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Abstract
We introduce and study a two-parameter family of symmetry reductions of the 2D Toda

lattice hierarchy, which are characterized by a rational factorization of the Lax operator into
a product of an upper diagonal and the inverse of a lower diagonal formal difference opera-
tor. They subsume and generalize several classical 1 + 1 integrable hierarchies, such as the
bigraded Toda hierarchy, the Ablowitz–Ladik hierarchy and E. Frenkel’s q-deformed Gelfand–
Dickey hierarchy. We establish their characterization in terms of block Töplitz matrices for the
associated factorization problem, and study their Hamiltonian structure. At the dispersionless
level, we show how the Takasaki–Takebe classical limit gives rise to a family of non-conformal
Frobenius manifolds with flat identity. We use this to generalize the relation of the Ablowitz–
Ladik hierarchy to Gromov–Witten theory by proving an analogous mirror theorem for the
general rational reduction: in particular, we show that the dual-type Frobenius manifolds we
obtain are isomorphic to the equivariant quantum cohomology of a family of toric Calabi–Yau
threefolds obtained from minimal resolutions of the local orbifold line.

Keywords. Rational reductions, Gromov–Witten, integrable hierarchies, mirror symmetry,
2D-Toda, Ablowitz–Ladik.

1 Introduction

The two-dimensional Toda equation,

(∂2
x − ∂2

t )xn = exn+1 − 2exn + exn−1 , n ∈ Z, (1.1)
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is among the archetypical examples in classical field theory of integrable non-linear dynamical
systems in two space dimensions. Besides its intrinsic interest in the theory of integrable systems
[18, 50, 66, 68], the hierarchy of commuting flows of Eq. (1.1) - the so-called 2D-Toda hierarchy -
has provided a unifying framework for a variety of problems in various branches of Mathematics
and Mathematical Physics, ranging from the combinatorics of matrix integrals [3, 36] to enumera-
tive geometry [46, 56] and applications to Classical and Quantum Physics [33, 54, 55].

The purpose of this paper is to construct and study an infinite family of symmetry reductions
of the two-dimensional Toda hierarchy, which we dub the the rational reductions of 2D-Toda
(henceforth, RR2T). Their defining feature is the following factorization property of the 2D-Toda
Lax operators:

La1 = AB−1, Lb2 = BA−1, (1.2)

where A and B are respectively a degree a ≥ 1 upper diagonal and a degree b ≥ 1 lower diago-
nal difference operator; this property is preserved by the Toda flows. It turns out that the resulting
hierarchies enjoy remarkable properties both from the point of view of the theory of integrable sys-
tems, as well as from the vantage of their applications to the topology of moduli spaces of stable
maps.

1.1 Main results

The RR2T, which are the natural counterpart in the 2D-Toda world of the “constrained reductions”
of the KP hierarchy of [4, 6], are distinguished in a number of ways. First off, the embedding into
the Toda hierarchy recovers and ties together a host of known classical integrable hierarchies in
1+1 dimensions: notable examples include the Ablowitz–Ladik system [1, 9], the bi-graded Toda
hierarchy [17], and the q-deformed version of the Gelfand–Dickey hierarchy [35]. Moreover, ratio-
nal reductions have a natural characterization in the associated factorization problem, where they
correspond to the block Töplitz condition on the moment matrix; in the semi-infinite case this nat-
urally generalizes the ordinary Töplitz condition arising in the theory of unitary matrix models.
Thirdly, the analysis of the relation of the Hamiltonian structure on the reduced system to the (sec-
ond) Poisson structure of the parent 2+1 hierarchy reveals that the reduction itself is remarkable in
that it is a purely kinematical phenomenon, whose ultimate cause is completely independent of the
particular form of the Hamiltonians: the submanifold in field space where the Lax operator factor-
izes comes along with an infinite-dimensional degeneration of the Poisson tensor, whose pointwise
kernel contains the conormal fibers to the factorization locus. Fourthly, the semi-classical Lax–Sato
formalism for the dispersionless limit of the hierarchy gives rise to a host of (old and new) solutions
of WDVV in the form of a family of semi-simple, non-conformal Frobenius dual-type structures
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on a genus zero double Hurwitz space3 having covariantly constant identity. For b ≤ 1, they are
bona fide dual in the sense of Dubrovin [29] of conformal Frobenius manifolds of charge d = 1,
with possibly non-flat unit. The double Hurwitz space picture entails, on one hand, the existence of
a bi-Hamiltonian structure of Dubrovin–Novikov type at the dispersionless level for several sub-
cases, as well as a tri-Hamiltonian structure as in [58,60] for a = b; on the other, it furnishes for all
(a, b) a one-dimensional B-model-type Landau–Ginzburg description for the dual-type Frobenius
structure. Generalizing a result of [9], we show that the resulting non-conformal Frobenius mani-
folds are isomorphic to the (C∗)2-equivariant orbifold cohomology of the local P1-orbifolds with
two stacky points of order a and b [45], or equivalently [22], of the (C∗)2-equivariant cohomol-
ogy of one of their toric minimal resolutions (the toric trees). This establishes a (novel) version of
equivariant mirror symmetry for these targets via one-dimensional logarithmic Landau–Ginzburg
models, which has various applications to the study of wall-crossings in Gromov–Witten theory as
anticipated in [10], and it leads us to conjecture that the full descendent Gromov–Witten potential
for these targets is a tau function of the RR2T, a statement that we verify in genus less than or equal
to one.

The paper is organized as follows. In Section 2, after reviewing the Lax formalism for the
2D-Toda hierarchy, we first construct the RR2T in the bi-infinite case, study the reduction of the
2D-Toda flows, and discuss various examples. We then illustrate their relation to biorthogonal en-
sembles on the unit circle and the factorization problem of block Töplitz matrices, and discuss the
Hamiltonian structure of the hierarchy. Section 2.6 is devoted to the study of the dispersionless
limit of the flows. We analyze the Takasaki–Takebe limit of the equations in the framework of
Frobenius structures on double Hurwitz spaces and determine explicitly the dual-type structures
that arise, as well as the extra flat structures that occur in special cases. Finally, Section 3 is de-
voted to the relation with Gromov–Witten theory. We prove an equivariant mirror theorem for toric
trees, and outline the range of its implications. First of all, we verify up to genus one that the full
descendent Gromov–Witten potential is a tau function of the RR2T, upon establishing a Miura
equivalence between the dispersive expansion of the RR2T to quadratic order and the analogue
of the Dubrovin–Zhang quasi-Miura formalism applied to the local theory of the orbifold line.
Moreover, we discuss in detail the properties of the A-model Dubrovin connection in the light of
its connection with RR2T, prove that its flat sections are multi-variate hypergeometric functions of
type FD, and discuss its implications for the Crepant Resolution Conjecture at higher genus.

3We borrow terminology from [60].
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1.2 Relation to other work

Several instances of RR2T have made a more or less covert appearance in the literature. In a pre-
scient work [38], Gibbons and Kupershmidt4 constructed a Lax formalism for a relativistic gener-
alization of the one-dimensional Toda hierarchy which would correspond in our language to the
RR2T of bidegree (a, 1), where the dependent variable in the denominator has been frozen to a
parameter equal to the speed of light. More recent examples include the Ablowitz–Ladik hierarchy
treated by the authors [9], corresponding to the case (a, b) = (1, 1), and the somewhat degener-
ate example of the lattice analogue of KdV [1], to which RR2T boils down for b = 0. Dual-type
structures for the dispersionless limit of the RR2T have been computed in the special case of the
bigraded Toda hierarchy [59] and the RR2T of bidegree (a, a) (see also [63, 72]). Closer to the
discussion of Section 3 is a very recent preprint of Takasaki [65], where the (full-dispersive) RR2T
of bidegree (b, b) with suitable initial data is considered in connection with the partition function of
the melting crystal model [57] for the so-called “generalized conifolds” deformed by shift symme-
tries [64]. As the generalized conifolds correspond precisely to the toric Calabi–Yau threefolds of
Section 3 for a = b, it would be intriguing to bridge Takasaki’s approach with our own, and in par-
ticular to intepret the 2D-Toda evolution in the crystal model as suitable gravitational deformations
of our prepotentials. We will leave this open for future work.

2 Rational reductions of 2D-Toda

2.1 The 2D-Toda hierarchy

Denote by A = {(aij ∈ C)i,j∈Z} the vector space of doubly-infinite matrices with complex coeffi-
cients. Equivalently, this is the space of formal difference operators

∑
r∈Z arΛ

r where ar for every
r is an element of the space F of C-valued functions on Z, and the shift operator Λ acts on f ∈ F

by Λkf(n) = f(n+ k). For ∆ =
∑

r∈Z arΛ
r ∈ A, the C-linear projections

∆+ =
∑
r∈Z+

arΛ
r, (2.1)

∆− =
∑
r∈Z−0

arΛ
r. (2.2)

define a canonical decomposition A = A+ ⊕ A−, corresponding to the projections of ∆ to its
upper/strictly lower triangular part. We will denote by ∆T its transpose

∆T =
∑
r∈Z

Λ−rar (2.3)

4Building on earlier work of Bruschi–Ragnisco [11]; see also [48, 61].
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and, whenever defined, we denote its positive/negative order ord±∆ as the degree of its projections
to A± as formal difference operators,

ord±∆ = degΛ±1(∆)±. (2.4)

Armed with these definitions, we construct an infinite dimensional dynamical system over an
affine subspace of A ⊕ A, as follows. The 2-dimensional Toda lattice [68] is the system of com-
muting flows (∂

s
(1)
r
, ∂

s
(2)
r
, r > 0) given by the Lax equations

∂
s
(1)
r
Li = [(Lr1)+, Li], ∂

s
(2)
r
Li = [−(Lr2)−, Li], i = 1, 2, (2.5)

where the 2D-Toda Lax operators are the formal difference operators

L1 = Λ +
∑
j≥0

u
(1)
j Λ−j, L2 =

∑
j≥−1

u
(2)
j Λj. (2.6)

with u(k)
j ∈ F for all j ∈ N ∪ {−1}, k = 1, 2. Commutativity of these flows follows from the

(simplified form of) the zero-curvature equations

∂
s
(j)
q
Lri − ∂s(i)r L

q
j + [(Lri )+, (L

q
j)+]− [(Lri )−, (L

q
j)−] = 0, (2.7)

which in turn is equivalent to a compatibility condition for the Zakharov–Shabat spectral problem

L1Ψ1 =wΨ1, LT2 Ψ2 =wΨ2, ∂
s
(1)
q

Ψ1 = (Lq1)+ Ψ1,

∂
s
(1)
q

Ψ2 =− (Lq1)T+ Ψ∗2, ∂
s
(2)
q

Ψ1 = (Lq2)T−Ψ1, ∂
s
(2)
q

Ψ2 =− (Lq2)T−Ψ∗2. (2.8)

for wave vectors Ψi ∈ C((w))⊗F , i = 1, 2 [68].
An equivalent formulation of the 2D-Toda hierarchy can be given in terms of Sato equations

∂
s
(i)
r
S1 = −(Lri )−S1, ∂

s
(i)
r
S2 = −(Lri )−S2, (2.9)

for the dressing operators

S1 = 1 + p
(1)
1 Λ−1 + . . . , S2 = p

(2)
0 + p

(2)
1 Λ + . . . . (2.10)

The Lax operators are expressed in terms of the dressing operators by

L1 = S1ΛS−1
1 , L2 = S2Λ−1S−1

2 , (2.11)

and the commutativity of the flows ∂(i)
r on Si again follows from Eq. (2.7).
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Under suitable assumptions the initial value problem for the 2D-Toda equation can be solved in
terms of a factorization problem [62]. Let µ ∈ A be a matrix depending on the times s(i)

r according
to

∂µ

∂s
(1)
r

=Λrµ, (2.12)

∂µ

∂s
(2)
r

=µΛ−r, (2.13)

or, equivalently,
µ = exp

(∑
r≥1

s(1)
r Λr

)
µ0 exp

(∑
r≥1

s(2)
r Λ−r

)
. (2.14)

Assume the factorization
µ = S−1

1 S2 (2.15)

exists and uniquely determines S1 and S2 as in Eq. (2.10). Deriving this expression w.r.t. s(i)
r and

projecting it onto A± we get that that S1, S2 satisfy the Sato equations (Eq. (2.9)), hence the
associated Lax operators of Eq. (2.11) solve Eq. (2.5). In the semi-infinite case the factorization
problem can be directly solved using bi-orthogonal polynomials, as we will show in Section 2.4.

2.2 The rational reductions

Consider now the difference operators

A =Λa + αa−1Λa−1 + · · ·+ α0 ∈ A+, (2.16)

B =1 + β1Λ−1 + · · ·+ βbΛ
−b ∈ 1 +A− (2.17)

for a, b > 0. We define two factorization maps Li : A+ ⊕A− → A by

La1 = AB−1, Lb2 = BA−1; (2.18)

notice that they give Lax operators in the form of Eq. (2.6). It is convenient to define also the dual
operators L̂1, L̂2 by

L̂a1 = B−1A, L̂b2 = A−1B. (2.19)

Theorem 2.1. For i = 1, 2, r > 0, the equations

∂
s
(i)
r
A = (Lri )+A− A(L̂ri )+, (2.20)

∂
s
(i)
r
B = (Lri )+B −B(L̂ri )+ (2.21)

define commutative flows on A, B that induce the 2D-Toda Lax equations, Eq. (2.5).
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Proof. We first check that these flows are well-defined. From

A−1L1A = ((A−1L1A)a)1/a = (A−1La1A)1/a = (B−1A)1/a = L̂1. (2.22)

we obtain

LriA = AL̂ri , (2.23)

and similarly

LriB = BL̂ri . (2.24)

With the aid of these identities we can rewrite Eqs. (2.20) and (2.21) as

∂
s
(i)
r
A = −(Lri )−A+ A(L̂ri )−, (2.25)

∂
s
(i)
r
B = −(Lri )−B +B(L̂ri )−. (2.26)

The r.h.s in both Eqs. (2.20) and (2.25) is a difference operator inA+ of order ord+ = a−1, hence
the flow given by Eq. (2.20) is well-defined on operators of the form of Eq. (2.16). Similarly we
see that Eq. (2.21) gives a well-defined flow on operators of the form of Eq. (2.17). In general, if
∂tA = WA− AŴ and ∂tB = WB −B Ŵ for some difference operators W , Ŵ , then

∂tLi = [W,Li], ∂tL̂i = [Ŵ , L̂i]. (2.27)

Hence from Eqs. (2.20), (2.21), (2.25) and (2.26) it follows that the operators Li satisfy the 2D-
Toda Lax equations, Eq. (2.5). To prove commutativity, observe that if ∂tiA = W iA − AŴ i for
some difference operators W i, Ŵ i, i = 1, 2, then

∂t1∂t2A− ∂t2∂t1A = (W 1
t2
−W 2

t1
+ [W 1,W 2])A− A(Ŵ 1

t2
− Ŵ 2

t1
+ [Ŵ 1, Ŵ 2]). (2.28)

Applying this formula to the flows defined by Eqs. (2.20) and (2.21) we see that the right-hand side
vanishes because of Eq. (2.7), hence the flows commute.

