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N -PLAYER GAMES AND MEAN-FIELD GAMES WITH
ABSORPTION

BY LUCIANO CAMPI AND MARKUS FISCHER1

London School of Economics and Political Science and University of Padua

We introduce a simple class of mean-field games with absorbing bound-
ary over a finite time horizon. In the corresponding N -player games, the evo-
lution of players’ states is described by a system of weakly interacting Itô
equations with absorption on first exit from a bounded open set. Once a player
exits, her/his contribution is removed from the empirical measure of the sys-
tem. Players thus interact through a renormalized empirical measure. In the
definition of solution to the mean-field game, the renormalization appears in
form of a conditional law. We justify our definition of solution in the usual
way, that is, by showing that a solution of the mean-field game induces ap-
proximate Nash equilibria for the N -player games with approximation error
tending to zero as N tends to infinity. This convergence is established pro-
vided the diffusion coefficient is nondegenerate. The degenerate case is more
delicate and gives rise to counter-examples.
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1. Introduction. Mean-field games (MFGs, henceforth) were introduced by
Lasry and Lions [32–34] and, independently, by Huang et al. [23], as limit mod-
els for symmetric nonzero-sum noncooperative N -player games with interaction
of mean-field-type as the number of players tends to infinity. The limit relation
is commonly understood in the sense that a solution of the MFG allows to con-
struct approximate Nash equilibria for the corresponding N -player games if N is
sufficiently large; see, for instance, Huang et al. [23], Kolokoltsov et al. [26], Car-
mona and Delarue [5] and Carmona and Lacker [7]. This approximation result is
useful from a practical point of view since the model of interest is commonly the
N -player game with N very large so that a direct computation of Nash equilibria
is not feasible.

The purpose of this paper is to study N -player games and related MFGs in the
presence of an absorbing set. Thus, a player is eliminated from the N -player game
as soon as her/his private state process leaves a given open set O ⊂ R

d , the set of
nonabsorbing states, which is the same for all players. We carry out our study for
a simple class of continuous-time models with Itô-type dynamics with mean-field
interaction over a bounded time horizon. More specifically, the vector of private
states XN = (XN

1 , . . . ,XN
N ) in the N -player game is assumed to evolve according

to

XN
i (t) = XN

i (0)

+
∫ t

0

(
ui

(
s,XN )+ b̄

(
t,XN

i (t),

∫
Rd

w(y)πN(s, dy)

))
ds

+ σWN
i (t), t ∈ [0, T ], i ∈ {1, . . . ,N},

(1.1)

where u = (u1, . . . , uN) is a vector of feedback strategies with full state informa-
tion (to be specified below), WN

1 , . . . ,WN
N are independent d-dimensional Wiener

processes defined on some filtered probability space, σ is some dispersion matrix,
which we assume to be constant for simplicity, and b̄, w are given deterministic
functions. Moreover, πN(t, ·) is the (random) empirical measure of the players’
states at time t that have not left O , that is,

πN(t, ·) .=

⎧⎪⎪⎨
⎪⎪⎩

1

N̄N(t)

N∑
j=1

1
[0,τ

XN
j )

(t) · δXN
j (t)(·) if N̄N(t) > 0,

δ0(·) if N̄N(t) = 0,

where N̄N(t)
.=∑N

j=1 1
[0,τ

XN
j )

(t) is the number of players still in the game at time

t and

τ
XN

j
.= inf

{
t ∈ [0, T ] : XN

j (t) /∈ O
}
,
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denotes the time of first exit of XN
j from O , with the convention inf∅ = ∞. By

definition, πN(t, ·) equals the Dirac measure in 0 ∈ R
d if all players have left O

by time t . The choice of δ0 in this case is arbitrary and has no impact on the game;
this will be clear from the definition of the cost functionals JN

i below. Heuristi-
cally, when some player exits the set O , he/she does not contribute anymore to
the empirical measure πN(t, ·), which is computed with respect to the “survivors”
only. Notice that the controls appear linearly in (1.1) only for the sake of simplic-
ity. Even though more general dependencies could be considered, we do not aim
at giving the minimal set of assumptions under which our results hold true.

Each player wants to minimize expected costs according to a given cost func-
tional over the random time horizon determined as the minimum between the
player’s time of first exit from O and the overall time horizon T . More precisely,
player i evaluates a strategy vector u = (u1, . . . , uN) according to

JN
i (u)

.= E
[∫ τN

i

0
f

(
s,XN

i (s),

∫
Rd

w(y)πN(s, dy), ui

(
s,XN ))ds

+ F
(
τN
i ,XN

i

(
τN
i

))]
,

where XN is the solution of equation (1.1) under u and τN
i

.= τXN
i ∧ T is the

(random) duration of the game for player i. Notice that the cost coefficients f , F

are the same for all players. As in the dynamics, we have mean-field interaction
in the costs through the renormalized empirical measures πN(t, ·). For simplicity,
we only consider finite-dimensional dependencies on the measure variable, namely
through integrals of the vector-valued function w. More details on the setting with
all the technical assumptions will be given in the next sections.

The presence of an absorbing set can be motivated by economic models for
credit risk and corporate finance. There, the players can be interpreted as interact-
ing firms striving to maximize some objective functional, for instance the expected
value of discounted future dividends, or as banks controlling their rate of borrow-
ing/lending to a central bank as in the systemic risk model proposed by Carmona
et al. [6]. Within both contexts, the absorbing boundary can be naturally seen as a
default barrier as in structural models for credit risk. In this paper, we concentrate
on the mathematical properties of this family of games, while we postpone their
possible applications to future research.

For our class of games, we focus on the construction of approximate Nash equi-
libria for the N -player games through solutions of the corresponding MFG. Our
main contributions are as follows:

• We introduce the limit model corresponding to the above N -player games as
N → ∞, namely the MFG with absorption. For a solution of the MFG, the
renormalized empirical measures πN(t, ·) are replaced by a flow of conditional
laws; see Definition 4.1.
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• Under a nondegeneracy condition on the dispersion matrix σ , we prove that any
regular feedback solution of the MFG induces a sequence of approximate Nash
equilibria for the N -player games with approximation error tending to zero as
N → ∞; see Theorem 5.1. Here, “regular” means that the optimal feedback
strategy is (almost surely) continuous with respect to the state variable.

• Under the same nondegeneracy condition on σ , we prove existence of a solution
in feedback form to the MFG with absorption; see Theorem 6.2. Moreover, un-
der some additional conditions, we show that the optimal feedback strategies are
Markovian and continuous in the state variable; see Proposition 6.1 and Corol-
lary 6.3. In that situation, we briefly sketch what would be the PDE approach to
mean-field games with absorption.

• In the degenerate case, that is, when σ may vanish, we provide a counter-
example where the solution of the limit MFG is not even nearly optimal (in the
sense of inducing approximate Nash equilibria) for the N -player games. This is
in contrast with what happens in the absence of an absorbing set.

The proof of Theorem 5.1 on approximate Nash equilibria is based on weak
convergence arguments, controlled martingale problems and a reformulation of
the original dynamics and costs using path-dependent coefficients; see, in particu-
lar, (3.2) and (5.4). This allows to work with solutions defined over the entire time
interval [0, T ]. The resulting description of the systems should be compared to the
set-up used in Carmona and Lacker [7]. There, questions of existence and unique-
ness of solutions to finite horizon MFGs with nondegenerate noise and functional
coefficients are studied through probabilistic methods, and approximate Nash equi-
libria are constructed from the MFG. Nonetheless, the results of Carmona and
Lacker [7] cannot be applied directly to our situation, due in part to different con-
tinuity assumptions. What is more, approximate Nash equilibria are constructed
there only for dynamics without mean-field interaction [7], Theorem 4.2; this as-
sumption implies an independence property not warranted in more general situa-
tions.

The use of martingale problems in proving convergence to the McKean–Vlasov
limit and propagation of chaos for weakly interacting systems has a long tradition;
see, for instance, Funaki [18], Oelschläger [36] or Méléard [35]. In those works,
the N -particle systems are usually assumed to be fully symmetric, and the dynam-
ics of all particles are determined by the same coefficients. Here, we have to study
the passage to the many player (particle) limit also in the presence of a deviat-
ing player, which destroys the symmetry of the prelimit systems. The absorbing
boundary introduces a discontinuity into the dynamics so that a single deviating
player might have a nonnegligible effect on the limit behavior of the N -player em-
pirical measures. This is the reason why we give a detailed proof of convergence
in Appendix A.

The proof of Theorem 6.2 on existence of a feedback solution for the limit MFG
is based on results on BSDEs with random terminal horizon as in Darling and
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Pardoux [12], Briand and Hu [4] and the use of the Brouwer–Schauder–Tychonov
fixed-point theorem applied to a suitable map in the same spirit as Carmona and
Lacker [7]. For the continuity of the optimal feedback strategy, we rely on the
classical PDE approach to optimal control and adapt to our setting the proof of a
regularity result due to Fleming and Rishel [17].

For the counter-example (given in Section 7), we consider systems with disper-
sion coefficient σ equal to zero; the only source of randomness comes from the
initial conditions. We construct, for a specific choice of the initial distribution, a
feedback solution of the MFG that is Lipschitz continuous in the state variable
and such that the induced strategy vectors are not asymptotically optimal for the
corresponding N -player games. The reason for this nonconvergence is a change
in the controllability of the individual player dynamics between limit and prelimit
systems in conjunction with the discontinuity of the costs introduced by the ab-
sorbing boundary. Also notice that the initial distribution we choose is singular
with respect to Lebesgue measure. The counter-example thus holds little surprise
from the point of view of optimal control theory. In the context of MFGs with-
out absorption, on the other hand, the connection between solutions of the limit
MFG and approximate Nash equilibria for the N -player games is known to be ro-
bust and persists even for systems with fully degenerate noise; see Theorem 2.11
in Lacker [30] for a general result in this direction. From this point of view, the
counter-example seems to be interesting.

Related literature. Mean-field models similar to ours have been studied before
in different contexts. In a first group of papers, such as Giesecke et al. [19, 20],
Spiliopoulos et al. [38], a point process model of correlated defaults timing in a
portfolio of firms has been introduced. More specifically, a firm defaults with some
intensity which follows a mean-reverting jump-diffusion process that is driven by
several terms, one of them being the default rate in the pool. This naturally induces
a mean-field among the default intensities: every time one firm defaults a jump
occurs in the default rate of the pool, and hence in the intensities of the survivors.
The effects of defaults fade away with time. A law of large number (LLN) for the
default rate as the number N of firms goes to infinity is proved in Giesecke et al.
[19], while other results on the loss from default are analyzed in the companion
papers (Spiliopoulos et al. [38], Giesecke et al. [20]). Similar results have been
obtained for the interacting particle models proposed by Cvitanić et al. [10] and by
Dai Pra et al. [11], where the effect of defaults on the survivors is permanent.

Apart from the fact that their setting is not controlled, the main difference be-
tween our model and theirs is that whenever, in our model, some diffusion is ab-
sorbed and the conditional empirical measure is updated accordingly, the diffu-
sions still in O are affected by it in a continuous way since the empirical measure
appears only in the drift coefficient. Moreover, while in the setting of Giesecke,
Spiliopoulos and co-authors the intensities can have a common noise, this is not
included in our model for the sake of simplicity.
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More recently, Hambly and Ledger [22], motivated by various applications from
large credit portfolios to neuroscience, have proposed a system of N uncontrolled
diffusions that are killed as soon as they go negative. Furthermore, their coeffi-
cients are functions of the current proportional loss, which is defined as the pro-
portion out of N of killed diffusion. They prove a LLN for the empirical measure
of the population using some energy estimates in combination with weak conver-
gence techniques.

Two more papers, which are related to ours, are those by Delarue et al. [13, 14].
Motivated by applications in neuroscience, these authors study the well-posedness
of an integrate-and-fire model and its approximation via particle systems. Mathe-
matically speaking, they look at a nonlinear scalar SDE with a jump component
responsible for resetting trajectories as soon as they hit a given threshold (occur-
rence of a “spike”) and a singular drift term of mean-field type (the “nonlinear”
interaction) depending on the average number of spikes before current time. When
the nonlinear interaction is too strong, any solution can have a blow-up in finite
time. In our model, we could have a similar cascade effect, which would corre-
spond to a situation when all players get absorbed before the finite horizon T .
Investigating such a phenomenon in our setting is interesting on its own but goes
beyond the scope of this paper.

In the applied literature, MFGs with absorption at zero have been recently con-
sidered in [8, 9] within the context of oligopolistic models with exhaustible re-
sources. A common feature that their model shares with ours is that they also keep
track of the fraction of active players remaining at time t , which appears in the ob-
jective functions (through the control) but not in the state variable. Moreover, they
look at some particular cases, which are relevant from an economic perspective,
and perform some asymptotic expansions corresponding to the case of “small com-
petition”. A rigorous study addressing existence and uniqueness issues in Chan and
Sircar’s model has been subsequently done by [21].

The last work we mention here is by Bensoussan et al. [2] and bears a different
relation to ours. There, the authors construct Nash equilibria using PDE methods
for a class of stochastic differential games with a varying number of players (the
dynamics are not of mean-field type). While the maximum number of players is
prescribed, players may leave the game (be pushed out or “die”), and new players
may join. In our case, we only allow players to leave (through absorption). A natu-
ral extension of our model would include a mechanism by which players enter the
game.

Structure of the paper. The rest of this paper is organized as follows. Section 2
introduces some terminology and notation and sets the main assumptions on the
dynamics as well as on the cost functionals. Section 3 describes the setting of N -
player games with absorption, while Section 4 introduces the corresponding MFG.
In Section 5, one of the main results, namely the construction of approximate Nash
equilibria for the N -player game from a solution of the limit problem, is stated and
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proved. Section 6 contains the results on the existence of (regular) feedback solu-
tions for the MFG, in particular those with Markov feedback controls, as well as
a sketch of the PDE approach to mean-field games with absorption. In Section 7,
we provide the aforementioned counter-example in the case of degenerate noise.
The technical results used in the paper are all gathered in the Appendix, includ-
ing the aforementioned propagation-of-chaos-type results in Appendix A and a
uniqueness result for McKean–Vlasov equations in Appendix B.

2. Preliminaries and assumptions. Let d ∈ N, which will be the dimension
of the space of private states, noise values, as well as control actions. The spaces
R

n with n ∈ N are equipped with the standard Euclidean norm, always indicated
by | · |; choose T > 0, the finite time horizon.

For S a Polish space, let P(S), denote the space of probability measures on
B(S), the Borel sets of S . For s ∈ S , let δs indicate the Dirac measure concentrated
in s. Equip P(S), with the topology of weak convergence of probability measures.
Then P(S), is again a Polish space.

Set X .= C([0, T ],Rd), which can be seen as the space of individual state trajec-
tories. As usual, equip X with the topology of uniform convergence, which turns
it into a Polish space. Let ‖ · ‖X denote the supremum norm on X . Denote by X̂

the coordinate process on X :

X̂(t, ϕ)
.= ϕ(t), t ∈ [0, T ], ϕ ∈ X .

Let (Gt ) be the canonical filtration in B(X ), that is,

Gt
.= σ
(
X̂(s) : 0 ≤ s ≤ t

)
, t ∈ [0, T ].

Given N ∈ N, we will use the usual identification of XN = ŚN X with the
space C([0, T ],RN ·d); XN , too, will be equipped with the topology of uniform
convergence. We call a function u defined on [0, T ] × XN with values in some
measurable space progressively measurable if u is measurable and, for every t ∈
[0, T ], all ϕ, ϕ̃ ∈ XN ,

u(t,ϕ) = u(t, ϕ̃) whenever ϕ(s) = ϕ̃(s) for all s ∈ [0, t].
Let � be a closed subset of Rd , the set of control actions or action space.
Let O ⊂ R

d be an open set, the set of nonabsorbing states. For Y a R
d -valued

process defined on some probability space (�,F,P) over the time interval [0, T ],
let

τY (ω)
.= inf

{
t ∈ [0, T ] : Y(t,ω) /∈ O

}
, ω ∈ �,

denote the random time of first exit of Y from O , with the convention inf∅ = ∞.
Clearly, if Y has continuous trajectories and is adapted to some filtration (Ft ) in
F , then τY is an (Ft )-stopping time. In this case, τY = inf{t ∈ [0, T ] : Y(t) ∈ ∂O},
where ∂O denotes the boundary of O .
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Let d0 ∈ N, and let w :Rd →R
d0 ,

b̄ : [0, T ] ×R
d ×R

d0 →R
d, σ ∈ R

d×d,

f : [0, T ] ×R
d ×R

d0 × � → [0,∞), F : [0, T ] ×R
d → [0,∞).

The function w will denote an integrand for the measure variable in the drift and
the running costs, respectively, b̄ a function of the drift integral, σ the dispersion
coefficient of the dynamics, while f , F quantify the running and terminal costs,
respectively. Notice that the dispersion coefficient σ is a constant matrix and that
the cost coefficients f , F are nonnegative functions. Let us make the following
assumptions:

(H1) Boundedness and measurability: w, b̄, f , F are Borel measurable func-
tions uniformly bounded by some constant K > 0.

