensional Wiener process and
(
At
)
t≥0

is an average of the
assets. In particular, we can choose

Ajt =

∫ t

0
Sjτdτ, j = 1, . . . , n, or At =

n∑
j=1

∫ t

0
Sjτdτ,

including, for instance, the following ones

L̃1u :=
n∑

j,k=1

xj∂xj
(
ajk(x, y, t)xk∂xku

)
+

n∑
j,k=1

xjbj(x, y, t)∂xju+
n∑
j=1

xj∂yju− ∂tu, (1.44)

with (x, y, t) ∈ (R+)n × Rn×]0, T ], and

L̃2u :=
n∑

j,k=1

xj∂xj
(
ajk(x, y, t)xk∂xku

)
+

n∑
j,k=1

xjbj(x, y, t)∂xju+
n∑
j=1

xj∂yu− ∂tu, (1.45)

with (x, y, t) ∈ (R+)n × R×]0, T ], respectively. In these examples, denoting by σ(x, y, t) the
matrix

(
σ(x, y, t)

)
j,k=1,...,n

, we have(
ajk(x, y, t)

)
j,k=1,...,n

= 1
2 [σ(x, y, t)σ(x, y, t)∗] .

and the coefficients bij , i, j = 1, . . . , n depend on the coefficients µ1, . . . , µn and on the derivatives
of the ajk. In this work we focus on the simplest one-dimensional case (1.2) for the sake of
simplicity.
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1.2.1. Comparison with literature
We conclude this introduction with some remarks about our bounds of the fundamental

solution. We first note that the expression of Γ in (1.39) yields much information on the solution
u. In particular, it is a smooth function, then u is smooth as well. Moreover, (1.39) gives us
sufficient conditions on the function ϕ that guarantee the convergence of the integral in (1.38).
It is also used to prove the uniqueness of the solution of (1.37) (see [54, 22, 23]). In the same
spirit, our Theorem 1.3 gives conditions on function ϕ that guarantee the convergence of the
integral in (1.42), and the uniqueness of the solution of (1.41) as well.

We compare our result with the more recent work by Delarue and Menozzi [21], where
operators in the form

L u :=
d∑

j,k=1

ajk(x, t)∂xjxku+
nd∑
j=1

Fj(x, t)∂xju− ∂tu (1.46)

are considered. Here d, n are positive integers,
(
ajk(x, t)

)
j,k=1,...,d

is a symmetric strictly positive
matrix with bounded Hölder continuous coefficients, and F1, . . . , Fnd satisfy suitable assumptions.
Delarue and Menozzi prove bounds for the fundamental solution of L that, in the case d = 1
and n = 2, write in terms of the function Γ in (1.39), and that of course do not apply to Γ0 in
(1.21). The reason is that, even if L in (1.44) or (1.45) writes in the form (1.46), it does not
satisfy the assumption made in [21]. Indeed, following the same notations adopted in [21], our
operator L0 writes as above with

F1(x, t) = 0, F2(x, t) = x, σ(x, t) =

( √
2x
0

)
,

which are respectively uniformly Lipschitz in t and α-Hölder continuous with respect to x, but
the matrix

1
2 [σσ∗](x, t) =

(
x2 0
0 0

)
,

has spectrum which cannot be included in a compact interval. On the other hand, if we apply
the transformation y = log(x) we are led to consider the function

F̄1(y, t) = 0, F̄2(y, t) = ey, σ̄(y, t) =

( √
2

0

)
,

then we lose the Hölder continuity of F̄2 with respect to the space variable y.

We eventually compare our approach with the article [5] by Bally and Kohatsu-Higa. The
operator considered there writes in the from

X1
t = x1 +

∫ t

0
V 1

1 (Xs)dWs +

∫ t

0
V 1

0 (Xs)ds, X2
t = x2 +

∫ t

0
V 2

0 (X1
s )ds.

In the first step, the authors of [5] write the short time decomposition

X1
δ = x1 + V 1

1 (x)Wδ +R1
δ , X2

δ = x2 + (V 2
0 )
′
(x) ·

∫ δ

0
(δ − s)dWs +R2

δ ,

11



where Rδ is small with respect to the principal part given by the Gaussian random variable

∆(x) =

(
x1 + V 1

1 (x)Wδ, x
2 + (V 2

0 )
′
(x) ·

∫ δ

0
(δ − s)dWs

)
.

Notice that
(
Wδ,

∫ δ
0 (δ − s)dWs

)
is a non degenerated Gaussian random variable so that an

explicit expression for its density is available. In particular, the following quantity

P (∆(x) ∈ C(x)) ≥ ε > 0, (1.47)

if C(x) is an ellipsoid given by the covariance matrix of ∆(x), is explicitly known.
In a second step, Bally and Kohatsu-Higa take any control ω and the corresponding skeleton

q1
t = x1 +

∫ t

0
V 1

1 (qs)ω(s)ds+

∫ t

0
V 1

0 (qs)ds, q2
t = x2 +

∫ t

0
V 2

0 (q1
s)ds,

with qT (x) = y. Then they take a partition 0 < t1 < . . . < tk = T and consider the points
xj = qtj (x), for j = 0, 1, . . . , k. Using recursively the estimate (1.47) they then obtain a bound
for

P
(
∩ki=1{∆(xk) ∈ C(xk)

)
≥ εk > 0.

Lower bounds for the density of the process Xt are obtained by combining this “tube estimate"
with some further arguments based on Malliavin Calculus. Since such estimates hold for every
control ω, an optimal choice of ω gives a sharp lower bound for the density.

As we will see in Section 2, in this article we rely on a PDE approach to prove the lower bound,
and in particular we use a Harnack inequality, which plays a role analogous to the estimate of
(1.47). The main difference is in the assumption on the regularity of the coefficients, that are
more restrictive as we adopt the stochastic process point of view. However, even thought we feel
that our main results can be alternatively proved by a purely probabilistic method, it improves
any previous bound as we write explicitly the solution to the relevant optimal control problem.

2. Degenerate Hypoelliptic Operators

In this section we recall some known results about the regularity theory of linear second order
operators with non-negative characteristic form. We then introduce Harnack type inequalities
and Harnack chains.

We consider a general family of differential operators, which of course contains L , but also
the operators defined in (1.44) and (1.45). We set

L̃ u =

m∑
i,j=1

Xi(ai,j(z)Xju) +

m∑
i=1

bi(z)Xiu+ Y, Y := X0 − ∂t, (2.1)

The prototypes of these operator appear when we choose aij = δij and bj = 0:

L̃0 =

m∑
k=1

X2
k + Y, Y := X0 − ∂t, (2.2)
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where X0, X1, . . . , Xm are smooth vector fields defined in some open subset Ω of Rn×R. As usual
in the PDEs theory, we identify the directional derivatives with their vector fields. In general,
as m < n, the operator L̃0 is strongly degenerate. However, it may be hypoelliptic according to
the following definition

Definition 2.1. We say that L̃0 is hypoelliptic if for every distributional solution u of L̃0u = f
in Ω, we have

u ∈ C∞(Ω) whenever f ∈ C∞(Ω). (2.3)

The Hörmander condition [32] provides us with a simple sufficient condition for the hypoellipticity
of L̃0. It requires the following definition

Definition 2.2 (commutator (or Lie bracket)). Given two vector fields W and Z, acting
on u ∈ C∞(Ω), we define the commutator of W and Z as

[W,Z]u := WZu− ZWu. (2.4)

The notation Lie{X1, . . . , Xm, Y } (x, t) denotes the vector space generate by the vector fields
{X1, . . . , Xm, Y } and by their commutators. The celebrated hypoellipticity result due to Hör-
mander states as follows.

Theorem 2.3 (Hörmander [32]). If

Lie {X1, . . . , Xm, Y } (x, t) = Rn × R (2.5)

at every (x, t) ∈ Ω, then L̃0 is hypoelliptic.

Remark 2.4. It is worth noticing that the two condition

Lie {X1, . . . , Xm, X0 − ∂t} (x, t) = Rn × R,
Lie {X1, . . . , Xm, X0} (x) = Rn,

are not equivalent. For instance, consider the operator ∂2
x + ∂y − ∂t in R2 × R. In this case

X1 = ∂x, X0 = ∂y and the operator satisfies the second condition but not the first one. By the
way, such operator is not hypoelliptic.

It is easy to check that, if the coefficient of the vector fields X0, X1, . . . , Xm only depend on
the space variable x the first condition is equivalent to

Lie {X1, . . . , Xm, [X0, X1], . . . , [X0, Xm]} (x) = Rn.

Concerning the operator L0 in (1.6), we can easily check that it satisfies the Hörmander condition
(2.5). Indeed, we have

X(x, y, t) = x∂x ∼

 x
0
0

 , Y (x, y, t) = x∂y − ∂t ∼

 0
x
−1

 , [X,Y ](x, y, t) = x∂y ∼

 0
x
0

 .

(2.6)
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Then, the vectors X,Y and [X,Y ] form a basis of R3 at every point (x, y, t) ∈ R+ × R2. By
Hörmander’s Theorem 2.3, L0 is hypoelliptic in R+ × R2 in the sense of Definition 2.1. In
PDE’s Theory the regularity of operators satisfying Hörmander condition is strongly related to
a Lie group structure on the underlying domain. We refer to the seminal works of Folland [26],
Folland-Stein [27], Nagel-Stein-Wainger [48].

For the sake of clarity, we now recall the definition of fundamental solution for a hypoelliptic
operator L . With this aim we write L in its divergence form

L u = −X∗(aXu) + (b− a)Xu+ Y u, (2.7)

where X∗u(x, y, t) := −Xu(x, y, t)− u(x, y, t).

Definition 2.5. We say that a function Γ : (R+ × R2) × (R+ × R2) → R is a fundamental
solution of L if:

1. for every (x0, y0, t0) ∈ R+ × R2 the function (x, y, t) 7→ Γ(x, y, t;x0, y0, t0):

i) belongs to L1
loc(R+ × R2) ∩ C∞(R+ × R2 \ {(x0, y0, t0)}),

ii) it is a classical solution of L u = 0 in R+ × R2 \ {(x0, y0, t0)};
2. for every ϕ ∈ Cb(R2) the function

u(x, y, t) =

∫
R+×R

Γ(x, y, t; ξ, η, 0)ϕ(ξ, η)dξ dη,

is a classical solution of the Cauchy problem{
L u = 0, (x, y, t) ∈ R+ × R× R+;
u(x, y, 0) = ϕ(x, y) (x, y, t) ∈ R+ × R. (2.8)

3. The function Γ∗(x, y, t;x0, y0, t0) := Γ(x0, y0, t0;x, y, t) satisfies 1. and 2. with L replaced
by its formal adjoint

L ∗v := −X∗
(
aXv

)
+X∗

(
(b− a)v

)
− Y v. (2.9)

The main tool in the proof of our asymptotic estimates of the fundamental solution are the
Harnack inequalities and the Harnack chains. In this setting a Harnack chain is defined as
follows:

Definition 2.6. Let Ω be an open subset of RN+1. We say that a finite set {z0, z1, ..., zk} ∈ Ω
is a Harnack chain connecting z0 to zk if there exist positive constants C1, ..., Ck such that:

u(zj) ≤ Cju(zj−1), j = 1, ..., k,

for every positive solution u of L̃ u = 0.

Harnack chains have been used by several authors to prove asymptotical lower bounds of the
fundamental solution of degenerate hypoelliptic operators. See for instance [58, 55, 23, 12, 15, 52].
They have been also used to prove asymptotic estimates near the boundary for the positive
solution of Kolmogorov operators, see [16, 17]. In the above articles, Harnack chains have been
constructed by selecting points belonging to the trajectories of L̃ -admissible paths, which are
defined as follows:
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Definition 2.7. An L̃ -admissible path with starting point z0 is a solution of the following
Cauchy problem

γ̇(s) =

m∑
k=1

ωk(s)Xk(γ(s)) + Y (γ(s)), γ(0) = z0 (2.10)

where ω(s) = (ω1(s), . . . , ωm(s)) ∈ Rm, s ≥ 0 and each ωi(s) ∈ L1[0,+∞[.

We next focus on the operator L in (1.2).