Remark 2.1. Notice that the dual Lax operators also satisfy Lax equations (Eq. (2.5)) with L̂i
instead of Li,

∂
s
(1)
r
L̂i = [(L̂r1)+, L̂i], ∂

s
(2)
r
L̂i = [−(L̂r2)−, L̂i], i = 1, 2. (2.29)

Remark 2.2. The inverses of A and B appearing in Eqs. (2.18) and (2.19) are defined as the
following upper (resp. lower) diagonal matrices

A−1 =
∑
k≥0

(1− α−1
0 A)kα−1

0 , B−1 =
∑
k≥0

(1−B)k. (2.30)
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The pairs of matrices of the rational form given by Eq. (2.18) form a submanifold of the
2D-Toda phase space of pairs of Lax operators, Eq. (2.6). The previous Theorem shows that,
on such submanifold, the 2D-Toda flows coincide with the push-forward under the factoriza-
tion map, Eq. (2.18), of the vector fields defined by Eqs. (2.20) and (2.21) on the space of pairs
{(A,B) ∈ A+⊕A−}, where A and B are of the form given by Eqs. (2.16) and (2.21). This clearly
implies that the submanifold of rational 2D-Toda Lax operators given by Eq. (2.18) is invariant
under the 2D-Toda flows.

Definition 2.2. A rational reduction of the 2D-Toda hierarchy (RR2T) of bi-degree (a, b) is the
hierarchy of flows induced by the 2D-Toda flows on the invariant subset of matrices of the form
(2.18).

We may more generally consider Lax operators of the form

L1 =
(
ΛmAB−1

)1/(a+m)
, L2 =

(
BA−1Λ−m

)1/(b+m)
. (2.31)

The same analysis of Theorem 2.1 carries through to this case as well. Notice that in this case the
flows in Eq. (2.25) should be defined in terms of the operator Â := ΛmA, rather than A.

Definition 2.3. Let (L1, L2) be as in Eq. (2.31). The associated reduction of the 2D-Toda lattice
hierarchy will be called the m-generalized RR2T of bidegree (a, b).

Remark 2.3. We can partially lift the condition that a, b > 0 by considering the case when
a = 0 (resp. b = 0) as the degenerate situation in which only one half of the flows given by
∂
s
(2)
r

(resp. ∂
s
(1)
r

) is defined by Eqs. (2.5) and (2.18). All of the above then carries through to this
setting.

As it turns out, Theorem 2.1 gives rise to a variety of new reductions of the 2D-Toda hierarchy,
incorporating at the same time several known infinite-dimensional lattice integrable systems.

Example 2.1 (The Ablowitz–Ladik hierarchy). The Ablowitz–Ladik system [1] is a discretization
of the complexified non-linear Schrödinger equation given by the second order system

iẋn =− 1

2
(1− xnyn) (xn+1 + xn−1) + xn, (2.32)

iẏn =
1

2
(1− xnyn) (yn+1 + yn−1)− yn, (2.33)

for n ∈ Z. This system is Hamiltonian, and it possesses an infinite number of local conserved
currents in involution [1]. As shown in [9], after work of Adler–van Moerbeke [3] and Cafasso
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[15] in the semi-infinite case, its integrability is bequeathed from a rational embedding into the
2D-Toda hierarchy. Explicitly, introduce lattice variables α, β ∈ F through

αn =− yn
yn+1

, (2.34)

βn =
(1− xnyn)yn−1

yn
. (2.35)

Then [9] the Ablowitz–Ladik hierarchy is the pull-back under Eqs. (2.34) and (2.35) of the rational
reduction of the 2D-Toda flows of bidegree (a, b) = (1, 1).

Example 2.2 (The q-deformed Gelfand–Dickey hierarchy). Denote byDq the scaling (q-difference)
operator on the real line, Dqf(x) = f(xq), and write Q± for the projection of a q-difference oper-
ator Q onto its q-differential/strictly q-pseudo-differential part. Lax equations in the form

∂tmL =
[
L, (Lm)+

]
(2.36)

for the q-pseudodifference operator

L , Dq +
∑
j≥0

uj(x)D−jq . (2.37)

were proposed by E. Frenkel in [35] as a q-analogue of the KP hierarchy. In particular, the natural
q-analogue of the Gelfand–Dickey (n-KdV) hierarchy

Ln+1 = Dn+1
q +

n∑
j≥1

τj(x)Dj
q, (2.38)

give rise to a completely integrable bi-Hamiltonian system . Rewriting the q-difference Lax equa-
tions Eqs. (2.36) and (2.38) as ordinary Lax equations for a discrete operator L [2], the system
Eq. (2.36) can be recast in the form of a reduction of the 2D-Toda flows under the constraint

(Ln+1)− = 0. (2.39)

This corresponds to the RR2T of bidigree (a, b) = (n+ 1, 0).

Example 2.3 (The bi-graded Toda hierarchy). The bi-graded Toda lattice hierarchy of [17] also
enjoys a representation as a (generalized) RR2T. By Eqs. (2.18) and (2.31), the Lax operator for
(N,M) bi-graded Toda

L = ΛN + uN−1ΛN−1 + · · ·+ u−MΛ−M (2.40)

indeed corresponds to the Lax operator LN+M
1 for the −M -generalized RR2T of bidegree (N +

M, 0). Notice that in this formulation we can only recover as reductions of the 2D-Toda flows only
the standard flows and not the extended or logarithmic ones.
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2.3 Rational reductions and the factorization problem

It is illuminating to consider the form of the constraint leading to the RR2T at the level of dressing
operators. By Remark 2.1, the dual Lax operators L̂i satisfy the 2D-Toda Lax equations, Eq. (2.29).
Introducing the corresponding 2D-Toda dressing operators Ŝi as in Eqs. (2.9) and (2.10), which
satisfy the Sato equations

∂
s
(i)
r
Ŝ1 = −(L̂ri )−Ŝ1, ∂

s
(i)
r
Ŝ2 = −(L̂ri )−Ŝ2, (2.41)

the RR2T of bidegree (a, b) can be translated into the pair of constraints

S1ΛaŜ−1
1 = S2Ŝ

−1
2 , A, (2.42a)

S1Ŝ
−1
1 = S2Λ−bŜ−1

2 , B. (2.42b)

Proposition 2.4. The constraints given by Eq. (2.42) are preserved by the Sato equations for Si,
Ŝi, hence define a reduction of 2D-Toda at the level of dressing operators that corresponds to the
rational reduction of bi-degree (a, b).

Proof. Notice that this case the operators A, B arise naturally as a combination of the dressing
operators of two copies of the 2D-Toda hierarchy. Clearly (2.42) implies that the operators A,
B are of the form (2.16), (2.17). The corresponding Lax operators Li, L̂i, defined through (2.11),
factorize as in (2.18), (2.19), i.e.

La1 = S1ΛaS−1
1 = S1ΛaŜ−1

1 · Ŝ1S
−1
1 = AB−1, etc... (2.43)

and Sato equations induce the flows (2.20), (2.21). It follows that the constraints (2.42) are pre-
served by the Sato equations.

As the simplest non-trivial rational reduction of the 2D-Toda hierarchy gives rise to the Ablowitz–
Ladik hierarchy [9], which is in turn related to a factorization problem of a Töplitz moment matrix,
it is natural to ask whether the generic rational reduction may be interpreted in the same way.

Definition 2.5. We say that µ ∈ A is a block Töplitz operator of bi-degree (a, b) if

ΛaµΛ−b = µ. (2.44)

Equivalently, its matrix entries satisfy µi+a,j+b = µij , which reduces to the usual Töplitz con-
dition when a = b = 1. Clearly the property of being block Töplitz of bi-degree (a, b) is preserved
by the time evolution as in Eq. (2.14).
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Let now (µij)i,j∈Z be a block Töplitz matrix of bi-degree (a, b) depending on the times s(i)
r as in

Eq. (2.14) and such that the factorization problems

µ = S−1
1 S2, (2.45a)

µΛ−b = Ŝ−1
1 Ŝ2, (2.45b)

admit solutions for Si, Ŝi of the form of Eq. (2.10). We have the following

Proposition 2.6. The dressing matrices Si, Ŝi satisfy the Sato equations with the constraints in
Eq. (2.42). The corresponding Lax operators (Eq. (2.11)) give a solution of the RR2T of bidegree
(a, b).

Proof. By substituting Eq. (2.45a) into Eq. (2.45b) we get

S−1
1 S2Λ−b = Ŝ−1

1 Ŝ2. (2.46)

Left-multiplication by S1 and right-multiplication by Ŝ−1
2 give Eq. (2.42b). By the block Töplitz

property, Eq. (2.44), we can rewrite Eq. (2.45b) as

Λ−aµ = Ŝ−1
1 Ŝ2. (2.47)

Performing the same substitution as before and rearranging the terms we obtain Eq. (2.42a).

2.4 Semi-infinite block Töplitz matrices and bi-orthogonal polynomials on
the unit circle

All statements of the previous sections can be transferred almost verbatim to the so-called semi-
infinite case, given by the algebra A∞2 = {(aij ∈ C)i,j∈Z≥0

} of complex semi-infinite matrices. In
this case Λ and Λ−1 denote the semi-infinite matrices

(Λ)ij := δi+1,j, (Λ−1)ij := (ΛT )ij = δi,j+1 (2.48)

Here, with an abuse of notation, we denote by Λ−1 the transpose of Λ, which is in fact only a right
inverse of Λ. We have

Λ−1Λ = 1− E11 (2.49)

where (E11)ij = δi,0δj,0.
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2.4.1 The factorization problem for 2D-Toda and bi-orthogonal polynomials

In the semi-infinite case and for generic initial data for the 2D-Toda flows, a sufficient condition
for the existence of the factorization of Eq. (2.15) is given by Gauss’ elimination: if all the leading
principal minors of µ ∈ A∞2 are non-zero, this leads to the LU decomposition of Eq. (2.15). The
factorization problem can then be interpreted as the construction of bi-orthogonal polynomials with
respect to the bilinear form 〈, 〉µ associated to µ. More precisely, let µ ∈ A∞2 and let 〈, 〉µ be the
C-bilinear form on C[z] defined by 〈

zi, zj
〉
µ

= µij. (2.50)

Let p(i)
j (z), i = 1, 2, j ≥ 0 be monic polynomials in C[z] of degree j. The factorization problem

for µ is equivalent to the requirement that p(i)
j (z) form a bi-orthogonal basis in C[z] w.r.t 〈, 〉µ i.e.〈

p
(1)
i , p

(2)
j

〉
µ

= δijhi. (2.51)

Indeed, the coefficients of the bi-orthogonal polynomials are related to the matrices S1, S2 by

p
(1)
i (z) =

i∑
k=0

(S1)ikz
k, (2.52a)

p
(2)
i (z) = hi

i∑
k=0

(S−1
2 )kiz

k. (2.52b)

The bi-orthogonality property in Eq. (2.51) turns into

S1µS
−1
2 h = h (2.53)

i.e. the factorization of the moment matrix, Eq. (2.15). Denote now by p(i) (resp. p̂(i)) the semi-
infinite vector having p(i)

j (resp. p̂(i)
j ) as its jth entry. By Eqs. (2.11) and (2.15), the Lax operators

Li act on bi-orthogonal polynomials as

L1p
(1)(z) = zp(1)(z), (2.54)

hLT2 h
−1p(2)(z) = zp(2)(z). (2.55)

2.4.2 Semi-infinite block Töplitz matrices

Let us now turn to the study of the (a, b) RR2T in the semi-infinite case, or, equivalently, to the
factorization problem of semi-infinite block Töplitz matrices. We start by defining two sets of
bi-orthogonal polynomials associated with the C-bilinear forms〈

zi, zj
〉
µ

= µij, (2.56)〈
zi, zj

〉
µ̂

= µ̂ij = µi,j+b, (2.57)
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where µ̂ = µΛ−b. Both µ and µ̂ satisfy the Töplitz property, which translates, at the level of bilinear
forms, into 〈

zaf(z), zbg(b)
〉
• = 〈f(z), g(z)〉• (2.58)

for any f, g ∈ C[z]. The monic polynomials p(i)
j and p̂(i)

j satisfy the bi-orthogonality conditions〈
p

(1)
i , p

(2)
j

〉
µ

= δijhi, (2.59a)〈
p̂

(1)
i , p̂

(2)
j

〉
µ̂

= δijĥi. (2.59b)

The corresponding dressing matrices Si, Ŝi are defined through Eq. (2.52); such matrices satisfy the
factorization problems of Eqs. (2.45a) and (2.45b). If we assume that the moment matrix µ depends
on the times s(i)

r as in Eq. (2.14), then, according to Proposition 2.6, (Si, Ŝi) give a solution of the
(a, b)-graded RR2T.

Proposition 2.7. The bi-orthogonal polynomials p(i)
j and the dual bi-orthogonal polynomials p̂(i)

j

are related by the following identities

Ap̂(1) = zap(1), (2.60a)

ĥATh−1p(2) = p̂(2), (2.60b)

Bp̂(1) = p(1), (2.60c)

ĥBTh−1p(2) = zbp̂(2). (2.60d)

Proof. Let us prove the first relation. Applying A to Eq. (2.52a) we get

(Ap̂(1))i =
∑
k≥0

(AŜ1)ikz
k, (2.61)

where we have used the fact that the sum in Eq. (2.52a) can be extended to∞ due to the triangular
structure of S1. The first part of Eq. (2.42a) gives

AŜ1 = S1Λa, (2.62)

which substituted above gives Eq. (2.60a). The remaining relations are proved in a similar way.

