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Abstract

Time-of-Flight (ToF) sensors and stereo vision systems are both capable of
acquiring depth information but they have complementary characteristics
and issues. A more accurate representation of the scene geometry can be
obtained by fusing the two depth sources. In this paper we present a novel
framework for data fusion where the contribution of the two depth sources
is controlled by confidence measures that are jointly estimated using a Con-
volutional Neural Network. The two depth sources are fused enforcing the
local consistency of depth data, taking into account the estimated confidence
information. The deep network is trained using a synthetic dataset and we
show how the classifier is able to generalize to different data, obtaining re-
liable estimations not only on synthetic data but also on real world scenes.
Experimental results show that the proposed approach increases the accu-
racy of the depth estimation on both synthetic and real data and that it is
able to outperform state-of-the-art methods.
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1. Introduction

There exist many different devices and algorithms for real-time depth
estimation including active lighting devices and passive systems using only
regular cameras. The first family includes structured light cameras and Time-
of-Flight (ToF) sensors while the most notable example of the second family
are the stereo cameras. None of these solutions is completely satisfactory.

1All authors equally contributed to the work.
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Active devices like Time-of-Flight and structured light cameras are able to
robustly estimate the 3D geometry independently of the scene content but
they have a limited spatial resolution, a high level of noise and a reduced
accuracy on low reflective surfaces. Passive stereo vision systems, although
widely used for their simplicity and low cost of the hardware setup, have var-
ious limitations, in particular their accuracy strongly depends on the scene
content and the acquisition is not very reliable on uniform or repetitive re-
gions. On the other side, passive stereo vision systems have a high resolution
and a limited amount of noise. The characteristics of the two families of
devices are complementary and the fusion of data from the two systems has
been the subject of several research studies in the last years.

This paper proposes a depth estimation algorithm that combines stereo
and ToF data together extending the approach presented in [1]. Several
approaches have been proposed for the fusion of stereo and ToF data (see
Section 2), but they all rely on deterministic schemes, while the proposed
method is the first to use machine learning (and more specifically deep learn-
ing) for this task.

An effective solution for this task needs two fundamental tools: the es-
timation of the reliability of the data acquired by the two devices at each
location and a fusion algorithm that uses this information to properly com-
bine the two data sources. The reliability of ToF data has been traditionally
estimated by modeling the noise of such sensors [2]. ToF sensors are typically
affected by various sources of error. Shot noise can be estimated from the am-
plitude and intensity of the received signal, but the estimation of the impact
of errors related to ToF working principles, like mixed pixels and the multi-
path error, is more challenging. In particular, the latter is very difficult to
be directly estimated and compensated, because the light rays are scattered
multiple times before reaching the sensor. A key contribution of this work
is the use of a machine learning framework to estimate confidence informa-
tion for ToF data. Deep learning techniques and in particular Convolutional
Neural Networks (CNNs) increase the performance of many computer vision
tasks including the estimation of depth data reliability [3]. However, CNNs
have never been applied to the estimation of ToF data reliability, mostly due
to the lack of large datasets with ToF depth and ground truth information,
their acquisition being challenging and time consuming. For this reason, in
this paper we investigate the possibility of training a suitable CNN using
synthetic data while testing its performance on real world data. This is a
key difference with [1] that was dealing with synthetic data only.
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Stereo confidence data are typically estimated with metrics based on the
analysis of the shape of the cost function [4]. These metrics capture the
effects of the local matching cost computation, but most recent stereo vision
techniques use more complex global optimization schemes whose behavior is
not captured by standard metrics. To obtain an estimation of the confidence
that is more accurate and coherent with the ToF data, we use the same deep
learning framework to jointly estimate the stereo and ToF confidences. In
data fusion applications, confidence information is used to decide which data
source should be trusted more and what really matters is the ratio between
the two confidence values at each location rather than their absolute value.
By using a single deep network jointly estimating the two measures we obtain
a confidence measure that fits particularly well the fusion application.

More in detail, the proposed algorithm extends the work presented in [1]:
it starts from reprojecting the ToF data to the stereo camera viewpoint in
order to have all the data in the same reference system. Also, ToF data are
upsampled to the spatial resolution of the stereo setup by using a combination
of segmentation clues and bilateral filtering [5]. Then, confidence information
for both ToF and stereo depth data are jointly estimated with an ad-hoc
CNN that takes in input multiple clues, i.e., the stereo and ToF disparities,
the ToF amplitude and the difference between the reference image and the
target one warped over it according to disparity information, providing a hint
of the stereo matching accuracy. The construction of the input data for the
network and the deep learning architecture include some difference w.r.t. [1]
to improve the performance and the generalization capabilities when testing
the framework on real world data. Finally, we use an extended version of
the Local Consistency (LC) framework [5, 6] that is capable of using the
confidence information to perform the fusion of the two data sources.

As already pointed out, CNNs training requires a good amount of data
with the corresponding ground truth information. At the time of writing
there are no available datasets collecting these data and furthermore the
acquisition of accurate ground truth data for real world 3D scenes is a chal-
lenging operation. For this reason we rendered 55 different 3D synthetic
scenes using Blender [7] with examples of various acquisition issues includ-
ing reflections, global illumination and repetitive patterns. Realistic stereo
and ToF data have been simulated for the rendered scenes using LuxRen-
der [8] and a simulator realized by Sony EuTEC starting from the work of
Meister et al. [9]. We used this dataset, that represents another contribution
of this paper, to train the proposed CNN. The use of a larger dataset also
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allowed us to perform a more reliable experimental evaluation with respect
to competing approaches that have been typically tested only on a few sam-
ple scenes. To evaluate the effectiveness of our approach in the real world
scenario, we also acquired a real world dataset using a Kinect v2 and a ZED
stereo camera. Ground truth depth information for this dataset has also been
acquired. The proposed confidence estimation strategy not only proved to
be able to accurately estimate a confidence measure for both stereo and ToF
synthetic depth data but also demonstrated good generalization properties
being able to properly estimate the reliability of real world data even if only
synthetic information was used in the training process. The results have also
been computed on a third dataset used by some previous works [5, 6] to
provide a more extensive comparison with state-of-the-art approaches.

The related works are summarized in Section 2. Then, Section 3 intro-
duces the general architecture of the proposed approach. Section 4 describes
the deep learning network used to compute confidence information. The fu-
sion algorithm is described in Section 5. The real and synthetic datasets are
described in Section 6 and the results are discussed in Section 7. Finally,
Section 8 draws the conclusions.