(H2) Continuity: w, f , F are continuous, and b̄(t, ·, ·) is continuous, uniformly
in t ∈ [0, T ].

(H3) Lipschitz continuity of b̄: there exists L̄ > 0 such that for all x, x̃ ∈ R
d ,

y, ỹ ∈ R
d0 ,

sup
t∈[0,T ]

∣∣b̄(t, x, y) − b̄(t, x̃, ỹ)
∣∣≤ L̄

(|x − x̃| + |y − ỹ|).
(H4) Action space: � ⊂R

d is compact and convex (and nonempty).
(H5) State space: O ⊂ R

d is nonempty, open and bounded such that ∂O is a
C2-manifold.

The results of Sections 5 and 6 will be established under the following additional
assumption:

(ND) Nondegeneracy: σ is a matrix of full rank.

3. N -player games. Let N ∈ N be the number of players. Denote by XN
i (t)

the private state of player i at time t ∈ [0, T ]. The evolution of the players’ states
depends on the strategies they choose as well as the initial distribution of states,
which we indicate by νN [thus, νN ∈ P(RN×d)]. We assume that supp(νN) ⊂
ŚN

O and that νN is symmetric in the sense that

νN ◦ s−1 = νN

for all maps s : (Rd)N → (Rd)N of the form (x1, . . . , xN) 
→ (xp(1), . . . , xp(N))

for some permutation p of (1, . . . ,N).
Here, we consider players using feedback strategies with full state information

(up to the current time). Thus, let UN denote the set of all progressively measurable
functions u : [0, T ] × XN → �. Elements of UN represent individual strategies.
A vector (u1, . . . , uN) of individual strategies is called a strategy vector or strategy
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profile. Given a strategy vector u = (u1, . . . , uN) ∈ ŚN UN , consider the system
of equations

XN
i (t) = XN

i (0)

+
∫ t

0

(
ui

(
s,XN )+ b̄

(
s,XN

i (s),

∫
Rd

w(y)πN(s, dy)

))
ds

+ σWN
i (t), t ∈ [0, T ], i ∈ {1, . . . ,N},

(3.1)

where XN = (XN
1 , . . . ,XN

N ), WN
1 , . . . ,WN

N are independent d-dimensional Wiener
processes defined on some filtered probability space (�,F, (Ft ),P) and πN(t, ·)
is the empirical measure of the players’ states at time t that have not left O , that
is,

πN
ω (t, ·) .=

⎧⎪⎪⎨
⎪⎪⎩

1

N̄N
ω (t)

N∑
j=1

1
[0,τ

XN
j (ω))

(t) · δXN
j (t,ω)(·) if N̄N

ω (t) > 0,

δ0(·) if N̄N
ω (t) = 0,

where

N̄N
ω (t)

.=
N∑

j=1

1
[0,τ

XN
j (ω))

(t), ω ∈ �.

It will be convenient to rewrite (3.1) as a system of particles interacting through

their unconditional empirical measure on the path space. To this end, set τ
.= τ X̂ ,

that is,

τ(ϕ)
.= inf

{
t ∈ [0, T ] : ϕ(t) /∈ O

}
, ϕ ∈ X ,

and define b : [0, T ] ×X ×P(X ) × � →R
d by

b(t, ϕ, θ, γ )

.=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γ + b̄

(
t, ϕ(t),

∫
w(ϕ̃(t))1[0,τ (ϕ̃))(t)θ(dϕ̃)∫

1[0,τ (ϕ̃))(t)θ(dϕ̃)

)
if θ(τ > t) > 0,

γ + b̄
(
t, ϕ(t),w(0)

)
if θ(τ > t) = 0.

(3.2)

Then b is measurable and progressive in the sense that, for all t ∈ [0, T ], all γ ∈ �,

b(t, ϕ, θ, γ ) = b(t, ϕ̃, θ̃ , γ ) whenever ϕ|[0,t] = ϕ̃|[0,t] and θ|Gt = θ̃|Gt .

The solutions of (3.1) are thus equivalently described by

XN
i (t) = XN

i (0) +
∫ t

0
b
(
s,XN

i ,μN,ui

(
s,XN ))ds + σWN

i (t),

t ∈ [0, T ], i ∈ {1, . . . ,N},
(3.3)
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where WN
1 , . . . ,WN

N are independent d-dimensional Wiener processes defined on
some filtered probability space (�,F, (Ft ),P), and μN is the empirical measure
of the players’ state trajectories, that is,

μN
ω (B)

.= 1

N

N∑
j=1

δXN
j (·,ω)(B), B ∈ B(X ),ω ∈ �.

A solution of equation (3.1) [equivalently, of equation (3.3)] under u ∈ ŚN UN

with initial distribution νN is therefore a triple ((�,F, (Ft ),P),WN,XN) where
(�,F, (Ft ),P) is a filtered probability space satisfying the usual hypotheses,
WN = (WN

1 , . . . ,WN
N ) a vector of independent d-dimensional (Ft )-Wiener pro-

cesses, and XN = (XN
1 , . . . ,XN

N ) a vector of continuous R
d -valued (Ft )-adapted

processes such that equation (3.1) [resp., equation (3.3)] holds P-almost surely
with strategy vector u and P ◦ (XN(0))−1 = νN .

Let UN
fb be the set of all strategy vectors u ∈ ŚN UN such that equation (3.1)

under u with initial distribution νN possesses a solution that is unique in law. If
the nondegeneracy assumption (ND) holds in addition to (H1)–(H5), then equation
(3.1) is well posed given any strategy vector.

PROPOSITION 3.1. Grant (ND) in addition to (H1)–(H5). Then UN
fb =

ŚN UN .

PROOF. Let u ∈ ŚN UN . The system of equations (3.3) can be rewritten as
one stochastic differential equation with state space R

N×d driven by an N × d-
dimensional standard Wiener process with drift coefficient bu : [0, T ] × XN →
R

N×d given by

bu(t,ϕ)

.=
(
b

(
t, ϕ1,

1

N

N∑
j=1

δϕj
, u1(s,ϕ)

)
, . . . , b

(
t, ϕN,

1

N

N∑
j=1

δϕj
, uN(s,ϕ)

))T

and nondegenerate constant diffusion coefficient. Notice that bu is bounded and
progressive with respect to the natural filtration in B(XN). Existence of a weak
solution and uniqueness in law are now a consequence of Girsanov’s theorem and
the Stroock–Varadhan martingale problem; cf. V.27 in Rogers and Williams [37],
pages 177–178. �

The ith player evaluates a strategy vector u = (u1, . . . , uN) ∈ UN
fb according to

the cost functional

JN
i (u)

.= E
[∫ τN

i

0
f

(
s,XN

i (s),

∫
Rd

w(y)πN(s, dy), ui

(
s,XN ))ds

+ F
(
τN
i ,XN

i

(
τN
i

))]
,
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where XN = (XN
1 , . . . ,XN

N ) and ((�,F, (Ft ),P),WN,XN) is a solution of equa-
tion (3.1) under u with initial distribution νN ,

τN
i (ω)

.= τXN
i (ω) ∧ T , ω ∈ �,

the random time horizon for player i ∈ {1, . . . ,N}, and πN(·) the conditional em-
pirical measure process induced by (XN

1 , . . . ,XN
N ). The cost functional is well

defined, and it is finite thanks to assumption (H1).
Given a strategy vector u = (u1, . . . , uN) and an individual strategy v ∈ UN ,

let [u−i , v] .= (u1, . . . , ui−1, v, ui+1, . . . , uN) indicate the strategy vector that is
obtained from u by replacing ui , the strategy of player i, with v.

DEFINITION 3.1. Let ε ≥ 0. A strategy vector u = (u1, . . . , uN) ∈ UN
fb is

called an ε-Nash equilibrium for the N -player game if for every i ∈ {1, . . . ,N},
every v ∈ UN such that [u−i , v] ∈ UN

fb ,

(3.4) JN
i (u) ≤ JN

i

([
u−i , v

])+ ε.

If u is an ε-Nash equilibrium with ε = 0, then u is called a Nash equilibrium.

According to Definition 3.1, we consider the Nash equilibrium property with
respect to feedback strategies with full state information (i.e., the states of the
vector of individual processes up to current time).

4. Mean-field games. Let M denote the space of measurable flows of mea-
sures, that is,

M .= {p : [0, T ] → P(Rd) : p is Borel measurable
}
.

Given a flow of measures p ∈ M and a feedback strategy u ∈ U1, consider the
equation

X(t) =X(0) +
∫ t

0

(
u(s,X) + b̄

(
s,X(s),

∫
Rd

w(y)p(s, dy)

))
ds

+ σW(t), t ∈ [0, T ],
(4.1)

where W is a d-dimensional Wiener process defined on some filtered probability
space (�,F, (Ft ),P).

Let Ufb denote the set of all feedback strategies u ∈ U1 such that equation (4.1)
possesses a solution that is unique in law given any initial distribution with support
contained in O .

PROPOSITION 4.1. Grant (ND) in addition to (H1)–(H5). Then Ufb = U1.
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PROOF. Existence and uniqueness in law are again a consequence of Gir-
sanov’s theorem; cf. Proposition 3.1. �

The costs associated with a strategy u ∈ Ufb, a flow of measures p, and an initial
distribution ν ∈ P(Rd) with support in O are given by

J (ν,u;p) .= E
[∫ τ

0
f

(
s,X(s),

∫
Rd

w(y)p(s, dy), u(s,X)

)
ds

+ F
(
τ,X(τ)

)]
,

where ((�,F, (Ft ),P),W,X) is a solution of (4.1) under u with initial distribu-
tion ν, and τ

.= τX ∧ T the random time horizon.
We will measure the minimal costs with respect to a class of stochas-

tic open-loop strategies. To this end, let A denote the set of all quadruples
((�,F, (Ft ),P), ξ, α,W) such that (�,F, (Ft ),P) is a filtered probability space
satisfying the usual hypotheses, ξ an F0-measurable random variable with val-
ues in O , α a �-valued (Ft )-progressively measurable process, and W a d-
dimensional (Ft )-Wiener process. Any strategy u ∈ Ufb, together with an initial
distribution, induces an element of A.

Given ((�,F, (Ft ),P), ξ, α,W) ∈ A and a flow of probability measures p ∈
M, consider the stochastic integral equation

X(t) = ξ +
∫ t

0

(
α(s) + b̄

(
s,X(s),

∫
Rd

w(y)p(s, dy)

))
ds

+ σW(t), t ∈ [0, T ].
(4.2)

Thanks to (H3), X is determined through equation (4.2) with P-probability one; in
particular, X is defined on the given stochastic basis. The minimal costs associated
with a flow of measures p and an initial distribution ν ∈ P(Rd) with support in O

are now given by

V (ν;p) .= inf
((�,F,(Ft ),P),ξ,α,W)∈A:P◦ξ−1=ν

E
[∫ τ

0
f

(
s,X(s),

∫
Rd

w(y)p(s, dy),α(s)

)
ds + F

(
τ,X(τ)

)]
,

where X is the process determined by ((�,F, (Ft ),P), ξ, α,W) via equation
(4.2), and τ

.= τX ∧ T the random time horizon.

REMARK 4.1. Since any admissible feedback strategy induces a stochastic
open-loop strategy, we always have

inf
u∈Ufb

J (ν,u;p) ≥ V (ν;p).
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If the nondegeneracy assumption (ND) holds in addition to (H1)–(H5), if b̄ is con-
tinuous also in the time variable, and if the flow of measures p is such that the
mapping t 
→ ∫

w(y)p(t, dy) is continuous, then

inf
u∈Ufb

J (ν,u;p) = V (ν;p).
This follows, for instance, from the results of El Karoui et al. [15]; see, in par-
ticular, Proposition 2.6 and Remark 2.6(b) as well as Theorem 6.7 and Section 7
therein. Alternatively, one may use time discretization and discrete-time dynamic
programming in analogy to Lemma 4.3 in Fischer [16].

The notion of solution we consider for the mean-field game is the following.

DEFINITION 4.1. A feedback solution of the mean-field game is a triple
(ν, u,p) such that:

(i) ν ∈ P(Rd) with supp(ν) ⊂ O , u ∈ Ufb, and p ∈M;
(ii) optimality property: strategy u is optimal for p and initial distribution ν,

that is,

J (ν,u;p) = V (ν;p);
(iii) conditional mean-field property: if ((�,F, (Ft ),P),W,X) is a solution

of equation (4.1) with flow of measures p, strategy u and initial distribution ν, then
p(t) = P(X(t) ∈ ·|τX > t) for every t ∈ [0, T ] such that P(τX > t) > 0.

5. Approximate Nash equilibria from the mean-field game. Throughout
this section, we assume that the nondegeneracy condition (ND) holds. If we have a
feedback solution of the mean-field game that satisfies a mild regularity condition,
then we can construct a sequence of approximate Nash equilibria for the corre-
sponding N -player game. This approximation result is the content of Theorem 5.1
below.

In order to state the regularity condition, we set, for ν ∈ P(Rd) with support in
O ,

(5.1) �ν
.= Law

((
ξ + σW(t)

)
t∈[0,T ]

)
,

where W is a d-dimensional Wiener process and ξ an independent Rd -valued ran-
dom variable with distribution ν. Clearly, �ν is well defined as an element of
P(X ).

The proof of Theorem 5.1 below relies on the convergence, uniqueness and reg-
ularity results given in the Appendix. The following subsets of probability mea-
sures will play an important role as they characterize the possible distributions of
the limit processes. For c ≥ 0, let Qν,c be the set of all laws θ ∈ P(X ) such that
θ = P ◦ X−1 where

(5.2) X(t)
.= ξ +

∫ t

0
v(s) ds + σW(t), t ∈ [0, T ],
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W is an R
d -valued (Ft )-Wiener process defined on some filtered probability space

(�,F, (Ft ),P), ξ is an R
d -valued F0-measurable random variable with distribu-

tion P ◦ ξ−1 = ν and v is an R
d -valued (Ft )-progressively measurable bounded

process with ‖v‖∞ ≤ c. Clearly, Qν,0 = {�ν}. Also note that Qν,c is compact and
that any measure θ ∈ Qν,c is equivalent to �ν ; see Lemmata C.1 and C.2, respec-
tively, in the Appendix.

We recall that a sequence of symmetric probability measures (νN)N∈N, with
νN ∈ P(RN ·d) for all N , is called ν-chaotic for some ν ∈ P(Rd) if, for each
k ∈ N and for any choice of bounded and continuous functions ψi : Rd → R,
i ∈ {1, . . . , k}, we have

lim
N→∞

∫
RN ·d

k∏
i=1

ψi(xi) dνN(x1, . . . , xN) =
k∏

i=1

∫
Rd

ψi(xi)ν(dxi).

THEOREM 5.1. Grant (ND) in addition to (H1)–(H5). Suppose the sequence
of initial distributions (νN)N∈N is ν-chaotic for some ν ∈ P(Rd) with support
in O . If (ν, u,p) is a feedback solution of the mean-field game such that, for
Lebesgue-almost every t ∈ [0, T ],

�ν

({
ϕ ∈ X : u(t, ·) is discontinuous at ϕ

})= 0,

then

uN
i (t,ϕ)

.= u(t, ϕi), t ∈ [0, T ],ϕ = (ϕ1, . . . , ϕN) ∈ XN, i ∈ {1, . . . ,N},
defines a strategy vector uN = (uN

1 , . . . , uN
N) ∈ UN

fb . Moreover, for every ε > 0,
there exists N0 = N0(ε) ∈ N such that uN is an ε-Nash equilibrium for the N -
player game whenever N ≥ N0.

PROOF. Let (ν, u,p) be a feedback solution of the mean-field game accord-
ing to Definition 4.1; such a solution exists by hypothesis. For N ∈ N, con-
sider the strategy uN = (uN

1 , . . . , uN
N) as in the statement. By Proposition 3.1,

UN
fb = ŚN UN ; in particular, uN is a feedback strategy vector in UN

fb .
Let ε > 0. By symmetry, it is enough to verify the ε-Nash property for player

one only. Thus, we have to show that there exists N0 = N0(ε) ∈ N such that for all
N ≥ N0,

(5.3) JN
1
(
uN )≤ inf

v∈UN

JN
1
([

uN,−1, v
])+ ε.

Step 1. We rewrite the system dynamics and costs in such way that we can apply
the convergence, uniqueness and regularity results of the Appendix. In accordance
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with (3.2), the definition of b from Section 3, set, for (t, ϕ, θ) ∈ [0, T ]×X ×P(X )

b̂(t, ϕ, θ)
.= b
(
t, ϕ, θ, u(t, ϕ)

)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u(t, ϕ) + b̄

(
t, ϕ(t),

∫
w(ϕ̃(t))1[0,τ (ϕ̃))(t)θ(dϕ̃)∫

1[0,τ (ϕ̃))(t)θ(dϕ̃)

)
if θ(τ > t) > 0,

u(t, ϕ) + b̄
(
t, ϕ(t),w(0)

)
if θ(τ > t) = 0,

(5.4)

where τ(ϕ)
.= inf{t ≥ 0 : ϕ(t) /∈ O}. Then, thanks to hypotheses (H1) and (H4), b̂

is Borel measurable, progressive and bounded. Thus, the measurability and bound-
edness assumptions (M) and (B) of the Appendix hold for b̂. Moreover, assumption
(C) and (L) of the Appendix, the conditions of almost continuity and of partial Lip-
schitz continuity, respectively, are satisfied for this choice of b̂; see Section D in
the Appendix.