2.1. Harnack inequality and Green function for L

Our construction of Harnack chains for L is based on the following Harnack inequality. Its
statement requires some notation. For any z0 = (x0, y0, t0) ∈ R+ × R2 and r ∈]0, 1[, we set

Hr(z0) =
{

(x, y, t) ∈ R3 : |x− x0| < rx0,−r2 < t− t0 < 0, |y − y0 + x0(t− t0)| < r3x0

}
Sr(z0) =

{
(x, y, t) ∈ R3 : |x− x0| ≤ rx0,−r2 ≤ t− t0 ≤ −

r2

2
, |y − y0 + x0(t− t0)| ≤ r3x0

}
(2.11)

Notice that the cylinders defined in (2.11) are the most natural geometric sets which can be
defined taking into account the invariance group (1.9) of L0. Indeed, they are obtained from
Hr(1, 0, 0) and Sr(1, 0, 0), respectively, by using the left translation “◦” in (1.9).

Proposition 2.8. Let z0 ∈ R+ × R2 and r ∈]0, 1/2]. If u is a positive solution of L u = 0 in
Hr(z0), then

u(z) ≤M u(z0)

for every z ∈ Sθr(z0). The two constants θ ∈]0, 1[ and M > 0 only depend on the operator L .

The proof of Proposition 2.8 relies on the Harnack inequality proven by Golse, Imbert,
Mouhot, and Vasseur in [31]. We also refer to [2] for a geometric statement of the Harnack
inequality. The operators K considered in [31] and [2] act on a function u as follows

Ku :=

n∑
j,k=1

∂xj
(
ãjk(x, y, t)∂xku

)
+

n∑
j,k=1

b̃j(x, y, t)∂xju+

n∑
j=1

xj∂yju− ∂tu. (2.12)

Here (x, y, t) ∈ Rn × Rn × R and the coefficients ãjk, b̃j are bounded measurable functions for
j, k = 1, . . . , n. Moreover ãjk = ãkj and

n∑
j,k=1

ãjk(x, y, t)ξjξk ≥ λ|ξ|2, for every ξ ∈ Rn, and (x, y, t) ∈ R2n+1. (2.13)

Note that the main structural difference between L and K is in that the coefficients of K are
bounded and satisfy the unform ellipticity condition (2.13), with respect to the variable x ∈ Rn.
As the Harnack inequality is a local result, we will borrow the Harnack inequality for K for the
study of the positive solutions of L u = 0. For the sake of simplicity, we recall the statement
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of the Harnack inequality proven in [31] only for n = 1 and with a notation suitable for our
operator L .

Let Ω be an open subset of R3. Consider the following operator

Kv = ∂x (ã(x, y, t)∂xv) + b̃(x, y, t)∂xv + x∂yv − ∂tv, (x, y, t) ∈ Ω. (2.14)

Assume that ã and b̃ are bounded measurable functions such that infR3 ã(x, y, t) > 0. Let z0 ∈
Ω, r ∈]0, 1/2] be such that Hr(z0) ⊆ Ω. Then there exist two positive constants θ and M , only
depending on the operator K, such that

v(z) ≤M v(z0), for every z ∈ Sr(z0), (2.15)

and for every non-negative solution v of Kv = 0 in Ω.

Proof of Proposition 2.8. Let u be a positive solution of L u = 0 inHr(z0), with r ∈]0, 1/2].
We first consider the point z0 = (1, 0, 0). With the aim to apply (2.15) to u, we write L in the
form (2.14) by setting

ã(x, y, t) = x2a(x, y, t), b̃(x, y, t) = x (b(x, y, t)− a(x, y, t)) . (2.16)

In order to deal with bounded coefficients ã and b̃, we modify them out of the cylinder Hr(z0) as
follows. We set

ã(x, y, t) := ϕ2(x)a(x, y, t), b̃(x, y, t) := ϕ(x) (b(x, y, t)− a(x, y, t)) , (2.17)

where

ϕ(x) =


1/2 for x ∈]0, 1/2],
x for x ∈]1/2, 3/2[,
3/2 for x ∈ [3/2,∞[.

(2.18)

Then, it is easy to check that our assumption (1.17) on L implies the conditions on K for the
validity of (2.15). In particular, our claim is proven for z0 = (1, 0, 0) and for every r ∈]0, 1/2],
since in this case L agrees with K in the cylinder Hr(z0).

An argument similar to that used above would give the proof of Proposition 2.8 with a
constant M that may depend on z0. In order to prove our claim as stated, with M independent
on z0, we rely on the left translation (1.9). As we apply the change of variable (1.10) to a solution
u of L u = 0 in Hr(z0), then v is a solution of Lz0v = 0 in Hr(1, 0, 0) where Lz0 is defined in
(1.18). Note that, as we have noticed in Remark 1.2, Lz0 satisfies assumptions (1.17), with the
same constants used for L . In particular, the Harnack inequality (2.15) holds for v, and implies

u(x, y, t) = v
(
x
x0
, y−y0

x0
, t− t0

)
≤M v(1, 0, 0) = M u(x0, y0, t0),

for every x, y, t ∈ Sr(x0, y0, t0). This concludes the proof. �

As a direct consequence, we obtain the following

Corollary 2.9. If u is a positive solution of L u = 0 in Hr(z0), where 0 < r ≤ 1/2, then

u(z) ≤M u(z0)
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for every z in the set

Pr(z0) =
{

(x, y, t) ∈ R3 : 0 < t0 − t ≤ θ2r2,|x− x0| ≤ (t0 − t)
1
2x0,

|y − y0 − (t0 − t)x0| ≤ (t0 − t)
3
2x0

}
.

(2.19)

A crucial ingredient for the proof of our lower bound of the fundamental solution to L is the
analogous lower bound of a Green function G for the operator K defined in (2.14). The existence
of a Green function for K (2.14) has been established by Di Francesco and Polidoro in [23] if
the coefficients ãjk, b̃j , j, k = 1, . . . , n are bounded, and Hölder continuous functions, and (2.13)
is satisfied. In [23] it is also given a lower bound for G, in terms of constants depending on the
Hölder continuity of the coefficients of K (see Theorem 4.3 in [23]). Here we give a bound of G
where the constants only depend on the dimension n, on the constant λ in (2.13) and on the L∞

norm of ãjk, b̃j , j, k = 1, . . . , n. We rely on the method used in [23] and on the upper and lower
bounds proven by Lanconelli, Pascucci and Polidoro in [39] (see also [38]).

We next recall the statement Theorem 1.3 in [39] with the notation used here for the operator
K. Here ΓK denotes the fundamental solution to K, while ΓµK is the fundamental solution to the
constant coefficients operator

Kµ := µ

n∑
j=1

∂xjxj +

d∑
j=1

bjxj∂yj − ∂t.

Assume that the coefficients ãjk, b̃j , j, k = 1, . . . , n of the operator K are bounded measurable
functions and that (2.13) is satisfied. Let I =]T0, T1[ be a bounded interval. Then, there exist
four positive constants µ+, µ−, C+, C− such that

C−Γµ
−

K (x, y, t, ξ, η, τ) ≤ ΓK(x, y, t, ξ, η, τ) ≤ C+Γµ
+

K (x, y, t, ξ, η, τ), (2.20)

for every (x, y, t), (ξ, η, τ) ∈ R2n+1 with T0 < τ < t < T1. The constants µ−, µ+ depend only on
n and L , while C−, C+ also depend on T1 − T0.

We recall that the explicit expression of Γµ
±

K is known (see, for instance [32] and [40]):

ΓµK(x, y, t, ξ, η, τ) =
3n/2

(2πµ)n(t− τ)2n
exp

(
− 1

4µ

(
|x− ξ|2

t− τ
+ 12

|y − η + (t− τ)(x+ ξ)/2|2

(t− τ)3

))
,

(2.21)
for every τ < t and (x, y), (ξ, η) ∈ R2n. We also recall that Γµ

±

K are homogeneous of degree −4n
with respect to the dilation (x, y, t) 7→ (rx, r3y, r2t), that is

Γµ
±

K (rx, r3y, r2t, rξ, r3η, r2τ) =
1

r4n
Γµ
±

K (x, y, t, ξ, η, τ), (2.22)

for every (x, y, t; ξ, η, τ) ∈ R6 and for every positive r.
We next recall the method used in [23] to prove a lower bound for the Green function, in

order to remove the Hölder regularity assumption made on the coefficients of the operator. With
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this aim, we introduce here a simplified notation useful for our purpose. We first define a cylinder
analogous to Hr(z0), centered at z0 = (1, 0, 0). For any r, δ ∈]0, 1/2], we set

H0
r (1, 0, 0) =

{
(x, y, t) ∈ R3 : (x−1)2

r2 + |x−1|
r + (y+t)2

r6 < 1, 0 < t < r2
}
,

S0
r,δ(1, 0, 0) =

{
(x, y, t) ∈ R3 : (x−1)2

r2 + |x−1|
r + y2

r6 ≤ δ, t = 0
}
.

(2.23)

Note that H0
r (1, 0, 0) ⊂

{
1− r < x < 1 + r

}
. In particular, if we define ã and b̃ according to

(2.17) and (2.18), then K agrees with L in the cylinder H0
r (1, 0, 0). Also note that the geometry

of H0
r (1, 0, 0) is more complicated than the one of H0

r (1, 0, 0). The advantage of this fact is that
the the Dirichlet problem for K in (2.14) is well posed in H0

r (1, 0, 0) .
In Section 4 of [23] it is proven the existence of aGreen function Gr : H0

r (1, 0, 0)×H0
r (1, 0, 0)→

[0,+∞[ with the following property: for every f ∈ C∞0 (H0
r (1, 0, 0)), the function

vr(x, y, t) :=

∫
H0
r (1,0,0)

Gr(x, y, t; ξ, η, τ)f(ξ, η, τ)dξ dη dτ, (2.24)

is a classical solution of the Dirichlet problem{
L u = −f in H0

r (1, 0, 0),

u = 0 in ∂(H0
r (1, 0, 0)) ∩

{
t < T

}
.

(2.25)

The Green function Gr for the cylinder H0
r (1, 0, 0) is defined in [23] as follows:

Gr(x, y, t; ξ, η, τ) = ΓK(x, y, t, ξ, η, τ)− hr(x, y, t, ξ, η, τ), (2.26)

where hr(x, y, t; ξ, η, τ) is the solution to the Dirichlet problem:{
L u = 0 in H0

r (1, 0, 0),

u = ΓK(x, y, t; ξ, η, τ) in ∂(H0
r (1, 0, 0)) ∩

{
t < T

}
.

(2.27)

The following result will be needed in the proof of the lower bound of the fundamental solution.

Lemma 2.10. There exist two positive constants κ and %, only depending on the L∞ norms of
ã, b̃, and on inf ã, such that

Gr(1,−s, s; 1, 0, 0) ≥ κ

s2
, for every s ∈]0, %r2[.

Proof. Choose any r, δ ∈]0, 1/2], and consider the compact set

Mr(1, 0, 0) := ∂(H0
r (1, 0, 0)) ∩ {0 < t < T} × S0

r,δ(1, 0, 0).

Let (ξ, η, τ) be a point of S0
r,δ(1, 0, 0), and let hr be the solution to (2.27). By the strong maximum

principle we have that hr ≥ 0 and

max
(x,y,t)∈H0

r (1,0,0)
hr(x, y, t) = max

(x,y,t)∈∂(H0
r (1,0,0))∩{0<t<T}

ΓK(x, y, t; ξ, η, τ).
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Then, by using (2.20) in the above inequality, We find that

max
(x,y,t)∈H0

r (1,0,0)
hr(x, y, t) ≤ κ̃r, κ̃r := C+ max

(x,y,t)∈Mr(1,0,0)
Γµ

+

K (x, y, t; ξ, η, τ).

We also note that κ̃r = κ̃1
r4 because of (2.22). As a consequence of the above inequalities, of

(2.20) and of the definition (2.26) of Gr we then find

Gr(x, y, t; ξ, η, τ) ≥ C−Γµ
−

K (x, y, t, ξ, η, τ)− κ̃1

r4

for every (ξ, η, τ) ∈ S0
r,δ(1, 0, 0) and (x, y, t) ∈ H0

r (1, 0, 0). In particular,

Gr(1,−s, s; 1, 0, 0) ≥ C−Γµ
−

K (1,−s, s; 1, 0, 0)− κ̃1

r4
=

C−
√

3

2πµ−s2
− κ̃1

r4
, (2.28)

for every s ∈]0, r2[. We eventually choose a positive κ such that κ < C−
√

3
2πµ− and we conclude that

there exist a positive % such that

C−
√

3

4πµ−s2
− κ̃1

r4
>

κ

s2
, for every s ∈]0, %r2[.