As a straightforward consequence we obtain recursion relations for the bi-orthogonal polyno-
mials p(2)

j and p̂(1)
j .

Corollary 2.8. The bi-orthogonal polynomials p(2)
j , p̂(1)

j satisfy the relations

Ap̂(1) = zaBp̂(1), (2.63a)

BTh−1p(2) = zbATh−1p(2). (2.63b)
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Remark 2.4. For a = b = 1 we get from Eq. (2.63a)

p̂
(1)
i+1 + α0(i)p̂

(1)
i = z(p̂

(1)
i + β1(i)p̂

(1)
i−1), (2.64)

and from Eq. (2.63b)

p
(2)
i h−1

i + p
(2)
i+1h

−1
i+1β1(i+ 1) = z(p

(2)
i−1h

−1
i−1 + p

(2)
i h−1

i α0(i)) (2.65)

with i ≥ 0, and assuming p(i)
j = p̂

(i)
j = 0 when j < 0. Notice that in the general (a, b) case the

recursions in Eq. (2.63) involve a+ b+ 2 terms.

Remark 2.5. For the Ablowitz–Ladik lattice, (a, b) = (1, 1), the moment matrix can be seen to
arise from the scalar product on functions on the unit circle,

〈f, g〉µ =
1

2πi

∫
S1

f(z)g(z−1)e
∑
i>0

(
s
(1)
i zi−s(2)i z−1

)
dz

z
. (2.66)

Correspondingly, the associated 2D-Toda τ -function is the partition of the unitary matrix model,

ZU(N) =
n−1∏
i=0

hn, (2.67)

and the recursion relations of Eqs. (2.64) and (2.65) imply the three-term recursion relations of
[43, 48] for the unitary ensemble. The general (a, b) case corresponds to complex integrals of the
form

〈f, g〉µ =
1

2πi

∫
S1

f(zb)g(z−a)e
∑
i>0

(
s
(1)
i zi−s(2)i z−1

)
dz

z
. (2.68)

Notice that the bilinear form on C[z] thus defined is not symmetric anymore as soon as a 6= b, and
the unitary matrix model interpretation is correspondingly less obvious.

2.5 Hamiltonian structure

Since the 2D-Toda hierarchy admits a triplet of compatible Poisson structures [16], a natural ques-
tion arises as to whether the RR2T flows admit a Hamiltonian formulation. Unlike the case of the
extended bi-graded Toda hierarchy, the generic RR2T is not given by an affine submanifold in field
space, and correspondingly the Dirac reduction of the parent Poisson structures is not straight-
forward. Remarkably, however, at least one Poisson structure can always be reduced to the locus
defined by the factorization of the Lax operator as in Eq. (2.18). The key to this is a degeneration
property of the corresponding Poisson tensor, as we now turn to illustrate.
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It is well-known that the 2D-Toda hierarchy can be formulated in terms of two Lax operators
of the form

L̄1 = Λa +
∑

j≥−a+1

ū
(1)
j Λ−j, L̄2 =

∑
j≥−b

ū
(2)
j Λj, (2.69)

for two fixed integers a, b ≥ 1. They are related to the Lax operators defined in (2.6) by L̄1 = La1
and L̄2 = Lb2. In the rest of this subsection we will always use the formulation in terms of the Lax
operators (2.69), and, to keep the notations simple, we will drop the bars and denote them by L1

and L2.

Denote by (L̇1, L̇2) an element in the tangent space TA2DT = {(L̇1 =
∑

j≤a−1 u̇
(1)
j Λj, L̇2 =∑

j≥−b u̇
(2)
j Λj)} of the 2D-Toda phase space and introduce the bilinear pairing〈

(L̇1, L̇2), (X, Y )
〉

= Tr(L̇1X + L̇2Y ) (2.70)

to induce differential forms in T ∗A2DT from operators (X, Y ) of the form X =
∑

k>n xkΛ
k and

Y =
∑

k<m ykΛ
k for some n,m ∈ Z. Similarly, we denote by (Ȧ, Ḃ) an element of the tangent

space TARR = {(Ȧ = α̇a−1Λa−1 + . . . + α̇0, Ḃ = β̇1Λ−1 + . . . + β̇bΛ
−b)} to the phase space of

rational reductions ARR. The same bilinear pairing described above produces a differential form
on ARR starting this time from an operator (X, Y ) of the more general form X =

∑
k∈Z xkΛ

k and
Y =

∑
k∈Z ykΛ

k.

It was shown in [16] that, for a = b = 1, A2DT can be endowed with three compatible Poisson
structures with respect to which the 2D-Toda flows are Hamiltonian. The construction of [16] can
be easily extended to the general a, b ≥ 1 case. What was referred to in [16] as the “second”
Poisson tensor, in particular, reads as follows. When applied on a differential form corresponding
via the pairing to the operator (X1, X2), it gives the following vector

P (〈·, (X1, X2)〉) =
1

2
[L1, (L1X1 +X1L1)− − (L2X2 +X2L2)−]

+
1

2
[L1, (Λ

a + 1)(Λa − 1)−1Res([L1, X1] + [L2, X2])]

−1

2
L1([L1, X1] + [L2, X2])≤0 −

1

2
([L1, X1] + [L2, X2])≤0L1,

1

2
[L2, (L2X2 +X2L2)+ − (L1X1 +X1L1)+]

+
1

2
[L2, (Λ

a + 1)(Λa − 1)−1Res([L1, X1] + [L2, X2])]

−1

2
L2([L1, X1] + [L2, X2])>0 −

1

2
([L1, X1] + [L2, X2])>0L2. (2.71)
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This Poisson structure degenerates on the submanifold of A2DT given by the image of ARR, as
shown by the following Lemma, hence it yields, simply by restriction, a well-defined Poisson
structure on such submanifold.

Lemma 2.9. For L1 = AB−1, L2 = BA−1, we have that

P (〈·, (X1, X2)〉) = ((Ȧ− AB−1Ḃ)B−1, (Ḃ −BA−1Ȧ)A−1)

where (Ȧ, Ḃ) ∈ TARR is given by

Ȧ =
(
(X2BA

−1 − AB−1X1)− + ((Λ−a − 1)−1ζ)
)
A−

− A
(
(A−1X2B −B−1X1A)− + (1− Λa)−1ζ

)
,

Ḃ =
(
(BA−1X2 −X1AB

−1)− + ((1− Λa)−1ζ)
)
B

−B
(
(A−1X2B −B−1X1A)− + ((1− Λa)−1ζ)

)
,

and
ζ = Res([L1, X1] + [L2, X2]).

In other words the vector given by the image by the Poisson tensor of the differential form
〈·, (X1, X2)〉 is equal to the push-forward of a vector in TARR, i.e., it is tangent to ARR.

For any functional f = f(L1, L2) on A2DT we denote by ( δf
δL1
, δf
δL2

) a pair of operators such
that we can express the derivative of f along (L̇1, L̇2) as

ḟ =

〈(
δf

δL1

,
δf

δL2

)
,
(
L̇1, L̇2

)〉
. (2.72)

In other words the vector ( δf
δL1
, δf
δL2

) is a preimage of the differential df with respect to the bilinear
pairing above. The Poisson bracket of two functionals f , g on A2DT is

{f, g} =

〈(
δf

δL1

,
δf

δL2

)
, P

(〈
·,
(
δg

δL1

,
δg

δL2

)〉)〉
. (2.73)

From the Lemma and skew-symmetry, it follows that {f, g}, when restricted on ARR, does not
depend on the choice of functional f (resp. g) on A2DT as long as it restricts to the same f|ARR
(resp. g|ARR). In other words ARR is a Poisson submanifold of A2DT .

The explicit form of RR2T Poisson brackets for the coefficients α0, . . . , αa−1, β1, . . . , βb of A
and B can be computed starting from the 2D-Toda (second) Poisson bracket for the first a and
b coefficients u(1)

0 , . . . u
(1)
a−1, u

(2)
−1, . . . , u

(2)
b of L1 and L2 respectively5 and applying the change of

coordinates induced by the equations La1 = AB−1, Lb2 = BA−1.

5See [16] for explicit formulas.
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In case (a, b) = (1, 1), where A = Λ + α and B = 1 + βΛ−1, one readily computes

{α(n), α(m)} = 0

{logα(n), log β(m)} = δ(n−m+ 1)− δ(n−m)

{log β(n), log β(m)} = δ(n−m+ 1)− δ(n−m− 1)

(2.74)

which coincides with the Poisson structure introduced by Adler–van Moerbeke [3] for the Ablowitz–
Ladik hierarchy.

Since the 2D-Toda flows are Hamiltonian w.r.t Eq. (2.71), with Hamiltonian functions given by

H
(j)
i = −1

i
TrLij, j = 1, 2, (2.75)

the Ablowitz–Ladik flows are Hamiltonian with respect to Eq. (2.74), with the same Hamiltonian
functions.

2.6 Long-wave limit and semi-classical Lax formalism

Starting from the 2D-Toda lattice hierarchy of Section 2.1, a continuous integrable system of 2 +

1 evolutionary PDEs can be constructed by interpolation. For a fixed real parameter ε > 0 –
the “lattice spacing” – introduce dependent variables U (i)

j (x) such that U (i)
j (εn) = (u

(i)
j )n, and

accordingly define a shift operator Λε = eε∂x by one unit of lattice spacing. Replacing the unit shift
Λ1 by the ε-shift eε∂x and rescaling the time variables by t(i)r , εs

(i)
r gives a system of evolutionary

partial differential equations in the time variables t(i)r in the form

∂
t
(p)
r
U

(i)
j (x) =

∑
g≥0

ε2gP [g],p,r
i,j (U,Ux, . . . , U

(2g))

=
∑
k,l

P [0],p,r
k,l,i,j (U)∂xU

(l)
k +O

(
ε2
)

(2.76)

where P [g],p,r
i,j (U,Ux, . . . , U

(2g)) is an element of the vector space Ig of differential polynomials in
U(x) homogeneous of degree 2g + 1 with respect to the independent variable x. Following [19],
we will call this the interpolated 2D-Toda lattice.

We will be particularly interested in the quasi-linear limit of the interpolated 2D-Toda lattice,
where the dispersion parameter ε is set to zero. As noticed in [66], the dispersionless limit ε→ 0 of
Eq. (2.76) can be formulated as the quasi-classical (Ehrenfest) limit of the Lax equations Eq. (2.5),
as follows. Write λi(z) , σΛ(Li) ∈ C((z)) for the total symbol in the variable z ∈ C of the
difference operators Li in Eq. (2.6),

λ1(z) = z +
∑
j≥0

U
(1)
j z−j, λ2(z) =

∑
j≥−1

U
(2)
j zj. (2.77)
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Furthermore, define the Orlov functions

B(1)
n (z) , [(λ1)n]+, B(2)

n (z) , [(λ2)n]−, (2.78)

where [f ]± denotes the projection to the analytic/purely principal part of f ∈ C((z)), and for
f, g ∈ C((x, z)) define the Poisson bracket

{f, g}Lax = z

(
∂f

∂x

∂g

∂z
− ∂g

∂x

∂f

∂z

)
. (2.79)

Then the semiclassical Lax equations

∂λi

∂t
(j)
r

, {B(j)
r , λi}Lax, (2.80)

where the time-derivatives are understood to be taken at fixed z, induce the dispersionless limit of
the interpolated 2D-Toda flows of Eq. (2.76) on the coefficients U (l)

k of λl,

∂
t
(p)
r
U

(i)
j (x) =

∑
k,l

P [0],p,r
k,l,i,j (U)∂xU

(l)
k . (2.81)

Consistency of the dispersionless Lax equations Eq. (2.80) requires the existence of a potential
function F of the long-wave time variables t(j)r such that

B(i)
n (z(λj)) = δijλ

sjn
j + δj2

∂2F
∂t

(1)
0 ∂t

(i)
n

−
∑
m>0

∂2F
∂t

(i)
n ∂t

(j)
m

1

mλsimj
(2.82)

where si = (−1)i+1. By the general dToda theory [66], the potential F yields the eikonal limit of
the logarithm of the long-wave limit of the 2D-Toda τ -function,

F = log τdToda. (2.83)

2.7 Rational reductions and Frobenius manifolds

The integration of the consistency conditions for F has a natural formulation in the language of
Frobenius manifolds [18]. An even more poignant picture emerges in the case of RR2T: by [27,60]
the dispersionless limit (henceforth denoted as dRR2T) coincides with the Principal Hierarchy of
the Frobenius manifold defined on a genus zero double Hurwitz space, as we now turn to show.

2.7.1 Flat structures and the Principal Hierarchy

We start by giving the following
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Definition 2.10. Let M be a complex manifold, dimCM = n. A holomorphic Frobenius struc-
ture M = (M, η, ·) on M is the datum of a holomorphic symmetric (0, 2)-tensor η, which is
non-degenerate and with flat Levi-Civita connection ∇, and a commutative, associative fiberwise
product law with unit X · Y on vector fields X, Y ∈ X (M), which is tensorial and satisfies

Compatibility
η(X · Y, Z) = η(X, Y · Z) for all vector fields X, Y, Z; (2.84)

Flatness the pencil of affine connections

∇(ζ)
X Y , ∇XY + ζX · Y ζ ∈ C (2.85)

is identically flat ∀ ζ ∈ C.

Following terminology introduced in [60], extra flat structures on M will be characterized
according to the following

Definition 2.11. LetM = (M, η, ·) be a holomorphic Frobenius manifold structure on M , and let
e ∈ X (M) be the unit of the ·-product. We will say thatM is

1. semi-simple if the product structure ·|p on TpM has no nilpotent elements for a generic
p ∈M ;

2. of dual-type if ∃ d ∈ Z such that ∀ f ∈ OM ,

∇df = 0 ⇒
(
∂e +

d− 1

2

)
f = cf (2.86)

for some constant cf ∈ C.