Let ((�,F, (Ft ),P),W,X) be a solution of equations (4.1) with flow of mea-
sures p, feedback strategy u, and initial distribution ν; such a solution exists and
determines a unique measure

θ∗ .= P ◦ X−1.

Notice that θ∗ ∈ Qν,K whenever K ≥ ‖b̂‖∞. In terms of θ∗ and the canonical
process X̂, we can rewrite the costs associated with strategy u, flow of measures
p, and initial distribution ν as

J (ν,u;p) = Eθ∗

[∫ τ

0
f

(
s, X̂(s),

∫
Rd

w(y)p(s, dy), u(s, X̂)

)
ds

+ F
(
τ, X̂(τ )

)]
,

where τ
.= τ X̂ ∧ T . Define f̂ : [0, T ] ×X ×P(X ) →R by

f̂ (t, ϕ, θ)
.=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f

(
t, ϕ(t),

∫
w(ϕ̃(t))1[0,τ (ϕ̃))(t)θ(dϕ̃)∫

1[0,τ (ϕ̃))(t)θ(dϕ̃)
, u(t, ϕ)

)
if θ(τ > t) > 0,

f
(
t, ϕ(t),w(0), u(t, ϕ)

)
if θ(τ > t) = 0,

and a function Ĝ : X ×P(X ) →R by

(5.5) Ĝ(ϕ, θ)
.=
∫ τ(ϕ)∧T

0
f̂ (s, ϕ, θ) ds + F

(
τ(ϕ) ∧ T ,ϕ

(
τ(ϕ) ∧ T

))
.

Then

J (ν,u;p) = Eθ∗
[
Ĝ(X̂, θ∗)

]
.
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The function Ĝ is bounded thanks to hypothesis (H1). Moreover, since θ∗ ∈ Qν,K

for K ≥ ‖b̂‖∞ and thanks to (H2),

�ν

(
ϕ ∈ X : ∃(ϕn, θn) ⊂ X ×P(X ) such that Ĝ(ϕn, θn) �→ Ĝ(ϕ, θ∗)
while (ϕn, θn) → (ϕ, θ∗)

)= 0.
(5.6)

To be more precise, one checks that f̂ satisfies condition (C) as does b̂; see Sec-
tion D of the Appendix. Equation (5.6) is then a consequence of the dominated con-
vergence theorem, the continuity of F and Part (b) of Lemma C.3. Equation (5.6)
says that Ĝ is �ν ⊗ δθ∗-almost surely continuous. By Lemma C.2, any θ ∈ Qν,c,
c ≥ 0, is equivalent to �ν . It follows that Ĝ is θ ⊗ δθ∗-almost surely continuous
given any θ ∈ Qν,c, any c ≥ 0.

Recall that (ν, u,p) is a feedback solution of the mean-field game. Thanks to
the conditional mean-field property in Definition 4.1 and the construction of b̂

according to (5.4), we have an alternative characterization of θ∗, namely as a
McKean–Vlasov solution of equation (A.3); see Definition A.1 in Section A of
the Appendix. By Proposition B.1 in Section B of the Appendix and since b̂ satis-
fies assumption (L) there, we actually have that θ∗ is the unique McKean–Vlasov
solution of equation (A.3) with initial distribution ν.

Step 2. For N ∈ N, let ((�N,FN, (FN
t ),PN),WN,XN) be a solution of equa-

tion (3.3) under strategy vector uN with initial distribution νN . Let μN denote the
associated empirical measure on the path space X . We are going to show that

lim
N→∞JN

1
(
uN )= J (ν,u;p).

To this end, for N ∈ N, set

b̃N (t,ϕ, θ)
.= b̂(t, ϕ1, θ), (t,ϕ, θ) ∈ [0, T ] ×XN ×P(X ),

where b̂ is given by (5.4). From Step 1, we know that b̂ satisfies the continuity as-
sumptions (C) and (L) of the Appendix as well as the measurability and bounded-
ness assumptions (M) and (B), respectively. Assumptions (M) and (B) also apply to
the coefficients b̃N . Assumptions (ND) and (I) of the Appendix (nondegeneracy of
the diffusion matrix and chaoticity of the initial distributions) hold by hypothesis.
Moreover, we have that ((�N,FN, (FN

t ),PN),WN,XN) is a solution of equa-
tions (A.1) with initial distribution νN . We can therefore apply Lemmata A.1 and
A.2 to the sequence of empirical measures (μN)N∈N; in combination with Propo-
sition B.1, this yields

PN ◦ (μN )−1 N→∞−→ δθ∗ in P
(
P(X )

)
,

where θ∗ is the measure identified in Step 1 as the unique McKean–Vlasov solution
of equation (A.3) with initial distribution ν.
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Symmetry of the coefficients, chaoticity of the initial distributions, and the
Tanaka–Sznitman theorem (Proposition 2.2 in [40]) now imply that

(5.7) PN ◦ (XN
1 ,μN )−1 N→∞−→ θ∗ ⊗ δθ∗ in P

(
X ×P(X )

)
.

Recalling (5.5) and since uN
1 (t,ϕ) = u(t, ϕ1), we can rewrite the costs associ-

ated with uN as

JN
1
(
uN )= EPN

[
Ĝ
(
XN

1 ,μN )].
By Step 1, we know that Ĝ is bounded and, since θ∗ ∈ Qν,K for K ≥ ‖b̂‖∞,
also that Ĝ is θ∗ ⊗ δθ∗-almost surely continuous. By the mapping theorem (Theo-
rem 5.1 in [3], page 30), convergence according to (5.7) therefore implies that

JN
1
(
uN )= EPN

[
Ĝ
(
XN

1 ,μN )] N→∞−→ Eθ∗
[
Ĝ(X̂, θ∗)

]= J (ν,u;p).
Step 3. For N ∈N \ {1}, choose vN

1 ∈ UN such that

JN
1
([

uN,−1, vN
1
])≤ inf

v∈UN

JN
1
([

uN,−1, v
])+ ε/2.

Let ((�̃N, F̃N, (F̃N
t ), P̃N), W̃

N
, X̃

N
) be a solution of equation (3.3) under the

strategy vector [uN,−1, vN
1 ] with initial distribution νN . Let μ̃N denote the associ-

ated empirical measure on path space. We are going to show that

lim inf
N→∞ JN

1
([

uN,−1, vN
1
])≥ V (ν;p).

To this end, redefine b̃N , for N ∈ N \ {1}, by

b̃N (t,ϕ, θ)
.= b
(
t, ϕ1, θ, vN

1 (t,ϕ)
)
, (t,ϕ, θ) ∈ [0, T ] ×XN ×P(X ).

Assumptions (M), (B), (ND) and (I) of the Appendix continue to hold. With the

new definition of the coefficient b̃N , ((�̃N , F̃N, (F̃N
t ), P̃N), W̃

N
, X̃

N
) is a solu-

tion of equation (A.1) with initial distribution νN . As in Step 2, we can apply Lem-
mata A.1 and A.2 in combination with Proposition B.1, but now to the sequence
of empirical measures (μ̃N)N∈N. This yields

(5.8) P̃N ◦ (μ̃N )−1 N→∞−→ δθ∗ in P
(
P(X )

)
,

where θ∗ is still the unique McKean–Vlasov solution of equation (A.3) with initial
distribution ν found in Steps 1 and 2.

Now, interpret the feedback controls of the first player as stochastic open-loop
relaxed controls. To this end, let R .= R� be the set of �-valued deterministic
relaxed controls over [0, T ]; see Appendix E. For N ∈ N, let ρ̃N

1 be the stochastic
relaxed control induced by the feedback strategy vN

1 , that is, ρ̃N
1 is the R-valued

(F̃N
t )-adapted random variable determined by

ρ̃N
1,ω(B × I )

.=
∫
I
δ
vN

1 (t,X̃N
1 (·,ω))

(B)dt, B ∈ B(�), I ∈ B
([0, T ]),ω ∈ �̃N .
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Let Arel denote the set of all quadruples ((�,F, (Ft ),P), ξ, ρ,W) such that
(�,F, (Ft ),P) is a filtered probability space satisfying the usual hypotheses, ξ an
F0-measurable random variable with values in O , ρ a R-valued (Ft )-adapted ran-
dom variable and W a d-dimensional (Ft )-Wiener process. Using the convergence
of (μ̃N) according to (5.8) and weak convergence arguments analogous to those
of Section A in the Appendix, one verifies that the sequence

(5.9)
(
P̃N ◦ (X̃N

1 , ρ̃N
1 , W̃N

1 , μ̃N )−1)
N∈N is tight in P

(
X ×R×X ×P(X )

)
and that its limit points are concentrated on measures P ◦ (X,ρ,W)−1 ⊗ δθ∗
where ((�,F, (Ft ),P), ξ, ρ,W) ∈ Arel for some F0-measurable R

d -valued ran-
dom variable ξ with P ◦ ξ−1 = ν, and X is a continuous (Ft )-adapted process
satisfying

X(t) = ξ +
∫
�×[0,t]

γρ(dγ, ds) +
∫ t

0
b̄

(
s,X(s),

∫
Rd

w(y)p(s, dy)

)
ds

+ σW(t), t ∈ [0, T ],
(5.10)

with flow of measures p given by

p(t)
.= θ∗

(
X̂(t) ∈ ·|τ X̂ > t

)
, t ∈ [0, T ].

Notice that X is uniquely determined (with P-probability one) by equation (5.10).
The stochastic relaxed control in (5.10) actually corresponds to an ordinary
stochastic open-loop control, namely to the �-valued process

(5.11) α(t,ω)
.=
∫
�

γ ρ̇s,ω(dγ ), (t,ω) ∈ [0, T ] × �.

The process X is therefore the unique solution of equation (4.2) corresponding to
((�,F, (Ft ),P), ξ, α,W) ∈ A and the flow of measures p induced by θ∗.

In analogy with Step 1, define f̄ : [0, T ] ×X ×P(X ) × � →R by

f̄ (t, ϕ, θ, γ )
.=
⎧⎪⎨
⎪⎩

f

(
t, ϕ(t),

∫
w(ϕ̃(t))1[0,τ (ϕ̃))(t)θ(dϕ̃)∫

1[0,τ (ϕ̃))(t)θ(dϕ̃)
, γ

)
if θ(τ > t) > 0,

f
(
t, ϕ(t),w(0), u(t, ϕ)

)
if θ(τ > t) = 0,

and a function Ḡ : X ×P(X ) ×R →R by

Ḡ(ϕ, θ, r)
.=
∫
�×[0,T ]

1[0,τ (ϕ)∧T )(s) · f̄ (s, ϕ, θ, γ )r(dγ, ds)

+ F
(
τ(ϕ) ∧ T ,ϕ

(
τ(ϕ) ∧ T

))
.

(5.12)

Then

JN
1
([

uN,−1, vN
1
])= EP̃N

[
Ḡ
(
X̃N

1 , μ̃N , ρ̃N
1
)]

.
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The function Ḡ is bounded thanks to hypothesis (H1). By (H2) and arguments
analogous to those of Step 1, one checks that

�ν

(
ϕ ∈ X : ∃r ∈ R, (ϕn, θn, rn) ⊂ X ×P(X ) ×R such that

Ĝ(ϕn, θn, rn) �→ Ĝ(ϕ, θ∗, r) while (ϕn, θn, rn) → (ϕ, θ∗, r)
)= 0.

(5.13)

By Lemma C.2, any θ ∈ Qν,c, c ≥ 0, is equivalent to �ν . In view of (5.13), it
follows that Ḡ is Q-almost surely continuous given any Q ∈ P(X × P(X ) × R)

such that Q ◦ π−1
X×P(X ) = θ ⊗ δθ∗ for some θ ∈ Qν,c, some c ≥ 0, where πX×P(X )

denotes the projection of X ×P(X ) ×R onto its first two components. Using the
mapping theorem of weak convergence, we conclude that

lim inf
N→∞ JN

1
([

uN,−1, vN
1
])≥ inf

((�,F,(Ft ),P),ξ,ρ,W)∈Arel:P◦ξ−1=ν
E
[
Ḡ(X, θ∗, ρ)

]
.

It remains to check that

inf
((�,F,(Ft ),P),ξ,ρ,W)∈Arel:P◦ξ−1=ν

E
[
Ḡ(X, θ∗, ρ)

]= V (ν;p).

Inequality “≥” holds by definition of Ḡ and because A⊆ Arel if one identifies or-
dinary stochastic open-loop controls with the induced stochastic relaxed controls.
The opposite inequality is a consequence of what is called “chattering lemma”, that
is, the fact that relaxed controls can be approximated by ordinary controls; see, for
instance, Theorem 3.5.2 in Kushner [28], page 59, or Section 4 in El Karoui et al.
[15]. In our situation, the stochastic relaxed control in equation (5.10) corresponds
to an ordinary stochastic open-loop control. If the running costs f are additive
convex in the control, then inequality “≤” can be verified more directly by using
(5.11) and Jensen’s inequality.

Step 4. For every N ∈N \ {1},
JN

1
(
uN )− inf

v∈UN

JN
1
([

uN,−1, v
])

≤ JN
1
(
uN )− J (ν,u;p) + J (ν,u;p) − JN

1
([

uN,−1, vN
1
])+ ε/2.

By Steps 2 and 3, there exists N0 = N0(ε) such that for all N ≥ N0,

JN
1
(
uN )− J (ν,u;p) + V (ν;p) − JN

1
([

uN,−1, vN
1
])≤ ε/2.

Since (ν, u;p) is a solution of the mean-field game, J (ν,u;p) = V (ν;p). It follows
that for all N ≥ N0,

JN
1
(
uN )− inf

v∈UN

JN
1
([

uN,−1, v
])≤ ε,

which establishes (5.3). �
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6. Existence of solutions. Throughout this section, hypotheses (H1)–(H5) as
well as (ND) are in force. Under these and some additional assumptions, we show
that, given any initial distribution, a feedback solution of the mean-field game ex-
ists in the sense of Definition 4.1; see Theorem 6.2 in Section 6.2. To prove The-
orem 6.2, we use a BSDE to approach to the control problem for fixed flow of
measures (Section 6.1) and a fixed-point argument, both in the spirit of Carmona
and Lacker [7].

In Section 6.3, we provide conditions that guarantee the existence of a feedback
solution to the mean-field game with continuous Markovian feedback strategy; see
Corollary 6.3. Such a solution satisfies, in particular, the requirements of Theo-
rem 5.1.

As above, let ν ∈P(Rd) with support in O denote the initial distribution. Since
ν will be fixed, the dependence on ν will often be omitted in the notation.

6.1. Optimal controls for a given flow of measures. Let p ∈M be a given flow
of measures, and define the corresponding flow mp of means by

(6.1) mp(t)
.=
∫
Rd

w(y)p(t, dy), t ∈ [0, T ].

Recall that X̂ denotes the canonical process on the path space X .= C([0, T ];
R

d) (equipped with the sup-norm topology). Also recall (5.1), the definition of
�ν . Set �

.= X , X
.= X̂, let F be the �ν -completion of the Borel σ -algebra B(X ),

and set P .= �ν (extended to all null sets). Let (Ft ) be the P-augmentation of the
filtration generated by X. Lastly, set

ξ(ω)
.= X(0,ω),

W(t,ω)
.= σ−1(X(t,ω) − ξ(ω)

)
, (t,ω) ∈ [0, T ] × �,

which is well defined thanks to (ND). Then (�,F, (Ft ),P) is a filtered probability
space satisfying the usual assumptions, W a d-dimensional (Ft )-Wiener process
and ξ an F0-measurable random variable with law ν independent of W . Moreover,
by construction,

(6.2) X(t) = ξ + σW(t), t ∈ [0, T ],
and P ◦ X−1 = �ν .

Let U denote the set of all �-valued (Ft )-progressively measurable processes.
The filtration (Ft ) is the P-augmentation of the filtration generated by X. Any
feedback strategy u ∈ Ufb therefore induces an element of U through ut

.= u(t,X),
t ∈ [0, T ]. On the other hand, given u ∈ U , we can find a progressive functional u ∈
U1 such that u(·,X) = u· LebT ⊗ P-almost surely, where LebT denotes Lebesgue
measure on [0, T ]. Lastly, by Proposition 4.1 and (ND), Ufb = U1. We can therefore
identify elements of U with those of Ufb, and vice versa.



2208 L. CAMPI AND M. FISCHER

Let u ∈ U . By Girsanov’s theorem and the boundedness of b̄, there exists a
probability measure Pp,u ∼ P and a Pp,u-Wiener process W p,u such that

dX(t) = (ut + b̄
(
t,X(t),mp(t)

))
dt + σ dW p,u(t).

The costs associated with u are then given by

J p(u)
.= Ep,u

[∫ τ

0
f
(
t,X(t),mp(t),ut

)
dt + F(τ,Xτ )

]
,

if u ∈ Ufb = U1 is such that u(·,X) = u· LebT ⊗ P-almost surely, then (cf. Sec-
tion 4)

J p(u) = J (ν,u;p).
Since elements of U can be identified with those of Ufb, and vice versa, we have

V p .= inf
u∈U J p(u) = inf

u∈Ufb
J (ν,u;p).