2. Related Works

Depth estimation using stereo vision cameras is a long term research
field and a large number of different approaches have been proposed and
tested on public data like the Middlebury [10] and KITTI [11] benchmarks.
A good review on this topic is [12]. Despite the large amount of research
and the continuous improvement of the performance of these methods, the
depth estimation accuracy of stereo systems depends on many factors, and
in particular on the photometric content of the scene. The estimation is
less accurate in regions with fewer details, i.e., when the scene contains a
limited amount of texture, or on repetitive patterns. Since the accuracy
can vary considerably between different scenes or even different regions of
the same scene, it is important to estimate the confidence of the computed
data. Until a few years ago, the confidence information for stereo systems
used to be computed mostly by analyzing some key properties of the stereo
matching cost function. A comprehensive review of this family of approaches
is [4]. Recently, machine learning thechniques started to be used for this task,
first with traditional approaches (e.g., Random Forests), then by using deep
learning techniques. A very recent review of machine learning approaches for
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stereo confidence computation is [3]. An example of approach of this family
is [13], that uses a CNN to estimate the confidence information from image
patches. A two channel image patch representation is used also by [14], while
[15] improves standard confidence metrics by enforcing the local consistency
of the confidence maps with a deep network.

On the other side, ToF cameras represent a quite robust solution for
depth acquisition [16, 17, 2, 18, 19, 20]. The various low cost depth cameras
available on the market can acquire depth information in real-time and are
more robust to the scene content with respect to stereo systems, in particular
they can estimate the depth also in regions without texture or with repetitive
patterns. On the other side, ToF cameras have their own limitations, e.g.,
the resolution is typically lower than standard cameras and they are noisy.
These cameras are also affected by other sources of errors like the multi-path
interference and the mixed pixel effect. A detailed analysis of the various
error sources has been presented in [19] while [20] focuses on the effects
of the reflectivity of the scene on the depth accuracy. There exist large
datasets acquired with ToF sensors for other computer vision applications like
semantic segmentation [21, 22], gesture recognition [23] and face recognition
[24], but they all lack ground truth depth data that is very time consuming
to acquire. For this reason the confidence of ToF data is typically computed
with deterministic schemes. A very recent work [25] uses deep learning for
ToF data denoising.

ToF cameras and stereo vision systems rely on completely different depth
estimation principles. For this reason, they have complementary characteris-
tics and the fusion of the data acquired from the two sources should produce
more accurate measures. Several different approaches for the combination
of stereo and ToF data have been proposed. Comprehensive reviews of the
topic can be found in [26] and [2].

A possible approach is to model the problem with a MAP-MRF Bayesian
formulation and optimize a global energy function with belief propagation.
This technique has been used by various works of Zhu et Al. [27, 28, 29].
A probabilistic formulation has been used in [30] that computes the depth
map with a ML local optimization. The approach has been extended in [31]
that adds a global MAP-MRF optimization scheme. A second possibility
is to use a a variational fusion framework. Examples of this family are the
methods of [32], that also uses confidence measures for the ToF and stereo
vision systems to drive the process, and the works of Chen et Al. [33, 34],
that combines the variational approach with edge-preserving filtering.
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A different solution is proposed in [35], that computes the depth data by
solving a set of local energy minimization problems. Another solution is to
use a locally consistent framework [36] to fuse the two data sources. The
idea has been firstly introduced in [5], then improved in [6] by adding the
confidence information for the two data sources. Finally [1], that represent
the starting point for the proposed work, extends the work of [6] by introduc-
ing a more refined confidence estimation strategy relying on deep learning
techniques. However this work deals only with synthetic data while in this
journal extension we extend the approach to real world scenes.

Another task related to stereo-ToF data fusion is the improvement of
ToF depth with the information coming from a single color camera. For this
task many different strategies have been proposed [37, 38, 39, 40, 41, 42].
Common approaches include solutions based on bilateral filtering [38, 39],
on edge-preserving interpolation schemes [41] and on the development of
confidence information for ToF data [40].

3. Proposed Method

The target of the proposed work is to combine the data from a ToF
camera with a stereo vision system in order to extract an accurate depth
representation. Both devices are able to produce an estimation of depth
data from the corresponding viewpoint and the proposed method combines
these two representations to provide a dense and more accurate depth map
from the point of view of one of the color cameras of the stereo setup.

The combination of the two depth fields requires to firstly bring the data
into a common reference system. To this purpose it is necessary to jointly
calibrate the two sensors. In this work the experimental evaluation is per-
formed with both synthetic and real world data. The calibration task is
trivial for the case of synthetic information, since camera parameters can be
directly extracted from the simulation software, but the accurate calibration
of real world Time-of-Flight and stereo systems is challenging.

Depth cameras are usually pre-calibrated by proprietary algorithms, and
the calibration parameters are stored in the device during manufacturing
and made accessible to the user only by official drivers. The manufacturer
calibration allows to extract 3D locations relative to the camera viewpoint
but for the fusion application it is also necessary to get the relative position
between the depth camera and the stereo setup.
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In order to solve this task we used an extension of the approach of Zhang
[43] for camera calibration with a regular black and white checkerboard.
This method requires to acquire images of the planar checkerboard from
different positions and orientations. We collected approximately 30 images of
a checkerboard visible from all the sensors and then run a checkerboard corner
detector on all the images obtaining for each camera n (in our case there are
just 3 cameras) and for each pose k a set of J points pjn,k. For the ToF
camera we used the amplitude image (the corners are obviously not visible
on the depth data) while for the stereo camera we used the color images. The
calibration parameters are estimated by minimizing the Euclidean distance
between the planar positions of the measured and the projected 3D points
after anti-distortion, given by

min
Kn;dn;Rn,k;tn,k

N∑
n=1

M∑
k=1

J∑
j=1

δjn,k‖p
j
n,k − f(Kn; dn; Rn,k; tn,k; P

j)‖22 (1)

where pjn,k is the projection of the 3D feature P j with coordinates Pj on

the n-th camera at the k-th pose of the checkerboard, δjn,k is 1 if P j is vis-
ible by the n-th camera at the k-th pose and 0 otherwise. The function
f(Kn; dn; Rn,k; tn,k; P

j) accounts for projection and distortion. The mini-
mization of (1) is solved by nonlinear optimization techniques such as the
Levenberg-Marquardt method. Matrices Rn,k and tn,k describes the k-th
checkerboard pose with respect to the n-th camera. Given that Rn→m and
tn→m are the rotation and translation matrices relating cameras n and m,
the following relationships hold

Rm,k = Rn,kRn→m

tm,k = Rn,ktn→m + tn,k.
(2)

from which one can retrieve the pose of a given camera with respect to the
reference camera.