3. conformal if ∇e = 0 and ∃ E ∈ X (M) such that ∇E ∈ Γ(End(TM)) is diagonaliz-
able and horizontal w.r.t. ∇ and the pencil of affine connections Eq. (2.85) extends to a flat
meromorphic connection∇(ζ) on M × P1

ζ via

∇(ζ) ∂

∂ζ
=0 (2.87)

∇(ζ)
∂/∂ζX =

∂

∂ζ
X + E ·X − 1

ζ
µ̂X (2.88)

where µ̂ is the traceless part of −∇E;

4. tri-hamiltonian if it is conformal, n is even and µ̂ has only two eigenvalues ±d/2 with
multiplicity n/2, where d = 2(1− Tr(∇E)).
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A Frobenius manifold structureM on M embodies the existence of a Hamiltonian hierarchy
of quasi-linear commuting flows on its loop space [27]. Let t = {τα(ζ) ∈ OM}nα=1 be the datum
of a marked system of flat coordinates for ∇(ζ) depending holomorphically on ζ around ζ = 0:
this is determined up to a C[[ζ]]-valued affine transformation in general, a freedom which reduces
to a complex affine transformation when M is conformal by virtue of Eq. (2.88). Write hα,p ,

ηαβ([ζp]τα(ζ)) ∈ OM for the pth-Taylor coefficient of ηα,βτα(ζ) at ζ = 0. In terms of the flat metric η,
we define [27] a hydrodynamic Poisson structure {, }η on the loop space LM = Maps(S1,M) as{

τα(0)(X), τβ(0)(Y )
}
η

= ηαβδ′(X − Y ), (2.89)

where X, Y ∈ S1 are coordinates on the base of the loop space, as well as an infinite set of quasi-
linear Hamiltonian flows via

∂τβ

∂tα,p
,
{
τβ, Hα,p

}
η

= ∂X∂
βhα,p. (2.90)

These flows generate a commuting family of Hamiltonian conservation laws [27], which is com-
plete as long asM is semi-simple [67].

Definition 2.12. The hierarchy of hydrodynamic type Eq. (2.90) will be called the Principal Hier-
archy associated to (M, t).

2.7.2 Frobenius dual-type structures for the RR2T

Let a, b ∈ Z2
+ and m ∈ Z. In this section we will construct a Frobenius dual-type structure [60] on

the space of symbols of the Lax operator La+m
1 = L−b−m2 of the generalized RR2T of Theorem 2.3.

Definition 2.13. Let v, q−a+1, . . . , qb−1 ∈ C, a, b ∈ Z+ and ν ∈ C∗. We define Ha,b,ν to be the
space of multivalued functions on P1 of the form

λ(z) = evzν+b

∏a−1
k=0(z − eq−k)∏b−1
l=0 (z − e−ql)

. (2.91)

Remark 2.6. Writing

zk =


0 for k = 1

eq2−k for k = 2, . . . , a+ 1
e−qk+2−a for k = a+ 2, . . . , a+ b+ 1
∞ for k = a+ b+ 2

(2.92)

the meromorphic function z−νλ(z) has, for generic values of the parameters, a zero of order b at
z1, simple zeroes at zk+2, k = 0, . . . , a − 1, a pole of order a at za+b+2 , ∞, and simple poles
at za+2+k , e−qk , k = 0, . . . , b − 1. When ν = m ∈ Z0, this function is the total symbol of the
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(a + m)th power of the Lax operator L1 (or equivalently, the (b + m)th inverse power of L2) of
the m-generalized RR2T of bidegree (a, b), up to a trivial rescaling of the argument z. The space
Ha,b,m is then a genus zero double Hurwitz space: a moduli space of rational curves with a marked
meromorphic function λ : P1 → P1 having specified ramification profile κ ∈ Za+b+2 at zero and
infinity. In our case, the latter reads

κ = (b+m, 1, . . . , 1︸ ︷︷ ︸
a

,−1, . . . ,−1︸ ︷︷ ︸
b

,−a−m). (2.93)

For ν = m ∈ Z, we define on the (a + b)-dimensional complex manifold Ha,b,ν a triplet
(η(1), η(2), η(3)), where η(i) ∈ Γ(Sym2T ∗Ha,b,m), det η(i) 6= 0, by the Landau–Ginzburg formulas

η(1)(X, Y ) =
a+b+2∑
i=1

Reszi
X(λ)Y (λ)

dλ

(
dz

z

)2

, (2.94)

η(2)(X, Y ) =
a+b+2∑
i=1

Reszi
X(log λ)Y (log λ)

d log λ

(
dz

z

)2

, (2.95)

η(3)(X, Y ) =
a+b+2∑
i=1

Reszi
X(λ−1)Y (λ−1)

dλ−1

(
dz

z

)2

, (2.96)

(2.97)

for X, Y ∈ X (Ha,b,ν). We further equip TλHa,b,m with a triplet (•, ?, ∗) of commutative, associa-
tive products defined by

η(1)(X • Y, Z) =
a+b+2∑
i=1

Reszi
X(λ)Y (λ)Z(λ)

dλ

(
dz

z

)2

, (2.98)

η(2)(X ? Y,Z) =
a+b+2∑
i=1

Reszi
X(log λ)Y (log λ)Z(log λ)

d log λ

(
dz

z

)2

, (2.99)

η(3)(X ∗ Y, Z) =
a+b+2∑
i=1

Reszi
X(λ−1)Y (λ−1)Z(λ−1)

dλ−1

(
dz

z

)2

, (2.100)

depending holomorphically on the base-point λ ∈ Ha,b,m. When ν /∈ Z, Eqs. (2.94), (2.96), (2.98)
and (2.100) are ill-defined, but the definition Eqs. (2.95) and (2.99) of the metric and product
(η(2), ?) carries through unscathed. The main result of this section is the following

Theorem 2.14. Let a, b ∈ Z+, ν ∈ C. Then the following statements hold:
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i) Eqs. (2.95) and (2.99) define onHa,b,ν a semi-simple Frobenius structure of dual-typeM(2)
a,b,ν =

(Ha,b,ν , η
(2), ?) of charge one.

ii) Let ν = m ∈ Z and suppose that both b + m,−a − m are either equal to one or negative.
Then Eqs. (2.94) and (2.98) define a conformal Frobenius structureM(1)

a,b,m = (Ha,b,m, η
(1), •)

of charge one on Ha,b,m. The unit of this structure is flat iff m 6= 1− b and m 6= −a− 1, and
we have that

M(2)
a,b,m = D(M(1)

a,b,m) (2.101)

where D is Dubrovin’s duality morphism of Frobenius structures [29].

iii) Let b = a and ν = 1− a. Then Eqs. (2.94)–(2.96) and (2.98)–(2.100) define a tri-hamiltonian
Frobenius structure onHa,a,1−a.

Proof. Theorem 2.14 is essentially a verbatim translation of Theorem 2 in [60] to the setting
of RR2T. We sketch the main points of the proof below. For Point (i), flatness of the residue
pairing η(2) follows from checking, through a direct computation of (2.95), that the coordinates
v, q−a+1, . . . , qb−1 form in fact a flat coordinate frame for η(2). Further, by the explicit form of
Eqs. (2.95) and (2.99), the ?-product structure is clearly compatible with the metric η(2) in the
sense that the two form a Frobenius algebra on the tangent spaces of Ha,b,ν ; it is immediate to
check that the algebra is unital, the identity consisting in the flat vector field e = ∂v. Moreover the
a+ b critical values of log λ,

ui , log λ(yi), yi ∈ P1 s.t. λ′(yi) = 0, i = 1, . . . , a+ b (2.102)

are a set of local coordinates on Ha,b,ν \∆a,b,ν , where the discriminant ∆a,b,ν , {λ ∈ Ha,b,ν |ui 6=
uj∀i 6= j}. In these coordinates, the product and the metric take the form

∂ui ? ∂uj = δij∂ui ,

η(2)(∂ui , ∂uj) = η
(2)
ii (u)δij (2.103)

for functions η(2)
ii (u) ∈ O(Ha,b,ν \ ∆a,b,ν), possibly singular on ∆a,b,ν . Moreover, thanks to the

flatness of η(2) and its compatibility with the product, we can write

η
(2)
ii (u) = η(2)(∂ui , ∂ui) = η(2)(e, ∂ui)

and, by the flatness of e we get η(2)
ii = ∂uit1(u), where dt1(u) = η(2)(e, ·). This means that η(2) is

an Egoroff metric which implies (see for instance [44]) that∇Xη
(2)(Y ? Z,K) is symmetric in all

four vector fields X, Y, Z,K.
The above proves that Eqs. (2.95) and (2.99) endowHa,b,ν with a semi-simple Frobenius dual-type
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structure, which has charge one by the flatness of the unit vector field.
As for Point (ii), notice that when ν = m ∈ Z, λ is single-valued and Ha,b,ν is a genus zero
double Hurwitz space. Under the further condition that the zeroes of λ be simple, Ha,b,m becomes
a Hurwitz space in a standard sense, with the only proviso that the divisor where λ has multiple
zeroes is removed. Then under the conditions of Point (ii) the existence of a conformal Frobenius
manifold structure is a direct corollary of [27, Theorem 5.1] for m 6= 1 − a, 1 − b; when m =

1 − a or 1 − b, the proof of the above theorem goes through almost unscathed except for the
covariant constancy of the unit vector field, which fails to be satisfied in these cases. Furthermore,
Eq. (2.101) follows from a standard argument (see [30, Proposition 5.1]), which together with Point
(i) above proves semi-simplicity and the charge one condition. Finally, Point (iii) is an immediate
consequence of Point (ii) together with [60, Theorem 2].

Under the conditions of Point (ii), the statement of Theorem 2.14 implies that the metrics η(1)

and η(2) form a flat pencil, which is exact if and only if m 6= 1−a, 1− b: η(2) is the (inverse) of the
intersection form onM(1)

a,b,m. Moreover, when λ has only simple zeroes and poles this is enhanced
to a a triple of compatible flat metrics η(1), η(2), η(3). And finally, if the unit of the first structure is
flat, the resulting Frobenius structure is tri-hamiltonian.
By comparing the formulas for the flat coordinates for η(2) and η(1) one easily sees when the pencil
(η(2))−1 − ε(η(1))−1 is resonant, namely, when η(1) and η(2) have common flat coordinates. This
happens if and only if λ has more than one pole; there is one common flat coordinate for each pole
after the first.

As an immediate consequence of Theorem 2.14, the semi-classical limit of the RR2T, Eqs. (2.80)
and (2.81), has a neat description in terms of the Principal Hierarchy ofM(i)

a,b,ν , i = 1, 2.

Corollary 2.15. The following statements hold true:

1. for any (a, b) ∈ Z2
+, m ∈ Z and t ∈ Affa+b(C[[z]]), the Principal Hierarchy of (M(2)

a,b,m, t)

is a complete system of commuting Hamiltonian conservation laws of the m-generalized
dRR2T of bidegree (a, b);

2. Let−a−m < 0, b+m < 0 as in Point (ii) of Theorem 2.14, and fix t ∈ Affa+b(C) such that

hα,p =− Resz=∞
λ

α
m+a

+p(
α

m+a

)
1+p

dz

z
, α = 1, . . . ,m+ a, (2.104)

hα+m+a,p =− Resz=0
λ

α
−b−m+p(
α

−b−m

)
1+p

dz

z
, α = 1, . . . ,−m− b− 1, (2.105)
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where (x)n , Γ(x+n)
Γ(x)

. Then the Hamiltonian flows of the Principal Hierarchy (Eq. (2.90)) of

M(1)
a,b,m associated to hα,p, α = 1, . . . , a− b− 1, coincide with the semiclassical Lax flows,

Eq. (2.80), for the m-generalized dRR2T of bidegree (a, b) upon identifying

tα,p →

(
α

m+a

)
1+p

α + p(m+ a)
t
(1)
α+p(m+a), α1, . . . ,m+ a, (2.106)

tα+m+a,p →

(
α

−b−m

)
1+p

α− p(m+ b)
t
(2)
α−p(b+m), α = 1, . . . ,−m− b− 1. (2.107)

Proof. Point (2) of the Corollary is an immediate application of Proposition 6.3 and Theorem 6.5
in [27]. Notice in particular that Proposition 6.3 warrants the existence of a flat coordinate system
t for the deformed connection on Ha,b,m × C (Eqs. (2.87) and (2.88)) which is compatible with
Eqs. (2.104) and (2.105); the scaling factors in Eqs. (2.106) and (2.107) are required for consis-
tency with the definition of the semiclassical Lax flows6. To see why Point (1) holds, consider the
Taylor expansion in the variable ζ of the deformed flatness equationsM(1)

a,b,m in the tangent direc-
tions toHa,b,m, Eq. (2.85). Then, from Eqs. (2.94), (2.95), (2.98) and (2.99), writing the pth Taylor
coefficient in flat coordinates for the intersection form η(2) yields the deformed flatness equations
of the dual Frobenius structureM(2)

a,b,m with ζ = p [9, 29]. The first statement then follows imme-
diately.

Remark 2.7. The dispersionless limit of the Poisson structure for RR2T obtained as a reduction
of the second Poisson bracket of the 2D-Toda hierarchy [16] corresponds to the Poisson structure
associated to the metric η(2) via Eq. (2.89), as one can promptly check by computing the Poisson
brackets for the coefficients ofA andB, as described in Section 2.5, and taking their quasi-classical
limit.

Remark 2.8. Under the conditions of Point (2) of Theorem 2.15, it should be stressed that the
dToda Hamiltonian flows, Eq. (2.80), are generated by a strict subset of the flat coordinates of the
deformed connection, Eqs. (2.87) and (2.88). The remaining flows, which by semi-simplicity of
M(1)

a,b,m make the Principal Hierarchy a complete family of conservation laws [67], are a genuine
extension of the dRR2T, analogous to the extension of the ordinary 1D-Toda hierarchy [19]. On
the other hand, as soon as the conditions of Point (2) are not matched, it can readily be checked
in examples that the metric in Eq. (2.94) is typically curved if either of b + m or −a − m is
greater than one. The conditions on the range of m leaves only two possibilities for m ≥ 0:
b = 0, m = 1 or b = 1, m = 0. The case m < 0 displays instead a wealth of flat structures:
as long as −a − 1 ≤ m ≤ 1 − b and m 6= −a,−b the metric η(1) in Eq. (2.94) is flat. Equiva-
lently, for any fixed bidegree (a, b) there exist a+ b+ 1 generalized RR2T (see Theorem 2.3) such

6See e.g. [20, Section 1].
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that their semi-classical limit has a dispersionless bi-hamiltonian structure of Dubrovin–Novikov
type. This structure is exact when both b + m and −a − m are negative, and tri-hamiltonian if
a = b, m = −a+ 1.