In view of Remark 4.1, if p is such that t 
→ mp(t) is continuous, then

V p = V (ν;p).
Define the Hamiltonian h and the minimized Hamiltonian H as follows:

h(t, x,m, z, γ )
.= f (t, x,m,γ ) + z · σ−1b(t, x,m,γ ),

H(t, x,m, z)
.= inf

γ∈�
h(t, x,m, z, γ ),

where b(t, x,m,γ )
.= γ + b̄(t, x,m). The set in which the infimum is attained is

denoted by

A(t, x,m, z)
.= {γ ∈ � : h(t, x,m, z, γ ) = H(t, x,m, z)

}
.

This set is nonempty since � is compact and the function h is continuous in γ

thanks to (H4) and (H2), respectively.
Now, consider the following BSDE with random terminal date τ

.= τX ∧ T :

Y p(t) = F
(
τ,X(τ)

)+ ∫ T

t
H
(
s,X(s),mp(s),Z

p(s)
)
1(s<τ) ds

−
∫ T

t
Zp(s) dW(s),

(6.3)

where X follows the forward dynamics (6.2) and W is a Wiener process under P
as before. As in [12], we adopt the convention that for any solution to the BSDE
above:

1(s>τ)Y (s) = F
(
τ,X(τ)

)
, 1(s>τ)Z(s) = 0, 1(s>τ)H(s, x,m, z) = 0.

Observe that since the driver is Lipschitz in z and does not depend on y, assump-
tions (4), (5), (7) and (21) in [12] are satisfied. Moreover, their assumption (25) is
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also fulfilled due to the fact that the terminal time τ , the terminal value F , the drift
b̄ and the running cost f are all bounded; cf. (H1). Hence Theorem 3.4 of Dar-
ling and Pardoux [12] applies, yielding that the BSDE (6.3) has a unique solution
(Y p,Zp) in the space of all progressively measurable processes K

.= (Y,Z) with
values in R

d ×R
d×d such that

E
[∫ τ∧T

0

∣∣K(t)
∣∣2 dt

]
< ∞.

For each u ∈ U , we can proceed in a similar way to get existence and uniqueness (in
the same space of processes as above) of the solution (Y p,u,Zp,u) to the following
BSDE:

Y p,u(t) = F
(
τ,X(τ)

)+ ∫ T

t
h
(
s,X(s),mp(s),Z

p,u(s),us

)
1(s<τ) ds

−
∫ T

t
Zp,u(s) dW(s).

(6.4)

Changing measure from P to Pp,u, we obtain

Y p,u(t) = F
(
τ,X(τ)

)+ ∫ T

t
f
(
s,X(s),mp(s),us

)
1(s<τ) ds

−
∫ T

t
Zp,u(s) dW p,u(s).

Hence, taking conditional expectation with respect to Pp,u and Ft on both sides,
we have

Y p,u(t) = Ep,u
[
F
(
τ,X(τ)

)+ ∫ T

t
f
(
s,X(s),mp(s),us

)
1(s<τ) ds

∣∣Ft

]
,

which implies E[Y p,u(0)] = Ep,u[Y p,u(0)] = J p(u). The first equality is due to the
fact that the law of ξ is the same under both probability measures.

Since H ≤ h and the forward state variable X is the same for both BSDEs
(6.3) and (6.4) (so that they both have the same random terminal time), we can
apply Darling and Pardoux [12], Corollary 4.4.2, yielding Y

p
t ≤ Y

p,u
t a.s. for all

t ∈ [0, T ]. This implies that E[Y p(0)] ≤ E[Y p,u(0)] = J p(u) for all u ∈ U and,
therefore, E[Y p(0)] ≤ V p.

By a standard measurable selection argument, there exists a measurable function
û : [0, T ] ×R

d ×R
d0 ×R

d×d → � such that

û(t, x,m, z) ∈ A(t, x,m, z) for all (t, x,m, z).

Hence, letting

(6.5) upt
.= û
(
t,X(t),mp(t),Z

p(t)
)
,

the uniqueness of the solution of BSDEs with random terminal time as in Darling
and Pardoux [12], Theorem 3.4, gives Y p(t) = Y p,up(t), which in turn implies
V p = J p(up).
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6.2. Existence of solutions of the mean-field game. We are going to apply the
Brouwer–Schauder–Tychonoff fixed-point theorem (for instance, [1], 17.56 Corol-
lary), which we recall for the reader’s convenience.

THEOREM 6.1 (Brouwer–Schauder–Tychonoff). Let K be a nonempty com-
pact convex subset of a locally convex Hausdorff space, and let � : K → K be a
continuous function. Then the set of fixed points of � is compact and nonempty.

We need to identify a suitable space K and a good function � in order to apply
the fixed theorem above to our setting and obtain the existence of a solution to the
mean-field game.

In addition to (H1)–(H5) and (ND), let us make the following assumptions.

ASSUMPTIONS 6.1. (i) The coefficients b̄ and f are continuous (jointly in all
their variables).

(ii) The set A(t, x,m, z) is a singleton for all (t, x,m, z) ∈ [0, T ] ×R
d ×R

d0 ×
R

d×d .

By Assumption 6.1(ii), the function û appearing in (6.5) is uniquely determined.
Moreover, û is continuous.

LEMMA 6.1. The function û is continuous (jointly in all its variables).

PROOF. Assumption 6.1(i) implies that the (pre-)Hamiltonian h is (jointly)
continuous. The continuity of û now follows from Berge’s maximum theorem (for
instance, [1], Theorem 17.31), Assumption 6.1(ii) and the compactness of � ac-
cording to (H4). �

We will apply the fixed-point theorem to a restriction of the mapping

(6.6) � : P(X ) � μ 
→ Pμ ◦ X−1 ∈ P(X )

where Pμ .= Ppμ,ûμ
according to Section 6.1 with pμ and ûμ defined as follows:

pμ(t, ·) .= μ
(
X(t) ∈ · | τX > t

)
,(6.7a)

ûμ
t

.= up
μ

t = û
(
t,X(t),

∫
w(y)pμ(t, dy),Zpμ

(t)

)
, t ∈ [0, T ].(6.7b)

Thanks to Assumption 6.1(ii), the optimal control process ûμ is unique LebT ⊗ P-
almost surely. Let Eμ denote expectation with respect to μ (not Pμ!).

Now, we need to specify the subspace of P(X ) with the right properties for
applying the fixed-point theorem. Recall the definition of Qν,c with c ≥ 0 from
Section 5. Choose K > 0 such that K ≥ ‖b‖∞, and set

K .=Qν,K.
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Then K is nonempty and convex, and it is compact with respect to the topology
inherited from P(X ) (i.e., the topology of weak convergence of measures); see
Lemma C.1 in the Appendix. Moreover, K can be seen as a subset of the dual space
Cb(X )∗, where Cb(X ) is the space of all continuous bounded functions on X .
The dual space Cb(X )∗, equipped with the weak* topology σ(Cb(X )∗,Cb(X )),
is a locally convex topological vector space, inducing the weak convergence on
P(X ) ⊃ K.

If μ ∈ K, then the flow of conditional means induced by μ is continuous.

LEMMA 6.2. Let μ ∈ K. Then the mapping t 
→ mμ(t)
.= ∫ w(y)pμ(t, dy) is

continuous, where pμ is the flow of conditional measures induced by μ according
to (6.7a).

PROOF. By Lemma C.2, inft∈[0,T ] μ(τX > t) > 0. Therefore and by construc-
tion, for every t ∈ [0, T ],

mμ(t) = 1

μ(τX > t)
Eμ

[
w
(
X(t)

)
1[0,τX)(t)

]
.

Let t ∈ [0, T ], and let (tn) ⊂ [0, T ] be such that tn → t as n → ∞. For ω ∈ �,
the mapping s 
→ 1[0,τX(ω))(s) is discontinuous only at s = τX(ω). By part (c)
of Lemma C.3, μ(τX = t) = 0. Since w is bounded and continuous and X has
continuous trajectories, we have with μ-probability one,

1[0,τX)(tn)
n→∞−→ 1[0,τX)(t), w

(
X(tn)

)
1[0,τX)(tn)

n→∞−→ w
(
X(t)

)
1[0,τX)(t).

The dominated convergence theorem now implies limn→∞ m(tn) = m(t). �

In order to apply Theorem 6.1 above, we have to show that � : K → K is (se-
quentially) continuous. Let (μn) be a sequence in K converging to some measure
μ ≡ μ∞ ∈ K. We want to show that �(μn) → �(μ) in K ⊂ P(X ). To ease the
notation, we set

pn .= pμn

, Zn .= Zpn

, un
t

.= up
n

t , 1 ≤ n ≤ ∞.

We proceed as in Carmona and Lacker [7], Proof of Theorem 3.5, and show that

(6.8) H
(
Pμ | Pμn) n→∞−→ 0,

where H(· | ·) denotes the relative entropy:

H(μ̃ | μ̄)
.=
⎧⎪⎨
⎪⎩
∫

log
(

dμ̃

dμ̄

)
dμ̃ if μ̃ absolutely continuous w.r.t. μ̄

∞ otherwise.

Observe that (6.8) implies �(μn) → �(μ) in the topology of weak convergence
as well as in the topology of convergence in total variation.
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In our situation, denoting by E(·) the stochastic exponential of a local martin-
gale, we have

dPμn

dPμ
= E

(∫ ·
0

σ−1(b(t,X(t),mn(t),un
t

)
− b
(
t,X(t),m∞(t),u∞

t

))
1[0,τX)(t) dW p∞

(t)

)
(T ),

where mn denotes the flow of means induced by pn according to (6.1):

mn(t)
.=
∫

w(y)pn(t, dy), 1 ≤ n ≤ ∞.

Since σ−1b is bounded, we obtain

H
(
Pμ | Pμn)= −EPμ

[
log

dPμn

dPμ

]

= 1

2
EPμ

[∫ τ

0

∣∣σ−1b
(
t,X(t),mn(t),un

t

)
− σ−1b

(
t,X(t),m∞(t),u∞

t

)∣∣2 dt

]
.

By (H2), the map b(t, x, ·, ·) is continuous for all (t, x). Hence, we can conclude
by an application of the bounded convergence theorem provided we show that

(6.9)
(
mn,un) n→∞−→ (

m∞,u∞) in LebT ⊗Pμ-measure.

First, we show that

(6.10) mn n→∞−→ m∞ in LebT -measure.

By Lemma C.2, infn∈N∪{∞} inft∈[0,T ] μn(τX > t) > 0. Hence, by construction, for
every t ∈ [0, T ],

mn(t) = 1

μn(τX > t)
Eμn

[
w
(
X(t)

)
1[0,τX)(t)

]
, n ∈ N.

The mapping 1[0,τX)(t) is μ-almost surely continuous for each fixed t by part (d) of
Lemma C.3. By hypothesis, w is bounded and continuous. The mapping theorem
(Theorem 5.1 in [3], page 30) therefore implies that

Eμn

[
w
(
X(t)

)
1[0,τX)(t)

]→ Eμ

[
w
(
X(t)

)
1[0,τX)(t)

]
,

as well as μn(τX > t) → μ(τX > t). This gives that mn(t) → m∞(t) for all t ,
hence mn → m∞ pointwise and in LebT -measure.

Next, let us check that

(6.11) lim
n→∞ E

[∫ T

0

∣∣Zn(t) − Z∞(t)
∣∣2 dt

]
= 0.
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To this end, we use a stability result for BSDEs with random terminal time as
in Briand and Hu [4], Theorem 2.4. According to that result, in order to get the
convergence (6.11), it suffices to show that

E
[∫ τ

0

∣∣H (s,X(s),mn(s),Z∞(s)
)− H

(
s,X(s),m∞(s),Z∞(s)

)∣∣2 ds

]
n→∞−→ 0.

Since the functions f and b in the definition of the minimized Hamiltonian H are
bounded and the controls take values in a compact set, we easily have∣∣H (s,X(s),mn(s),Z∞(s)

)− H
(
s,X(s),m∞(s),Z∞(s)

)∣∣2 ≤ c1 + c2
∣∣Z∞(s)

∣∣2,
where c1, c2 are some positive constants. Moreover, E[∫ τ

0 |Z∞(t)|2 dt] < ∞ (cf.
Darling and Pardoux [12], Theorem 3.4). We can therefore apply the dominated
convergence theorem to obtain (6.11). The convergence in LebT ×Pμ-measure fol-
lows from the equivalence Pμ ∼ P.

In view of (6.10), in order to establish (6.9), it remains to show that un
t → u∞

t

Pμ-almost surely for all t ∈ [0, T ]. Notice that for all n ∈ N∪ {∞}
ûn
t = û

(
t,X(t),mn(t),Zn(t)

)
.

By Lemma 6.1, û is jointly continuous in all its variables. Equations (6.10) and
(6.11) together imply that (mn,Zn) → (m∞,Z∞) in LebT ×Pμ-measure. It fol-
lows that ûn → û∞ in LebT ×Pμ-measure as well.

Now, we can state and prove the main result of this section.

THEOREM 6.2. Under (H1)–(H5), (ND) and Assumptions 6.1, there exists a
feedback solution of the mean-field game.

PROOF. In view of the discussion above, we can apply Theorem 6.1 (the
Brouwer–Schauder–Tychonoff fixed-point theorem) to the map � : K → K. Thus,
there exists μ ∈ K such that �(μ) = μ. Let p .= pμ be the flow of conditional
measures induced by the fixed point μ according to (6.7a). Let mp be the flow
of (conditional) means induced by p according to (6.1), and let (Y p,Zp) be the
unique solution of the BSDE (6.3). Notice that Zp is progressively measurable
with respect to (Ft ), the P-augmentation of the filtration generated by the canoni-
cal process X = X̂. Hence we can find u ∈ U1 such that

u(·,X) = û
(·,X(·),mp(·),Zp(·)) LebT ⊗ P-almost surely.

Recalling the discussion of Section 6.1 and the fact that in our situation U1 = Ufb,
we see that

J (ν,u;p) = V p.

The flow of means mp is continuous thanks to Lemma 6.2. This implies, by Re-
mark 4.1, that V p = V (ν;p). The triple (ν, u,p) therefore satisfies the optimality
property of Definition 4.1. By construction of � and the fixed-point property of
μ, (ν, u,p) also satisfies the conditional mean-field property of Definition 4.1. It
follows that (ν, u,p) is a feedback solution of the mean-field game. �
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6.3. Continuity of optimal controls. Here, we work under all the hypotheses of
the previous subsections plus a couple of additional assumptions to be introduced
below. Let p ∈ M be a flow of measures such that the induced flow of means mp

is continuous, that is, we assume that the mapping

t 
→ mp(t)
.=
∫
Rd

w(y)p(t, dy)

is continuous. From Lemma 6.2, we know that this is the case if p is the flow of
measures induced by some μ ∈K.

The aim here is to show that û(·,X(·),mp(·),Zp(·)), the optimal control process
appearing in (6.5), corresponds to a Markovian feedback strategy that is continuous
both in its time and its state variable. In view of Lemma 6.1 and the continuity of
mp, it suffices to show that Zp(t) can be expressed as a continuous function of time
t and the forward state variable X(t).

Set, for (t, x, z) ∈ [0, T ] ×R
d ×R

d×d ,

h̃(t, x, z)
.= h
(
t, x,m(t), z, û

(
t, x,mp(t), z

))
.

Notice that h̃(t, x, z) = H(t, x,mp(t), z). Moreover, by Assumptions 6.1, Lem-
ma 6.1 and the continuity of mp, we have that h̃ is continuous (jointly in all its
variables). By (H1) and (H4), h̃(·, ·, z) is bounded for each z ∈R

d×d .
Consider the following BSDE under P:

(6.12) Y(t) = F
(
τ,X(τ)

)+ ∫ T

t
h̃
(
s,X(s),Z(s)

)
1(s<τ) ds −

∫ T

t
Z(s) dW(s),

with the same convention regarding times exceeding τ as in Section 6.1. The BSDE
above possesses a unique L2-solution (Y,Z), which coincides with the unique
solution (Y p,Zp) of the BSDE (6.3). To prove the continuity property, we adopt the
following procedure: first, we consider the PDE corresponding to the BSDE (6.12)
and prove some regularity implying, in particular, the continuity of the gradient of
the solution; second, we provide a verification argument essentially identifying the
solution of the PDE and its gradient with the unique solution (Y,Z) of (6.12). This
is performed in the proof of the next proposition. Before that, we have to introduce
some notation on Sobolev and Hölder-type norms.