The proposed algorithm is divided into four main steps (see Figure 1):

1. The depth information acquired from the ToF sensor is reprojected
to the reference color camera viewpoint and interpolated to the same
resolution of the color cameras. The interpolation is necessary since
ToF sensors have typically a low resolution, specially if compared with
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Figure 1: Flowchart of the proposed approach.

modern color cameras. The approach used for this task has been de-
rived from [5]: we used an extended version of the cross bilateral filter
where the filter is driven by three terms, the standard spatial Gaus-
sian weighting, the range term computed on the color image and an
additional segmentation-based term that depends on a segmented ver-
sion of the color image computed with Mean-Shift clustering [44]. This
procedure allows us to produce a high resolution depth map aligned
with the color camera lattice that will be used by the fusion algorithm.
Finally, the depth map is converted to a disparity map, since the fusion
algorithm works in disparity space. More details on this step can be
found in [5, 6].

2. In parallel, the the Semi-Global Matching (SGM) stereo vision algo-
rithm [45] is used to compute a high resolution disparity map from
the stereo pair. We selected this algorithm since it provides a good
compromise between computation time and performance, however the
proposed approach is independent of the selected stereo vision algo-
rithm.

3. After obtaining the two disparity fields, confidence information is jointly
estimated for the stereo and ToF disparity maps using the CNN archi-
tecture presented in Section 4.

4. Finally the reprojected and interpolated ToF disparity and the stereo
disparity are fused using an extended version of the Locally Consistent
(LC) algorithm [36, 6]. This step is described in Section 5.
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4. Confidence Estimation with Deep Learning

A fundamental step in order to reliably fuse the two disparity maps is their
per-pixel confidence estimation. To this purpose, we designed and trained
a 6-layer CNN that takes in input different clues from ToF and stereo data
and jointly uses the information from both devices to infer the two confi-
dence maps. In particular, the proposed CNN takes in input four channels
associated to the following clues:

• A difference map ∆ encoding for mismatches between corresponding
visual cues in the stereo image pair.

• The stereo disparity map DS.

• The ToF disparity map DT obtained from the ToF depth map after
reprojection on the reference camera and conversion to the disparity
space.

• The ToF amplitude image reprojected on the reference camera of the
stereo vision system AT .

Since raw input data correspond to different sources of information com-
ing from heterogeneous sensors, a lightweight pre-processing stage is needed
to convert such data into the desired form.

The first clue ∆ aims providing a rough measure of the accuracy of the
disparities computed by the stereo algorithm. The idea is that accurate
disparity estimates are likely to result in pairs of corresponding pixels with
similar values in the reference and target stereo images respectively. On
the contrary, corresponding pixels computed using inaccurate disparities are
likely to hold different values since they correspond to different parts of the
scene. In order to compute ∆, both the reference and target stereo images are
first converted to grayscale images giving IR and IT respectively. The target
grayscale image IT is then reprojected on the reference camera using the
stereo disparity, thus obtaining the image I ′T . Finally, the absolute difference
between IR and I ′T is taken, leading to

∆ =
∣∣∣IR − I ′T ∣∣∣ (3)

The stereo disparity clue DS is directly obtained from the stereo disparity
map while the ToF disparity clue DT is derived from the ToF depth map
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first by reprojecting it on the reference viewpoint then by converting it to
the disparity space. Similarly, the last clue A is derived by reprojecting the
ToF amplitude image onto the reference frame. Finally, the four clues ∆,
DT , DS and AT are packed together in a four-channel input tensor where
each channel is independently normalized to the unit interval by applying an
appropriate scaling factor. Such tensor can be fed to the CNN to produce
as output two confidence maps PT and PS for the ToF and stereo disparity
respectively.
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Figure 2: Architecture of the proposed deep learning framework. A 4-channel training
patch of size 128× 128 [pxl] is fed to a CNN with 6 convolutional layers: the figure shows
the number of filters, their spatial kernel sizes and the size of the outputs for each layer.

The proposed CNN architecture is shown in Figure 2. The network is
made of a stack of six convolutional layers (CONV) each followed by a Para-
metric Rectified Linear Unit (PReLU) activation layer, except for the last
convolutional layer. The PReLU activation function [46] has been chosen
over the standard Rectified Linear Unit (ReLU) activation to prevent the
dead-neuron effect caused by negative inputs entering the ReLU zero-slope
region. In our experiments, we set the slope of the negative part of the
PReLU activation function to 0.02.

The first five layers are assigned an increasing number of filters, namely
64, 128, 128, 128 and 256 respectively. Filter kernels in the first convolutional
layer have a spatial size of 5× 5 [pxl], while kernels in all subsequent layers
are 3 × 3 [pxl] wide. The last convolutional layer has only two filters in
order to produce, as output, a 2-channel tensor, the two channels encoding
for the estimated ToF and stereo confidence respectively. To produce an
output with the same resolution of the input, no pooling layers are used. At
the same time, to cope with the size reduction at the boundaries due to the
convolution operation, each convolutional layer applies a suitable padding to
its input along each spatial dimension, where padded values are set to be
equal to the values at the boundary.
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4.1. Training of the Convolutional Neural Network

The proposed architecture has been trained on the synthetic dataset de-
scribed in Section 6.1. Although this dataset is smaller if compared with
other machine learning datasets, it is the largest dataset for ToF and stereo
data fusion containing depth ground truth depth information. We decided
to train the network on patches randomly selected from the various scenes
instead of using whole images in order to increase the number of training
examples. In particular, we generated a large set of training examples by
randomly extracting 30 patches of size 128 × 128 [pxl] from each of the 40
scenes contained in the training set. Moreover, to increase the robustness and
variability of the training data, we also augmented the dataset by applying
random rotations of ±5◦ as well as horizontal and vertical flipping. Following
the augmentation process, a set of about 6000 patches has been generated
starting from the 1200 patches initially extracted from the original dataset,
thus forming the actual input data used for the training. The training data
has been further split into a training set and a validation set. Validation
data has been used to select the network layout and parameters. Some ab-
lation studies and results obtained with different network architectures are
presented in Section 7.4, in general deeper and more complex architectures
led to a smaller training error but there is no improvement in the validation
error and in the fusion results due to overfitting on the not too large training
dataset.