Remark 2.9 (Flat coordinates of η(1)). Flat coordinates for the first Frobenius structure on Ha,b,m

can be constructed using standard methods from [27, 60]. For definiteness, consider the case when
b = 1 and m = 0. By applying the change of variables z 7→ e−q0(z + 1) we obtain

λ = ev−aq0(z + 1)a
(

1− e2q0 − 1

z

) a−1∏
k=1

(
1− eq−k+q0

z + 1

)
, φ =

dz

z + 1
. (2.108)

We denote by z = z(λ, q) a local inverse of the function λ(z, q) and, from the equation ∂q(λ(z(λ, q), q)) =

0, we obtain the“thermodynamic identity” ∂qλ = −(∂zλ)(∂qz), from which we can rewrite the
residue formula Eq. (2.94) as

η(X, Y ) =
a+3∑
i=1

ResziX(log(z + 1))Y (log(z + 1))dλ (2.109)

Now notice that we can expand the local solutions log(z(λ, q) + 1) in the following way as series
of λ:

log(z + 1) = 1
a

[
log λ− (v − aq0)−

∑a
k=1 τk

1
λk/a

]
+O

(
1

λ1+1/a

)
, z →∞

log(z + 1) = O
(

1
λ

)
, z → 0

log(z + 1) = log λ+ c0 +O(λ), z → −1
log(z + 1) = cj +O(λ), z → eq−j+q0 − 1

(2.110)

This shows that the only contribution to the sum in Eq. (2.94) comes from z = ∞ and that the
coefficients

τ0 = v − aq0

τk =
a

k
Resλ1/a=∞

[
λk/a

∂

∂λ1/a
log(z + 1)dλ1/a

]
=
a

k
Resz=∞

λk/a

z + 1
dz, k = 1, . . . , a

are flat coordinates for η(1).

Example 2.4 (Bi-hamiltonian structure of q-deformed dispersionless 2-KdV). Let us consider the
dispersionless limit of the q-deformed Gelfand–Dickey hierarchy of Example 2.2 for n = 2. The
symbol of the Lax operator reads

λ(z) = z3 + az2 + bz + c (2.111)
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and a quick inspection of the semi-classical Lax equations reveals that c is invariant under the
flows of Eq. (2.80). When c = 0, the hierarchy then manifestly reduces to the generalized dRR2T
of bidegree (a, b) = (2, 0) with ν = m = 1, v = 0.

By Theorem 2.14, the space of coefficientsH2,0,1 is endowed with a conformal Frobenius man-
ifold structureM(1)

2,0,1 = (H2,0,1, η
(1), •) of charge one. The discussion of Remark 2.9 shows that

flat coordinates for the metric η(1) are given by

t1 = −a
3
, t2 = b− a2

6
. (2.112)

In this chart, η(1) takes the off-diagonal form η
(1)
ij = δi+j,2, and the algebra structure onM(1)

2,0,1 is
induced by the polynomial prepotential

F (1)(t1, t2) =
12

5
t61 − t2t41 +

1

4
t22t

2
1 −

t32
144

. (2.113)

As far as the dual-type Frobenius structureM(2)
2,0,1 = (H2,0,1, η

(2), ?) is concerned, from the proof
of Point (i) of Theorem 2.14 we know that the zeroes (eq0 , eq−1) of λ are exponentiated flat coordi-
nates of η(2). Then the Miura transformation

t1 =
1

3
(eq0 + eq−1) , (2.114)

t2 =
1

6

(
4eq0+q−1 − e2q0 − e2q−1

)
. (2.115)

and Eq. (2.95) yield η
(2)
ij = 3+(−1)i+j

2
in the chart (q0, q−1). Finally, the ?-product is given by

Eq. (2.99) by the dual prepotential

F (2)(q0, q−1) =
5q3

0

6
+

1

2
q−1q

2
0 + q2

−1q0 +
2q3
−1

3
− Li3

(
eq−1−q0

)
(2.116)

where Li3(x) =
∑

n>0
xn

n3 is the polylogarithm function of order 3.

Example 2.5 (Tri-hamiltonian structure of dispersionless Ablowitz–Ladik). Let now a = b = 1,
m = 0. This case corresponds to the dispersionless limit of the Ablowitz–Ladik hierarchy of
Example 2.1. For this case, the Frobenius manifold structures M(1)

1,1,0 and M(2)
1,1,0 on H1,1,0 were

constructed in [9]; we will review and expand on that in light of the general result of Theorem 2.14.
In this case, the symbol of the Lax operator reads

λ(z) = evz
z − eq0

z − e−q0
. (2.117)
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By the proof of Point (i) of Theorem 2.14 we know that (v, q0) are flat co-ordinates for the metric
η(2) defined by Eq. (2.95). Furthermore, Point (ii) of Theorem 2.14 implies that the metric η(1) is
flat in this case. By the discussion of Remark 2.9, flat co-ordinates for η(1) are given by

v =
1

2

(
log
(
t1 + et2

)
+ t2

)
, (2.118)

q0 =
1

2

(
log
(
t1 + et2

)
− t2

)
. (2.119)

Notice that t2v − q0 is a flat coordinate for both η(1) and η(2), and the flat pencil is resonant in this
case. The Frobenius potentials in the respective flat frames are

F (1)(t1, t2) =
1

2
t2t

2
1 + et2s1 +

1

2
s2

1 log (s1) (2.120)

F (2)(v, q0) =v2q0 + 2vq2
0 +

7q3
0

3
+ Li3

(
e2q0
)

(2.121)

A further consequence of Theorem 2.14 is the existence of a third compatible flat metric
η(3), along with the corresponding Frobenius manifold structureM(3)

1,1,0. Introducing a local chart
(s1, s2) via

v =− 1

2

(
s2 + 3 log

(
e−s2 − s1

))
, (2.122)

q0 =
1

2

(
s2 + log

(
e−s2 − s1

))
. (2.123)

gives a flat co-ordinate system for η(3) as defined in Eq. (2.96), as indeed η(3)
ij = δi+j,3; the pencil

(η(3))−1− ε(η(2))−1 is again resonant, since s2 = v+ 3q0. It follows from Eq. (2.100) that the third
product structure is induced by the prepotential

F (3)(s1, s2) =
1

2
s2s

2
1 − e−s2s1 −

1

2
s2

1 log (s1) , (2.124)

which shows that the first and the third Frobenius structures are isomorphic,

M(1)
1,1,0 'M

(3)
1,1,0. (2.125)

Such isomorphism is non-trivial, in that η(1) and η(3) do not share a common flat system and the
associated Frobenius structures are not related by an affine change of flat co-ordinates.

3 Equivariant mirror symmetry of toric trees

Let X be a smooth quasi-projective variety over C with vanishing odd cohomologies, T an al-
gebraic torus action on X with projective fixed loci ij : XT

j ↪→ X , j = 1, . . . , r ∈ N. If X is
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projective, the equivariant Gromov–Witten invariants of (X,T ) [39] are defined as

〈φα1 . . . φαn〉
X,T
g,n,β ,

∫
[Mg,n(X,β)]virT

n∏
i=1

ev∗i (φαi) ∈ HT (pt), (3.1)

whereMg,n(X, β) is the stable compactification [49] of the moduli space of degree β ∈ H2(X,Z)

morphisms from n-pointed, genus g curves to X , [Mg,n(X, β)]vir
T is the T -equivariant virtual fun-

damental class ofMg,n(X, β), φαi ∈ HT (X) are arbitrary equivariant cohomology classes of X ,
and evi : Mg,n(X, β) → X is the evaluation map at the ith marked point. Eq. (3.1) still makes
sense if X is non-compact as long as XT

i is for all i; in that case, we define invariants by their lo-
calization to the fixed locus by the Graber–Pandharipande virtual localization formula [42,49]. For
T -equivariant cohomology classes φ1, φ2 ∈ HT (X), write η for the non-degenerate inner product

η(φ1, φ2) ,
r∑
j=1

∫
XT
j

i∗j(φ1 ∪ φ2)

e(NX/XT )
. (3.2)

We will denote by the same symbol the flat non-degenerate pairing on T (HT (X)) obtained from
Eq. (3.2) by identifying TτHT (X) ' HT (X) ∀ τ ∈ HT (X). For vector vields ϕi ∈ X (HT (X)),
i = 1, 2, the genus zero equivariant Gromov–Witten invariants Eq. (3.1) define further a product
structure ϕ1 ◦ ϕ2 on the tangent fiber at τ through

η(ϕ1, ϕ2 ◦ ϕ3) ,
∑
n≥0

∑
β∈H2(X,Z)

〈
φ1, φ2, φ3, τ

⊗n〉X,T
0,n+3,β

(3.3)

which is commutative, associative, and compatible with η [39]. The corresponding Frobenius man-
ifold structure QHT (X) , (HT (X), η, ◦) on HT (X) is the T -equivariant quantum cohomology
of X .

Let µi = c1(OBTi(1)) be the hyperplane class on the classifying space BTi of the ith-factor of
T = (C?)l, and write K , C(µ1, . . . , µn) for the field of fractions of H•(BT ). Then QHT (X)

is a finite dimensional dual-type Frobenius manifold over K of charge one: it has a flat identity
by the Fundamental Class Axiom of Gromov–Witten theory, and it is generally non-conformal
as a consequence of the non-trivial grading of the ground field K. The purpose of this section
is to exhibit an isomorphism of such Frobenius dual-type structures with the second Frobenius
structure on Ha,b,µ of Theorem 2.14 for a suitable family of targets. When X is the total space
of the bundle OP1(−1) ⊕ OP1(−1) and T ' C∗ is the one-torus action that covers the trivial
action on the base and scales the fibers with opposite weights, it was already shown in [8, 9] that
QHT (X) 'M(2)

1,1,0. Moreover, it was proved in [10] thatM(2)
a,0,ν is isomorphic to the T -equivariant

orbifold cohomology of the Aa−1-surface singularity, where T ' C∗ acting with generic weights
specified by ν. We will see how this correspondence with Gromov–Witten theory generalizes for
arbitrary (a, b, ν).
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3.1 Toric data

Let Sa,b = {vi ∈ Z3}a+b+2
i=1 be the set of three-dimensional integer vectors

vi =

{
(0, a+ 1− i, 1) i = 1, . . . , a+ 1,
(1, a+ 2− i, 1) i = a+ 2, . . . , a+ b+ 2.

(3.4)

Sa,b is the skeleton of the fan of a toric variety, given by the cone over a triangulation of the rays
vi (Figures 1 and 2). We can construct it as a GIT quotient Ca+b+2//(C?)a+b−1 [23] by considering
the exact sequence

0 Za+b−1 Za+b+2 Z3 0// M // N // // , (3.5)

where

MT =



1 −2 1 0 0 0 . . . 0 . . . 0
0 1 −2 1 0 0 . . . 0 . . . 0

... . . . ...
...

0 . . . 1 −2 1 0 0 0 . . . 0
0 . . . 0 1 −1 −1 1 0 . . . 0
0 . . . 0 0 0 1 −2 1 . . . 0

... . . . ...
0 . . . 0 . . . 0 . . . 0 1 −2 1


, (3.6)

N =

 0 0 0 . . . 0 1 1 . . . 1
0 1 2 . . . a 0 −1 . . . −b
1 1 1 . . . 1 1 1 . . . 1

 . (3.7)

A triangulation of the fan corresponds to a choice of chamber in the GIT problem, as in Fig-
ures 1 and 2. The picture in Figure 1 corresponds to the orbifold chamber in the secondary fan of
Eqs. (3.6) and (3.7); we will denote by Xa,b the resulting singular variety. It is obtained by deleting
the unstable locus

Xus
a,b , V

(
a−1∏
i=2

xi

b−1∏
j=2

xa+j

)
(3.8)

in Ca+b+2 and quotienting by the (C?)a+b−1 action with weights specified by M in Eq. (3.6). The
picture in Figure 2 corresponds instead to the smooth (large volume) chamber: we remove the
Zariski-closed set Y us

a,b defined by

Y us
a,b , V

( ∏
j>i+1,j 6=a+1,a+2

〈xi, xj〉
a−1∏
j=1

〈xa+1, xj〉
a+b+2∏
j=a+4

〈xa+2, xj〉

)
(3.9)

and then quotient by the (C?)a+b−1 action with weights specified by M in Eq. (3.6). The resulting
variety, which we will denote by Ya,b, is a smooth quasi-projective Calabi–Yau threefold, and the
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Figure 1: The toric diagram of the orbifold Xa,b

for a = 3, b = 2.
Figure 2: The toric diagram of the minimal res-
olution Ya,b for a = 3, b = 2.

variation of GIT given by moving from Figure 1 to Figure 2 is a crepant resolution of the singular-
ities of Xa,b.

3.1.1 T -equivariant cohomology

The resolution Ya,b can be visualized as a tree of two chains {Li}a−1
i=1 and {Li}a+b−1

i=a+1 of P1 with
normal bundle O + O(−2), which are then connected along a (−1,−1) curve La. We will refer
to the resulting geometry as a toric tree, to reflect the shape of the corresponding web diagram
(Figure 3). Explicitly, we have

Li ,


V (xi+1, xa+2) i < a,
V (xa+1, xa+2) i = a,
V (xa+1, xi+2) i > a.

(3.10)

The fundamental cycles [Lj] ∈ H2(Ya,b,Z) of the links of the chain are a system of generators
for H2(Ya,b,Z) ' Za+b−1. Define ωj ∈ H2(Ya,b,Z) to be their cohomology duals, and O(ωj) the
corresponding line bundles; by definition, they restrict to O(1) on Lj , and to the trivial bundle on
Li, i 6= j. Consider now the following T ' (C?)2-action on Ca+b+2:

(xi;σ1, σ2)→


σ−1

1 xa i = a,
σ2σ1xa+1 i = a+ 1,
σ−1

2 xa+2 i = a+ 2,
xi else.

(3.11)
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p1

p2

p3

p4

p5

Figure 3: The toric web diagram of Ya,b for a = 3, b = 2.