This inequality and (2.28) conclude the proof. �

2.2. Harnack chains for L

Any L -admissible path γ(s) = (x(s), y(s), t(s)) for L0 is the solution of the Cauchy problem
ẋ(s) = ω(s)x(s) x(0) = x0,
ẏ(s) = x(s) y(0) = y0,
ṫ(s) = −1, t(0) = t0,

(2.29)

where ω ∈ L1([0, t0− t]). In this setting, we refer to the function ω as the control of the problem
(2.29). We introduce now a standard definition from control theory, see [1]:

Definition 2.11. (Attainable set). For every z0 ∈ Ω ⊆ R3 the attainable set Az0 from z0 in Ω
is

Az0 =
{
z ∈ Ω |there exists a time t̄ ∈ R+ and an L -admissible path

γ : [0, t̄]→ Ω s.t z0 = γ(0), z = γ(t̄)
}
. (2.30)

Proposition 2.12. For every (x0, y0, t0) ∈ R+ × R×]T0, T1[ it holds:

A(x0,y0,t0) =]0,+∞[×]y0,+∞[×]T0, t0[. (2.31)
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Proof. From (2.29) it plainly follows that

A(x0,y0,t0)(R+ × R×]T0, T1[) ⊆ [0,+∞[×]y0,+∞[×]T0, t0[.

The opposite inclusion will follow from the results given in Section 4.2, where we exhibit an
L -admissible path steering (x0, y0, t0) to any given point (x, y, t) ∈]0,+∞[×]y0,+∞[×]T0, t0[.
�

The following result provides us with a bound of any positive solution u of L u = 0 at the
end point γ(t0 − t) of an L -admissible path γ.

Proposition 2.13. There exist four positive constants θ, h, β and M , with θ < 1 and M > 0 ,
only depending on the operator L such that the following property holds.

Let T0 < t < t0 < T1 be fixed. Fix (x0, y0) and let ω ∈ L1([t, t0],R) be a control, with
γ : [t, t0]→ R3 the corresponding L -admissible path of (2.29) starting from (x0, y0, t0). Denote
by (x, y, t) = γ(t0) its end-point. Then, for every positive solution u : R+×R×]T0, T1[ of L u = 0
it holds

u(x, y, t) ≤
(
t−T0
t0−T0

)β
M1+

Φ(ω)
h

+
4(t0−t)
θ2 u(x0, y0, t0),

where

Φ(ω) =

∫ t0

t
ω2(s) ds. (2.32)

Proof. If ω ∈ L1([t, t0]) \ L2([t, t0]), then our claim reads as u(x, y, t) ≤ +∞, that is clearly
true. We now assume ω ∈ L2([t, t0]). The proof of the proposition is based on the construction
of a Harnack chain, by applying several times Corollary 2.9. We then first fix θ ∈]0, 1[ as in
Corollary 2.9, and we also fix the constant h = 4 log2(3/2).

Step 1. We fix three restrictive assumptions:

• it holds t0 − T0 ≤ 1
4 ;

• the path γ is defined on the time interval [0, t0 − t] with t0 − t ≤ θ2(t0 − T0);

• the function Φ(ω) satisfies Φ(ω) ≤ h.

We first claim that, under such hypotheses, it holds

γ(t+ s) ∈Pr(x0, y0, t0) for every s ∈ [0, t0 − t], (2.33)

with r :=
√
t0 − T0 ≤ 1

2 . Indeed, Hölder inequality implies

∣∣∣∣∫ t+s

t
ω(τ)dτ

∣∣∣∣ ≤ √s(∫ t+s

t
ω2(τ)dτ

) 1
2

≤
√
h
√
s ≤ log(1 +

√
s),

for every s ∈ [0, t0 − t] ⊂ [0, 1
4 ]. The last inequality follows from concavity of log(1 + a), that

implies log(1 + a) ≥ 2 log(3/2)a for a ∈ [0, 1/2] and from the definition of h. We then find∣∣∣e∫ t+st ω(τ)dτ − 1
∣∣∣ ≤ e|∫ t+st ω(τ)dτ | − 1 ≤

√
s
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for every s ∈ [0, t0 − t]. Thus, by integrating the system (2.29), we obtain

|x(s)− x0| ≤
√
sx0, and |y(s)− y0 − sx0| ≤ 2

3s
3
2x0 < s

3
2x0

for every s ∈ [0, t0 − t], and (2.33) is proven. Since Hr(x0, y0, t0) ⊂ R+ × R×]T0, T1[ for the
definition of r, then Corollary 2.9 can be applied, and it holds u(x, y, t) ≤ Mu(x0, y0, t0) with
M given in Proposition 2.8.

Step 2. We now remove the three hypotheses of Step 1 and prove the main statement.
Consider any control ω ∈ L2([t, t0]) and the corresponding curve γ(.). Define the sequence of
times t < tk < tk−1 < . . . < t2 < t1 < t0 recursively starting from t0 as follows

tj+1 = max

{
t, tj − θ2/4, tj − θ2(tj − T0), inf

{
s s.t.

∫ tj

s
|ω(τ)|2 dτ ≤ h

}}
. (2.34)

It is easy to prove that such sequence terminates in a finite number of steps, when the lower
boundary t is reached. For simplicity of notation, we denote tk+1 = t.

We now define rj =
√
tj − tj+1/θ , then we note that rj ≤ 1/2 and

Hrj (x(t0 − tj), y(t0 − tj), tj) ⊂ R+ × R× [T0, T1],

by (2.34). Moreover, we clearly have tj − tj+1 ≤ θ2r2
j . By applying Step 1 on the k+ 1 intervals

[tj+1, tj ], it holds
u(x, y, t) ≤M1+ku(x0, y0, t0).

We point out that the points (x(tj), y(tj), tj), j = 1, . . . k + 1, selected on the path γ(.), form a
Harnack chain. Since (2.34) implies

k ≤
∫ t0
t |ω(τ)|2dτ

h
+ 4

t0 − t
θ2

+
1

| log(1− θ2)|
log
(
t−T0
t0−T0

)
,

this concludes the proof of Proposition 2.13, by setting β := log(M)
| log(1−θ2)| . �

Remark 2.14. Even if L does not write in the form (2.2), the lower bound in Proposition 2.13
basically depends on γ, that in turns depends on the vector fields X and Y that define L0. This
feature depends on the fact that γ is contained in the set Pr(z0), where the Harnack inequality
holds for both operators L0 and L .

3. Elements of Stochastic theory

This section contains some known results about the theory of diffusion processes we need in
this work. We refer to the monograph of Nualart [50], and Bally [4] for an exhaustive presentation
of the topic.

Throughout this section, we denote by C∞l,b(RN ,R) the space of smooth functions with
bounded derivatives of any order. Note that the boundedness of the functions is not required.
We denote by C∞p (RN ) the set of smooth functions f : RN → R such that f and all its partial
derivatives have polynomial growth.
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We consider the N -dimensional Markovian diffusion process (Xt)t solution of the SDE:

dXi
t =

d∑
j=1

σij(Xt)dW
j
t + F i(Xt)dt, i = 1, . . . , N, t ≥ 0 (3.1)

where Wt = (W 1
t , . . . ,W

d
t ) is a d-dimensional Brownian motion, (Xt)t≥0 is a stochastic process

on a probability space (Ω,F ,P) endowed with the filtration (Ft)t≥0 generated by (Wt)t≥0 and
belonging to the space L2([0,∞)×Ω;B+×F ;λ× P), where λ stands for the Lebesgue measure
in RN and B+ is the Borel σ-algebra. We assume that

F i, σij ∈ C∞l,b(RN ,R) i = 1, ..., N ; j = 1, ..., d.

We denote by Xx
t the solution of the SDE (3.1) with initial condition Xx

0 = x ∈ RN .
By using the Feynman-Kac representation formula (see for instance Pascucci [51, chap.9]),

one can state that the transition density (whenever it exists) p(x0, t0, x, t) of the N -dimensional
process (3.1) satisfies the Fokker-Planck equation:

d∑
i,j=1

aij(x)∂xixjp(x0, t0, x, t) +

n∑
i=1

Fi(x)∂xip(x0, t0, x, t) + ∂tp(x0, t0, x, t) = 0 (3.2)

where

aij(x) =
1

2

d∑
k=1

σik(x)σjk(x).

Specifically, the function

u(x, t) = E[ϕ(XT )|Xt = x] =

∫
RN

ϕ(ξ)p(ξ, T ;x, t)dξ (3.3)

is a solution of the Cauchy problem for (3.2) with prescribed bounded continuous final condition
ϕ. Moreover, p satisfies the identity

p(x0, t0;x, t) =

∫
RN

p(x0, t0; ξ, τ)p(ξ, τ ;x, t)dξ, t < τ < t0. (3.4)

In the sequel of this section we recall the results of the Stochastic Theory which guarantee
the existence of the transition density p(x0, t0, x, t).

3.1. Elements of Malliavin Calculus
We consider the space of functions H = L2([0, T ],Rd). For each h(t) = (h1(t), ..., hd(t)),∈ H

we introduce the Gaussian random variable:

W (h) =
d∑
j=1

∫ T

0
hj(t)dW j

t .

We denote by S the class of n-dimensional simple functions of Brownian motion of the form:

F = f(W (h1), ...,W (hn)), f ∈ C∞p (Rn,R), h1, ..., hn ∈ H.

22



For every F ∈ S we define the Malliavin derivative (DtF )t∈[0,T ] of F as the Rd-dimensional (non
adapted) process:

DtF =
n∑
i=1

∂f

∂xi
(W (h1), ...,W (hn)))hi(t).

Each hi(t) = (h1
i (t), ..., h

d
i (t)) has d components and we write Dj

tF for the jth component of
DtF , j = 1, ..., d. We introduce the Sobolev norm:

‖F‖1,p =
[
E(|F |p) + E

(∣∣DF ∣∣p)]1/p
where

∣∣DF ∣∣ =

(∫ T

0
|DtF |2dt

)1/2

. (3.5)

It is possible to show that the operator D : S → Lp(Ω, L2[0, T ]) is closable with respect to the
norm ‖ · ‖1,p. We denote by D1,p = Dom(D) its domain, which is the completion of S with
respect to the norm ‖ · ‖1,p.

Let α = (j1, ..., jk) be a multi-index of length k, we define the kth-order derivative as the
random vector on [0, T ]k × Ω with coordinates:

Dα
t1,...,tk

F = Djk
tk
· · ·Dj1

t1
F.

We introduce the Sobolev norm:

‖F‖k,p =
[
E(|F |p) +

k∑
j=1

E(|D(j)F |p)
]1/p

(3.6)

where

|D(j)F | =
∑
|α|=j

(∫
[0,T ]k

|Dα
t1,...,tk

F |2dt1 . . . dtk

)1/2

We denote by Dk,p the completion of S with respect to the norm ‖ · ‖k,p and finally we denote by

D∞ =
⋂
k,p≥1

Dk,p.

We introduce now the Malliavin covariance matrix of the random vector F = (F 1, ..., FN ) deriv-
able in Malliavin sense.

Definition 3.1. Let F = (F 1, . . . , FN ) be a random vector which is derivable in Malliavin sense.
We define the Malliavin Covariance Matrix of the random variable F as follows:

γijF = 〈DF i, DF j〉 =

d∑
k=1

∫ T

0
Dk
sF

i ×Dk
sF

jds i, j = 1, ..., N (3.7)

We say that F is non-degenerate if its Malliavin covariance matrix satisfies

E(|detγF |−p) <∞, ∀p ∈ N, ∀t > 0 (3.8)
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The non-degeneracy (3.8) condition is necessary to ensure that the law of the random vector
F exists and is absolutely continuous with respect to the Lebesgue measure. We refer to [50],
Chapter 2, for the following proposition

Proposition 3.2 (Hirch-Bouleau). Let t ∈ [0,+∞) be fixed and let Xt = (X1
t , ..., X

n
t ) a

random variable satisfying (3.1). If each Xi
t ∈ D1,p

loc with p > 1 and if γXt satisfies the non
degeneracy condition (3.8) almost surely, then the law of Xt is absolutely continuous with respect
to the Lebesgue measure on RN , that is

PXt(dx) = pXt(x)dx.