The two target confidence maps needed for training have been derived
by taking the negative exponential of the absolute error gap between the
ground truth depth information converted to disparity values DGT and the
ToF and stereo disparities DT and DS respectively, according to the following
formulation:

P ∗T = e−|DT−DGT |

P ∗S = e−|DS−DGT |
(4)

The network has been trained to minimize a canonical quadratic loss
function computed as the Mean Squared Errors (MSE) between the predicted
ToF and stereo confidence maps PT and PS and their corresponding target
confidences from Equation (4), i.e.

Loss =
∑

(PT − P ∗T )2 +
∑

(PS − P ∗S)2 (5)
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where two summations are taken over the spatial dimensions. Using a single
network minimizing a loss function that combines both ToF and stereo error
provided better results than training two separate networks to infer ToF and
stereo confidences separately.

The optimization has been performed with the AdaDelta algorithm [47].
The process has been carried out using a batch size of 32 and an initial
learning rate equal to 0.01. In each convolutional layer, the kernel weights
have been initialized following the procedure proposed by He et al. in [46],
while all bias values have been initially set to zero.

Both the CNN model as well as the whole optimization and evaluation
framework have been implemented using the TensorFlow library [48]. The
training stage runs for 500 epochs and takes about 8 hours on a desktop PC
with an Intel i7-4790 CPU and an NVIDIA Titan X (Pascal) GPU.

5. Fusion of Stereo and ToF Disparity

The confidence estimated by the deep learning framework of Section 4
can be used to combine the two depth fields coming from the two sensors.
The fusion of the upsampled ToF data with the stereo disparity is performed
using an extended version of the Locally Consistent (LC) approach.

This method was firstly introduced in [36] for the refinement of stereo
disparity data. It refines the disparity estimation by propagating, within an
active support centered on the considered point f , the plausibility Pf,g(d)
of the disparity assignment coming from other points g inside the active
support. The plausibility of a disparity hypothesis d depends on the color
and spatial consistency of the considered pixels:

Pf,g(d) = e−
∆f,g
γs · e−

∆
ψ
f,g
γc · e−

∆
ψ
f ′,g′
γc · e−

∆ω
g,g′
γt

(6)

where f, g and f ′, g′ refer to the coordinates in the left and right image respec-
tively, ∆ accounts for spatial proximity, ∆ψ and ∆ω encode color similarity,
and the parameters γs, γc and γt control the relative relevance of the various
terms (a detailed description can be found in [36]). The overall plausibility
Ωf (d) of a disparity hypothesis d is computed by aggregating the plausibility
for the same disparity value propagated from neighboring points, i.e.:

Ωf (d) =
∑
g∈A

Pf,g(d). (7)
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Finally a winner-takes-all strategy is used to compute the optimal disparity
value.

A first extension of the approach has been presented in [5] to account
for multiple disparity hypotheses as in the case of our setup. The approach
of [5] allows to obtain quite good results in the fusion of the two disparity
fields but has the key limitation that assigns the same weight to the two data
sources without accounting for their reliability.

For this reason the method has been further extended in [6] by assigning
different weights to the plausibilities according to the estimated confidence
value for each depth acquisition system computed at each pixel location g:

Ω′f (d) =
∑
g∈A

(
PT (g)Pf,g,T (d) + PS(g)Pf,g,S(d)

)
(8)

where Ω′f (d) is the plausibility at point f for disparity hypothesis d, Pf,g,T (d)
is the plausibility propagated by neighboring points g according to ToF data
and Pf,g,S(d) is the one according to stereo data. Finally PT (g) and PS(g)
are the ToF and stereo confidence values at location g respectively. Another
improvement to the LC method introduced in [6] is the depth estimation
at subpixel precision that allows to obtain a better accuracy. In [6] the
confidence information is computed with a deterministic algorithm based on
the noise model for the ToF sensor and on the cost function analysis for the
stereo system, while in the proposed approach the confidence is estimated
with the deep learning architecture of Section 4. For the experimental results
of this work the parameters have been set to γs = 8, γc = 6 and γt = 4.
Finally notice how the proposed framework can easily be extended to setups
with more than two input channels in order to perform the fusion of multiple
sensors based on different technologies.

6. Stereo and ToF Datasets

To train the deep network and to evaluate the performance of the pro-
posed approach we acquired two different datasets. The first one, SYNTH3,
is a synthetic dataset containing 55 different scenes with very different char-
acteristics. The second one, REAL3, contains a small number of scenes
acquired with a real world trinocular setup made by a ZED stereo camera
and a Microsoft Kinect v2 ToF depth camera.
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6.1. Synthetic Dataset

The first dataset we built is the SYNTH3 synthetic dataset [1], which has
been generated using the Blender 3D rendering software [7]. We downloaded
a set of 3D Blender scenes from the Blend Swap website [49] that have
been appropriately modified and rendered from virtual cameras viewpoints
in order to generate the stereo-ToF dataset. The virtual acquisition setup
is made of a stereo system with characteristics resembling the ones of the
ZED stereo camera [50] and a ToF camera with characteristics similar to a
Microsoft Kinect v2 [51, 2]. The complete system is depicted in Figure 3,
while Table 1 summarizes the parameters of the cameras. More in detail:

Stereo vision system The color images have been generated using Blender
and the 3D renderer LuxRender [8]. The stereo setup is made of two
Full-HD (1920× 1080) color cameras with a baseline of 12 cm and the
optical axes and image planes parallel to each other. Notice that these
parameters resembles the ones of the ZED camera from Stereolabs used
in the real world dataset. Since the cameras are ideal and their optical
axes are already aligned there is no need to rectify the two color views,
as instead is done for the real world data.

ToF depth camera The data captured by the ToF camera have instead
been computed by using the ToF-Explorer simulator developed by Sony
EuTEC. The ToF-Explorer simulator is an extended version of the sim-
ulator from Heidelberg University [9] that is able to accurately simulate
the data acquired by a real ToF camera including different sources of
error as shot noise, thermal noise, read-out noise, lens effect, mixed
pixels and the interference due to the global illumination (multi-path
effect). The ToF simulator takes in input the scene information gener-
ated by Blender and LuxRender. We acquired with the simulator the
512×424 [pxl] depth and amplitude maps (the resolution and the other
simulator parameters have been set in order to emulate the KinectTM v2
camera used in the real world setup). The image plane and optical axis
of the ToF camera are parallel to those of the stereo camera and the
ToF viewpoint is placed under the right camera of the stereo system at
a distance of 4 cm.

Moreover, the dataset contains also the scene depth ground truth relative
to the point of views of the ToF camera and right color camera of the stereo
system.
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Figure 3: Representation of the synthetic Stereo-ToF acquisition system. The ToF sensor
is placed below the color camera.