This descends to an effective torus action on Xa,b, which preserves KYa,b ' OYa,b . Let {pi}a+b
i=1

denote the fixed points of the torus action, so that pi and pi+1 correspond to the poles of each P1

in the chain. Turning on a torus action as in Eq. (3.11) we obtain an action on the bundles over the
links of the chain, linearized as in Eq. (3.11); their equivariant first Chern classes provide lifts of
ωj to T -equivariant cohomology, which we will denote by the same symbol ωj ∈ HT (Ya,b).

3.2 Mirror symmetry

Denote µi , c1(OBTi(1)) where C∗ ' Ti ↪→ T are the two cartesian projections of the two-torus
T acting on Ya,b. We have the following

Theorem 3.1. Let (a, b, ν) be as in Theorem 2.13. Then

QHT (Ya,b) 'M(2)
a,b,ν (3.12)

upon identifying ν = µ1/µ2.

Proof. The proof is given by explicit calculation of both sides of Eq. (3.12). For the r.h.s., we
will use the fact that in positive degree all genus zero Gromov–Witten invariants can be computed
by a combined use of the deformation invariance of GW invariants and the Aspinwall–Morrison
formula [5, 13, 70]. The result is [13, 47]

〈ωi1 . . . ωin〉
Ya,b,T

0,n,β =



1
d3

if ij = a for some j , β = d
(

[La] +
∑a−1

i=ka
[Li] +

∑a+b+1
j=a+kb

[Lj]
)
,

k• = min({ij}, •)
− 1
d3

if k+ = max({ij}) < a or k− = min({ij}) > a ,
β = d(Lk− + . . . Lk+),

0 else.
(3.13)
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When β = 0 and n = 3, Gromov–Witten invariants are defined as the equivariant triple intersection
numbers of Ya,b, which can be computed explicitly by localization to the T -fixed points from
Eq. (3.11). Explicitly, the restrictions of the Kähler classes to the fixed loci read

ωi|pj =


(a− i)µ2 + µ1 for j ≤ i ≤ a− 1,
0 for i ≤ a− 1, j > i,
0 for i ≥ a, j ≤ i,
(a− i)µ2 − µ1 for j > i ≥ a.

(3.14)

and the moving part contribution to the Euler class is computed as

eT (TM)
∣∣
pi

=

{
−µ2 ((a− i)µ2 + µ1) (µ1 + µ2(a− i+ 1)) for i ≤ a,
µ2 (µ1 + (i− a− 1)µ2) ((i− a)µ2 + µ1) for i ≥ a+ 1.

(3.15)

Then, denoting si,c ,
∑c

k=i(eT (TM))−1|pk , we get

si,c =

{
i−c−1

µ2((a−c)µ2+µ1)((a+1−i)µ2+µ1)
for i < c ≤ a,

c−i+1
µ2((a−c)µ2−µ1)((a+1−i)µ2−µ1)

for a < i ≤ c.
(3.16)

and therefore, 〈
13
〉Ya,b,T

0,3,0
=s1,a+b = s1,a−b,

=
b− a

µ2(bµ2 + µ1)(aµ2 + µ1)
(3.17)

Furthermore, for i ≤ j ≤ k < a:〈
12, ωi

〉Ya,b,T
0,3,0

= ((a− i)µ2 + µ1) s1,i

=− i

µ2(aµ2 + µ1)
, (3.18)

〈1, ωi, ωj〉Ya,b,T0,3,0 =
−i ((a− j)µ2 + µ1)

(aµ2 + µ1)
, (3.19)

〈ωi, ωj, ωk〉Ya,b,T0,3,0 =
i ((a− j)µ2 + µ1) ((a− k)µ2 + µ1)

µ2(aµ2 + µ1)
, (3.20)

and for i ≥ j ≥ k ≥ a〈
12, ωi

〉Ya,b,T
0,3,0

= (−(i− a)µ2 − µ1) si+1,a+b,

=
i− a− b

µ2(bµ2 + µ1)
, (3.21)

〈1, ωi, ωj〉Ya,b,T0,3,0 =
(i− a− b) ((a− j)µ2 − µ1)

µ2(bµ2 + µ1)
, (3.22)

〈ωi, ωj, ωk〉Ya,b,T0,3,0 =
(i− a− b) ((a− j)µ2 − µ1) ((a− k)µ2 − µ1)

µ2(bµ2 + µ1)
. (3.23)
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Writing τ = τ01+
∑a+b−1

i=1 τiωi for τ ∈ HT (Ya,b), where we set ω0 , 1Y , Eqs. (3.13)–(3.23) imply
that the generating function F Ya,b,T

GW of the genus zero Gromov–Witten invariants of Ya,b takes the
form

F
Ya,b,T
GW (τ) ,

∑
n,β

〈
τ⊗n

n!

〉Ya,b,T
0,n,β

,

=
∑
i,j,k

〈ωi, ωj, ωk〉Ya,b,T0,3,0 τiτjτk +
a−1∑
l=0

b−1∑
k=0

Li3
(
eτa+τa−1+···+τa−l+τa+b−1+···+τa+b−k

)
−

a−1∑
k≤l=1

Li3
(
eτk+···+τl

)
−

a+b−1∑
k≤l=a+1

Li3
(
eτk+···+τl

)
. (3.24)

As far as the r.h.s. of Eq. (3.12) is concerned, the prepotential ofM(2)
a,b,ν can be computed analyti-

cally in closed form from Eqs. (2.95) and (2.99). A rather tedious, but completely straightforward
residue calculation shows that the prepotentials coincide

FM
(2)
a,b,ν (v, q−i, qj) = F

Ya,b,T
GW (τ) (3.25)

upon identifying flat coordinates as

v =
τ0

µ2

+ (a− ν)
τa
2

+
a−1∑
j=1

jτj, (3.26)

q−k =−
(τa

2
+ τa−1 + · · ·+ τa−k

)
k = 0, . . . , a− 1, (3.27)

ql =−
(τa

2
+ τa+1 + · · ·+ τa+l

)
l = 1, . . . , b− 1. (3.28)

Theorem 3.1 prompts the following immediate generalization of the conjectural correspondence
of [8] for the Ablowitz–Ladik hierarchy.

Conjecture 3.2. The full descendent all-genus Gromov–Witten potential of (Ya,b, T ) for µ1 = mµ2

is the logarithm of a τ -function of the m-generalized RR2T of bidegree (a, b).

In other words, the parameterm in Theorem 2.3 corresponds to a choice of weights of a resonant
subtorus C∗ ' T ′ ⊂ T . Its proof up to genus one will be the subject of Section 3.4.

Remark 3.1. When b = 0, the GIT quotient in Eq. (3.5) yields Y a+1,0 ' C × Aa, where Aa is
the canonical resolution of the Aa surface singularity. Conjecture 3.2 then suggests that a suitable
τ -function of the q-deformed a-KdV hierarchy should yield the total GW potential of C×Aa. This
has interesting implications already for the case a = 1 andA0 = C2, where it would imply that the
τ -function of the scalar hierarchy highlighted in [7] to be underlying the generating functions of
triple Hodge integrals onMg,n should be a τ -function of the q-deformed KdV hierarchy of [35].
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3.3 Twisted periods and the Dubrovin connection

Information on the genus zero gravitational invariants of Ya,b is encoded into the the pencil of
affine connections of Eq. (2.85), or the Dubrovin connection on QHT (Ya,b). An immediate spin-
off of Theorem 3.1 is an explicit characterization of its space of solutions.

Let ν = m ∈ Z and π : Ua,b,m → Ha,b,m be the universal curve over the genus zero double
Hurwitz space Ha,b,m. For λ ∈ Ha,b,m we write Cλ for the fiber of π at λ and C[λ] , Cλ \
{eq0 , e−q0 , {esgn(k)qk}b−1

k 6=0=1−a}. Let now p : C̃[λ] → C[λ] be the universal covering map and, for
ζ ∈ C, fix a choice of principal branch for λζ = exp(ζ log λ) as

λζ(z) = zζ(m+b)

0∏
i=1−a

|z − qi|ζeiζ argi,+(z)

b−1∏
j=0

|z − q−1
j |−ζe−iζ argj,−(z) (3.29)

where argi,±(z) ∈ [0, 2π) is the angle formed by z − e±qi with Im(z) = 0. On the complex line
Lλ parametrized by λζ , we have a monodromy representation ρλ : π1(C[λ]) → Lλ ' C defined
by local coefficients lqi around eqi resulting in multiplication by qi := ρλ(lqi) = e2πiζσi , where
σi = (i+m+ b+ 1) or (i+m+ b+ a− 1) for i > 0 or i < 0 respectively, and we set q± = q0± .
Then the sheaf of sections of C̃[λ] ×π1(C[λ]) Lλ → C[λ] defines a locally constant sheaf Lλ on C[λ],
and we denote by H•(C[λ], Lλ) (resp. H•(C[λ], Lλ)) the homology (resp. cohomology) groups of
C[λ] twisted by the set of local coefficients determined by qi. Integrating λζφ ∈ H1(C[λ], Lλ) over
γ ∈ H1(C[λ], Lλ) defines the twisted period mapping

Πλ : H1(C[λ], Lλ) → O(Ha,b,m),
γ →

∫
γ
λζ d log y.

(3.30)

Let now Sola,b,ν,ζ be the (a + b)-dimensional C(ζ)-vector space of horizontal sections the
Dubrovin connection,

Solλ = {s ∈ X (Ha,b,m),∇(η(2),ζ)s = 0}. (3.31)

As for the ordinary periods ofM(1)
a,b,m [28], twisted periods are an affine basis for the space of flat

coordinates of the deformed flat connection onM(2)
a,b,m.

Proposition 3.3 ([29]). The gradients with respect to η(2) of the twisted periods of Eq. (3.30)
generate over C(ζ) the solution space of the horizontality condition for the Dubrovin connection,
Eq. (2.85), on QHT (Ya,b),

Sola,b,m,ζ = spanC(ζ){∇η(2)Πλ(γ)}γ∈H1(C[λ],Lλ). (3.32)

Remark 3.2. Except for the double Hurwitz space interpretation, all of the above generalizes
trivially to the case when ν ∈ C.
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3.3.1 The twisted period mapping forM(2)
a,b,ν

For generic monodromy weights, the homology with local coefficients Lλ coincides with the inte-
gral homology of the Riemannian covering [69] of C[λ],

H•(C[λ], Lλ) ' H•(C̃[λ]/[π1(C[λ]), π1(C[λ])]),Z). (3.33)

A basis of H1(C[λ], Lλ) can then be presented in the form of compact loops γk = [l0, leqksgn(k) ],
γ± = [l0, le±q0 ] given by the commutator of simple oriented loops around zero and each of the
punctures of C[λ]. Then, the twisted periods

Ω± ,
Πλ(γk)

(1− e2πiζν)(1− e∓2πiζ)
, (3.34)

Ωk ,
Πλ(γk)

(1− e2πiζν)(1− e−sgn(k)2πiζ)
, k 6= 0, (3.35)

give a C(ζ, ν)-basis of Sola,b,ν [10, 69, 71]. In turn, the period integrals of Eqs. (3.34) and (3.35)
are hypergeometric functions in exponentiated flat variables for η(2).

Proposition 3.4. The twisted periods ofM(2)
a,b,ν are given by

Ω± =
Γ(ξ)Γ(1± ζ)

Γ(1 + ξ ± ζ))
eζ(v+2q0)e±ξq0

b−1∏
j=1−a,j 6=0

eζqj

×Φ[a−θ(±1),b−θ(±1)]
(
ξ, ζ,−ζ, 1 + ξ ± ζ); {e±q0−qi}−1

i=1−a, e
±2q0 , {e±q0+qi}b−1

i=1

)
(3.36)

Ωk =
Γ(ξ)Γ(1 + sgn(k)ζ)

Γ(1 + ξ + sgn(k)ζ)
eζ(v+2q0)eξsgn(k)qk

b−1∏
j=1−a,j 6=0

eζqj

×Φ[a−θ(k),b−θ(k)]
(
ξ, ζ,−ζ, 1 + ξ + sgn(k)ζ); {esgn(k)qk−qi}0

i 6=k=1−a, {esgn(k)qk+qi}b−1
i 6=k=0

)
(3.37)

where θ(x) is Heaviside’s step function and we defined

Φ[M,N ](a, b1, b2, c, w1, . . . , wM+N) , F
(M+N)
D (a;

M times︷ ︸︸ ︷
b1, . . . , b1,

N times︷ ︸︸ ︷
b2, . . . , b2; c;w1, . . . , wM+N), (3.38)

and ξ , ζ(ν + b).

In Eq. (3.38), F (M)
D (a; b1, . . . , bM ; c;w1, . . . , wM) is the Lauricella function of type D [34]:

F
(M)
D (a; b1, . . . , bM ; c;w1, . . . , wM) ,

∑
i1,...,iM

(a)∑
j ij

(c)∑
j ij

M∏
j=1

(bj)ijw
ij
j

ij!
. (3.39)

35



where we used the Pochhammer symbol (x)m , Γ(x+m)/Γ(x). The proof is an immediate con-
sequence of Eqs. (3.34) and (3.35) and the Euler integral representation of the Lauricella function,

F
(M)
D (a; b1, . . . , bM ; c;w1, . . . , wM) =

Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

za−1(1− z)c−a−1

M∏
i=1

(1− wiz)−bidz.

(3.40)

3.4 Dispersive deformation and elliptic Gromov–Witten invariants

In this section we study the dispersive deformation of the m-generalized RR2T at orderO(ε2), and
describe in detail the workflow of the proof of Conjecture 3.2 at the genus one approximation. In
order to do so, we first offer a reformulation of Conjecture 3.2 in the language of the theory of
formal loop spaces.

3.4.1 Conjecture 3.2 as a Miura equivalence of dispersive hierarchies.

Recall that the Principal Hierarchy of Theorem 2.12 can be thought of as a triplet (M, {, }[0],H[0])

whereM is an n-dimensional complex Frobenius manifold, {, }[0] , {, }η in Eq. (2.89) is a local
Poisson structure on the loop space LM, and H[0] = (Hα,p)α,p is a family of local functionals
H

[0]
α,p =

∫
S1 h

[0]
α,pdx, h[0]

α,p ∈ OM for α = 1, . . . , n and p ∈ Z+, giving rise to commuting Hamilto-
nian vector fields on LM as in Eq. (2.90). WhenM = QH•T (Ya,b) ' M(2)

a,b,ν , the isomorphism of
Theorem 3.1 induces a Poisson morphism LQH•T (Ya,b) ' LM(2)

a,b,ν
such that the dispersionless Toda

densities hα,p pull back to the expansion of the Hamiltonian densities of the Principal Hierarchy of
QH•T (Ya,b), proving Conjecture 3.2 at the genus zero approximation.