3.2. Malliavin Theorem and Hörmander condition
In this section we recall the Malliavin Theorem for a diffusion process (3.1). To start with,

we introduce the following probabilistic meanings of Lie Bracket and Hörmander condition.

Definition 3.3 (Lie bracket). For each pair of functions f, g ∈ C1(Rn,Rn) we define the Lie
Bracket [f, g] := f∇g − g∇f . In components

[f, g]i =
n∑
j=1

(
fj

∂gi
∂xj
− gj ∂fi∂xj

)
i = 1, . . . , n. (3.9)

We construct by recurrence the set of functions:

M0 = {σ1, . . . , σd}, Mk = {[F,ϕ], [σ1, ϕ], . . . , [σd, ϕ], ϕ ∈Mk−1, k ≥ 1},

where σj is the j − th column of the matrix σ and F = (F 1, F 2, ..., Fn).

Definition 3.4 (weak Hörmander condition). We say that Hörmander condition holds at
the step k in x0 if:

span

{
ϕ(x0) : ϕ ∈

k⋃
i=0

Mi

}
= Rn. (3.10)

In order not to make confusion between the two definitions of Lie Bracket (2.4) and Hörmander
condition (2.5) given above, we clarify in the following Remark that the above definitions are
exactly the same.

Remark 3.5. The above definitions (3.9) and (3.10) agree with the ones we used for directional
derivatives (2.4) and (2.5). As usual in differential geometry, the vector fields are identified
with their coefficients, so, indeed, it easy to check that, if X =

∑
fj∂xj and Y =

∑
gj∂xj , then

[X,Y ] =
∑
hj∂xj , where h = [f, g].

We state the following theorem with the notation of the monograph [4].

Theorem 3.6 (Malliavin [41]). Consider the n-dimensional diffusion process (3.1) and sup-
pose that F i, σij ∈ C∞l,b .

24



i) Then for every t > 0, Xt belongs to D∞ and

‖Xx
t ‖k,p ≤ ck,p(t)(1 + |x|)βk,p (3.11)

where βk,p ∈ N and ck,p(t) is a constant which depends on k, p, t and on the bounds of the
derivatives of b, σ up to order k.

ii) Suppose that Hörmander condition (2.5) holds true. Then there exist a function Ck,p(t)
and some constants nk,mk ∈ N such that the non-degeneracy condition (3.8) is satisfied.
Moreover

‖ (γXx
t
)−1‖p ≤

Ck,p(t)(1 + |x|)mk
tnk/2

. (3.12)

The function t → Ck,p(t) is increasing. In particular, the right hand side in (3.12) blows
up as t−nk/2 as t→ 0.

iii) Suppose that the Hörmander condition (2.5) holds true and F i, σij ∈ C∞l,b . Then for every
t > 0 the law of Xx

t is absolutely continuous with respect to the Lebesgue measure and the
transition density y 7→ p(y, t;x, t0) is a C∞ function. Moreover, if F, σ are bounded, one
has

p(y, t;x, t0) ≤ C0(1 + |x|)m0

tn0/2
exp

(
−D0(t)|y − x|2

t

)
(3.13)

|Dα
y p(y, t;x, t0)| ≤ Cα(1 + |x|)mα

tnα/2
exp

(
−Dα(t)|y − x|2

t

)
(3.14)

where all above constants depend on the step for which Hörmander condition holds true and
the functions C0, D0, Cα, Dα are increasing functions of t.

We now consider the operator L in (1.2), assuming that the coefficients a, b only depend on
x, y and are bounded C∞(R2) functions. We denote by

L = a(x, y)x2∂xx +
(
ax(x, y)x+ a(x, y) + b(x, y)

)
x∂x + x∂y. (3.15)

and from (3.2) we have that L+ ∂t is the infinitesimal generator of the process{
dXt = µ(Xt, At)Xtdt+ σ(Xt, At)XtdWt

dYt = Xtdt.
(3.16)

with

a(x, y) =
σ2(x, y)

2
, b(x, y) +

σ2(x, y)

2
+ σ(x, y)σx(x, y)x = µ(x, y).

It is simple to show that the process (Xt, Yt)t≥0 belongs to the space C∞l,b(R+ × R), provided
that ∂x(xa(x, y)) is bounded. Moreover, the operator (3.15) satisfies the Hörmander Condition,
then the density p of the process (Xt, Yt)t≥0 exists in view of i) and ii) of Theorem 3.6 and
Proposition 3.2. Point iii) of Theorem 3.6 yields the smoothness of p.

The following proposition summarizes the results about the fundamental solution of L we
have obtained in this Section.
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Proposition 3.7. Let a = a(x, y), b = b(x, y) ∈ C∞(R+ × R), with a, b and ∂x(xa(x, y, t))
bounded. Suppose that inf a > 0. Then, there exists a smooth fundamental solution of L .
Moreover, for every (x, y, t), (x0, y0, t0), (ξ, η, τ) belonging to R+ × R2 with t > τ > t0, it holds
the following properties

1. Support of Γ:

Γ(x, y, t; ξ, η, τ) = 0 whenever t ≤ τ or y ≥ η; (3.17)

2. Reproduction property:

Γ(x, y, t;x0, y0, t0) =

∫
R+×R

Γ(x, y, t; ξ, η, τ)Γ(ξ, η, τ ;x0, y0, t0)dξdη, (3.18)

3. Integrals of Γ:∫
R+×R

Γ(x, y, t; ξ, η, τ)dξdη = 1,

∫
R+×R

Γ(x, y, t; ξ, η, τ)dxdy = C̄; (3.19)

where C̄ is a positive constant depending on t− τ and C̄ → 1 when t→ τ .

Proof. Malliavin Calculus provides us with the existence of a smooth probability density
p(x0, y0, t0;x, y, t) for the process (3.16). By setting

Γ(x, y, t; ξ, η, τ) = p(ξ, η, T − τ, x, y, T − t). (3.20)

it is easy to check that (3.20) defines a smooth Fundamental solution for L in the sense of
the Definition 2.5. The relation (3.17) simply follows from (3.16), as the process (Xt)t≥0 is
positive. The reproduction property (3.18) follows from (3.4) and (3.16). Moreover, the first
property (3.19) follow from (3.16) and by the fact that p is the transition probability density of
a Markovian process.
In order to prove the second property of (3.19), we consider the adjoint operator L ∗ of L as in
(2.9). Let rewrite L ∗ in the following form

L ∗ = a(x, y)x2∂xx +
(
ax(x, y)x+a(x, y)− b(x, y)

)
x∂x − x∂y+

− (b(x, y)− a(x, y)− xax(x, y)− bx(x, y)) + ∂t.

whose fundamental solution is Γ∗(ξ, η, τ ;x, y, t) with t > τ .
Denote by Γ̃∗(ξ, η, τ ;x, y, t) the fundamental solution of the operator

L̃ ∗ = a(x, y)x2∂xx +
(
ax(x, y)x+ a(x, y)− b(x, y)

)
x∂x − x∂y + ∂t. (3.21)

Note that Γ̃∗(ξ, η, τ ;x, y, t) agrees with the probability density of the Stochastic Process:{
dXt = µ∗(Xt, At)Xtdt+ σ(Xt, At)XtdWt, Xτ = ξ
dYt = −Xtdt, Yτ = η.

with

a(x, y) =
σ2(x, y)

2
, −b(x, y) +

σ2(x, y)

2
+ σ(x, y)σx(x, y)x = µ∗(x, y).
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Therefore, it follows that: ∫
R+×R

Γ̃∗(ξ, η, τ ;x, y, t)dxdy = 1 (3.22)

Let C2 denote the maximum of the function |b(x, y)−a(x, y)−xax(x, y)− bx(x, y)| and consider
the following operators

L ∗
1 = a(x, y)x2∂xx +

(
ax(x, y)x+ a(x, y)− b(x, y)

)
x∂x − x∂y + C2 + ∂t (3.23)

L ∗
2 = a(x, y)x2∂xx +

(
ax(x, y)x+ a(x, y)− b(x, y)

)
x∂x − x∂y − C2 + ∂t. (3.24)

Observe that the functions Γ∗1(ξ, η, τ ;x, y, t) = e−C2(t−τ)Γ̃∗(ξ, η, τ ;x, y, t) and Γ∗2(ξ, η, τ ;x, y, t) =

eC2(t−τ)Γ̃∗(ξ, η, τ ;x, y, t) are the fundamental solution of L ∗
1 v = 0 and L ∗

2 v = 0, respectively.
Moreover, for every non negative function g(x, y) continuous and bounded on R+ × R, if we
consider

u1(ξ, η, τ) =

∫
R×R2

Γ∗1(ξ, η, τ ;x, y, t)g(x, y)dxdy,

u(ξ, η, τ) =

∫
R×R2

Γ∗(ξ, η, τ ;x, y, t)g(x, y)dxdy,

u2(ξ, η, τ) =

∫
R×R2

Γ∗2(ξ, η, τ ;x, y, t)g(x, y)dxdy,

it holds that
L ∗u1(ξ, η, τ) ≤ 0, L ∗u(ξ, η, τ) = 0, L ∗u2(ξ, η, τ) ≥ 0, (3.25)

In view of (3.25) and by using the comparison principle, we obtain:

Γ∗1(ξ, η, τ ;x, y, t) ≤ Γ∗(ξ, η, τ ;x, y, t) ≤ Γ∗2(ξ, η, τ ;x, y, t). (3.26)

The assertion simply follows from the fact that, in view of (3.22), we have∫
R+×R

Γ∗1(ξ, η, τ ;x, y, t)dxdy = e−C2(t−τ),

∫
R+×R

Γ∗2(ξ, η, τ ;x, y, t)dxdy = eC2(t−τ).

and Γ∗(ξ, η, τ ;x, y, t) = Γ(x, y, t; ξ, η, τ). �.

4. The Optimal Control Problem and The Lower Bound

In this section we formulate the control problem suitable to find the optimal lower bound for
the positive solutions of L u = 0. With this aim, we recall that L0 can be written in the form
(2.1), as L0 = X2 + Y , where X and Y are defined in (2.6).

4.1. The Pontryagin Maximum Principle
In this section, we recall the Pontryagin Maximum Principle [56]. We will then apply it to

the optimal control problem (1.4) in Section 4.2, and it will give us optimal lower bounds for the
positive solutions of L u = 0. We use here the notations in the general setting suitable for the
study of operators L̃ defined in (2.1) that include, as a particular case, the one studied in this
work.
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In this section the time variable t in (x, t) ∈ RN × [0,+∞) is dropped. Let then Ω ⊂ RN be
an open set, F0, F1, . . . , Fm : Ω→ RN be smooth vector fields, and the final time T be fixed. We
consider the following optimal control problem:

q̇ = F0(q) +

m∑
i=1

ωiFi(q) , ωi ∈ R ,
∫ T

0

m∑
i=1

ω2
i (t) dt→ min, q(0) = q0, q(T ) = q1.(4.1)

For such optimal control problem, the Pontryagin Maximum Principle provides a first-order
condition for the minimizing controls ω(.) and the corresponding trajectories q(.). We now recall
its statement in the particular case in which variables and controls belong to the Euclidean spaces
Rn,Rm, respectively. For a more general statement on manifolds, see e.g. [1].

Theorem 4.1 (PMP for the problem (4.1)). Consider the minimization problem (4.1), in
the class of Lipschitz continuous curves, where Fi, i = 0, . . . ,m are smooth vector fields on RN
and the final time T is fixed. Consider the map H : RN × RN × R× Rm → R defined by

H(q, λ, p0, ω) :=

〈
λ, F0 +

m∑
i=1

ωiFi(q)

〉
+ p0

m∑
i=1

ω2
i . (4.2)

If the curve q(.) : [0, T ] → RN corresponding to the control ω(.) : [0, T ] → Rm is optimal, then
there exist a Lipschitz continuous covector λ(.) : s ∈ [0, T ] 7→ λ(s) ∈ RN and a constant p0 ≤ 0
such that:

• the pair (λ(s), p0) is never vanishing;

• the optimal control ω(s) satisfies

H(q(s), λ(s), p0, ω(s)) = max
ν∈Rm

H(q(s), λ(s), p0, ν);

• for a.e. s ∈ [0, T ] it holds {
q̇(s) = ∂H

∂λ (q(s), λ(s), p0, ω(s)),

λ̇(s) = −∂H
∂q (q(s), λ(s), p0, ω(s)).