Set D
.= [0, T )×O , and let ∂pD

.= ([0, T )× ∂O)∪ ({T }× Ō) be the parabolic
boundary of D. Moreover, let A denote the (parabolic) Dynkin operator associated
with X under P, that is,

A .= ∂t + 1

2
Tr
(
a∂2

xx

)
,

where a
.= σσ T. Let Lλ(D) denote the space of λth power integrable functions

on D, with ‖ · ‖λ,D norm in Lλ(D). For 1 < λ < ∞, let Hλ(D) denote the space
of functions ψ that together with their generalized partial derivatives ∂tψ , ∂xi

ψ ,
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∂xixj
ψ , i, j = 1, . . . , n, are in Lλ(D). In Hλ(D), let us introduce the norm (of

Sobolev-type)

(6.13) ‖ψ‖(2)
λ,D

.= ‖ψ‖λ,D + ‖∂tψ‖λ,D +
d∑

i=1

‖∂xi
ψ‖λ,D +

d∑
i,j=1

‖∂xixj
ψ‖λ,D.

Let us also consider Hölder-type norms as follows. For 0 < α ≤ 1, let

‖ψ‖D
.= sup

(t,x)∈D

∣∣ψ(t, x)
∣∣,

|ψ |αD .= ‖ψ‖D + sup
x,y∈Ō,t∈[0,T ]

|ψ(t, x) − ψ(t, y)|
|x − y|α

+ sup
s,t∈[0,T ],x∈Ō

|ψ(s, x) − ψ(t, x)|
|s − t |α/2 .

Finally, we let

|ψ |1+α
D

.= |ψ |αD +
d∑

i=1

|∂xi
ψ |αD.

ASSUMPTIONS 6.2. (i) b̄, f belong to C0,1([0, T ] × (Ō × R
d0)) and

C0,1([0, T ] × (Ō ×R
d0 × �)), respectively. Thus, b ∈ C0,1([0, T ] × (Ō ×R

d0 ×
�)).

(ii) F(T , ·) ∈ C2(Ō) and F(t, x) = F̃ (t, x) for all t ∈ [0, T ] and x ∈ ∂O , where
F̃ ∈ C1,2(D̄). Moreover, for some λ > d+2

2 ,

‖F‖(2)
λ,∂pD < ∞.

Assumption 6.2(ii) on the terminal costs F corresponds to assumption (E7) in
Fleming and Rishel [17], Appendix E.

PROPOSITION 6.1. Grant (H1)–(H5), (ND) as well as Assumptions 6.1 and
6.2. The optimal control is then given by

upt = û
(
t,X(t),mp(t), ∂xϕ

(
t,X(t)

)
σ
)
, t ∈ [0, τ ],

where the function ϕ is the unique solution in Hλ(D) of the Cauchy problem

−Aϕ − h̃(·, ϕ, ∂xϕσ) = 0 on D, ϕ = F on ∂pO,(6.14)

and it satisfies

(6.15) ‖ϕ‖(2)
λ,D ≤ M

(‖f ‖λ,D + ‖F‖(2)
λ,∂pD

)
,
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with constant M depending only on bounds on b and σ on D. Moreover,

(6.16) |ϕ|1+α
D ≤ M ′‖ϕ‖(2)

λ,D, α = 1 − d + 2

λ
,

for some constant M ′ depending on D and λ.
As a consequence, the function (t, x) 
→ û(t, x,m(t), ∂xϕ(t, x)σ ) is continuous

over [0, T ] × Ō .

PROOF. First, consider the Cauchy problem (6.14). The existence and unique-
ness of a solution in Hλ(D) satisfying the estimate (6.15) can be found in Fleming
and Rishel [17], Appendix E, Proof of Theorem VI.6.1, pages 208–209. Observe
that our assumptions together with the continuity of h̃ imply the hypotheses (6.1)–
(6.3) in Fleming and Rishel [17], page 167, with the exception of (6.3)(b). In fact,
in our setting the drift b and the running cost f are only continuous in t and not
necessarily C1; cf. Assumption 6.2(i). However, a careful inspection of the proof
by Fleming and Rishel shows that we can apply their approximation argument ex-
cluding the last sentence. Hence, there exists a nonincreasing sequence (ϕn) con-
verging pointwise to the unique solution ϕ ∈ Hλ(D) of the Cauchy problem (6.14).
Moreover, each ϕn satisfies the inequality (6.15). Using Ladyz̆enskaja et al. [31],
page 80, page 342, the estimate (6.15) gives (6.16) if λ > d + 2, and in this case
α = 1 − d+2

λ
where the constant M ′ depends on D and λ. Notice that the upper

bounds in (6.15) and (6.16) are both uniform in n. Therefore, letting n → ∞, we
have that the solution ϕ satisfies the same bounds. In particular, (6.16) yields that
the gradient ∂xϕ is well defined in the classical sense and it is continuous on D.

To complete the proof, it suffices to show that the pair of processes (ϕ(t,X(t)),

∂xϕ(t,X(t))σ )t∈[0,τ ] coincides with the unique L2 solution of the BSDE (6.12).
We use a verification argument based on a generalization of Itô’s formula as in
Krylov [27], Theorem 1, Section 2.10. Applying that formula between t and τ , on
the random set {t ≤ τ }, we have with P-probability one

ϕ
(
τ,X(τ)

)= ϕ
(
t,X(t)

)+ ∫ τ

t
Aϕ
(
s,X(s)

)
ds

+
∫ τ

t
∂xϕ
(
s,X(s)

)
σdW(s).

Being ϕ a solution in Hλ(D) of the Cauchy problem (6.14), we have (by re-
arranging the terms)

ϕ
(
t,X(t)

)= F
(
τ,X(τ)

)− ∫ τ

t
h̃
(
s,X(s), ∂xϕ

(
s,X(s)

)
σ
)
ds

−
∫ τ

t
∂xϕ
(
s,X(s)

)
σdW(s),

which gives, by uniqueness of the solution (Y,Z) of the BSDE (6.12), that

Y(t) = ϕ
(
t,X(t)

)
, Z(t) = ∂xϕ

(
t,X(t)

)
σ,

on the event {t ≤ τ } for all t ∈ [0, T ]. �
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Proposition 6.1 and Theorem 6.2 yield (together with Lemma 6.2) the following
corollary. Observe that the control actions can be chosen in an arbitrary way when
the state process is outside cl(O).

COROLLARY 6.3. Grant (H1)–(H5), (ND) as well as Assumptions 6.1 and
6.2. Then there exist a feedback solution of the mean-field game (ν, u,p) and a
continuous function ũ : [0, T ] ×R

d → � such that

u(t, ϕ) = ũ
(
t, ϕ(t)

)
for all (t, ϕ) ∈ [0, T ] ×X .

In particular, u is continuous on [0, T ] ×X .

We end this section by sketching the PDE approach to mean-field games with
absorption. For simplicity, we only consider a setting analogous to that of Lasry
and Lions [33], where the dynamics are of calculus-of-variation-type with additive
noise and the running costs split into two parts, one depending on the control, the
other on the measure variable. Thus, we assume that

σ ≡ σ Idd, b̄(t, x, y) ≡ 0, f (t, x, y, γ ) = f0(t, x, γ ) + f1(t, x, y)

for some scalar constant σ > 0 and suitable functions f0 : [0, T ] × R
d × � → R

and f1 : [0, T ] ×R
d ×R

d0 → R. Let us also assume that the initial distribution ν

is absolutely continuous with respect to Lebesgue measure with density m0.
Let (ν, u,p) be a solution according to Corollary 6.3, and let ũ be the associated

Markov feedback strategy.
Set H(t, x, z)

.= maxγ∈�{−γ · z − f0(t, x, γ )}. Let V be the unique solution of
the Hamilton–Jacobi–Bellman equation

−∂tV − σ 2

2
�V + H(t, x,∇V )

= f1

(
t, x,

∫
w(y)p(t, dy)

)
in [0, T ) × O

(6.17)

with boundary condition V (t, x) = F(t, x) in {T } × cl(O) ∪ [0, T ) × ∂O , and let
m be the unique solution of the Kolmogorov forward equation

(6.18) ∂tm − σ 2

2
�m + div

(
m(t, x) · ũ(t, x)

)= 0 in (0, T ] × O

with initial condition m(0, x) = m0(x) and boundary condition m(t, x) = 0 in
(0, T ] × ∂O . Then

ũ(t, x) = −DzH
(
t, x,∇V (t, x)

)
,

p(t, dx) = m(t, x)∫
O m(t, y) dy

dx.
(6.19)
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A nonstandard feature in (6.19) is the renormalization by the factor 1/
∫
O m(t,

y) dy. This is related to the fact that m(t, ·) will be the density of a sub-probability
measure, not necessarily a probability measure if t > 0. Relationship (6.19) clearly
allows to eliminate the measure flow p from equation (6.17) and the feedback con-
trol ũ from equation (6.18), yielding a coupled system of (backward) Hamilton–
Jacobi–Bellman equation and Kolmogorov forward equation. This gives the PDE
system for the mean-field game with absorption.

7. A counter-example. If the diffusion coefficient is degenerate and no ad-
ditional controllability assumptions are made, then a regular feedback solution of
the mean-field game need not induce a sequence of approximate Nash equilibria
with vanishing error.

The following (counter-)example is constructed in such a way that, for a certain
initial condition, the individual state processes of the N -player games cannot leave
the set O of nonabsorbing states before terminal time, while this is possible in
the mean-field game limit. Exit before terminal time can actually occur only at
one fixed instant, if at all. With the choice of the costs we make, leaving before
terminal time is preferable. The individual strategies that the solution of the mean-
field game induces in the N -player games will therefore push the state processes
towards the boundary if they start from certain initial points, but will fail to make
them exit (for N odd, the probability of exit equals zero, for N even it will tend to
zero as N → ∞). The failure to leave the set O in the N -player games will produce
costs that are higher than those of an alternative individual response strategy which
does not try to make its state process exit.

To achieve the described effect, we choose deterministic state dynamics; the
only source of randomness comes from the initial conditions. Individual states
will have three components, where one component (the third) corresponds to time,
while the second component simply keeps its own initial condition. Only the first
component is controlled; its evolution is driven, apart from the control, by an av-
erage over the second component of the states of all players (a mean with respect
to the measure variable in the limit). That interaction term is responsible for the
different controllability of the N -player systems with respect to the limit system.
Notice that the construction also relies on the particular choice of the initial con-
ditions, which are singular with respect to Lebesgue measure. To be specific, con-
sider the following data for our systems:

• dimensions: d = 3, d0 = 1;
• time horizon: T = 2;
• set of control actions: �

.= {γ ∈ R
3 : γ1 ∈ [−1,1], γ2 = 0 = γ3};

• set of nonabsorbing states

O
.=
{
x ∈ R

3 : −4 < x1,−2 < x2 < 2,−1 < x3 <
11

5
,

x1 < 1 + ex3−1
}
;
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• measure integrand: w bounded Lipschitz and such that w(x) = x2 for all x ∈
cl(O);

• drift function:

b̄(t, x, y)
.=

⎛
⎜⎜⎝−|y| ∧ 1

4
0
1

⎞
⎟⎟⎠ , (t, x, y) ∈ [0,2] ×R

3 ×R;

• dispersion coefficient: σ ≡ 0;
• running costs: f ≡ 1;
• terminal costs: F nonnegative bounded Lipschitz and such that

F(t, x) = 1 + x3

12
· x1 for all (t, x) ∈ [0,2] × cl(O).

REMARK 7.1. The set of nonabsorbing states O defined above has a boundary
that is only piecewise smooth. Let B ⊂ R

3 be the line segment given by

B
.= {x ∈ R

3 : x1 = 2,−1 ≤ x2 ≤ 1, x3 = 1
}
.

As will become clear below, the (counter-)example works for any bounded open
set O as long as O contains{

x ∈ R
3 : −1 ≤ x2 ≤ 1,0 ≤ x3 ≤ 2,−1 − 5

4
x3 ≤ x1 ≤ 1 + x3

}∖
B,

while B ∩O = ∅ (hence B ⊂ ∂O). There are bounded open sets with this property
and smooth (C2 or even C∞) boundary.

Let ρ denote the Rademacher distribution on B(R), that is, supp(ρ) = {−1,1}
and ρ({−1}) = 1/2 = ρ({1}). Define a probability measure ν on B(R3) by

ν
.= ρ ⊗ ρ ⊗ δ0,

and choose, for N ∈ N, the initial distribution for the N -player game according to
νN

.=⊗N ν.
The dynamics of the N -player game are thus given by⎛
⎜⎜⎝

XN
i,1(t)

XN
i,2(t)

XN
i,3(t)

⎞
⎟⎟⎠=

⎛
⎜⎝

XN
i,1(0)

XN
i,2(0)

0

⎞
⎟⎠

+
∫ t

0

⎛
⎜⎜⎜⎜⎝

ui,1
(
s,XN )−

∣∣∣∣∣ 1

N̄N(s)

N∑
j=1

1[0,τN
j )(s) · XN

j,2(s)

∣∣∣∣∣∧ 1

4

0
1

⎞
⎟⎟⎟⎟⎠ ds,
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where XN
i,k(0), k ∈ {1,2}, i ∈ {1, . . . ,N}, are i.i.d. Rademacher and u = (u1, . . . ,

uN) ∈ UN
fb is an admissible strategy vector. Clearly, for all s ∈ [0,2],

1

N̄N(s)

N∑
j=1

1[0,τN
j )(s) · XN

j,2(s) = 1

N̄N(s)

N∑
j=1

1[0,τN
j )(s) · XN

j,2(0).

Randomness thus enters the system only through the initial condition. We
may therefore fix the stochastic basis. To this end, let ξN

i,k , k ∈ {1,2}, i ∈
{1, . . . ,N}, be i.i.d. Rademacher random variables defined on some probability
space (�N,FN,PN). As filtration, we may take any filtration that makes the ξN

i,k
measurable at time zero. The dynamics of the N -player system can be rewritten as

⎛
⎜⎜⎝

XN
i,1(t)

XN
i,2(t)

XN
i,3(t)

⎞
⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

ξN
i,1 +

∫ t

0

(
ui,1
(
s,XN )−

∣∣∣∣∣ 1

N̄N(s)

N∑
j=1

1[0,τN
j )(s) · ξN

j,2

∣∣∣∣∣∧ 1

4

)
ds

ξN
i,2
t

⎞
⎟⎟⎟⎟⎠ .

Since ui,1 takes values in [−1,1] and ξN
i,1 values in {−1,1}, we have, for PN -

almost all ω ∈ �N ,

(7.1) −1 − 5

4
t ≤ XN

i,1(t,ω) ≤ 1 + t for all t ∈ [0,2].
By construction of O , XN

i (·,ω) can leave O before the terminal time only if
XN

i,1(1,ω) = 2; this is possible only if
∑N

j=1 ξN
j,2(ω) = 0. But

PN

(
N∑

j=1

ξN
j,2(ω) = 0

)
=
⎧⎪⎨
⎪⎩

0 if N is odd,(
N

N/2

)
1

2N
if N is even.

Since
( N
N/2

) 1
2N → 0 as N → ∞, we may assume for simplicity that N is odd. The

dynamics of the N -player game then reduce to

(7.2)

⎛
⎜⎜⎝

XN
i,1(t)

XN
i,2(t)

XN
i,3(t)

⎞
⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

ξN
i,1 +

∫ t

0
ui,1
(
s,XN )ds − t ·

(∣∣∣∣∣ 1

N

N∑
j=1

ξN
j,2

∣∣∣∣∣∧ 1

4

)

ξN
i,2
t

⎞
⎟⎟⎟⎟⎠ ,

t ∈ [0,2], for any admissible strategy vector u. The associated costs for player i

are, in view of (7.1),

JN
i (u) = 2 + EN

[
1 + 1

6

∫ 2

0
ui,1
(
s,XN )ds − 1

3

(∣∣∣∣∣ 1

N

N∑
j=1

ξN
j,2

∣∣∣∣∣∧ 1

4

)]
.2

2It is easy to see that if u is such that ui,1 ≡ −1 for all i ∈ {1, . . . ,N}, then u is a Nash equilibrium
for the N -player game.



MEAN-FIELD GAMES WITH ABSORPTION 2221

Let us turn to the limit model. Given a flow of measures p ∈ M and a stochastic-
open loop control ((�,F, (Ft ),P), ξ, α,W) ∈ A such that P ◦ ξ−1 = ν, the dy-
namics are given by⎛

⎜⎝X1(t)

X2(t)

X3(t)

⎞
⎟⎠=

⎛
⎝ξ1

ξ2
0

⎞
⎠

+
∫ t

0

⎛
⎜⎜⎝

α1(s) −
∣∣∣∣
∫
R3

w(y)p(s, dy)

∣∣∣∣∧ 1

4
0
1

⎞
⎟⎟⎠ ds, t ∈ [0,2].

(7.3)

Notice that ξ1, ξ2 are independent Rademacher variables.
Suppose that p is such that, for all t ∈ [0,2], supp(p(t)) ⊆ cl(O) and

∫
R3 w(y) ×

p(t, dy) = 0. The dynamics then reduce to

(7.4)

⎛
⎝X1(t)

X2(t)

X3(t)

⎞
⎠=

⎛
⎜⎜⎝

ξ1 +
∫ t

0
α1(s) ds

ξ2
t

⎞
⎟⎟⎠ ,

while the associated expected costs are equal to E[ζα] where

ζα(ω)
.= τX(ω) ∧ 2 + 1 + τX(ω) ∧ 2

12
· X1

(
τX(ω) ∧ 2,ω

)
, ω ∈ �.