For the higher genus theory, we have two, a priori inequivalent deformations of {, }[0] andH[0],
depending on a formal parameter ε. The first one is the spatial interpolation of the Toda lattice
of Section 2.6 applied to the 2D-Toda Hamiltonians of Eq. (2.75) and to the second 2D-Toda
Poisson structure reduced on the factorization locus ARR (Section 2.5): we call this the RR2T
deformation. The second is the Buryak–Posthuma–Shadrin deformation of the Poisson structure
and Hamiltonians induced by Givental’s formula for the higher genus Gromov–Witten potential
[14, 41]; we will refer to this as the GW deformation. In either case, ({, }[0], (H

[0]
α,p)α,p) deforms as

{τα(X), τβ(Y )}[0] →{τα(X), τβ(Y )}[ε]

={τα(X), τβ(Y )}[0] +
∞∑
g=1

εg
g+1∑
s=0

Pα,β
g,s (τ, τX , . . . , τ

(s))δ(s)(X − Y )

h[0]
α,p →h[ε]

α,p
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=h[0]
α,p(τ) +

∞∑
g=1

h[g]
α,p(τ, τX , . . . , τ

(g)) (3.41)

where h[g]
α,p, Pα,β

g,s are polynomials in the jet variables τ (i) = ∂iXτ (i > 0), graded homogeneous of
degrees g and g − s+ 1 respectively; these vanish for the GW deformation when g is odd.

Both deformations come with a canonical system of coordinates for the jet space ofM - the
tau-symmetric coordinates τα for the Gromov–Witten deformation, and the coefficients (α, β) of
the Lax operators of Eqs. (2.16)–(2.18) in the deformation by lattice interpolation. Conjecture 3.2
can then be stated as the existence of an ε-dependent Poisson morphism which matches the Pois-
son structures and the Hamiltonian densities, up to total derivatives, of the two deformations. Such
morphism, if it exists, should take the form of an element of the polynomial Miura group of trans-
formations of the form [32]

(α, β)→ τ(α, β) +
∑
g>0

εgF[g](α, β, αx, βx, . . . , α
(g), β(g)). (3.42)

The leading order in ε of the sought-for Miura transformation is just the change of variables to flat
coordinates given by Eqs. (2.16), (2.17), (2.91) and (3.26). We can then rephrase Conjecture 3.2 as
follows:
Conjecture 3.2 (reloaded). There exists a polynomial Miura transformation, Eq. (3.42), matching
the GW and the (a, b) RR2T deformations to all orders of the dispersive expansion.

3.4.2 The genus one case - strategy of the proof

On the RR2T side, we have all the ingredients that are needed to compute the dispersive deforma-
tion of the Principal Hierarchy: all we have to do is to take the spatial interpolation of Eqs. (2.71)
and (2.75). On the other hand, closed-form expressions for the Gromov–Witten dispersive defor-
mation of the Poisson bracket and the Hamiltonians from Givental’s formula require control to all
orders of the steepest-descent asymptotics of the oscillating integrals ofM, which is typically out
of computational reach7. However, a workaround to this problem exists in genus one, correspond-
ing to the O(ε2) approximation. In this case, the rational Miura transformation [31]

τα(x)→ τα(x) +
ε2

24

∂2

∂x∂tα,0
(log detM +G(τ)) , (3.43)

7An alternative approach, which would lead to a proof of Conjecture 3.2 sidestepping the issue of the Hamiltonian
structure, would be to derive the Hirota bilinear equations for the RR2T directly from Givental’s formula - an approach
successfully pioneered by Milanov and Tseng [51,52] for the extented bigraded Toda hierarchy. Unfortunately, the fact
that we are dealing with the dual Frobenius structure hampers a straightforward generalization to the case at hand.
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where

Mα,β = cαβγτ
γ
x , cαβγ = ∂3

αβγF (τ), (3.44)

deforms the Principal Hierarchy associated to quantum cohomology to the O(ε2) truncation of the
full higher genus hierarchy; here F and G denote respectively the genus 0 and 1 primary Gromov–
Witten potential. Dubrovin–Zhang show [31,32] that the associated tau function satisfies the genus
one topological recursion relations, and it restricts (by construction) on the small phase space to
the primary Gromov–Witten potential.

As all the ingredients in Eq. (3.43) are explicitly known by localization in our case, the proof of
Conjecture 3.2 at order O(ε2) becomes practically feasible. Our strategy to prove it can be struc-
tured in the following four steps.

Step 1 Compute the deformation of the Poisson structure and the Hamiltonian densities on the
phase space of the Principal Hierarchy from the quasi-Miura transformation, Eq. (3.43).

Step 2 Compute the reduction of the second Poisson structure for the 2D-Toda lattice on the phase
space of the (a, b) RR2T, from Eq. (2.71), and the associated Toda Hamiltonian densities,
from Eq. (2.75). Interpolate and expand in the lattice spacing to O(ε2).

Step 3 Find a family of Miura transformations matching the deformed Poisson tensors of Steps 1
and 2.

Step 4 Find a Miura group element such that the Hamiltonian densities agree after pull-back, up
to total derivatives.

This method of proof can be automatized for given (a, b) and verified symbolically; a parametric
statement in (a, b) hinge on performing Step 1 (in particular the computation of Eq. (2.71) on the
factorization locus) parametrically in these two variables. The relevant computer code is available
upon request.

Remark 3.3. A priori there is no guarantee that a Miura group element satisfying Steps 3-4 exists.
However, solutions to Step 3 are guaranteed to exist by the vanishing of the loop space Poisson
cohomology in degree 1 and 2, as soon asM has trivial topology [24, 32, 37]: in this case there
are Miura group elements (FRR2T,FGW) such that the deformed Poisson brackets are trivialized
to their ε = 0 limit,

F ∗
RR2T{, }

[ε]
RR2T = {, }[0] = F ∗

GW{, }
[ε]
GW, (3.45)
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to all orders in ε. Furthermore, such Miura group elements are far from unique: for any formal
ε-series K with values in graded-homogeneous differential polynomials,

K =
∑
g≥0

εgK[g](τ, . . . , τ
(g)), degK[g] = g (3.46)

composing F ∗
RR2T, F ∗

GW from the left with the time-ε canonical transformation,

τα → τα +
∑
g>0

εg

g!

g times︷ ︸︸ ︷{
K,
{
K, . . ., {K, τα}[0]

}[0]
}[0]

(3.47)

leaves {, }[0] invariant to all orders in ε. Proving Step 4 amounts then to show that there exists
(at least) one such K to O(ε2) such that the Toda-deformed Hamiltonians pull back to the GW-
deformed ones under composition.

Remark 3.4. In fact, when it comes to Step 4 it is sufficient to show that the two deformations
agree on a single Hamiltonian H̄ [ε]. Once this is done, the involutivity condition with the perturbed
Hamiltonian,

{H̄ [ε], H [ε]
α,p} = 0, (3.48)

admits, order by order in ε, a unique solution for the dispersive deformation of the Hamiltonian
densities in Eq. (3.41) [30]. The simplest choice is to pick H̄ [0] to be the dispersionless limit of the
Toda Hamiltonian given by TrL1, i.e.,

H̄ [0] =

∫
S1

Resz=0λ(z)
dz

z
, (3.49)

with the RR2T and GW perturbations computed from Eqs. (2.16) and (2.17) and Eq. (3.43) respec-
tively.

Remark 3.5. A further simplification in the computations comes from the fact that it is sufficient
to prove Conjecture 3.2 for the genus one deformation of the Principal Hierarchy with G = 0;
switching G - the elliptic GW potential - to an arbitrary function on the small phase space amounts
to composing the result with an explicit, polynomial Miura group element. This simplifies consid-
erably the proof of Conjecture 3.2.

3.4.3 Step 1

We start first with the following technical
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Lemma 3.5 ([31]). The genus 1 topological deformation of the principal hierarchy associated to
a semi-simple Frobenius manifold with potential F , flat coordinates τ 1, . . . , τN and flat metric η
is Miura-equivalent, up to higher genera, to the following deformation of the Poisson structure:

{τα(x), τβ(y)}[ε]
GW =ηαβδ′(x− y) +

ε2

24

(
cαβµµ (τ(x)) + cαβµµ (τ(y))

)
δ′′′(x− y)

− ε2

24

(
∂x
(
cαβµµ (τ(x))

)
+ ∂y

(
cαβµµ (τ(y))

))
δ′(x− y) +O(ε4)

(3.50)

and Hamiltonian densities:

hGW
β,p =h

[0]
β,p

+
ε2

24

(
∂h

[0]
β,p−1

∂uζ
(
cζνγc

µν
αµ − cζµναcµνγ

)
−
∂h

[0]
β,p−2

∂uζ
cζδσc

σµ
µ c

δ
αγ

)
ταx τ

γ
x +O(ε4)

(3.51)

where cαβγ and cαβγδ denote the third and fourth derivatives of F , respectively, and the indices are
raised and lowered by η.

As per Remark 3.5, the Miura-equivalence appearing in the above theorem is a change of coor-
dinates of the form

τ̃α = τα + ε2
(
Aαµν(τ)τµx τ

ν
x +Bα

µ (τ)τµxx
)

+O(ε4) (3.52)

which can be explicitly computed in terms of the G-function of the Frobenius manifold.

Remark 3.6. Eq. (3.51) expresses the dispersive deformation of the pth-Taylor coefficient of the
canonically-normalized flat sections of the Dubrovin connection for Ya,b. However, by Eq. (3.49),
we will be mainly interested in deforming the dToda flow generated by the residue of the Lax
symbol at infinity: since we are dealing with the second structureMa,b,ν onM, this is equivalent
to the twisted period around a Pochhammer loop encirling 1 and∞, Eq. (3.30), with the parameter
ζ in Eq. (3.29) set equal to one. This little twist in the story amounts to resum ζphGW

β,p w.r.t. p in
Eq. (3.51), and then evaluating the result at ζ = 1, which gives

h
GW

=h
[0]

+
ε2

24

∂h
[0]

∂τ ρ
(
cρνγc

µν
αµ − cρµναcµνγ − c

ρ
δσc

σµ
µ c

δ
αγ

)
ταx τ

γ
x +O(ε4) (3.53)

Example 3.6 ((a, b,m) = (1, 1, 0)). This is the case of the Ablowitz–Ladik hierarchy. Here,
Eqs. (3.24) and (3.50) together imply that the deformation of the Poisson bracket is trivial atO(ε2),

{
τα(x), τβ(y)

}[ε]

GW
= −µ−2

2 δα+β,1δ′(x− y) +O(ε4), (3.54)
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whereas the first Hamiltonian density gets corrected as

h̄GW =e−τ0/µ2(1− eτ1) +
ε2e

τ1− τ0
µ2

24µ2 (eτ1 − 1)

[
2µ2

(
(eτ1 − 1) (τ ′0(x))

2
+ eτ1 (τ ′1(x))

2
)

− (4 (eτ1 − 1) τ ′0(x)− τ ′1(x)) τ ′1(x)

]
+O(ε4)

(3.55)

Example 3.7 ((a, b) = (1, 2, 0)). In this case the dispersionless Poisson bracket does get corrected
from Eq. (3.50). Setting µ2 = 1 for notational simplicity, we find

{τα(x), τβ(y)}[ε]
GW = {τα(x), τβ(y)}[0] + ε2T (τ, τx, τxx)


0 α = 0 or β = 0,
1 α = β = 1,
−2 (α, β) = (2, 1), (1, 2),

4 α = β = 2,

(3.56)

with

T (τ, τx, τxx) =
eτ2(x)

12 (eτ2(x) − 1)
4

[ (
eτ2(x) − 1

) (
2δ(3)(x− y) + 3

(
eτ2(x) + 1

)
τ ′2(x)δ′′(x− y)

)
+
((

4eτ2(x) + e2τ2(x) + 1
)
τ ′2(x)2 −

(
e2τ2(x) − 1

)
τ ′′2 (x)

)
δ′(x− y). (3.57)

The first dToda density reads here

h̄[0] = eτ0(x)
(
eτ1(x) + eτ1(x)+τ2(x) − 1

)
, (3.58)

and its full O(ε2) GW-deformation can be read off from Eq. (3.53).

3.4.4 Step 2

This step consists of a straightforward application of the ε-interpolation to Eqs. (2.71) and (2.75).
For the sake of readability, we exemplify it in the two instances considered above.

Example 3.8 ((a, b,m) = (1, 1, 0)). As opposed to the GW-deformation, the RR2T-deformed
Poisson bracket receives in this case corrections to all (even and odd) orders in ε, as is apparent
from Eq. (2.74). The continuous interpolation leads to

{α(x), α(y)}[ε]
RR2T =0, (3.59)

{logα(x), log β(y)}[ε]
RR2T =ε−1 (δ(x− y + ε)− δ(x− y))

=δ′(x− y) +
ε

2
δ′′(x− y) +

ε2

6
+O(ε3), (3.60)

{log β(x), log β(y)}[ε]
RR2T =ε−1 (δ(x− y + ε)− δ(x− y − ε))

=2δ′(x− y) +
ε2

3
δ′′′(x− y) +O(ε4). (3.61)
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In the same vein, Eq. (2.75) for i = 1 gives

h̄RR2T = α(x)− β(x+ ε) =α(x)− β(x) + εβ′(x)− ε2

2
β′′(x) +O(ε3),

=α(x)− β(x) + (total derivative). (3.62)

Example 3.9 ((a, b,m) = (1, 2, 0)). Eq. (2.71) computes the full-dispersive Poisson bracket on
the factorization locus as

{α1(x), α1(y)}[ε]
RR2T = 0

ε{α1(x), β1(y)}[ε]
RR2T = β1(y) (α1(y − ε)δ(x− y + ε)− α1(y)δ(x− y))

ε{α1(x), β2(y)}[ε]
RR2T = β2(y) (α1(y − 2ε)δ(x− y + 2ε)− α1(y)δ(x− y))

ε{β1(x), β1(y)}[ε]
RR2T = (β2(y + ε)− β1(y)β1(y + ε)) δ(x− y − ε)

+ (β1(y)β1(y − ε)− β2(y)) δ(x− y + ε)

ε{β1(x), β2(y)}[ε]
RR2T = β2(y) (β1(y − 2ε)δ(x− y + 2ε)− α2(y + ε)δ(x− y − ε))

ε{β2(x), β2(y)}[ε]
RR2T = β2(y)

[
(−β2(y + 2ε)δ(x− y − 2ε)− β2(y + ε)δ(x− y − ε)

+ α3(y − ε)δ(x− y + ε) + β2(y − 2ε)δ(x− y + 2ε)

]

(3.63)

It should be noticed that the Poisson bracket is not logarithmically constant in these coordinates.
The full-dispersive deformation is given by Taylor-expanding the r.h.s. in ε. As before, the full-
dispersive first Hamiltonian is here given as

h̄RR2T = α1(x)− β1(x+ ε) =α1(x)− β1(x) + (total derivative). (3.64)

3.4.5 Step 3

The next step is to match the Poisson structures {, }[ε]
GW and {, }[ε]

RR2T computed in Steps 1-2. We
will do this by explicitly computing the trivializing polynomial Miura transformation that trans-
forms them back to their undeformed expression. We start from the GW-deformation.