Stereo setup ToF camera
Resolution 1920× 1080 512× 424

Horizontal FOV 69◦ 70◦

Focal length 3.2 mm 3.66 mm
Pixel size 2.2 µm 10 µm

Table 1: Parameters of the stereo and ToF sensors.
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The training set contains 20 unique scenes each rendered from 2 dif-
ferent viewpoints, leading to a total of 40 scenes split into a training and
a validation set. Even if the number of scenes is low if compared with
datasets used for the training of deep networks for other tasks, it is still
the largest dataset for stereo-ToF fusion currently available. Furthermore,
the scenes are very different one from the other representing different con-
ditions. The test set instead contains 15 unique scenes. The various scenes
contain walls, furniture and objects of various shapes and color in different
environments, e.g., living rooms, kitchen rooms or offices but also outdoor
locations with non-regular structures. The depth range is also very different
across the various scenes ranging from about 50 cm to 10 m thus provid-
ing a large range of measurements. The dataset is publicly available at
http://lttm.dei.unipd.it/paper data/deepfusion.

6.2. Real World Dataset

The second dataset, REAL3, is a real world dataset acquired with a
Microsoft Kinect v2 depth camera and a ZED stereo camera. In addition,
it also contains the ground truth information generated from the left stereo
camera point of view.

We decided to use consumer depth cameras as opposed to expensive pro-
fessional equipments. In particular the depth cameras used in the collection
are:

Stereo vision system We used the ZED camera from Stereolabs [50]. This
depth camera based on a passive stereo technology is equipped with two
4MP cameras that provide images up to 2208 × 1242 [pxl] at 15 fps.
The sensor is able to provide images up to 100 fps at a lower resolution.
The baseline is of 120 [mm] and the diagonal field of view is 110◦.

ToF depth camera One of the best consumer ToF depth cameras is the
KinectTM v2. Compared to other ToF cameras it provides a cleaner
and denser depth map and is also the consumer ToF camera with the
largest resolution. The KinectTM v2 is able to acquire a 512× 424 [pxl]
depth map at 30 [fps] with a depth estimation error typically smaller
than 1% of the measured distances and a diagonal field of view of 92◦.

The dataset contains 8 scenes all including static scenarios in an indoor
environment. The scenes have different complexity, ranging from flat surfaces
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to more complex shapes like the leaves of a plant. We acquired objects with
and without texture as well in order to check the behavior of the algorithms
with disparate conditions. The scenes contain materials with challenging
reflection properties, including reflective and glossy surfaces as well as rough
material that usually cause problems to active cameras. Figure 4 shows the
relative position of the two sensors.

4 
cm

12 cm

ToF Camera
(Kinect v2)

Stereo System (ZED)

Kinect v2 IR Sensor

Figure 4: Representation of the real Stereo-ToF acquisition system. The Figure shows the
relative position of the ZED camera and of the Kinect v2.

The algorithm developed to compute the ground truth map uses the stereo
camera to match corresponding pixels and estimate the disparity between
them. We used a line laser with a regular red illuminator visible to hu-
mans, acquired by the passive stereo vision system. The goal is to “paint”
the scene with the line laser and for each acquisition match corresponding
lit points in the two images. Ideally we want to match only 1 point for
each row of the image for each acquisition. Due to noise in the images
we update the estimated disparity for a given pixel, every time there is a
new measurement, by accumulating all the values and keeping the median
value. We collected images of the line laser without external illumination
to reduce the noise of the acquired images and to increase the contrast of
the line laser with respect to the background illumination. To avoid casting
unwanted shadows in the scene, the line laser was kept as close as possible
to the acquiring cameras. To control the laser movement we used a servo-
motor that makes the system fully automatic. The dataset is available at
http://lttm.dei.unipd.it/paper data/realfusion .
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7. Experimental Results

The proposed approach has been evaluated on three different datasets.
We started by evaluating its performance on the SYNTH3 synthetic dataset
and then moved to the experiments using data collected with real cameras.
For the real world experiments we used both the REAL3 dataset introduced
in this paper and the LTTM dataset from [31].

7.1. Evaluation on Synthetic Data

For this set of experiments, the proposed fusion algorithm has been
trained and evaluated on synthetic data from the SYNTH3 dataset described
in Section 6.1 (some sample scenes are shown in Figure 5). The SYNTH3
test set contains 15 different scenes with very different properties including
different acquisition ranges, textured and un-textured surfaces, complex ge-
ometries and strong reflections. The algorithm takes in input the 512× 424
[pxl] depth and amplitude maps from the ToF sensor and the two 960× 540
[pxl] color images from the cameras (the color cameras resolution has been
halved with respect to the original input data). The output is computed
from the point of view of the right camera at the color data resolution of
960× 540 [pxl]. For performance evaluation, it has been cropped to consider
only on the region that is framed by all the three cameras and compared
with ground truth data. Ground truth information has been computed by
extracting the depth data from the Blender rendering engine and converting
it to the disparity space.

Before evaluating the performance of the fusion scheme we analyze the
confidence information computed with the deep learning approach of Section
4 that will be used to control the fusion process. Figure 6 shows the color
image and the confidence maps for a few sample scenes. The second column
shows the ToF confidence, the proposed approach is able to assign a low
confidence (darker pixels in the figure) to the areas with a larger error. A
first observation is that in most of the confidence maps the error is larger in
proximity of the edges. It is a well-known issue of ToF sensors due to the
limited resolution and to the mixed pixels effect. Furthermore the CNN is
also able to detect that the ToF error is higher on dark surfaces due to the
lower reflection (e.g., on the dark furniture in row 3). The multi-path is more
challenging to be detected however, by looking at the fruits in row 4, it is
possible to see that the confidence is lower in their bottom part touching the
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Figure 5: Sample scenes in the SYNTH3 dataset. The first 3 rows show scenes from the
training set while the last 2 from the test set. The figure shows the right camera color
image for each scene.
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a) Color view b) ToF confidence c) Stereo confidence

Figure 6: Confidence information estimated by the proposed method for some sam-
ple scenes: a) color view; b) estimated ToF confidence; c) estimated stereo confidence.
Brighter areas correspond to higher confidence values, while darker pixels to lower ones.
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table, similarly in the angle between the wall and the sink in row 5, where
the multi-path is generated by rays bouncing from one surface to the other.