Since α1 takes values in [−1,1] and ξ1 values in {−1,1}, we have, P-almost surely,

(7.5) −1 − t ≤ X1(t) ≤ 1 + t for all t ∈ [0,2].
By construction of O , it follows that, for P-almost every ω ∈ �, X(·,ω) leaves O

before time T = 2 if and only if ξ1(ω) = 1 and α1(t,ω) = 1 for Lebesgue almost
every t ∈ [0,1]. In this case, τX(ω) = 1, X1(1,ω) = 2 and ζα(ω) = 2 + 1/6. If
X(·,ω) does not leave O before the terminal time, then, by (7.5), ζα(ω) ≥ 2+1/2,
and the optimal control is to choose α1(t,ω) = −1 for almost every t ∈ [0,2].
Therefore, if for P-almost every ω ∈ �,

(7.6) α(t,ω) =
{
(1,0,0)T if ξ1(ω) = 1 and t ∈ [0,1],
(−1,0,0)T if ξ1(ω) = −1 or t > 1,

then

E[ζα] = 1

2

(
2 + 1

6

)
+ 1

2

(
2 + 1

2

)
= 2 + 1

3

and α is optimal in the sense that

E[ζα] = V (ν;p).
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Now, choose ((�,F, (Ft ),P), ξ, α,W) ∈ A such that P ◦ ξ−1 = ν and (ξ, α)

satisfies (7.6) P-almost surely. Let X be the unique strong solution of equation
(7.4), and define a flow of measures p∗ according to

p∗(t, ·) .= P
(
X ∈ ·|τX > t

)
, t ∈ [0,2].

Notice that P(τX > t) ≥ 1/2 for all t ∈ [0,2]; thus, p∗ is well defined. By con-
struction, supp(p∗) ⊆ cl(O), which implies∫

R3
w(y)p∗(t, dy) =

∫
R3

y2p∗(t, dy).

We are going to show that
∫
R3 w(y)p∗(t, dy) = 0 for all t ∈ [0,2]. By definition

of ν, X1(0), X2(0), X3(0) are independent. Moreover, X3 is (almost surely) deter-
ministic, while α1 is measurable with respect to σ(ξ1) = σ(X1(0)). This implies
that the real-valued processes X1, X2, X3 are independent. The time of first exit
τX can be rewritten in terms of X1 and X3 only. It follows that τX and X2 are
independent, hence∫

R3
w(y)p∗(t, dy) =

∫
R3

y2p∗(t, dy)

= EP
[
X2(t)

]= EP
[
X2(0)

]= ∫
R

zρ(dz) = 0.

As a consequence, X solves equation (7.3) with flow of measures p = p∗ and the
associated costs are optimal in the sense that

E[ζα] = V (ν;p∗).

Recall that p∗ was defined as the conditional flow of measures for the law of X.
Since X solves equation (7.3) with flow of measures p= p∗, the conditional mean-
field property of Definition 4.1 holds.

Relation (7.6) between the open-loop control α and the initial condition ξ in-
duces a feedback strategy in U1, namely

u∗(t, ϕ) =

⎧⎪⎪⎨
⎪⎪⎩

(1,0,0)T if ϕ1(0) = 1 and t ∈ [0,1],
(−1,0,0)T if ϕ1(0) = −1 or t > 1,

arbitrary otherwise.

For pairs (t, ϕ) where the control is unspecified, we may choose the control actions
in such a way that u∗ becomes Lipschitz continuous in the state variable at every
point in time; to be specific, set

u∗(t, ϕ)
.=
{(−1 ∨ ϕ1(0) ∧ 1,0,0

)T if t ∈ [0,1],
(−1,0,0)T if t > 1.

Equation (4.1) is well posed under u∗ given the flow of measures p∗ and any initial
distribution with support in O . Let ((�∗,F∗,P∗), (F∗

t ), W̄ ,X∗) be a solution of
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equation (4.1) under u∗ with flow of measures p∗ and initial distribution ν = ρ ⊗
ρ ⊗ δ0. Then, by construction,

P∗ ◦ (X∗)−1 = P ◦ X−1.

This implies the optimality property

J
(
ν,u∗;p∗

)= V (ν;p∗),

but also the conditional mean-field property of Definition 4.1, namely

p∗(t) = P
(
X ∈ ·|τX > t

)= P∗
(
X∗ ∈ ·|τX∗

> t
)

for all t ∈ [0,2].
It follows that (ν, u∗,p∗) is a feedback solution of the mean-field game.

Let us check whether or not the feedback strategy u∗ induces a sequence of
approximate Nash equilibria in analogy with Theorem 5.1. Thus, for N ∈ N, define
uN = (uN

1 , . . . , uN
N) by

uN
i (t,ϕ)

.= u∗(t, ϕi), t ∈ [0, T ],ϕ = (ϕ1, . . . , ϕN) ∈ XN, i ∈ {1, . . . ,N}.
Equation (3.1) has a unique solution under uN with initial distribution νN because
b̄, w are Lipschitz continuous in the state variable and uN is measurable with
respect to σ(XN(0)). Therefore, uN ∈ UN

fb . For simplicity, assume again that N is
odd. Let XN be the unique strong solution of equation (7.2) under uN . Then, for
every i ∈ {1, . . . ,N},

JN
i

(
uN )= 2 + EN

[
1 + 1

6

∫ 2

0
u∗(s,XN

i

)
ds − 1

3

(∣∣∣∣∣ 1

N

N∑
j=1

ξN
j,2

∣∣∣∣∣∧ 1

4

)]

= 3 − 1

2
· 2

6
− 1

3
EN

[∣∣∣∣∣ 1

N

N∑
j=1

ξN
j,2

∣∣∣∣∣∧ 1

4

]

≥ 33

12
.

Suppose player one deviates from uN by choosing the strategy that is constant
and equal to −1. Denote that strategy by v. Notice that [uN,−1, v] ∈ UN

fb . For the
associated costs, we have

JN
1
([

uN,−1, v
])= 2 + EN

[
1 − 2

6
− 1

3

(∣∣∣∣∣ 1

N

N∑
j=1

ξN
j,2

∣∣∣∣∣∧ 1

4

)]

= 3 − 1

3
− 1

3
EN

[∣∣∣∣∣ 1

N

N∑
j=1

ξN
j,2

∣∣∣∣∣∧ 1

4

]

≤ 32

12
.
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Player one can thus save costs of at least 1/12 by deviating from uN for every N

odd (asymptotically, also for N even). It follows that the strategy vectors induced
by the feedback solution (ν, u∗,p∗) of the mean-field game do not yield approxi-
mate Nash equilibria with vanishing error.

APPENDIX

Let ν ∈P(Rd) with support in O . Recall the definition of �ν ∈P(X ) in (5.1) at
the beginning of Section 5, and also the definition of the sets Qν,c ⊂ P(X ), c ≥ 0,
given there.

Let σ be a d × d-matrix, and let

b̂ : [0, T ] ×X ×P(X ) →R
d,

b̃N : [0, T ] ×XN ×P(X ) →R
d, N ∈N,

be functions such that the following hold:

(ND) Nondegeneracy: σ is invertible.
(M) Measurability: b̂, b̃N , N ∈ N, are Borel measurable and progressive in the

sense that, for all t ∈ [0, T ],
b̂(t, ϕ, θ) = b̂(t, ϕ̃, θ̃ ) whenever ϕ|[0,t] = ϕ̃|[0,t] and θ|Gt = θ̃|Gt ,

and analogously for b̃N .
(B) Boundedness: there exists a finite constant K > 0 such that

‖b̂‖∞ ∨ sup
N∈N

‖b̃N‖∞ ≤ K.

For each N ∈ N, let νN ∈ P(RN×d) be symmetric with supp(νN) ⊂ ON , as
above. We assume, in addition to (ND), (M) and (B):

(I) Initial distributions: the sequence (νN)N∈N is ν-chaotic, where ν has sup-
port in O .

(C) Almost continuity: for Lebesgue a.e. t ∈ [0, T ], every θ ∈ Qν,K ,

�ν

(
ϕ ∈ X : ∃(ϕn, θn) ⊂X ×P(X ) such that b̂(t, ϕn, θn) �→ b̂(t, ϕ, θ)

while (ϕn, θn) → (ϕ, θ)
)= 0.

In Section B of this Appendix, we will make the following assumption of partial
Lipschitz continuity:

(L) Lipschitz continuity in the measure variable: There exists a finite constant
L > 0 such that for all t ∈ [0, T ], all ϕ ∈ X ,∣∣b̂(t, ϕ, θ) − b̂(t, ϕ, θ̃)

∣∣≤ L · dt (θ, θ̃ ) whenever θ, θ̃ ∈ Qν,K,

where the distances dt are pseudo-metrics derived from the total variation distance;
see below.
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APPENDIX A: CONVERGENCE OF EMPIRICAL MEASURES

For N ∈ N, consider the system of equations

XN
1 (t) = XN

1 (0) +
∫ t

0
b̃N

(
s,XN,μN )ds + σWN

1 (t),

XN
i (t) = XN

i (0) +
∫ t

0
b̂
(
s,XN

i ,μN )ds + σWN
i (t),

i ∈ {2, . . . ,N}, t ∈ [0, T ],

(A.1)

where WN
1 , . . . ,WN

N are independent d-dimensional Wiener processes defined on
some filtered probability space (�,F, (Ft ),P), and μN is the empirical measure
of the players’ state trajectories, that is,

μN
ω (·) .= 1

N

N∑
j=1

δXN
j
(·,ω), ω ∈ �.

A solution of equation (A.1) with initial distribution νN is given by a triple
((�,F, (Ft ),P),WN,XN) such that (�,F, (Ft ),P) is a filtered probability
space satisfying the usual hypotheses, WN = (WN

1 , . . . ,WN
N ) a vector of inde-

pendent d-dimensional (Ft )-Wiener processes and XN = (XN
1 , . . . ,XN

N ) a vector
of continuous R

d -valued (Ft )-adapted processes such that equation (A.1) holds
P-almost surely with P ◦ (XN(0))−1 = νN .

As in Section 3, existence and uniqueness in law of solutions to equation (A.1)
hold thanks to Girsanov’s theorem and assumptions (ND), (M) and (B). Now, for
each N ∈ N, take a solution ((�N,FN, (FN

t ),PN),WN,XN) of equation (A.1)
with initial distribution νN , and let μN be the associated empirical measure on the
path space X .

LEMMA A.1. Grant (ND), (M), (B), (I) and (C). Then (PN ◦ (μN)−1)N∈N is
tight in P(P(X )), and its limit points have support in Qν,K .

PROOF. For N ∈N, let ιN be the intensity measure of PN ◦ (μN)−1, that is,

ιN(A)
.= EN

[
μN(A)

]
, A ∈ B(X ).

Tightness of (PN ◦ (μN)−1) in P(P(X )) is then equivalent to the tightness of (ιN)

in P(X ) (cf. (2.5) in [40], page 178). By construction,

ιN(A) = 1

N

N∑
i=1

PN

(
XN

i ∈ A
)
, A ∈ B(X ).

It is therefore enough to check that the family (P ◦ (XN
i )−1)N∈N,i∈{1,...,N} is tight.

Now, for N ∈ N, i ∈ {1, . . . ,N},
PN

(
XN

i (0) ∈ cl(O)
)= 1,
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and cl(O) is compact since O is open and bounded. Moreover, thanks to assump-
tion (B), for all s, t ∈ [0, T ],∣∣XN

i (t) − XN
i (s)

∣∣≤ K · |t − s| + |σ | · ∣∣WN
i (t) − WN

i (s)
∣∣,

where we recall that WN
i is a standard Wiener process under PN . Tightness of

(PN ◦ (XN
i )−1) is now a consequence of the Kolmogorov–Chentsov tightness cri-

terion (for instance, Corollary 16.9 in [24], page 313).
As to the support of the limit points of (PN ◦ (μN)−1), we interpret the

drift terms appearing in (A.1) as stochastic relaxed controls. To this end, set
R .= RBK(0), where BK(0) ⊂ R

d is the closed ball of radius K around the ori-
gin. Then R is compact (cf. Appendix E). For N ∈ N, let ρN

i be the R-valued
(FN

t )-adapted random measure determined by

ρN
i,ω(B × I )

.=

⎧⎪⎪⎨
⎪⎪⎩
∫
I
δ
b̃N (t,XN(·,ω),μN

ω )
(B)dt if i = 1,∫

I
δ
b̂(t,XN

i (·,ω),μN
ω )

(B)dt if i > 1,

B ∈ B(�), I ∈ B
([0, T ]),ω ∈ �N.

We can rewrite equation (A.1) in terms of ρN
1 , . . . , ρN

N :

XN
i (t) = XN

i (0) +
∫
BK(0)×[0,t]

yρN
i (dy, ds) + σWN

i (t),

i ∈ {1, . . . ,N}, t ∈ [0, T ].
(A.2)

Now, form the extended empirical measure:

QN
ω

.= 1

N

N∑
i=1

δ(XN
i (·,ω),ρN

i,ω), ω ∈ �N.

Thus, QN is a P(X × R)-valued random variable, and the projection on its
first component coincides with μN . The family (PN ◦ (QN)−1)N∈N is tight in
P(P(X ×R)) thanks to the first part of the proof and the fact that R is compact.

With a slight abuse of notation, let (X̂, ρ̂) denote the canonical process on
X ×R. Let (Pn ◦ (Qn)−1)n∈I be a convergent subsequence of (PN ◦ (QN)−1)N∈N,
and let Q be a P(X × R)-valued random variable defined on some probability
space (�,F,P) such that

Qn → Q in distribution as I � n → ∞.

We have to show that Qω ◦ X̂−1 ∈ Qν,K for P-almost every ω ∈ �. To this end,
define a process Ŵ on X ×R by

Ŵ (t)
.= σ−1

(
X̂(t) − X̂(0) −

∫
B̄K(0)×[0,t]

yρ̂(dy, ds)

)
, t ∈ [0, T ].
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By a martingale argument similar to that in the proof of Lemma A.2, but using
equation (A.2), one checks that Ŵ is a standard Wiener process under Qω for
P-almost every ω ∈ �. This entails that X̂ solves equation (5.2) under Qω with
BK(0)-valued control process

v
(
t, (ϕ, r)

) .=
∫
BK(0)

yṙt (dy), t ∈ [0, T ], (ϕ, r) ∈ X ×R.

It follows that Qω ◦ X̂−1 ∈ Qν,K for P-almost every ω ∈ �. �

In order to further characterize the limit points of (PN ◦ (μN)−1)N∈N, consider,
for θ ∈ P(X ), the equation

(A.3) X(t) = X(0) +
∫ t

0
b̂(s,X, θ) ds + σW(t), t ∈ [0, T ],

where W is a d-dimensional Wiener process defined on some filtered probability
space. A solution of equation (A.3) with measure θ ∈ P(X ) and initial distribution
ν is a triple ((�,F, (Ft ),P),W,X) such that (�,F, (Ft ),P) is a filtered probabil-
ity space satisfying the usual hypotheses, W a d-dimensional (Ft )-Wiener process
and X an R

d -valued (Ft )-adapted process such that (A.3) holds P-almost surely
with P ◦ (X(0))−1 = ν and drift coefficient b̂(·, ·, θ). Again thanks to Girsanov’s
theorem and assumptions (ND), (M) and (B), existence and uniqueness in law of
solutions to equation (A.3) hold for each fixed θ ∈ P(X ).

Recall that X̂ denotes the canonical process on X .

DEFINITION A.1. A measure θ ∈ P(X ) is called a McKean–Vlasov solution
of equation (A.3) if there exists a solution ((�,F, (Ft ),P),W,X) of equation
(A.3) with initial distribution θ ◦ (X̂(0))−1 and measure θ such that P ◦ X−1 = θ .

By uniqueness in law (with fixed measure θ ), if P ◦ X−1 = θ holds for one solu-
tion ((�,F, (Ft ),P),W,X) of equation (A.3) with measure θ and initial distribu-
tion θ ◦ (X̂(0))−1, then it holds for any such solution of equation (A.3). According
to the next lemma, limit points of the sequence of empirical measures (μN)N∈N
are almost surely concentrated on McKean–Vlasov solutions of equation (A.3).
This yields, in particular, existence of McKean–Vlasov solutions. Those solutions
do not necessarily have the same law.

LEMMA A.2. Grant (ND), (M), (B), (I) and (C). Let (Pn ◦ (μn)−1)n∈I be a
convergent subsequence of the family (PN ◦ (μN)−1)N∈N, and let μ be a P(X )-
valued random variable defined on some probability space (�,F,P) such that

μn → μ in distribution as I � n → ∞.

Then μω is a McKean–Vlasov solution of equation (A.3) for P-almost every ω ∈ �.
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PROOF. Thanks to hypothesis (I), we have μω ◦ (X̂(0))−1 = ν for P-almost
every ω ∈ �.