(4.3)

The Hamiltonian H∗(q, λ, p0) := maxν∈Rm H(q, λ, p0, ν) is called themaximized Hamiltonian.
Solutions to the system (4.3) are called extremals. When p0 = 0, they are called abnormal

extremals, while when p0 < 0 they are called normal extremals.

Remark 4.2. The original statement [56] of the Pontryagin Maximum Principle provides opti-
mal controls in the space L∞([0, T ],Rm). Instead, we are interested in optimal controls in the
larger space L1([0, T ],Rm). For this reason, we aim to apply a generalized version of the Pon-
tryagin Maximum Principle, such as the one stated in [59, Chap. 6]. For our optimal control
problem, such generalized version has a statement completely equivalent to Theorem 4.1.
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4.2. Application of the Pontryagin Maximum Principle to the problem (1.4)
In this section we apply the Pontryagin Maximum Principle to our problem (1.4). Note that

the terminal point of the L -admissible path considered in (1.4) is (1, 0, 0), we give here the
formulation for any end-point (x0, y0, t0) ∈ R+ × R2. In accordance with the notation used for
the fundamental solution of L , we denote the starting point of the path by (x1, y1, t1) ∈ R+×R2,
with t1 > t0. 

ẋ(s) = ω(s)x(s)
ẏ(s) = x(s) 0 ≤ s ≤ T ,
ṫ(s) = −1,

(4.4)

(x, y, t)(0) = (x1, y1, t1), (x, y, t)(T ) = (x0, y0, t0).

We first observe that such optimal control problem is invariant on the Lie group R+×R2 endowed
with the operation (1.9). We recall that optimal control problems on Lie group with invariant
vector fields satisfy useful invariance properties, that permit to have simpler solutions of the
Pontryagin Maximum Principle, eventually leading to complete synthesis for specific problems,
see e.g. [13]. In our specific problem, it is sufficient to observe the following invariance property
for the solution of (4.4). Consider a control ω( · ) steering (x1, y1, t1) to (x0, y0, t0) with the
trajectory (x(s), y(s), t(s)). Then the same control ω(.) steers (x0, y0, t0)−1◦(x1, y1, t1) to (1, 0, 0).
This can be proved by observing that the trajectory (x0, y0, t0)−1 ◦ (x(s), y(s), t(s)) is a solution
of (4.4) with the same control ω(.). Since the cost depends on the control only, then the two
trajectories have the same cost, hence

Ψ(x1, y1, t1;x0, y0, t0) = Ψ((x0, y0, t0)−1 ◦ (x1, y1, t1); 1, 0, 0) (4.5)

As a consequence, we will now fix the final condition (x0, y0, t0) = (1, 0, 0) in the optimal control
problem (4.4), then using the invariance property to solve it with a general initial condition.

The constraint ṫ = −1 implies that L -admissible paths satisfy t(s) = t1−s, hence T = t1−t0.
Then, in the sequel we drop the time variable, we set T := t1 − t0, and we denote

Ψ(x1, y1, t1;x0, y0, t0) = inf
ω∈L1([0,t1−t0])

∫ t1−t0

0
ω2(τ)dτ, (4.6)

where ω ∈ L1([0, t1 − t0]) is such that (4.4) holds true.
For the above reasons, the optimal control problem (4.4), (4.6) now reads as follows:

Ψ(x1, y1, t1; 1, 0, 0) = min
ω∈L1([0,t1])

∫ t1

0
ω2(τ)dτ subject to constraint (4.7)

{
ẋ(s) = ω(s)x(s), x(0) = x1, x(t1) = 1,
ẏ(s) = x(s), y(0) = y1, y(t1) = 0.

To simplify the notation, in the sequel we agree to set Ψ(x1, y1, t1) := Ψ(x1, y1, t1; 1, 0, 0).
We now solve such problem. As a by-product, we show that we can always steer (x1, y1) to

(x0, y0) in time T , when y1 < y0. This implies that there exists a control ω steering (x1, y1, t1)
to γ(t1 − t0) = (x0, y0, t0), as we stated in the proof of Proposition 2.12.
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We now apply the Pontryagin Maximum Principle to problem (4.7). The Hamiltonian of the
problem (4.7) is

H(x, y, λ1, λ2, p0, ω) = λ1xω + λ2x+ p0ω
2, (4.8)

where (λ1, λ2) are the coordinates of the covector λ.
We first remark that Problem (4.7) admits no abnormal extremals. Indeed, assume by con-

tradiction p0 = 0 in (4.8). Then

H(x, y, λ1, λ2, p0, ω) = λ1xω + λ2x

Recall that x > 0. Hence, the maximization of the Hamiltonian is equivalent to

∂H

∂ω
(x, y, λ1, λ2, p0, ω) = 0 ⇒ λ1(s) = 0, ∀s ∈ [0, t1].

Moreover, using the fact that λ1(s) = 0 for all s ∈ [0, t1], it holds

λ̇1(s) = −∂H
∂x

(x, y, λ1, λ2, p0, ω) = −λ1(s)ω(s)− λ2(s) = 0,

hence λ2(s) = 0 for every s ∈ [0, t1]. We conclude that

(λ1(s), λ2(s), p0) = (0, 0, 0) for every s ∈ [0, t1].

This is in contradiction with the fact that (λ1(s), λ2(s), p0) is always non-vanishing.
Since no abnormal extremals occur, we choose p0 = −1

2 . We then compute the optimal
control as the unique minimizer of H

(
x, y, λ1, λ2,−1

2 , ω
)
, that is

ω(s) = λ1(s)x(s), (4.9)

and the maximized Hamiltonian is

H∗(x, y, λ1, λ2, p0) =
1

2
λ2

1x
2 + λ2x. (4.10)

The corresponding Hamiltonian system reads as
ẋ(s) = λ1(s)x2(s)
ẏ(s) = x(s)

λ̇1(s) = −λ2
1(s)x(s)− λ2(s)

λ̇2(s) = 0

(4.11)

In the sequel, we choose the parameters

k := λ1(t1) and c := λ2(t1)

as the final condition for each extremal, that is uniquely determined by being the solution of
(4.11) with final condition (x, y, λ1, λ2)(t1) = (1, 0, k, c). Note that, by the last equation in (4.11),
we have λ2(s) = c for every s ∈ [0, t1]. Furthermore, the value of the Hamiltonian is a constant
of motion, fixed by the final data. From now on, we then fix

E := λ2
1(s)x2(s) + 2λ2(s)x(s) = k2 + 2c. (4.12)
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Moreover, by recalling the explicit expression for the optimal control (4.9) and ẏ = x, we
have the following expression of the cost for extremals:

C(ω( · )) =

∫ t1

0
ω(s)2 ds =

∫ t1

0
λ2

1(s)x2(s) ds =

∫ t1

0
(E − 2cẏ(s)) ds = Et1 + 2cy1. (4.13)

We now describe the explicit solutions to (4.11), as a function of the final value of the
Hamiltonian E = k2 + 2c. For simplicity, we consider the space variable (x, y) only. We have
three cases:

1. E = 0: it holds (x(s), y(s)) =
(

4
(k(t1−s)+2)2 ,− 2(t1−s)

k(t1−s)+2

)
;

2. E > 0: it holds

(x(s), y(s)) =

(
E(√

E cosh
(
t1−s

2

√
E
)

+k sinh
(
t1−s

2

√
E
))2 ,

−2 sinh
(
t1−s

2

√
E
)

√
E cosh

(
t1−s

2

√
E
)

+k sinh
(
t1−s

2

√
E
)) ;

3. E < 0: it holds

(x(s), y(s)) =

(
−E(√

−E cos
(
t1−s

2

√
−E
)

+k sin
(
t1−s

2

√
−E
))2 ,

−2 sin
(
t1−s

2

√
−E
)

√
−E cos

(
t1−s

2

√
−E
)

+k sin
(
t1−s

2

√
−E
)),

where the trajectory is defined on the whole time interval s ∈ [0, t1] when E > − π2

T 2 only.

The three cases can be unified by using the function g defined in (1.25) and observing that
it always holds

y(s) = −g
(
E(t1 − s)2

4

)
(t1 − s)

√
x(s). (4.14)

We are now ready to prove the invariance properties of Ψ.

Proof of Proposition 1.1. The proof of (1.15) is a direct consequence of (4.5). In order
to prove (1.16) we introduce another symmetry of the problem. Consider an extremal of (4.7)
steering (x, y) to (1, 0) in time t, with a final covector parametrized by (k, c), hence with Hamil-
tonian E = k2 + 2c and cost C = E T + 2cy1. Fix now r > 0: the extremal ending to (1, 0)
with final covector (rk, r2c) steers

(
x, yr

)
to (1, 0) in time t

r . Moreover, the Hamiltonian is r2E
and the cost is r C. The proof is a direct consequence of the explicit expression of solutions of
(4.11). As a consequence, a trajectory parametrized by (k, c) steering (x, y) to (1, 0) in time t is
optimal if and only if the trajectory parametrized by (rk, r2c) steering

(
x, yr

)
to (1, 0) in time t

r
is optimal too. Combining this with (4.5) we get the property

Ψ(x1, y1, t1;x0, y0, t0) = Ψ
(
x1
x0
, y1−y0

x0
, t1 − t0; 1, 0, 0

)
= 1

rΨ
(
x1
x0
, y1−y0

rx0
, t1−t0r ; 1, 0, 0

)
= 1

rΨ
(
x1,

y1

r ,
t1
r ;x0,

y0

r ,
t0
r

)
This proves (1.16). �

In view of (1.15) and (1.16), with no loss of generality, from now on we consider the problem
of steering (x1, y1) to (1, 0) with fixed final time t1 = 2. First observe that, since g is a C∞,
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strictly increasing function, from (4.14) we find the unique value for the prime integral E for
which it holds (x(0), y(0)) = (x1, y1), that is

E =
4

t21
g−1

(
− y1

t1
√
x1

)
= g−1

(
− y1

2
√
x1

)
. (4.15)

It also clearly gives the basic relation c = E−k2

2 , hence c is uniquely determined by k. Then,
the cost of the corresponding extremal is

C = 2E + y1(E − k2) = (2 + y1)E − y1k
2. (4.16)

We now compute the value of k by imposing the initial condition on the second component only,
i.e. y(0) = y1. It holds:

• for y1 = −2
√
x1, the unique extremal satisfying y(0) = y1 has final covector k = −y1+2

y1

and the optimal cost is C = (y1+2)2

y1
.

• for y1 < −2
√
x1, the unique extremal satisfying y(0) = y1 has final covector

k = −
√
E
(

coth(
√
E)
)
− 2

y1
=

√
Ey2

1 + 4x1 − 2

y1

and the optimal cost is C = 2
Ey1−2x1−2+2

√
4x1+Ey2

1

y1
.

• for y1 > −2
√
x1, the unique extremal satisfying y(0) = y1 has final covector

k = −
√
−E
(

cot(
√
−E)

)
− 2

y1

Since −π2 < E < 0, we find k =

√
Ey2

1+4x1−2

y1
, if −π2/4 ≤ E < 0;

k = −
√
Ey2

1+4x1+2

y1
, if −π2 < E < −π2/4,

and the expression of the optimal cost is C = 2
Ey1−2x1−2+2

√
4x1+Ey2

1

y1
, if −π2/4 ≤ E < 0;

C = 2
Ey1−2x1−2−2

√
4x1+Ey2

1

y1
, if −π2 < E < −π2/4.