Concerning the stereo confidence, results are also good. As in the previous
case, the limited accuracy on edges is correctly recognized. Furthermore,
surfaces with uniform patterns (e.g., the flat panel on the right in row 4) or
reflective ones (e.g., the pots in row 1) have lower confidence as expected.

The confidence information is then used to drive the fusion algorithm.
The output disparity for some sample scenes is shown in Figure 7. Column
1 shows a color view of the scene while column 2 contains the ground truth
disparity data. The up-sampled, filtered and reprojected ToF data are shown
in column 3 while column 4 contains the corresponding error map. Notice
how ToF data are in general more accurate than the stereo one although some
limitations of ToF sensors are visible. In particular, the data in proximity
of edges are not too accurate. Furthermore the acquisition on low-reflective
surfaces is more noisy and the multi-path error affects some regions close to
boundaries between touching surfaces.

Columns 5 and 6 show the disparity and the error map for the SGM stereo
vision algorithm. For this work we used the OpenCV implementation of the
SGM stereo algorithm with pointwise Birchfield-Tomasi metric, 8 paths for
the optimization and a window size of 7×7 [pxl]. Edge regions are challenging
also for stereo vision even if they are more accurate than the ToF acquisitions
due to the higher resolution. On the other side, some regions proved to be
critical for the stereo algorithm, e.g., regions with a limited amount of texture
(like the flat panel on the right in row 4) or strongly reflective regions (e.g.,
the pots in row 1).

Finally, the fused disparity maps and their relative error are shown in
columns 7 and 8. The fusion algorithm is able to extract the most accurate
information from both sources and provides depth maps with less artifacts
on edges but at the same time free from the various artifacts of the stereo
acquisition.

The numerical evaluation of the performance is shown in Table 2 and
confirms the visual evaluation. The table shows both the Mean Absolute Er-
ror (MAE) and the Mean Squared Error (MSE) in disparity space averaged
on all the 15 scenes. For a fair comparison, we considered as valid pixels
for the results only the ones having a valid disparity value in all the com-
pared disparity maps (stereo, ToF and fused disparities). By looking at the
averaged MSE values, the ToF sensor has a high accuracy with a MSE of
4.75, much smaller than the MSE of 13.54 of the stereo system. The MAE
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Input Scene ToF Stereo Fusion
Color Ground Disparity Error Disparity Error Disparity Error
view truth

Figure 7: Results of the proposed fusion framework on 5 sample scenes (one for each row).
In error images, grey pixels correspond to points excluded since they are not valid on one
of the disparity maps. The intensity of red pixels is proportional to the absolute error.
(Best viewed in color).

Method MAE MSE
Interpolated ToF 0.66 4.75
SGM Stereo 0.79 13.54
Marin et Al. [6] 0.64 4.20
Proposed Method 0.53 3.92

Table 2: MAE and MSE in disparity units with respect to the ground truth for the ToF
and stereo data, the proposed method and [6] on the SYNTH3 dataset. The error has
been computed only on non-occluded pixels for which a disparity value is available in all
the methods.

22



is 0.66 and 0.79 respectively, with a more limited gap due to the fact that
the stereo system has some large errors that have a larger impact with the
squared measure.

However, confidence data allow to select at most pixel locations the best
source and thus to exploit the strengths of both stereo and ToF acquisitions.
The proposed approach is able to obtain a MSE of 3.92 and a MAE of 0.53, a
very good result with a noticeable improvement with respect to both sensors.
Comparison with state-of-the-art approaches on this dataset is limited by the
lack of available implementations of the competing approaches. However, we
compared our approach with the highly performing method of Marin et Al.
[6]. This approach has a MSE of 4.20, higher than the one of the proposed
method. The method of [6] outperforms most state-of-the-art approaches, so
also the performance of the proposed method are expected to be competitive
with the better performing schemes, as demonstrated by the comparison on
the LTTM dataset in Subsection 7.3.

7.2. Evaluation on Real World Data: REAL3 dataset

The testing on synthetic data does not take into account all the potential
issues that can arise when working with real world data and sensors. For this
reason, we tested the proposed approach also on real world data using the
REAL3 dataset presented in Subsection 6.2. Notice that, due to the limited
size of the real world dataset, in this experiment we used the network trained
on the synthetic dataset to compute the confidence maps used to drive the
fusion process. As pointed out Subsection 6.2, the real world dataset contains
8 different scenes (see Figure 8 for their thumbnails). The scenes are simpler
than the synthetic ones due to the challenges in practical data acquisition
(specially for what concerns the acquisition of ground truth information),
however they contain regions with different amount of texture information,
repeating patterns critical for stereo approaches, different materials, bright
and dark objects and some complex geometries (e.g., in the plant scene).
Similarly to the synthetic data case, the algorithm takes in input the 512×424
[pxl] depth and amplitude maps from the Kinect v2 sensor and the two
960 × 540 [pxl] color images obtained by subsampling by a factor of 2 and
rectifying the two color views from the ZED camera (see sections 3 and 6.2).
In this case the output is computed on the point of view of the left camera
at the 960× 540 [pxl] resolution of color data and compared with the ground
truth from the same viewpoint. The estimated disparities have also been
cropped to highlight only the region that is framed by all the three cameras.

23



Figure 8: Real world dataset used for the evaluation of the performance of the proposed
method. The figure shows the left camera color image for each scene in the dataset.

We start the evaluation from the confidence information: in this case, the
task is more challenging since the CNN is trained on synthetic data and then
evaluated on the real data, which have slightly different properties. However,
the proposed deep network proved to have good generalization properties and
the estimated confidence, although not as precise as in the synthetic case, is
able to underline the key sources of error as can be seen from the examples
in Figure 9. Confidence information for ToF data is shown in the second
column, it is possible to note that the CNN properly predicts a higher ToF
error in proximity of edges. Also other critical aspects are properly identified,
for example in row 2 it is possible to see how black areas in the pattern have
a weaker reflection and lead to a less accurate acquisition while in row 3 the
CNN properly detects that the acquisition of the plant is very critical for
the ToF sensor. The third column contains the confidence maps for stereo
data, notice how the CNN is able to recognize that highly textured regions
are properly acquired while uniform surfaces like the white walls are critical
for the stereo algorithm.

The numerical results of the fusion algorithm are reported in Table 3 while
Figure 10 shows the output depth maps and the error maps for some sample
scenes. The figure is organized as in the previous experiment. Column 1 and
2 show a color view of the scene and the ground truth disparity data. The
up-sampled, filtered and reprojected ToF data are shown in column 3, while
column 4 contains the corresponding error map. It is possible to notice that
also in this case ToF data are not too precise in proximity of edges, but there
is a small amount of error also on flat surfaces due to the noise of the sensor
and to inaccuracies in the reprojection operation (in this case it is based on
calibration information while previously the cameras were ideally placed).