In the proof, we use the characterization of solutions to equation (A.3) with
fixed measure variable through a martingale problem in the sense of Stroock and
Varadhan [39]; also see Karatzas and Shreve [25], Section 5.4. Since the coeffi-
cients in (A.3) are bounded, we can employ a “true” martingale problem instead
of a local martingale problem and work with test functions that have compact sup-
port. For a test function g ∈ C2

c(R
d) and a measure θ ∈ P(X ), define the process

Mθ
g on (X ,B(X )) by

Mθ
g (t, ϕ)

.= g
(
ϕ(t)

)− g
(
ϕ(0)

)
−
∫ t

0

(
b̂(s, ϕ, θ) · ∇g + 1

2

d∑
i,j=1

(
σσ T)

ij

∂2g

∂xi∂xj

)(
ϕ(s)

)
ds.

Recall that (Gt ) is the canonical filtration in B(X ) and that X̂ is the coordinate
process on X . We have to show that, for P-almost every ω ∈ �, μω solves the mar-
tingale problem associated with b̂(·, ·,μω) and σσ T, that is, for every test function
g ∈ C2

c(R
d), the process M

μω
g is a (Gt )-martingale under μω. Although (Gt ) is a

“raw” filtration (i.e., not necessarily right-continuous or μω-complete), checking
the martingale property with respect to (Gt ) is sufficient; see, for instance, Problem
5.4.13 in Karatzas and Shreve [25], pages 318–319, 392. Indeed, if M

μω
g is a (Gt )-

martingale under μω for every g ∈ C2
c(R

d), then ((X ,B(X ), (Gμω
t+ ),μω), Ŵ , X̂) is

a solution of equation (A.3) with initial distribution ν, where (Gμω
t+ ) indicates the

right-continuous μω-augmentation of (Gt ) and Ŵ is defined by

Ŵ (t)
.= σ−1

(
X̂(t) − X̂(0) −

∫ t

0
b̂(s, X̂,μω)ds

)
, t ∈ [0, T ].

Since μω ◦ X̂−1 = μω, it then follows that μω is a McKean–Vlasov solution of
equation (A.3) in the sense of Definition A.1. For this implication to hold, it suf-
fices to take a countable collection of test functions g ∈ C2

c(R
d) that approximate

the d-variate monomials of first and second order.
Let θ ∈ P(X ). The processes Mθ

g are, by construction and thanks to assump-
tions (B) and (M), bounded, measurable and (Gt )-adapted. The martingale prop-
erty of Mθ

g is equivalent to having

(A.4) Eθ

[
ψ · (Mθ

g (t1) − Mθ
g (t0)

)]= 0

for every choice of (t0, t1,ψ) ∈ [0, T ]2 × Cb(X ) such that t0 ≤ t1 and ψ is
Gt0 -measurable. Since the σ -algebras Gt are countably generated, the processes
Mθ

g have continuous trajectories, and since the test functions can be taken from
a countable family, we can choose a countable collection of test parameters
T ⊂ [0, T ]2 × Cb(X )× C2

c(R
d) with the following two properties: First, for every
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(t0, t1,ψ,g) ∈ T we have t0 ≤ t1 and ψ is Gt0 -measurable; second, if θ ∈ P(X )

is such that (A.4) holds for every (t0, t1,ψ,g) ∈ T , then θ is a McKean–Vlasov
solution of equation (A.3). In the following three steps, we will show that there
exists �̄ ∈ F such that P(�̄) = 1 and, for every ω ∈ �̄, (A.4) with θ = μω holds
for all (t0, t1,ψ,g) ∈ T .

Step 1. Let (t0, t1,ψ,g) ∈ T . Define a function � = �(t0,t1,ψ,g) : P(X ) →R by

�(θ) = �(t0,t1,ψ,g)(θ)
.= Eθ

[
ψ · (Mθ

g (t1) − Mθ
g (t0)

)]
.

Notice that � is well defined (the expectation on the right-hand side is finite),
Borel measurable, and bounded. We claim that � is continuous at every θ ∈ Qν,K .
To see this, let θ ∈ Qν,K and (θn)n∈N ⊂ P(X ) be such that θn → θ as n → ∞.
Define bounded measurable functions hn,h : [0, T ] ×X →R according to

hn(s, ϕ)
.= ψ(ϕ) · b̂(s, ϕ, θn) ·

(
d∑

i=1

∂g

∂xi

(
ϕ(s)

))
, n ∈ N,

h(s, ϕ)
.= ψ(ϕ) · b̂(s, ϕ, θ) ·

(
d∑

i=1

∂g

∂xi

(
ϕ(s)

))
, (s, ϕ) ∈ [0, T ] ×X .

By hypothesis, θn → θ in the sense of weak convergence of probability measures.
The functions ψ , σ (constant) as well as g together with its first- and second-
order partial derivatives are all bounded and continuous. In order to establish the
convergence of �(θn) to �(θ), it is therefore enough to verify that∫

X

∫ t1

t0

hn(s, ϕ) dsθn(dϕ)
n→∞−→

∫
X

∫ t1

t0

h(s,ϕ) dsθ(dϕ).

The functions h, hn, n ∈ N, are uniformly bounded. By dominated convergence
and the Fubini–Tonelli theorem, it thus suffices to check that

(A.5)
∫
X

hn(s, ϕ)θn(dϕ)
n→∞−→

∫
X

h(s,ϕ)θ(dϕ) for almost every s ∈ [0, T ].
For s ∈ [0, T ], set

Es
.= {ϕ ∈ X : ∃(ϕn) ⊂ X : hn(s, ϕn) �→ h(s,ϕ) while ϕn → ϕ

}
.

The functions ψ , ∂g
∂xi

, i ∈ {1, . . . , d}, are continuous and bounded. The choice of
θ ∈ Qν,K entails that θ is absolutely continuous with respect to �ν . By (C), the
assumption of almost continuity, it follows that

θ(Es) = 0 for Lebesgue almost every s ∈ [0, T ].
The extended mapping theorem (Theorem 5.5 in [3], page 34) now implies that
(A.5) holds. It follows that � is continuous at θ ∈ Qν,K .

Step 2. Let again (t0, t1,ψ,g) ∈ T . We are going to show that

(A.6) EP
[(

�(t0,t1,ψ,g)(μ)
)2]= 0.
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Recall that � = �(t0,t1,ψ,g) is bounded and, by the previous step, continuous at
every θ ∈ Qν,K . By Lemma A.1, we have P(μ ∈Qν,K) = 1. By hypothesis, μn →
μ in distribution as I � n → ∞. The mapping theorem (Theorem 5.1 in [3], page
30) thus implies that

EP
[(

�(μ)
)2]= lim

I�n→∞ EPn

[(
�
(
μn))2].

Now, for every n ∈ I , using Itô’s formula and equation (A.1),

EPn

[(
�
(
μn))2]

= EPn

[(
1

n

n∑
i=1

ψ
(
Xn

i

) · (Mμn

g

(
t1,X

n
i

)− Mμn

g

(
t0,X

n
i

)))2]

= 1

n2 EPn

[(
ψ
(
Xn

1
) · ∫ t1

t0

(
b̃n

(
s,Xn,μn)− b̂

(
s,Xn

1 ,μω

)) · ∇g
(
Xn

1(s)
)
ds

+
n∑

i=1

ψ
(
Xn

i

) · ∫ t1

t0

∇g
(
Xn

i (s)
)T

σdWn
i (s)

)2]
.

The functions ψ , σ (constant), ∇g, b and b̂n are bounded, uniformly in n ∈ I ;
cf. assumption (B). Since ψ is Gt0 -measurable, the random variables ψ(Xn

1), . . . ,

ψ(Xn
n) are Fn

t0
-measurable. The Wiener processes Wn

1 , . . . ,Wn
n are independent.

Setting

B̃n
1

.=
∫ t1

t0

(
b̃n

(
s,Xn,μn)− b̂

(
s,Xn

1 ,μω

)) · ∇g
(
Xn

1(s)
)
ds,

we obtain

EPn

[(
�
(
μn))2]

= 1

n2 EPn

[(
ψ
(
Xn

1
) · B̃n

1
)2]

+ 2

n2 EPn

[
n∑

i=1

ψ
(
Xn

i

) · ψ(Xn
1
) · B̃n

1 ·
∫ t1

t0

∇g
(
Xn

i (s)
)T

σdWn
i (s)

]

+ 1

n2 EPn

[
n∑

i=1

(
ψ
(
Xn

i

))2 ·
∫ t1

t0

∇g
(
Xn

i (s)
)T

σσ T∇g
(
Xn

i (s)
)
ds

]

I�n→∞−→ 0,

where convergence to zero follows from the uniform boundedness of the inte-
grands (and the Cauchy–Schwarz inequality).

Step 3. By Step 2, we have that (A.6) holds for every t = (t0, t1,ψ,g) ∈ T . For
every t ∈ T , we can therefore select At ∈ F such that P(At) = 1 and �(μω) = 0
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for every ω ∈ At. Set �̄
.= ⋂t∈T At. Then P(�̄) = 1 since T is countable, and

�(μω) = 0 for every ω ∈ �̄. Hence, for P-almost every ω ∈ �, μω is such that
(A.4) with θ = μω holds for every (t0, t1,ψ,g) ∈ T . �

APPENDIX B: UNIQUENESS OF MCKEAN–VLASOV SOLUTIONS

Here, we consider McKean–Vlasov solutions of equation (A.3) in the sense of
Definition A.1 and obtain a uniqueness result.

On P(X ) define the following distances derived from the total variation distance
by setting, for t ∈ [0, T ],

dt (θ, θ̃ )
.= sup

A∈Gt

∣∣θ(A) − θ̃ (A)
∣∣, θ, θ̃ ∈ P(X ).

Notice that dt are pseudo-metrics for t ∈ [0, T ), while dT is a true metric since
GT = B(X ).

Let K be the constant from assumption (B), ν ∈ P(Rd) the initial distribution.
We will assume the following partial Lipschitz property with respect to the mea-
sure argument of b̂:

(L) There exists a finite constant L > 0 such that for all t ∈ [0, T ], all ϕ ∈ X ,∣∣b̂(t, ϕ, θ) − b̂(t, ϕ, θ̃)
∣∣≤ L · dt (θ, θ̃ ) whenever θ, θ̃ ∈ Qν,K.

Notice that condition (L) does not require b̂ to be Lipschitz continuous or simply
continuous with respect to the trajectory variable ϕ ∈ X . In fact, for the following
uniqueness result to be valid, b̂ need not satisfy (C), the assumption of almost
continuity, either.

PROPOSITION B.1. Grant (ND), (M), (B) and (L). Then there exists at most
one McKean–Vlasov solution of equation (A.3) with initial distribution ν.

PROOF. Suppose θ, θ̃ ∈ P(X ) are McKean–Vlasov solutions of equation
(A.3) with initial distribution ν = θ ◦ (X̂(0))−1 = θ̃ ◦ (X̂(0))−1. We have to show
that θ = θ̃ .

Observe that θ and θ̃ , being McKean–Vlasov solutions of equation (A.3) with
initial distribution ν, are elements of Qν,K . In particular, the Lipschitz property
expressed in (L) applies to θ , θ̃ .

Step 1. Set γ
.= �ν and, for t ∈ [0, T ],

Y(t)
.= exp

(∫ t

0

(
σσ T)−1

b̂(s, X̂, θ) · dX̂(s)

− 1

2

∫ t

0
b̂(s, X̂, θ)

T(
σσ T)−1

b̂(s, X̂, θ) ds

)
,
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Ỹ (t)
.= exp

(∫ t

0

(
σσ T)−1

b̂(s, X̂, θ̃ ) · dX̂(s)

− 1

2

∫ t

0
b̂(s, X̂, θ̃ )

T(
σσ T)−1

b̂(s, X̂, θ̃ ) ds

)
.

Then Y , Ỹ are well defined under γ and, for every t ∈ [0, T ],
dθ

dγ

∣∣∣∣
Gt

= Y(t),
dθ̃

dγ

∣∣∣∣
Gt

= Ỹ (t).(B.1)

The equalities in (B.1) are a consequence of the Cameron–Martin–Girsanov
formula; see Theorem 6.4.2 in Stroock and Varadhan [39], page 154. For the sake
of completeness, we derive (B.1) from a standard version of Girsanov’s formula.
First, observe that Y , Ỹ are well defined if the stochastic integral that appears in
the exponential is well defined. This is the case if we take γ as our reference
probability measure since X̂ is a vector of continuous martingales under γ , while
the integrands b̂(s, X̂, θ) and b̂(s, X̂, θ̃ ), respectively, are bounded progressively
measurable processes with respect to (Gt ) thanks to assumptions (M) and (B).

As to the densities given in (B.1), it is enough to prove the assertion for θ , the
proof for θ̃ being completely analogous. Let ((�,F, (Ft ),P),W,X) be a solution
of equation (A.3) with initial distribution ν and measure θ such that P ◦ X−1 = θ ;
such a solution exists by hypothesis.

Define a process Z on (�,F) by setting

Z(t)
.= e− ∫ t

0 σ−1b̂(s,X,θ)·dW(s)− 1
2

∫ t
0 |σ−1b̂(s,X,θ)|2 ds, t ∈ [0, T ].

Then Z is a martingale with respect to P and (Ft ), and

Q(A)
.= EP

[
Z(T )1A

]
, A ∈ F,

defines a probability measure such that

dQ

d P

∣∣∣∣
Ft

= Z(t) for every t ∈ [0, T ].

By Girsanov’s theorem (Theorem 3.5.1 [25], page 191) and equation (A.3), we
have that

σ−1(X(·) − X(0)
)= W(·) +

∫ ·
0

σ−1b̂(s,X, θ) ds

is an (Ft )-Wiener process under Q. Thus, since X(0) is F0-measurable, X(0) and
X(·) − X(0) are independent under Q. It follows that

Q ◦ X−1 = P ◦ (X(0) + σW
)−1 = γ.
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Using again equation (A.3), we obtain with probability one under P as well as
under Q that for all t ∈ [0, T ],

Z(t) = e− ∫ t
0 (σσT)−1b̂(s,X,θ)·dX(s)+ 1

2

∫ t
0 |σ−1b̂(s,X,θ)|2 ds,

1

Z(t)
= e

∫ t
0 (σσT)−1b̂(s,X,θ)·dX(s)− 1

2

∫ t
0 b̂(s,X,θ)

T
(σσT)−1b̂(s,X,θ) ds.

The process X is a vector of continuous semimartingales with respect to P as well
as Q, with quadratic covariation processes,

〈Xi,Xj 〉(t) = t · (σσ T)
ij , t ∈ [0, T ], P-/Q-almost surely.

It follows that 1/Z is a stochastic exponential, hence a local martingale, under Q.
Since b̂ is bounded, 1/Z is a true martingale under Q. As a consequence,

d P
dQ

∣∣∣∣
Ft

= 1

Z(t)
for every t ∈ [0, T ].

Recall that Q ◦ X−1 = γ . Comparing the expressions for 1/Z and Y , we find
that

Q ◦
(

1

Z(t)
,X

)−1
= γ ◦ (Y(t), X̂

)−1 for all t ∈ [0, T ].

Since θ = P ◦ X−1, it follows that, for every B ∈ Gt ,

θ(B) = EP
[
1B(X)

]= EQ

[
1

Z(t)
1B(X)

]
= Eγ

[
Y(t)1B(X̂)

]
,

hence dθ
dγ

|Gt = Y(t) for all t ∈ [0, T ].
Step 2. We are going to show that there exists a constant C ∈ (0,∞) depending

only on T , K and σ , such that for every bounded and progressively measurable
functional ψ : [0, T ] ×X →R, every t ∈ [0, T ],∣∣Eθ

[
ψ(t, X̂)

]− Eθ̃

[
ψ(t, X̂)

]∣∣2 ≤ C · ‖ψ‖2∞
∫ t

0
ds(θ, θ̃)2 ds.

Indeed, by (B.1), for every t ∈ [0, T ],
Eθ

[
ψ(t, X̂)

]− Eθ̃

[
ψ(t, X̂)

]= Eγ

[(
Y(t) − Ỹ (t)

)
ψ(t, X̂)

]
.

Under γ , X̂ is a martingale with quadratic covariation processes

〈Xi,Xj 〉(t) = t · (σσ T)
ij , t ∈ [0, T ],

while Y , Ỹ are stochastic exponentials. In fact, setting

M(t)
.=
∫ t

0

(
σσ T)−1

b̂(s, X̂, θ) · dX̂(s),

M̃(t)
.=
∫ t

0

(
σσ T)−1

b̂(s, X̂, θ̃ ) · dX̂(s),
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we have, with probability one under γ ,

Y(t) = exp
(
M(t) − 1

2
〈M〉(t)

)
, Ỹ (t) = exp

(
M̃(t) − 1

2
〈M̃〉(t)

)
.

Therefore (by Itô’s formula), with probability one under γ ,

Y(t) = 1 +
∫ t

0
Y (s) dM(s), Ỹ (t) = 1 +

∫ t

0
Ỹ (s) dM̃(s), t ∈ [0, T ].

The invertibility of σ and the boundedness assumption (B) imply that

(B.2) sup
t∈[0,T ]

{
Eγ

[∣∣Y(t)
∣∣2]∨ Eγ

[∣∣Ỹ (t)
∣∣2]}≤ eT ·K2‖σ−1‖2 .= eT C0,

where ‖ · ‖ denotes the Hilbert–Schmidt matrix norm. The bound (B.2) holds since

Y(t)2 = exp
(

2M(t) − 1

2
〈2M〉(t)

)
︸ ︷︷ ︸

stochastic exponential under γ

exp
(〈M〉(t)),

while supt∈[0,T ] |〈M〉(t)| ≤ T · C0 γ -almost surely by the Cauchy–Schwarz in-
equality; analogously for the tilde part.