In conclusion, we have that the unique extremal satisfying y(0) = y1 has final covector k =

√
Ey2

1+4x1−2

y1
, if E ≥ −π2/4;

k = −
√
Ey2

1+4x1+2

y1
, if −π2 < E < −π2/4,

(4.17)

and the optimal cost is
C = 4

E
2
y1−x1−1+

√
4x1+g−1

(
− y1

2
√
x1

)
y2
1

y1
, if E ≥ −π2/4;

C = 4

E
2
y1−x1−

√
4x1+g−1

(
− y1

2
√
x1

)
y2
1

y1
, if −π2/4 < E < −π2/4.

(4.18)
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We are now left to prove that, with the previous choice of k, one also has x(0) = x1 and x(t1) = 1.
With this goal, it is sufficient to observe the following interesting geometric feature of solutions
of (4.11): the quantity λ1(s)x(s) + λ2(s)y(s) is another constant of motion for (4.11), whose
value set at s = t1 is k. Merging this information with (4.12), we have

2cx(s) = E − (k − cy(s))2

for all points (x(s), y(s)) of the solution of (4.11). In other terms, the trajectory (x(s), y(s))
always belongs to the parabola

x(s) = − c
2
y2(s) + ky(s) + 1.

Then, when the trajectory reaches y(0) = y1 and t1 = 2, it holds

x(0) =
k2 − E

4
y2

1 + ky1 + 1 = x1, (4.19)

by plugging the explicit expression (4.17) of k.
Summing up, the optimal trajectory steering (x1, y1) to (1, 0) in time t1 = 2 is the unique

solution of (4.11) with final covector (k, k
2−E
2 ), where k and E are given by (4.17) and (4.15).

We next prove Proposition 1.4 by applying the symmetry inverse transformations (1.15) and
(1.16).

Proof of Proposition 1.4. By (1.16) with r = t1−t0
2 we find

Ψ(x1, y1, t1;x0, y0, t0) = 2
t1−t0 Ψ

(
x1
x0
, 2(y1−y0)
x0(t0−t1) , 2; 1, 0, 0

)
.

Moreover, the Hamiltonian of the optimal trajectory of (4.11) corresponding to the right hand
side of the above equation is (t1−t0)2

4 E, where E is the Hamiltonian of the optimal trajectory

steering (x1, y1, t1) to (x0, y0, t0). From (4.15) we obtain (t1−t0)2

4 E = g−1
(

y0−y1

(t1−t0)
√
x0x1

)
, that

gives (1.27). By using the first expression in (4.18) of the Ψ
(
x1
x0
, 2(y1−y0)
x0(t1−t0) , 2; 1, 0, 0

)
, we obtain

Ψ(x1, y1, t1;x0, y0, t0) =
2

t1 − t0
4

(
(t1 − t0)2

4

E

2
· 2(y1 − y0)

x0(t0 − t1)
− x1

x0
− 1+

+

√
4
x1

x0
+

(t1 − t0)2

4
E

(
2(y1 − y0)

x0(t1 − t0)

)2
)
x0(t1 − t0)

2(y1 − y0)
,

which, recalling that y0 > y1, agrees with (1.26). The proof of the second one is analogous.
In order to prove (1.28), we claim that, for every ε ∈]0, 1[ there exists a positive Eε such that

for every E > Eε it holds

4

(t1 − t0)2
log2

(
y0 − y1

(t1 − t0)
√
x0x1

)
< E <

4

(1− ε)2(t1 − t0)2
log2

(
y0 − y1

(t1 − t0)
√
x0x1

)
, (4.20)

where E is the function defined in (4.15). To prove the claim, we fix ε ∈]0, 1[ and we note that

exp((1− ε)x) <
sinh(x)

x
< exp(x), (4.21)
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for every sufficiently large positive x. Recalling (1.27), since y0−y1

(t1−t0)
√
x0x1

→ +∞, we consider
g(r) in (1.25) with r > 0. Then, from (4.21) it follows that

exp

(
(1− ε)(t1 − t0)

√
E

2

)
<

y0 − y1

(t1 − t0)
√
x0x1

< exp

(
(t1 − t0)

√
E

2

)
,

for any positive E big enough. This proves (4.20). Moreover, for E big enough, we have, for
every arbitrary ε > 0

0 ≤ 4x1x0

(y0 − y1)2
=

E

sinh2
( (t1−t0)

2

√
E
) < ε. (4.22)

We next consider the value function Ψ as a function of y0−y1

(t1−t0)
√
x1x0

. From the first expression
in (1.26) and (4.22), we obtain the following inequality

Ψ(x1, y1, t1;x0, y0, t0) ≤ 4

(1− ε)2(t1 − t0)
log2

(
y0 − y1

(t0 − t)
√
x0x1

)
+

4(x1 + x0)

y0 − y1

for every E > Eε. On the other hand, modifying if necessary the choice of Eε, we also have

Ψ(x1, y1, t1;x0, y0, t0) ≥ 4(1− ε)2

(t1 − t0)
log2

(
y0 − y1

(t1 − t0)
√
x0x1

)
+

4(x1 + x0)

y0 − y1
− 2ε

for every E > Eε. This concludes the proof of (1.28).
The proof of (1.29) is easier. It suffices to note that since, y0−y1

(t1−t0)
√
x1x0

→ 0, we consider g(r)

in (1.25) with r < 0, then E → − 4π2

(t1−t0)2 . From the second expression in (1.26) we have

lim
E→− 4π2

(t1−t0)2

Ψ(x1, y1, t1;x0, y0, t0)
4(x1+x0)+4

√
4x1x0

y0−y1
− 4π2

(t1−t0)

= 1.

�

4.3. Lower bound in (1.3)
In this section we give the proof of the lower bound in Theorem 1.3 for a preliminary choice

of the pole z0 = (x0, y0, t0) = (1, 0, 0). We pass to the general case at the end of Section 5. We
first prove the following

Lemma 4.3. There exists two positive constants κ and %, only depending on the L∞ norms of
ã, b̃, and on inf ã, such that

Γ(1,−t, t; 1, 0, 0) ≥ κ

t2
, for every t ∈]0, %/4[.

Proof. We claim that, for every r ∈]0, 1/2] we have

Γ(x, y, t; ξ, η, τ) ≥ Gr(x, y, t; ξ, η, τ),

for every (x, y, t; ξ, η, τ) ∈ H0
r (1, 0, 0)×H0

r (1, 0, 0), where Gr(x, y, t; ξ, η, τ) is the Green function
appearing in (2.24). The proof of Lemma 4.3 then follows from Lemma 2.10.
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In order to prove our claim, we fix r ∈]0, 1/2]. For every non-negative f ∈ C∞0 (H0
r (1, 0, 0))

and for every (x, y, t) ∈ H0
r (1, 0, 0) we set

vf (x, y, t) :=

∫
H0
r (1,0,0)

Gr(x, y, t; ξ, η, τ)f(ξ, η, τ)dξ dη dτ,

uf (x, y, t) :=

∫
H0
r (1,0,0)

Γ(x, y, t; ξ, η, τ)f(ξ, η, τ)dξ dη dτ.

Both vf and uf are solution of L u = −f in H0
r (1, 0, 0). Moreover uf (x, y, t) ≥ 0 for every

(x, y, t) ∈ ∂(H0
r (1, 0, 0))∩

{
t < r2

}
. From (2.25) and from the comparison principle we then find

uf ≥ vf in H0
r (1, 0, 0). In other words, we have∫
H0
r (1,0,0)

(
Γ(x, y, t; ξ, η, τ)−Gr(x, y, t; ξ, η, τ)

)
f(ξ, η, τ)dξ dη dτ ≥ 0,

for every non-negative f ∈ C∞0 (H0
r (1, 0, 0)) and for every (x, y, t) ∈ H0

r (1, 0, 0). This proves our
claim. �

We next state and prove the main result of this section.

Proposition 4.4. Let 0 < ε < 1 be fixed arbitrarily. There exists a positive constant c−ε,T only
depending on the operator L , on ε and on T such that for every (x, y, t) ∈ R+ × R×]0, T ] with
y < −εt it holds

Γ (x, y, t; 1, 0, 0) ≥
c−ε,T
t2

exp (−CΨ(x, y + εt, t− εt; 1, 0, 0)) . (4.23)

Proof. Let ε ∈]0, 1[ be fixed, by Proposition 2.13 and Lemma 4.3 we have

Γ(x, y, t; 1, 0, 0) ≥ ε−βM−1− 4(1−ε)t
θ2

−Ψ(x,y,t;1,−εt,εt)
h Γ(1,−εt, εt; 1, 0, 0)

≥ ε−βM−1− 4T
θ2
−Ψ(x,y,t;1,−εt,εt)

h
κ

4(εt)2
, (4.24)

for every (x, y, t) ∈ R+ × R×]0, T ] with y < −εt. This proves (4.23) for (x0, y0, t0) = (1, 0, 0),
with c−ε,T = κ

4ε2+βM
−1− 4T

θ2 .

5. Upper Bound and Proof of the Main Theorem

In this section we prove the upper bound in (1.3) for the fundamental solution of L . For the
scopes of this section it is more convenient to write L in its divergence form (2.7).

To achieve the proof of Proposition 5.1, we need to introduce some preliminary results on
non-negative weak solutions u to L u = 0 in R+×R×]T0, T1[ and on non-negative weak solutions
u to its formal adjoint L ∗u = 0 in R+×R×]T0, T1[. For this reason, we consider operators with
a zero order term, namely

L1u(x, y, t) = −X∗
(
aXu

)
+ (b− a)Xu+ cu+ Y u. (5.1)
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Clearly, L is the particular case of L1 that we obtain with c = 0. With the the same notation,
its formal adjoint L ∗

1 is

L ∗
1 u(x, y, t) = −X∗

(
aXu

)
−X∗

(
(b− a)u

)
+ cu− Y u. (5.2)

In the sequel we rely on the following assumption

a, b, c, ∂x(xa), ∂x(xb) are bounded and measurable functions. (5.3)

Note that the same condition holds for L ∗
1 . The existence of a fundamental solution for L is

guaranteed if we also suppose that the coefficients a, b, c are smooth.
The main result of this section is the following

Proposition 5.1 (Upper Bound). Let T0, T1 be fixed and consider the set R+ × R×]T0, T1[.
Let L1 be the operator in (5.1), and Γ(x, y, t; 1, 0, 0) be its fundamental solution. Denote by M1

the L∞-norm of a(x, y, t) and T = T1 − T0. Then, for every positive ε, there exists a positive
constant C+

ε , depending on the vector fields X,Y , on ε, T and on the L∞-norm of a(x, y, t) such
that

Γ(x, y, t; 1, 0, 0) ≤ C+
ε

t2
exp

(
− 1

16M1
Ψ(x, y − ε, t+ ε; 1, 0, 0)

)
(5.4)

for every (x, y, t) ∈ R+×]−∞, 0[×]0, T ].

The proof of Theorem 5.1 is based on a local L∞ a priori estimate for solution of L1u = 0. In
order to state precisely this estimate, we recall some notation. For every (x0, y0, t0) ∈ R+ × R2

and r ∈]0, 1[ we consider the set Hr(x0, y0, t0) introduced in (2.11).

Proposition 5.2. Let (x0, y0, t0) be any point of R+ × R2, and let r, ρ with 0 < r/2 ≤ ρ <
r < 1. Let u be a non-negative weak solution of L1u(x, y, t) = 0 in Hr(x0, y0, t0) and let
u ∈ L2(Hr(x0, y0, t0)). Then

sup
Hρ(x0,y0,t0)

up ≤ c̄

(r − ρ)6

∫
Hr(x0,y0,t0)

up, (5.5)

where the constant c̄ > 0 depends only on L1, p and on the L∞ norm of a, b, c.

The proof of Proposition 5.2 relies on the analogous result proven in [18, Theorem 1.4] for
the Kolmogorov equation with bounded coefficients. For the sake of simplicity we recall here its
statement for a particular operator strongly related to L1. For every (x0, y0, t0) and r > 0 we
denote

H̃r(x0, y0, t0) :=
{

(x, y, t) ∈ R3 | |x− x0| < r, |y − y0 + x0(t− t0)| < r3, −r2 < t− t0 < 0
}
.