Columns 5 and 6 show the disparity estimated by the stereo vision algo-
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a) Color view b) ToF confidence c) Stereo confidence

Figure 9: Confidence information computed by the proposed deep learning architecture
for some sample scenes: a) Color view; b) Estimated ToF confidence; c) Estimated stereo
confidence. Brighter areas correspond to higher confidence values, while darker pixels to
low confidence ones.
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rithm and the corresponding error map. Stereo data have sharper edges and
a good accuracy on the objects in the foreground but there are artifacts on
low-textured regions, specially on the white walls on the background.

The fused disparity map and its relative error are shown in columns 7 and
8. The fusion algorithm reliably fuses the information coming from the two
sensors being able to properly reconstruct the edges using the stereo data
but also correctly estimating the background that instead is better acquired
by the ToF sensor.

Input Scene ToF Stereo Fusion
Color Ground Disparity Error Disparity Error Disparity Error
view truth

Figure 10: Results of the proposed fusion framework on some sample scenes from the
REAL3 dataset. In the error images, grey pixels correspond to points excluded since they
are not valid on one of the disparity maps. The intensity of the red pixels is proportional
to the absolute error. (Best viewed in color).

The numerical evaluation of the performance is shown in Table 3 and
confirms the visual analysis. The table shows the MAE and the MSE in
disparity space averaged on all the 8 scenes. For a fair comparison, we
considered as valid pixels for the results only the ones having a valid disparity
value in all the compared disparity maps (stereo, ToF and fused disparities).
By looking at the MAE values, the ToF sensor has a high accuracy with
an error of 2.55, much smaller than the MAE of 7.98 of the stereo system
(and the MSE difference is even larger). This is a challenging situation
for fusion algorithms since it is difficult to improve the data from the best
sensor without affecting it with errors from the other one. However, the
use of confidence data helps to properly combine both sources of information
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obtaining a MAE of 1.65 with a noticeable improvement with respect to both
sensors. The method of Marin et Al. [6] on this dataset has a MAE of 2.19,
again higher than the one obtained with the proposed method.

Method MAE MSE
Interpolated ToF 2.55 10.76
SGM Stereo 7.98 201.64
Marin et Al. [6] 2.19 8.82
Proposed Fusion 1.65 8.35

Table 3: MAE and MSE in disparity units with respect to the ground truth for the ToF
and stereo data, the proposed method and [6] on the REAL3 dataset. The error has been
computed only on non-occluded pixels for which a disparity value is available in all the
methods.

7.3. Evaluation on Real World Data: LTTM dataset

Finally, we tested the proposed approach on the LTTM dataset. This
dataset has been introduced in [31] and contains 5 different scenes acquired
with a MESA SR4000 ToF sensor and two Basler color cameras (the scene
thumbnails are in the first column of Figure 11). Even if it is smaller than
the other two datasets and the ToF data has been acquired with a camera
with lower performance (the resolution is just 176 × 144 [pxl]), this dataset
represents an interesting benchmark since it has been used for the evalua-
tion of several works and allows to to perform the comparison with different
state-of-the-art methods from the literature. Furthermore it contains object
with various shapes and characteristics that allow to evaluate the method
in various situations including depth discontinuities, materials with different
reflectivity and both textured and un-textured surfaces. In order to pro-
cess this dataset the algorithm takes in input the 176× 144 [pxl] depth and
amplitude maps from the MESA sensor and the two 1032 × 778 [pxl] color
images from the Basler cameras and computes the output from the point of
view of the left camera at the same resolution of color data. For confidence
estimation we used the CNN trained on synthetic data from the SYNTH3
training set as for the other datasets.

Figure 11 shows the confidence information for the ToF and stereo sensors
on this dataset. This situation is even more challenging since the ToF camera
used for this dataset has very different properties from the simulated one used
in the training. The accuracy of confidence information is lower, however the
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proposed approach is able to detect some key issues. Concerning ToF data it
is possible to notice the lower confidence in proximity of edges and that the
depth information is less reliable on the complex geometries of the objects
if compared with the walls and table. Stereo data are also less reliable on
edges and on regions with a lower amount of texture.

Concerning the results of the fusion of the two sensors, Figure 12 shows
the output depth maps and the error maps for the 5 scenes of the dataset.
It is possible to notice the good accuracy of fused data on edges and how
the algorithm is able to properly choose the best data source in many situa-
tions avoiding the artifacts of the two acquisition devices. For example, the
repeating pattern on the green box causes errors in the stereo reconstruction
that are not present in the fused data. On the other side, the upper part of
the table is very critical for the ToF sensor due to the multi-path and to the
surface orientation. In the fused disparity, even if not perfect, it is better
reconstructed thanks to the information coming from stereo vision.

Table 4 reports the numerical values for the error and the comparison
with some state-of-the-art methods from the literature.

The compared state-of-the-art methods are based on different strategies:
the method of [38] uses an iterative approach and bilateral filtering. Then we
considered two approaches based on probabilistic MAP-MRF schemes, i.e.,
[27] and [31]. Finally, there are the two previous approaches based on the
LC framework, i.e. [5] and [6]. For a fair comparison, we considered as valid
pixels for the results only the ones having a valid disparity value in all the
compared disparity maps (stereo, ToF and fused disparities from the various
methods). By looking at the average values, on this dataset the ToF and
stereo sensors have a similar MAE of 1.53 and 1.45 while the MSE is much
lower for the ToF sensor (this is due to the fact that the stereo data has some
large errors while ToF error is more uniformly distributed).

The proposed approach achieves a MAE of 0.89, that is better than all
the proposed approaches with a large margin. The best among the compared
approaches is [6], that has a MAE about 25% higher, while all the other
compared approaches have a larger error. If using the MSE as error metric
the gap with [6] is smaller while it remains large with respect to all the other
approaches. This is due to the fact that [6] relies strongly on ToF data that
has a better MSE while the proposed approach makes a more balanced use of
the two sources of information. In any case, the proposed approach has the
best performance among all the compared ones according to both measures.
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a) Color view b) ToF conf. c) Stereo conf.