Using Itô’s isometry, (B.2), and assumption (L), we obtain, for every t ∈ [0, T ],
Eγ

[∣∣Y(t) − Ỹ (t)
∣∣2]

= Eγ

[∣∣∣∣
∫ t

0

(
σσ T)−1(

Y(s)b̂(s, X̂, θ) − Ỹ (s)b̂(s, X̂, θ̃ )
) · dX̂(s)

∣∣∣∣2
]

≤
∫ t

0
Eγ

[∥∥σ−1∥∥2∣∣Y(s)b̂(s, X̂, θ) − Ỹ (s)b̂(s, X̂, θ̃)
∣∣2]ds

≤ 2
∥∥σ−1∥∥2

L2eT C0

∫ t

0
ds(θ, θ̃)2 ds + 2C0

∫ t

0
Eγ

[∣∣Y(s) − Ỹ (s)
∣∣2]ds,

hence, thanks to Gronwall’s lemma,

Eγ

[∣∣Y(t) − Ỹ (t)
∣∣2]≤ 2

∥∥σ−1∥∥2
L2e3T C0

∫ t

0
ds(θ, θ̃)2 ds, t ∈ [0, T ].

It follows that, for every t ∈ [0, T ],∣∣Eθ

[
ψ(t, X̂)

]− Eθ̃

[
ψ(t, X̂)

]∣∣2
≤ Eγ

[∣∣Y(t) − Ỹ (t)
∣∣2∣∣ψ(t, X̂)

∣∣2]
≤ ‖ψ‖2∞ · 2

∥∥σ−1∥∥2
L2e3T C0

∫ t

0
ds(θ, θ̃)2 ds.

Step 3. For t ∈ [0, T ], A ∈ Gt , define ψ(A,t) : [0, T ] ×X →R through

ψ(A,t)(s, ϕ)
.=
{

1A(ϕ) if s ≥ t,

0 otherwise.
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Then ψ(A,t) is bounded and progressively measurable with ‖ψ(A,t)‖∞ = 1. By
Step 2, there exists a finite constant C, depending only on T , K , σ , such that for
every t ∈ [0, T ],

sup
A∈Gt

∣∣θ(A) − θ̃ (A)
∣∣2

= sup
A∈Gt

∣∣Eθ

[
ψ(A,t)(t, X̂)

]− Eθ̃

[
ψ(A,t)(t, X̂)

]∣∣2
≤ C ·

∫ t

0
ds(θ, θ̃)2 ds.

By the definition of the total variation semi-distances, it follows that

dt (θ, θ̃ )2 ≤ C ·
∫ t

0
ds(θ, θ̃)2 ds for all t ∈ [0, T ],

hence, thanks to Gronwall’s lemma, dT (θ, θ̃) = 0. Since dT is a true metric, we
obtain θ = θ̃ . �

APPENDIX C: REGULARITY RESULTS

Here we collect some (well-known) regularity results on the exit time τ X̂ with

respect to measures in Qν,K . Recall that τ X̂ is the time of first exit from O on path
space:

τ X̂(ϕ) = τ(ϕ)
.= inf

{
t ≥ 0 : ϕ(t) /∈ O

}
, ϕ ∈ X ,

where O is a bounded open set satisfying (H5).

LEMMA C.1. Let K ≥ 0. Then Qν,K is compact in P(X ).

PROOF. Recall that Qν,K is the set of all laws of processes of the form

X(t) = ξ +
∫ t

0
v(s) ds + σW(t), t ∈ [0, T ],

where W is an R
d -valued (Ft )-Wiener process defined on some filtered probability

space (�,F, (Ft ),P), ξ is an R
d -valued F0-measurable random variable with

distribution P ◦ ξ−1 = ν, and v is an R
d -valued (Ft )-progressively measurable

bounded process with ‖v‖∞ ≤ K . By the boundedness of the control processes
v and the Kolmogorov–Chentsov tightness criterion (for instance, Corollary 16.9
in [24], page 313), we have that Qν,K is tight, hence precompact in P(X ). By
interpreting the control processes v as relaxed controls, using arguments analogous
to those of the second part of the proof of Lemma A.1, one checks that Qν,K

coincides with its own closure. It follows that Qν,K is compact. �
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LEMMA C.2. Let K > 0. Any measure θ ∈ Qν,K is equivalent to �ν . More-
over, there exists a strictly positive constant c0 depending only on d , ν, T and K ,
such that

inf
θ∈Qν,K

Eθ

[
1[0,τ X̂)

(T )
]≥ c0 > 0.

PROOF. Let θ ∈ Qν,K . Let (�,F, (Ft ),P) be a filtered probability space car-
rying an R

d -valued (Ft )-Wiener process W , an R
d -valued F0-measurable random

variable ξ with P ◦ ξ−1 = ν, and an R
d -valued (Ft )-progressively measurable

bounded process v with ‖v‖∞ ≤ K such that the process

X(t)
.= ξ +

∫ t

0
v(s) ds + σW(t), t ∈ [0, T ],

has law P ◦ X−1 = θ . Set

B(t)
.= ξ + σW(t), t ∈ [0, T ].

Define a process Z on (�,F) by setting

Z(t)
.= e− ∫ t

0 σ−1v(s)·dW(s)− 1
2

∫ t
0 |σ−1v(s)|2 ds, t ∈ [0, T ].

Then Z is a martingale with respect to P and (Ft ), and

Q(A)
.= EP

[
Z(T )1A

]
, A ∈ F,

defines a probability measure such that

dQ

d P |Ft

= Z(t) for every t ∈ [0, T ].
By using Girsanov’s theorem as in the first step of the proof of Proposition B.1 and
thanks to the boundedness of v, we find that

W̃
.= σ−1(X(·) − ξ

)= W(·) +
∫ ·

0
σ−1v(s) ds

is an (Ft )-Wiener process under Q,

Q ◦ X−1 = P ◦ (ξ + σW)−1 = P ◦ B−1,

and

d P
dQ |Ft

= 1

Z(t)
for every t ∈ [0, T ].

Since a d-dimensional Brownian motion stays in an open ball for any fixed finite
time with strictly positive probability, there exists a constant c0 > 0 depending only
on d , ν and T , such that

inf
t∈[0,T ] EP

[
1[0,τB)(t)

]= EP
[
1[0,τB)(T )

]≥ c0 > 0.
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Using Hölder’s inequality, we find that

Eθ

[
1[0,τ X̂)

(T )
]= EP

[
1[0,τX)(T )

]
= EQ

[
1

Z(T )
· 1[0,τX)(T )

]

≥ EQ

[√
1[0,τX)(T )

]2 EQ

[
Z(T )

]−1

= EP

[
1[0,τB)(T )

]2 EQ

[
Z(T )

]−1 ≥ c2
0

EQ[Z(T )] .
Now,

Z(T ) = e− ∫ T
0 σ−1v(s)·dW̃(s)− 1

2

∫ T
0 |σ−1v(s)|2 ds︸ ︷︷ ︸

corresponds to a Q-stochastic exponential

· e
∫ T

0 |σ−1v(s)|2 ds,

hence
1

EQ[Z(T )] ≥ e−T ·‖σ−1‖2·‖v‖2∞ . �

LEMMA C.3. Let K > 0, and let θ ∈ Qν,K . Then the following hold:

(a) τ X̂ < ∞ θ -almost surely;
(b) the mapping X � ϕ 
→ τ X̂(ϕ) ∈ [0,∞] is continuous θ -almost surely;
(c) θ(τ X̂ = t) = 0 for every t ≥ 0;
(d) the mapping X � ϕ 
→ 1[0,τ X̂(ϕ))

(t) ∈ R is continuous θ -almost surely for
every t ≥ 0.

PROOF. Since θ is equivalent to �ν by Lemma C.2, it is enough to check the
above properties for θ = �ν .

Property (a) is a consequence of the law of the iterated logarithm (as time tends
to infinity), the nondegeneracy of σ , and the fact that O is bounded. Property (b)
follows again from the law of the iterated logarithm, now as time goes to zero, the
nondegeneracy of σ and the fact that O is open with smooth boundary; cf., for
instance, Kushner and Dupuis [29], pages 260–261.

Property (d) is a consequence of properties (b) and (c). As to (c), by continuity
of trajectories,

�ν

(
τ X̂ = t

)≤ �ν

(
X̂(t) ∈ ∂O

)
for every t ≥ 0.

The boundary ∂O has Lebesgue measure zero as it is bounded and of class
C2 by hypothesis. By the nondegeneracy of σ , X̂(t) is absolutely continuous

w.r.t. Lebesgue measure, hence �ν(X̂(t) ∈ ∂O) = 0. It follows that �ν(τ
X̂ =

t) = 0. �



2238 L. CAMPI AND M. FISCHER

APPENDIX D: ASSUMPTIONS (C) AND (L)

Throughout this section, we assume that b̂ is defined by (5.4), that is, for
(t, ϕ, θ) ∈ [0, T ] ×X ×P(X ),

b̂(t, ϕ, θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u(t, ϕ) + b̄

(
t, ϕ(t),

∫
w(ϕ̃(t))1[0,τ (ϕ̃))(t)θ(dϕ̃)∫

1[0,τ (ϕ̃))(t)θ(dϕ̃)

)
if θ(τ > t) > 0,

u(t, ϕ) + b̄
(
t, ϕ(t),w(0)

)
if θ(τ > t) = 0,

where w is bounded continuous according to hypotheses (H1) and (H2), b̄ is
bounded measurable and Lipschitz in its third variable according to (H1) and (H3),
b̄(t, ·, ·) is continuous uniformly in t ∈ [0, T ] thanks to (H2) and u is a feedback
strategy such that, for Lebesgue-almost every t ∈ [0, T ],

�ν

({
ϕ ∈ X : u(t, ·) is discontinuous at ϕ

})= 0.

We are going to show that b̂ thus defined satisfies conditions (C) and (L) above.
To establish condition (C), choose K ≥ ‖b̂‖∞. We have to show that for

Lebesgue almost every t ∈ [0, T ], every θ ∈Qν,K ,

�ν

(
ϕ ∈ X : ∃(ϕn, θn) ⊂X ×P(X ) s.th. b̂(t, ϕn, θn) �→ b̂(t, ϕ, θ)

while (ϕn, θn) → (ϕ, θ)
)= 0.

(D.1)

Let t ∈ [0, T ] be such that u(t, ·) is �ν-almost surely continuous; this is true for
Lebesgue almost every t ∈ [0, T ] by the continuity assumption on u. Let θ ∈ Qν,K .
Using Part (d) of Lemma C.3, we find At,θ ∈ B(X ) such that �ν(At,θ ) = 1 and,
for every ϕ ∈ At,θ , the mappings u(t, ·) and 1[0,τ X̂(·))(t) are continuous at ϕ. In
view of Part (b) of Lemma C.3, one can choose At,θ such that also the mapping

τ X̂(·) is continuous on At,θ . Since �ν and θ are equivalent, we have θ(At,θ ) = 1.
Now, let ϕ ∈ At,θ , and let (ϕn, θn) ⊂ X ×P(X ) be such that (ϕn, θn) → (ϕ, θ) as
n → ∞. Then, by the mapping theorem and since 1[0,τ X̂(·))(t) is θ -almost surely
continuous, ∫

X
1[0,τ (ϕ̃))(t)θn(dϕ̃)

n→∞−→
∫
X

1[0,τ (ϕ̃))(t)θ(dϕ̃).

Since w is bounded and continuous, we also have∫
X

w
(
ϕ̃(t)

) · 1[0,τ (ϕ̃))(t)θn(dϕ̃)
n→∞−→

∫
X

w
(
ϕ̃(t)

) · 1[0,τ (ϕ̃))(t)θ(dϕ̃).

In view of Lemma C.2,∫
X

1[0,τ (ϕ̃))(t)θ(dϕ̃) = Eθ

[
1[0,τ X̂)

(t)
]= θ(τ > t) > 0.
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Since b̄(t, ·, ·) is bounded and continuous, it follows that

b̂(t, ϕn, θn) = u(t, ϕn) + b̄

(
t, ϕ(t),

∫
w(ϕ̃(t))1[0,τ (ϕ̃))(t)θn(dϕ̃)∫

1[0,τ (ϕ̃))(t)θn(dϕ̃)

)

n→∞−→ u(t, ϕ) + b̄

(
t, ϕ(t),

∫
w(ϕ̃(t))1[0,τ (ϕ̃))(t)θ(dϕ̃)∫

1[0,τ (ϕ̃))(t)θ(dϕ̃)

)

= b̂(t, ϕ, θ),

and we conclude that (D.1) holds.
As to condition (L) from Appendix B, we have to show that, given K ≥ ‖b̂‖∞,

there exists L > 0 (possibly depending on d , ν, T and K) such that for all t ∈
[0, T ], all ϕ ∈X ,

(D.2)
∣∣b̂(t, ϕ, θ) − b̂(t, ϕ, θ̃)

∣∣≤ L · dt (θ, θ̃) whenever θ, θ̃ ∈ Qν,K.

Thanks to Lemma C.2,

inf
t∈[0,T ] inf

θ∈Qν,K

θ(τ > t) = inf
θ∈Qν,K

θ(τ > T ) ≥ c0 > 0

for some strictly positive constant c0 depending only on d , ν, T and K . Denote by
L̄ the Lipschitz constant of b̄ with respect to its third variable according to (H3).
Let θ, θ̃ ∈ Qν,K . Then for all ϕ ∈X ,∣∣b̂(t, ϕ, θ) − b̂(t, ϕ, θ̃)

∣∣
=
∣∣∣∣b̄
(
t, ϕ(t),

∫
w(ϕ̃(t))1[0,τ (ϕ̃))(t)θ(dϕ̃)

θ(τ > t)

)

− b̄

(
t, ϕ(t),

∫
w(ϕ̃(t))1[0,τ (ϕ̃))(t)θ̃ (dϕ̃)

θ̃ (τ > t)

)∣∣∣∣
≤ L̄

c0

∣∣∣∣
∫

w
(
ϕ̃(t)

)
1[0,τ (ϕ̃))(t)θ(dϕ̃) −

∫
w
(
ϕ̃(t)

)
1[0,τ (ϕ̃))(t)θ̃ (dϕ̃)

∣∣∣∣
+ L̄

c2
0

· ‖w‖∞ · ∣∣θ(τ > t) − θ̃ (τ > t)
∣∣.

By definition and since {τ > t} ∈ Gt ,∣∣θ(τ > t) − θ̃ (τ > t)
∣∣≤ dt (θ, θ̃).

The measures θ , θ̃ are both equivalent to �ν , and their restrictions to Gt are equiva-
lent to the restriction of �ν to Gt . Denoting by Zt and Z̃t , respectively, the densities
with respect to the restriction of �ν , we have

dt (θ, θ̃ ) = 1

2

∫
X

∣∣Zt(ϕ̃) − Z̃t (ϕ̃)
∣∣�ν(dϕ̃).
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It follows that∣∣∣∣
∫

w
(
ϕ̃(t)

)
1[0,τ (ϕ̃))(t)θ(dϕ̃) −

∫
w
(
ϕ̃(t)

)
1[0,τ (ϕ̃))(t)θ̃ (dϕ̃)

∣∣∣∣
≤ 2‖w‖∞ · dt (θ, θ̃ ).

Consequently, for all t ∈ [0, T ], all ϕ ∈ X , all θ, θ̃ ∈ Qν,K ,

∣∣b̂(t, ϕ, θ) − b̂(t, ϕ, θ̃)
∣∣≤ L̄

c2
0

· ‖w‖∞(2c0 + 1) · dt (θ, θ̃),

which implies (D.2).

APPENDIX E: RELAXED CONTROLS

In the proofs of Section 5, Appendix A and Appendix C, we need the concept of
relaxed controls. For a Polish space S , let RS denote the space of all deterministic
S-valued relaxed controls over the time interval [0, T ], that is,

RS
.= {r : r positive measure on B

(
S × [0, T ]) : r(S × [0, t])= t, t ∈ [0, T ]}.

If r ∈ RS , then the time derivative of r exists almost everywhere as a measur-
able mapping ṙt : [0, T ] → P(S) such that r(dy, dt) = ṙt (dy) dt . The topology of
weak convergence of measures turns RS into a Polish space. Notice that RS is
compact if S is compact. Any S-valued (Ft )-adapted process α defined on some
filtered probability space (�,F,P) induces an RS -valued random variable ρ, the
corresponding stochastic relaxed control, according to

ρω(B × I )
.=
∫
I
δα(t,ω)(B)dt, B ∈ B(�), I ∈ B

([0, T ]),ω ∈ �.

The random measure ρ is (Ft )-adapted in the sense that its restriction to S ×
[0, t] is Ft -measurable for every t ∈ [0, T ] or, equivalently, that (a version of) the
time derivative process ρ̇· is (Ft )-adapted. For details on relaxed controls, see, for
instance, El Karoui et al. [15] or Kushner [28].
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