Let Ω be an open subset of R3, (x, y, t) ∈ Ω and consider v(x, y, t) a positive weak solution in Ω
of the following equation

∂x(ã(x, y, t)∂xv) + b̃(x, y, t)∂xv + x∂yv + c̃(x, y, t)v − ∂tv = 0. (5.6)

36



Assume that ã, b̃ and c̃ are measurable bounded continuous functions such that infΩ ã(x, y, t) > 0.
Let (x0, y0, t0) ∈ Ω and ρ, r such that 0 < r/2 ≤ ρ < r ≤ 1 and H̃r(x0, y0, t0) ⊆ Ω. Then, there
exists a positive constant c depending on the L∞ norm of ã, b̃, c̃ and on p such that

sup
H̃ρ(x0,y0,t0)

vp ≤ c

(r − ρ)6

∫
H̃r(x0,y0,t0)

vp. (5.7)

for every u ∈ Lp(H̃r(x0, y0, t0)).

Proof of Proposition 5.2. We first note that L1u = 0 reads as follows

∂x(x2a(x, y, t)∂xu) + (b(x, y, t)− a(x, y, t))x∂xu+ c(x, y, t)u+ x∂yu− ∂tu = 0 (5.8)

so that it has the form (5.6). Even if coefficents of L1 are unbounded and infR+×R2 x2a = 0,
estimate (5.7) holds on compact cylinders contained in R+×R2. However, we need to show that
the constant c̄ in (5.5) does not depend on (x0, y0, t0) and r.

We first fix (x0, y0, t0) = (1, 0, 0), so that the cylinders Hr(1, 0, 0) and H̃r(1, 0, 0) coincide.
We modify the functions a(x, y, t), b(x, y, t) and c(x, y, t) as we have done in Section 2

ã(x, y, t) = ϕ2(x)a(x, y, t), b̃(x, y, t) = ϕ(x)(b(x, y, t)− a(x, y, t)), c̃(x, y, t) = ϕ(x)c(x, y, t)

where ϕ(x) is the function defined in (2.18). Then the functions ã, b̃ and c̃ are uniformly bounded,
inf ã is strictly positive and (5.7) implies (5.5) if (x0, y0, t0) = (1, 0, 0).

For a general (x0, y0, t0), we consider the function w(x, y, t) := u
(
(x0, y0, t0) ◦ (x, y, t)

)
and

we conclude the proof by the argument used in the proof of Proposition 2.8. �

We next introduce a result that, combined with Proposition 5.2, provides us with the asymp-
totic upper bound of the fundamental solution of L1. We first introduce a suitable cut-off
function. Let choose R > 1 and consider the following function

χR(x, y) = gR(x)hR(y), (x, y) ∈ R+ × R, (5.9)

where

- gR(x) = ϕ
(

log2(x)+1

log2(R)+1

)
;

- ϕ(s) is a continuous function such that ϕ(s) = 1 if s ∈ [0, 1/2] and ϕ(s) = 0 if s ∈ [1,+∞[;

- h(y) is a continuous function such that

• h(y) = 1 if y ∈ [−R,R];
• h(y) = 0 if y ∈]−∞,−R2] ∪ [R2,+∞[;
• h(y) is a C2 spline function with derivative bounded by 2

R2−R , if y ∈ [−R2;−R] ∪
[R,R2].

We first observe that gR(x) 6= 0 only if x ∈ [1/R,R] and

|x∂yχR(x, y)| ≤ x|gR(x)||∂yhR(y)| ≤ 2

R− 1
,

|x∂xχR(x, y)| ≤ x|hR(y)|‖ϕ′‖L∞(R)
2 log(x)

x(log2(R) + 1)
≤ ‖ϕ′‖L∞(R)

2 log(x)

(log2(R) + 1)
.
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Therefore

|XχR| ≤ C
logR

log2R+ 1
→ 0 as R→ +∞

|Y χR| ≤ |x∂yχR| ≤
2

R− 1
→ 0 as R→ +∞.

Now we are ready to state the following

Proposition 5.3. Let u ∈ L2
(
R+ × R2

)
be a weak solution of L1u = 0, and let Ψ be the

value function of the control problem (4.6). Then there exist two positive constants m,M1 only
depending on the L∞ norm of a, b, c, x∂xa, x∂xb, such that∫

R+×R
e
−Ψ(x1,y1,s;x,y,t1)

8M1
−mt1u2(x, y, t1)dx dy ≤

∫
R+×R

e
−Ψ(x1,y1,s;x,y,t0)

8M1
−mt0u2(x, y, t0)dx dy,

(5.10)
for every t0, t1 with t0 < t1, and (x1, y1, s) ∈ R+ × R×]t1,+∞[.

Proof. Fix (x1, y1, t1) ∈ R+×R2, and t0 < t1, and recall that, for any (x0, y0, t0) ∈ R3, in view
of (4.6) the function (x, y, t) 7→ Ψ(x0, y0, t0;x, y, t) is a classical solution of the Hamilton-Jacobi-
Bellman equation (see [6])

YΨ +
1

4
(XΨ)2 = 0.

We set v(x, y, t) := 1
16M1

Ψ(x0, y0, t0;x, y, t) where M1 is the L∞-norm of a. Then v satisfies

Y v + 4M1(Xv)2 = 0. (5.11)

We prove (5.10) by showing that

lim
R→+∞

∫
R+×R×[t0,t1]

d

dt
χ2
Re
−2v−mtu2 ≤ 0, (5.12)

where χR is the cut-off function introduced above and the constant m will be specified in the
sequel. Let u be a positive solution of L1 in the domain R+ × R× [t0, t1]. We note that∫

R+×R×[t0,t1]
x∂y
(
χ2
Re
−2v−mtu2

)
= 0

since the function χR(x, y) has compact support in R+ × R. Therefore we obtain∫
R+×R×[t0,t1]

d

dt
χ2
Re
−2v−mtu2 = −

∫
R+×R×[t0,t1]

Y
(
χ2
Re
−2v−mtu2

)
=

=

∫
R+×R×[t0,t1]

e−2v−mtu2
(
−Y
(
χ2
R

)
+ 2χ2

RY v −mχ2
R

)
− 2

∫
R+×R×[t0,t1]

χ2
Re
−2v−mtuY u.

(5.13)
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We first focus on the last term of (5.13). By using the fact that u is weak solution of L1u = 0
one gets

A := −2

∫
R+×R×[t0,t1]

χ2
Re
−2v−mtuY u = −2

∫
R+×R×[t0,t1]

aX
(
χ2
Re
−2v−mtu

)
Xu+

2

∫
R+×R×[t0,t1]

(
χ2
Re
−2v−mtu

)
(b− a)Xu+ 2

∫
R+×R×[t0,t1]

cχ2
Re
−2v−mtu2 =: A1 +A2 +A3.

(5.14)

Consider the first term in (5.14) and compute the derivatives

A1 = −2

∫
R+×R×[t0,t1]

aX
(
χ2
Re
−2v−mtu

)
Xu = −4

∫
R+×R×[t0,t1]

aχRe
−2v−mtuXuXχR+

4

∫
R+×R×[t0,t1]

aχ2
Re
−2v−mtuXuXv − 2

∫
R+×R×[t0,t1]

aχ2
Re
−2v−mt(Xu)2 =: B1 +B2 +B3.

(5.15)

By using Young inequality, it follows

B1 = −4

∫
R+×R×[t0,t1]

aχRe
−2v−mtuXuXχR ≤ 4

∫
R+×R×[t0,t1]

aχRe
−2v−mt |Xu| |uXχR| ≤∫

R+×R×[t0,t1]
aχ2

Re
−2v−mt(Xu)2 + 4

∫
R+×R×[t0,t1]

ae−2v−mtu2(XχR)2 =: C1 + C2, (5.16)

Merging the inequalities (5.15) and (5.16), since B3 = −2C1, we conclude

A1 = −
∫
R+×R×[t0,t1]

aχ2
Re
−2v−mt(Xu)2 +B2 + C2 ≤

4

∫
R+×R×[t0,t1]

aχ2
Re
−2v−mtu2(Xv)2 + C2 ≤ 4M1

∫
R+×R×[t0,t1]

χ2
Re
−2v−mtu2(Xv)2 + C2. (5.17)

Now consider the second term in (5.14). Start from integration by parts formula

A2 = 2

∫
R+×R×[t0,t1]

uX∗
(
(b− a)

(
χ2
Re
−2v−mtu

))
.

Reminding that X∗ = −X − 1, similarly to (5.15), (5.16) and (5.17) we have

A2 ≤ −
∫
R+×R×[t0,t1]

(b− a)χ2
Re
−2v−mtu2 + 4M1

∫
R+×R×[t0,t1]

χ2
Re
−2v−mtu2(Xv)2+

1

4M1

∫
R+×R×[t0,t1]

(b− a)2χ2
Re
−2v−mtu2 +

∫
R+×R×[t0,t1]

X
(
χ2
R

)
e−2v−mtu2+∫

R+×R×[t0,t1]
X(b− a)χ2

Re
−2v−mtu2 ≤ 4M1

∫
R+×R×[t0,t1]

χ2
Re
−2v−mtu2(Xv)2+∫

R+×R×[t0,t1]
X
(
χ2
R

)
e−2v−mtu2 +

3

4
m

∫
R+×R×[t0,t1]

χ2
Re
−2v−mtu2. (5.18)
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by setting

m := 4 max
{

1
4M1
‖(b− a)2‖L∞(R+×R×[t0,t1]), ‖X(b− a)‖L∞(R+×R×[t0,t1]),

2‖c‖L∞(R+×R×[t0,t1]), ‖b− a‖L∞(R+×R×[t0,t1])

}
. (5.19)

Going back to (5.14), combining (5.17), (5.18) and

A3 ≤
1

4
m

∫
R+×R×[t0,t1]

χ2
Re
−2v−mtu2,

we have

A ≤ 8M1

∫
R+×R×[t0,t1]

χ2
Re
−2v−mtu2(Xv)2 + 4

∫
R+×R×[t0,t1]

ae−2v−mtu2(XχR)2+∫
R+×R×[t0,t1]

X(χ2
R)e−2v−mtu2 +m

∫
R+×R×[t0,t1]

χ2
Re
−2v−mtu2. (5.20)

Merging (5.20) with (5.14) ad (5.13) we conclude that∫
R+×R×[t0,t1]

d

dt
χ2
Re
−2v−mtu2 ≤ 2

∫
R+×R×[t0,t1]

(
χ2
Re
−2v−mtu2

)[
Y v + 4M1(Xv)2

]
+∫

R+×R×[t0,t1]

(
e−2v−mtu2

)(
− Y

(
χ2
R

)
+ 4a(XχR)2 +X

(
χ2
R

))
.

The first integral is zero since v satisfies the Hamilton-Jacobi-Bellman equation (5.11), and (5.10)
simply follows by letting R→ +∞. �

The next Lemma is crucial to prove Theorem 5.1.

Lemma 5.4. Let ε be a fixed positive constants. Then there exists a constant cε > 0, only
depending on L1 and ε such that

u2
(
1, 0, t/2

)
≤ cε

∫
R+×R

e−
1

8M
Ψ
(

1,−ε, t
2

+ε,ξ,η,0
)
u2(ξ, η, 0)dξdη (5.21)

for every non-negative weak solution u of L1u = 0 in R+ × R×]T0, T1[.

Proof. Let ε > 0 be fixed and let r ∈]0, 1[ be such that r3 < ε. By Proposition 5.2, with p = 2,
we have

u2
(
1, 0, t/2

)
≤ sup

H−
r/2

(
1,0,t/2

)u2(ξ, η, τ) ≤ c

(r/2)6

∫
Hr
(

1,0,t/2
) u2(ξ, η, τ)dξdηdτ (5.22)

for every t ∈]T0, T1[. Multiply and divide the integrand of the above inequality by the quantity

e
1

8M1
Ψ
(

1,−ε, t
2

+ε;ξ,η,τ
)

+mτ
. (5.23)
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Note that, as r3 < ε, the function (ξ, η, τ) 7→ Ψ
(
1,−ε, t2 + ε; ξ, η, τ

)
is well defined, continuous

and bounded in the set Hr/2

(
1, 0, t/2

)
.