Figure 11: Confidence information computed by the proposed deep learning architecture
for the scenes in the LTTM dataset: a) Color view; b) Estimated ToF confidence; c)
Estimated stereo confidence. Brighter areas correspond to higher confidence values, while
darker pixels to low confidence ones.
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Input Scene ToF Stereo Fusion
Color Ground Disparity Error Disparity Error Disparity Error
view truth

Figure 12: Results of the proposed fusion framework on the 5 scenes of the LTTM dataset.
In error images, grey pixels correspond to points excluded since they are not valid on one
of the disparity maps. The intensity of red pixels is proportional to the absolute error.
(Best viewed in color).

Method MAE MSE
Interpolated ToF 1.53 11.68
SGM Stereo 1.45 20.42
Dal Mutto et Al. (LC) [5] 1.36 10.06
Marin et Al. [6] 1.15 7.67
Yang et Al. [38] 1.59 10.98
Zhu et Al. [27] 1.59 11.13
Dal Mutto et Al. (MRF) [31] 1.43 12.21
Proposed Fusion 0.89 7.40

Table 4: MAE and MSE averaged on the 5 scenes of the LTTM dataset (in disparity
units) with respect to the ground truth, computed only on non-occluded pixels for which
a disparity value is available in all the methods.
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7.4. Ablation Studies

Finally, we performed some further tests in order to evaluate the impact
on the fusion accuracy of the information coming from the various input
sources. Specifically, we made an additional set of experiments where, in
turn, we selectively removed one of the four input sources of Section 4 in
order to better evaluate its contribution to the final output. The results are
shown in Table 5 and indicate how, on average, the combination of all inputs
offers the best performance. More in detail, the first two rows show how each
of the two disparities contains relevant information for the corresponding
sensor. Both the removal of the ToF or stereo disparity leads to a quite
large decrease in terms of fusion accuracy (around 20%). The impact of the
ToF amplitude is smaller, but it has a noticeable effect on the SYNTH3 and
LTTM datasets. The main issue with ToF amplitude is that it depends a
lot on the employed sensor while the ToF simulator is not able to model
in a completely accurate way the amplitude data acquired by real world
sensors. Finally, the difference map ∆ between the reference image and the
target one reprojected over it proved to be very useful specially in real world
datasets where the stereo matching is less reliable. Concluding, even if not
all information types are fundamental for all datasets, the combination of all
the four sources is the best solution in order to have an approach with very
good performance on both real and synthetic data.

Ablation Study SYNTH3 REAL3 LTTM
All inputs (proposed method) 0.53 1.65 0.89
Without ToF disparity (no DT ) 0.64 2.04 1.179
Without Stereo disparity (no DS) 0.66 2.11 1.19
Without ToF amplitude (no AT ) 0.55 1.6 0.915
Without LR difference (no ∆) 0.52 2.84 1.19
Separate estimation ToF/stereo conf. 0.61 1.93 1.156
Select highest confidence (HC) 0.43 1.90 1.11
Weighted average (WA) 0.46 2.44 1.07

Table 5: Mean Absolute Error (MAE) on the fused depth maps (in disparity units) when
removing different input channels, with separate stereo and ToF confidence estimation and
with different fusion strategies.

Another idea we exploited in the paper is the one of jointly estimating
the confidence of the two sensors instead of independently computing the
two confidence maps. We evaluated the impact of this approach by trying to
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estimate the ToF and stereo confidence separately with two different CNNs
with a single output (keeping fixed the other parameters). As shown by
the last row of the table, this approach leads to worse performances on all
3 datasets, demonstrating that the joint estimation allows to obtain more
coherent confidence maps and thus a better accuracy of the fused data.

Finally, in order to evaluate the impact of the Locally Consistent (LC)
fusion algorithm we tried also to exploit the confidence data estimated with
the proposed deep learning architecture into simpler fusion strategies. We
tried two simple solutions, the first is the selection at each location of the
source with the highest confidence (HC) and the second is the usage of a
weighted average (WA) of the ToF and stereo disparities with the weights
given by the estimated confidences at each pixel location. The obtained
results are in the last two rows of Table 5. On synthetic data, where the
confidence information is very reliable and the noise on the data is limited,
even by just selecting at each pixel location the source with the highest
estimated confidence it is possible to obtain very good results with a MAE
of 0.43, even better than the one achieved by the LC algorithm. Also the
weighted average driven by confidence allows to obtain a very good result
with a MAE of 0.46. This proves the reliability of the proposed confidence
estimation algorithm. While on synthetic data the LC refinement is not
really necessary, the discussion is quite different on real world data. On the
REAL3 dataset the selection of the source with the highest confidence and
the weighted average achieve a MAE of 1.9 and 2.44 respectively, quite higher
than the result of the full version of the proposed approach with LC (which
achieves a MAE of 1.6). A similar discussion holds for the LTTM dataset
(the absolute errors are 1.11 for HS and 1.07 for WA against 0.89 for LC).
This proves how the smoothing and regularization of the choices performed
by LC is very useful when data are more noisy and less reliable as it happens
in real world acquisitions. On the other side, simpler fusion strategies might
be preferable when a fast computation is needed or data are very reliable.

8. Conclusions and Future Work

In this work we presented a scheme for the fusion of ToF and stereo data
using confidence information estimated by a deep learning architecture. We
created a novel synthetic dataset containing a realistic representation of the
data acquired by a passive stereo camera and a ToF depth camera and a
second dataset containing data from real depth cameras with the associated
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ground truth information. Using these datasets we have showed how the
confidence estimation network is able to generalize to different datasets with
both synthetic and real data.

More in detail, a Convolutional Neural Network trained on the synthetic
dataset is used to estimate the reliability of ToF and stereo data, obtaining
confidence maps that highlight the most critical acquisition issues of both
sub-systems. The fusion of the two sources of depth data is then performed
using an extended version of the LC framework that combines the confidence
information computed in the previous step and provides an accurate disparity
estimation. The results show how the proposed algorithm properly combines
the outputs of the two sensors providing, on average, a disparity map with
higher accuracy with respect to each of the two sub-systems. The test was
performed on 3 different datasets, with both synthetic and real data obtain-
ing very good performances and outperforming state-of-the-art approaches.
We believe that showing how it is possible to train a network on synthetic
data and obtain comparable performance on real data is of fundamental im-
portance in a data fusion framework.

Further research will be devoted to the improvement of the deep learning
architecture with the target of obtaining a more reliable confidence informa-
tion. In particular, we will consider multi-branch architectures for a better
combination of the two data sources. We also plan to develop an end-to-end
deep learning architecture to directly compute the final output. Finally, we
will also acquire larger datasets for a better training of the CNN and we are
going to investigate the fusion of other active depth sensors.
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