Therefore, we denote by Cε the maximum of the function in (5.23) in the set Hr/2

(
1, 0, t/2

)
,

which is uniform with respect to t ∈]T0, T1[. We then find

u2
(
1, 0, t/2

)
≤ c

(r/2)6
· Cε

∫
Hr
(

1,0,t/2
) e− 1

8M1
Ψ
(

1,−ε, t
2

+ε;ξ,η,τ
)
−mτ

u2(ξ, η, τ)dξdηdτ

≤ c

(r/2)6
· Cε

∫ t/2

t/2−r2

∫
R+×R

e
− 1

8M1
Ψ
(

1,−ε, t
2

+ε;ξ,η,τ
)
−mτ

u2(ξ, η, τ)dξdηdτ

(by Proposition 5.3, with t0 = 0 and t1 = τ)

≤ c

(r/2)6
· Cε

∫ t/2

t/2−r2

∫
R+×R

e
− 1

8M1
Ψ
(

1,−ε, t
2

+ε;ξ,η,0
)
u2(ξ, η, 0)dξdη

≤ c

(r/2)6
· Cε

∫
R+×R

e
− 1

8M1
Ψ
(

1,−ε, t
2

+ε;ξ,η,0
)
u2(ξ, η, 0)dξdη.

which gives (5.21) by setting cε := c
(r/2)6 · Cε. �

We finally introduce a last result we need to prove Proposition 5.1. The following Proposition
is a direct consequence of Proposition 5.2 and involves the fundamental solution Γ of L .

Proposition 5.5. Let Γ be a fundamental solution of L1 and fix (x, y, t), (x0, y0, t0) in R+×R2

with y < y0 and T0 ≤ t0 < t ≤ T1. Define T = T1 − T0. Then, there exist a positive constant CT
depending on the operator L1 and on T such that the following upper bounds hold for Γ

i) Γ(x, y, t;x0, y0, t0) ≤ CT
(t−t0)2 ;

ii)
∫
R+×R Γ2(x, y, t;x0, y0, t0)dx0dy0 ≤ CT

(t−t0)2 ;

Proof. We only prove i), since ii) is its direct consequence reminding that∫
R+×R

Γ(x, y, t;x0, y0, t0)dx0dy0 = 1.

We first fix 0 < t− t0 < 1 and, by using Proposition 5.2, we have

Γ(x, y, t;x0, y0, t0) ≤ sup
H√t−t0/2(x,y,t)

Γ(·, ·, ·;x0, y0, t0)

≤ C̄

(t− t0)3

∫
H√t−t0 (x,y,t)

Γ(ξ, η, τ ;x0, y0, t0)dξdηdτ

≤ C̄

(t− t0)3

∫ t

t−(t−t0)
dτ

∫
R+×R

Γ(ξ, η, τ ;x0, y0, t0)dξdη =
C̄

(t− t0)2
(5.24)
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since
∫
R+×R Γ(ξ, η, τ ;x0, y0, t0)dξdη is finite in view of (3.19). If t− t0 ≥ 1 we set ν = t−t0

T < 1,
and starting from the reproduction property we have

Γ(x, y, t;x0, y0, t0) =

∫
R+×R

Γ(x, y, t; ξ, η, t0 + ν)Γ(ξ, η, t0 + ν;x0, y0, t0)dξdη

≤ CT
(t− t0)2

∫
R+×R

Γ(x, y, t; ξ, η, t0 + ν)dξdη ≤ CT
(t− t0)2

by (5.24) where CT = C̄ T 2 and
∫
R+×R Γ(x, y, t; ξ, η, t0 + ν)dξdη = 1. �

We are now ready to prove the main proposition of this Section.

Proof of Proposition 5.1. Let ε > 0 be fixed and let Γ(x, y, t; 1, 0, 0) be the fundamental
solution of L1 and (x, y, t) ∈ R+×]−∞, 0[×]T0, T1[. We define

D1 =
{

(ξ, η) ∈ R+ × R− | Ψ
(
x, y − ε, t+ ε/2, ξ, η, t/2

)
≤ Ψ(ξ, η, t/2; 1, 0,−ε/2)

}
,

D2 =
{

(ξ, η) ∈ R+ × R− |Ψ(x, y − ε, t+ ε/2, ξ, η, t/2) > Ψ(ξ, η, t/2; 1, 0,−ε/2)
}
,

Starting from the reproduction property of Γ

Γ(x, y, t; 1, 0, 0) =

∫
R+×R−

Γ(x, t, y; ξ, η, t/2)Γ(ξ, η, t/2, 1, 0, 0)dξdη

=

∫
D1

Γ(x, t, y; ξ, η, t/2)Γ(ξ, η, t/2, 1, 0, 0)dξdη+

+

∫
D2

Γ(x, t, y; ξ, η, t/2)Γ(ξ, η, t/2, 1, 0, 0)dξdη

≤ CT
t2

(∫
D1

Γ2(ξ, η, t/2, 1, 0, 0)dξdη

)1
2

+

(∫
D2

Γ2(x, y, t; ξ, η, t/2)dξdη

)1
2


where T = T1 − T0 and the last inequality follows from Hölder inequality and (5.24).
We now introduce the sets

D̃1 =
{

(ξ, η) ∈ R+ × R− | Ψ
(
x, y − ε, t+ ε/2, 1, 0,−ε/2

)
≤ 2Ψ(ξ, η, t/2, 1, 0,−ε/2)

}
,

D̃2 =
{

(ξ, η) ∈ R+ × R− | Ψ(x, y − ε, t+ ε/2, 1, 0,−ε/2) ≤ 2Ψ(x, y − ε, t+ ε/2; ξ, η, t/2)
}
,

and we note that D1 ⊆ D̃1 and D2 ⊆ D̃2 as a consequence of the triangular inequality of the
value function:

Ψ(x0, y0, t0;x, y, t) ≤ Ψ(x0, y0, t0; ξ, η, τ) + Ψ(ξ, η, τ ;x, y, t)

for arbitrary points (x0, y0, t0), (ξ, η, τ), (x, y, t) belonging to R+ × R×]T0, T1[ with y > η > y0

and T0 ≤ t < τ < t0 ≤ T1. Hence

Γ(x, y, t; 1, 0, 0) ≤ CT
t2

(∫
D̃1

Γ2(ξ, η, t/2, 1, 0, 0)dξdη

)1
2

+

(∫
D̃2

Γ2(x, y, t; ξ, η, t/2)dξdη

)1
2


We now claim that:
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∫
D̃1

Γ2(ξ, η, t/2, 1, 0, 0)dξdη ≤ cεe
− 1

16M1
Ψ(x,y−ε,t+ε/2;1,0,−ε/2) (5.25)∫

D̃2

Γ2(x, y, t; ξ, η, t/2)dξdη ≤ cεe
− 1

16M1
Ψ(x,y−ε,t+ε/2;1,0,−ε/2) (5.26)

where cε is a positive constant depending on L and ε. We first prove (5.26) and we define the
functions

v(z, w, s) =

∫
D̃2

Γ(z, w, s; ξ, η, t/2)Γ(x, y, t; ξ, η, t/2)dξdη, u(z, w, s) = v((x, y, t/2) ◦ (z, w, s))

We further note that the functions u and v satisfy the following properties:

i) v(z, w, s) is a solution of L1v(z, w, s) = 0 in R+ × R× [t/2, T1[. Then u(z, w, s) is a solution
of L1z̄u(z, w, s) = 0 in R+ × R×]0, T1[ where z̄ = (x, y, t/2) and

L1z̄u(z, w, s) = z∂z
(
a(xz, y + xw, t/2 + s)z∂zu

)
+ z b(xz, y + xw, t/2 + s)∂zu+

+z∂wu+ c(xz, y + xw, t/2 + s)u− ∂tu. (5.27)

ii) the function v satisfies the initial condition v(z, w, t/2) = Γ(x, y, t; z, w, t/2)1
D̃2

(z, w);

iii) it holds u(1, 0, t/2) =
∫
D̃2

Γ2(x, y, t; ξ, η, t/2)dξdη.

where 1
D̃2

(z, w) denotes the characteristic function of the set D̃2. In virtue of Lemma 5.4 we
have

u2
(
1, 0, t/2

)
≤ cε

∫
R+×R

e
− 1

8M1
Ψ
(

1,−ε, t2 +ε/2,z,w,0
)
u2(z, w, 0)dzdw

By observing that Ψ
(
1,−ε, t2 + ε/2, z, w, 0

)
= Ψ

(
x, y − ε, t + ε/2;x, y, t/2) ◦ (z, w, 0)

)
, by the

change of variable (ξ, η, t/2) = (x, y, t/2) ◦ (z, w, 0) and by properties ii) and iii), we get(∫
D̃2

Γ2(x, y, t; ξ, η, t/2)dξdη

)2

= u2
(
1, 0, t/2

)
≤ cε

∫
D̃2

e
− 1

8M1
Ψ
(
x,y−ε,t+ε/2;ξ,η,t/2

)
Γ2(x, y, t; ξ, η, t/2)dξdη

We finally obtain (5.26) by recalling the definition of D̃2(∫
D̃2

Γ2(x, y, t; ξ, η, t/2)dξdη

)2

≤ cεe
− 1

16M1
Ψ
(
x,y−ε,t+ε/2,1,0,−ε/2

) ∫
D̃2

Γ2(x, y, t; ξ, η, t/2)dξdη

and the result immediately follows by dividing by
∫
D̃2

Γ2(x, y, t; ξ, η, t/2)dξdη and by recalling
that Ψ

(
x, y − ε, t+ ε/2, 1, 0,−ε/2

)
= Ψ

(
x, y − ε, t+ ε, 1, 0, 0)

The proof of inequality (5.25) is analogous to (5.26). Indeed, consider the function

v2(z, w, s) =

∫
D̃1

Γ(ξ, η, t/2; z, w, s)Γ(ξ, η, t/2; 1, 0, 0)dξdη,
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which is a non-negative solution to L ∗
1 v2 = 0 with final data v2(z, w, t/2) = Γ(z, w, t/2; 1, 0, 0)

if (z, w) ∈ D̃1 and v2(z, w, t/2) = 0 if (z, w) /∈ D̃1. Notice that the coefficients of L ∗
1 satisfy the

same assumptions (1.17) and (5.3) made on L1, then all the properties shown for the function
(x, y, t) 7→ Γ(x, y, t; ξ, η, τ) and used to prove (5.26), also hold for (x, y, t) 7→ Γ(ξ, η, τ ;x, y, t)
(which is the fundamental solution of L ∗

1 u = 0) and they can be used to prove (5.25). This
proves the claim. �

We are now ready to prove the main result of our article.

Proof of Theorem 1.3. Let Γ(x, y, t;x0, y0, t0) denote the fundamental solution of L in (1.2)
and (x, y, t), (x0, y0, t0) in R+ × R × [0, T ] with y < y0 and t > t0. If (x0, y0, t0) = (1, 0, 0), the
lower bound of Γ follows from Proposition 4.4, whereas the upper bound follows from Proposition
5.1. For a general choice of z0 = (x0, y0, t0) it suffices to note that the function

Γz0(x, y, t; 1, 0, 0) = x2
0 Γ((x0, y0, t0) ◦ (x, y, t);x0, y0, t0) (5.28)

is the fundamental solution of the operator Lz0 defined in (1.18), with singularity at (1, 0, 0).
As noticed in Remark 1.2, it satisfies assumptions (1.17) with the same constants λ used for L ,
then (4.23) and (5.4) applies to Γz0 . If one consider the lower estimates, we find

Γ((x0, y0, t0) ◦ (x, y, t);x0, y0, t0) ≥
c−ε,T
x2

0t
2

exp
(
−C−Ψ(x, y, t; 1,−εt, εt)

)
,

that can be written equivalently as follows

Γ((x, y, t;x0, y0, t0) ≥
c−ε,T

x2
0(t− t0)2

exp
(
−C−Ψ((x0, y0, t0)−1 ◦ (x, y, t); 1,−ε(t− t0), ε(t− t0))

)
.

The conclusion follows by applying the invariance property (4.5) of Ψ:

Ψ((x0, y0, t0)−1◦(x, y, t); 1,−ε(t− t0), ε(t− t0))= Ψ(x, y, t; (x0, y0, t0)◦(1,−ε(t− t0), ε(t− t0)))

= Ψ(x, y, t;x0, y0 − ε(t− t0)x0, t0 + ε(t− t0))

= Ψ(x, y + ε(t− t0)x0, t− ε(t− t0);x0, y0, t0).

The proof of the upper bound is analogous. �
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