Lemma 3.10. The Miura transformation

τα 7→ τα − ε2

24

(
∂2
xc
αµ
µ

)
+O(ε4) (3.65)

transforms the Poisson bracket (3.50) to

{τα(x), τβ(y)} = ηαβδ′(x− y) +O(ε4) (3.66)

and the Hamiltonian densities (3.51) to

hβ,p = h
[0]
β,p −

ε2

24

(
∂h

[0]
β,p−1

∂τ ζ
cζµναc

µν
γ +

∂h
[0]
β,p−2

∂τ ζ
cζδσc

σµ
µ c

δ
αγ

)
ταx τ

γ
x +O(ε4) (3.67)
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Proof. The proof is an immediate consequence of the formula P̃αβ = (L∗)αµ ◦ P µν ◦ Lβν for the
transformation of the differential operator Pαβ associated to the Poisson bracket, where (L∗)αµ =∑

s≥0
∂τ̃α

∂τµs
∂sx and Lβν =

∑
s≥0(−∂x)s ◦ ∂τ̃β

∂τνs
, with ταs = ∂sxτ

α. For the Hamiltonians one simply
evaluates the functions at the shifted values and performs Taylor’s expansion.

One by-product of the Lemma is that the expression for the deformed Hamiltonian densities
simplifies as well in this Miura-deformed coordinates. On the RR2T side, we act in the same way
- by plugging an arbitrary Miura transformation that trivializes {, }[ε]

RR2T to O(ε2) and solving the
ensuing overconstrained differential system.

Example 3.11 ((a, b,m) = (1, 2, 0)). In this case, a trivialization of the RR2T-deformed Poisson
bracket reads, at O(ε2),

α1(x)→α1(x)− 1

2
εα′1(x) + ε2

(
5

24
α′′1(x)− α′1(x)2

12α1(x)

)
+O

(
ε3
)
, (3.68)

β1(x)→β1(x) +
ε2

24 (β1(x)2 − 4β2(x)) 2β2(x)2

[
2β1(x)5β′2(x)2 − β2(x)2β1(x)3β′1(x)2+

−14β2(x)β1(x)3β′2(x)2 + 16β2(x)2β1(x)2β′1(x)β′2(x)− 20β2(x)3β1(x)β′1(x)2

+32β2(x)3β′1(x)β′2(x)− 2β2(x)β1(x)5β′′2 (x) + β2(x)2β1(x)4β′′1 (x)

+10β2(x)2β1(x)3β′′2 (x) + 4β2(x)3β1(x)2β′′1 (x)− 8β2(x)3β1(x)β′′2 (x)

−32β2(x)4β′′1 (x)

]
+O

(
ε3
)
, (3.69)

β2(x)→β2(x) +
1

2
εβ′2(x) + ε2

(
β′2(x)2

4β2(x)
− 1

8
β′′2 (x)

)
+O

(
ε3
)
, (3.70)

so that in the new variables we have

{α1(x), α1(y)}[0] =0,

{α1(x), β1(y)}[0] =α1(x)δ(x− y)β′1(x) + α1(x)β1(x)δ′(x− y),

{α1(x), β2(y)}[0] =2α1(x)δ(x− y)β′2(x) + 2α1(x)β2(x)δ′(x− y),

{β1(x), β1(y)}[0] = (2β1(x)β′1(x)− β′2(x)) δ(x− y) + 2
(
β1(x)2 − β2(x)

)
δ′(x− y),

{β1(x), β2(y)}[0] =3β1(x)δ(x− y)β′2(x) + 3β1(x)β2(x)δ′(x− y),

{β2(x), β2(y)}[0] =6β2(x)δ(x− y)β′2(x) + 6β2(x)2δ′(x− y). (3.71)

Relating now (α, β) to q as in Eq. (2.91) and composing with Eq. (3.26) to go to τ -variables returns
{, }[0] = {, }η, the dispersionless Poisson bracket in flat coordinates for the metric η(2) ofM(2)

1,2,0.
The general Miura group element trivializing {, }RR2T is obtained by composing Eq. (3.71) with
Eq. (3.47), for an arbitrary K.
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3.4.6 Step 4

All is left to do at this stage is to find a canonical generator K such that h̄GW matches with h̄RR2T

in the resulting trivializing coordinate system, up to total derivatives. The quickest way to do it is as
follows: chooseK such that the transformed h̄RR2T has 1) no linear term in ε and 2) no linear terms
in ταxx at O(ε2): this amounts to the solution of two inhomogeneous linear systems of rank (a+ b).
Then compose h̄RR2T in the resulting coordinate system with a further canonical transformation
generated by a differential polynomial K̃, with vanishing linear term in ε. Now imposing that the
difference of the transformed h̄RR2T with hGW is a total derivative is equivalent to a rank

(
a+b+1

2

)
linear system in the derivatives of the components of K̃; checking compatibility of the solution
then concludes the proof.

Example 3.12 ((a, b,m) = (1, 2, 0)). Let us see this explicitly at work in the case when (a, b,m) =

(1, 2, 0). The GW- and RR2T-deformed Hamiltonian density in the coordinates for which the Pois-
son is in standard form, Eq. (3.67), read here

h̄GW =eτ0
(
eτ1 + eτ1+τ2 − 1

)
− ε2

24 (eτ1 − 1) (eτ2 − 1) 2 (eτ1+τ2 − 1)

×
[
eτ0+τ1+τ2 (eτ1 − 1)

(
3eτ2 − e2τ2 + 5eτ1+τ2 − 5eτ1+2τ2 + 2eτ1+3τ2 − 4

)
(τ ′2) 2

−2 (eτ2 − 1)
(
eτ1+τ2 − 1

)
τ ′′2

)
+ 2 (eτ1 − 1) (eτ2 − 1) 2 (eτ2 + 1)

(
eτ1+τ2 − 1

)
(τ ′0) 2

+4 (eτ1 − 1) (eτ2 − 1)
(
eτ1+τ2 − 1

) ((
e2τ2 − 1

)
τ ′1 + eτ2 (eτ2 − 2) τ ′2

)
τ ′0

+ (eτ2 − 1) 2
(
−2eτ1 + eτ2 − 2eτ1+τ2 + 2e2(τ1+τ2) + 2e2τ1+τ2 − 2eτ1+2τ2 + 1

)
(τ ′1) 2

+2eτ2 (eτ1 − 1) (eτ2 − 1)
(
−eτ2 − 4eτ1+τ2 + 2eτ1+2τ2 + 3

)
τ ′1τ
′
2

]
+O

(
ε4
)

(3.72)

h̄Toda =eτ0
(
eτ1 + eτ1+τ2 − 1

)
+
ε

2
eτ0
((

3eτ1 + 3eτ1+τ2 − 2
)
τ ′0 + 3eτ1 ((eτ2 + 1) τ ′1 + eτ2τ ′2)

)
+

ε2eτ0

24 (eτ2 − 1) 2

[
(eτ2 − 1) 2

(
3
(
9eτ1 + 9eτ1+τ2 − 4

)
(τ ′0) 2 + 27eτ1 (eτ2 + 1) (τ ′1) 2

)
+54eτ1+τ2 (eτ2 − 1) 2τ ′1τ

′
2 + 54eτ1 (eτ2 − 1) 2τ ′0 ((eτ2 + 1) τ ′1 + eτ2τ ′2) + 30eτ1+τ2 (τ ′2) 2

−51eτ1+2τ2 (τ ′2) 2 + 27eτ1+3τ2 (τ ′2) 2 + 10
(
3eτ1 + 2eτ2 − e2τ2 − 3eτ1+τ2 − 3eτ1+2τ2

+3eτ1+3τ2 − 1
)
τ ′′0 + 10

(
3eτ1τ ′′1 − 3eτ1+τ2τ ′′1 − 3eτ1+2τ2τ ′′1 + 3eτ1+3τ2

)
τ ′′1

+
(
2eτ1 + 30eτ1+τ2 − 60eτ1+2τ2 + 28eτ1+3τ2

)
τ ′′2

]
+O

(
ε3
)

(3.73)

Let us first get rid of the linear term in ε in h̄RR2T, as well as of the terms linear in the second
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derivatives. This is accomplished by an O(ε2) transformation generated by

K1 =
(
−τ0 − τ1 −

τ2

2

)
− εe−τ2

24 (eτ2 − 1)

[ (
−26eτ2 + 26e2τ2 + e3τ2 − 1

)
τ ′0

−10
(
eτ2 − e2τ2

)
τ ′1 +

(
−8eτ2 + 2e2τ2 − e3τ2 − 1

)
τ ′2

]
+O

(
ε2
)

(3.74)

Composing this with a canonical transformation generated by

K2 = ε
(
K

(0)
2 (τ)τ 0

x +K
(1)
2 (τ)τ 1

x +K
(2)
2 (τ)τ 2

x

)
(3.75)

such that hRR2T − hGW = ∂xf gives a system of six linear equations in the τ -derivatives of K(i)
2 ,

which is solved by

∂τ0K
(1)
2 =∂τ1K

(0)
2 −

eτ1 + eτ1+τ2 − 2

24 (eτ1 − 1) (eτ1+τ2 − 1)
,

∂τ0K
(2)
2 =∂τ2K

(0)
2 −

e−τ2 (−eτ2 + e2τ2 − e3τ2 + eτ1+τ2 + eτ1+4τ2 − 1)

24 (eτ2 − 1) (eτ1+τ2 − 1)
,

∂τ1K
(2)
2 =∂τ2K

(1)
2 −

eτ1+τ2 (eτ1 + eτ1+τ2 − 2)

24 (eτ1 − 1) (eτ2 − 1) (eτ1+τ2 − 1)
, (3.76)

which is immediately shown to be compatible.

3.5 Further applications

Proposition 3.4 has a number of applications for the study of the gravitational quantum cohomol-
ogy of Ya,b as well as of its higher genus Gromov–Witten theory. When b = 0, these were explored
in detail in [10]: we highlight below the main features of their generalization to arbitrary (a, b).

3.5.1 Twisted periods and the J-function

A distinguished basis of flat co-ordinates for the Dubrovin connection is given by the generating
function of genus zero one-point descendent invariants of Ya,b, or J-function [40],

JαYa,b(τ, ζ) ,
δα,0

ζ
+ τα + ζ

∑
n≥0

∑
β∈Z

1

n!

〈
ωα

1− ζψ
, τ⊗n

〉Ya,b
0,n+1,β

, (3.77)

where ψ is a cotangent line class and the denominator is a formal geometric series expansion in
ζψ. Write ij : pj ↪→ Ya,b for the embedding of the jth fixed point into Ya,b, and define ucl

j 1j ,

i∗j(τ
αωα) ∈ HT ({pj}). The coefficients ucl

j (τ) are linear functions ucl
j =

∑
cjατ

α, and they are
canonical co-ordinates for the classical equivariant cohomology algebra of Ya,b. By the Divisor
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Axiom of Gromov–Witten theory, the coefficients cjα = ωα|pj are local exponents of Eq. (2.85)
at the Fuchsian point LR = {τα = −∞}, and the vector of the localized components J jYa,b1j =

i∗j(J
α
Ya,b

ωα) of the J-function diagonalizes the monodromy around LR with weights cjα ∈ C,

J jYa,b ∼ ζeζu
cl
j (1 +O(eτ )). (3.78)

The asymptotic behavior Eq. (3.78) at LR characterizes uniquely the localized components of the
J-function as a flat coordinate system for Eq. (2.85). Knowledge of the monodromy properties of
the twisted periods of Eqs. (3.36) and (3.37) at LR is then sufficient, by Proposition 3.4, to give
a closed form expression for the J-functions as a hypergeometric function in exponentiated flat
variables. This can be achieved via an iterated use of the connection formula at infinity for the
Gauss function, as explained in [10, Appendix C]. In vector notation, the final result in our case is

JYa,b = (A(a) ⊕A(b))Π (3.79)

where

A(a)
ij =


eπiiζ ζΓ(1+ζν−(i+1)ζ)

Γ(1−ζ)Γ(ζν−iζ) i = −j,
e−iπ(ζν−ζ(2j+1)) ζ sin(πζ)Γ(1−ζν+ζi)Γ(1+ζν−ζ(i+1))

πΓ(1−ζ) i > −j,
0 i < −j.

(3.80)

A(b)
ij =


e−πijζ ζΓ(1+ξ+(a+j+1)ζ)

Γ(1+ζ)Γ(ξ+(j+a)ζ)
i = j + a,

e−iπ(ξ+ζ(2j+1+a)) ζ sin(πζ)Γ(1−ξ−ζ(j+a))Γ(1+ξ+ζ(a+j+1))
πΓ(1+ζ)

j > i+ a,

0 j < i+ a.

(3.81)

In the same vein, let Horb,T (Xa,b) denote the T -equivariant Chen–Ruan cohomology of [Xa,b].
This has two torus fixed orbi-points [p(a)] and [p(b)] - the North and South pole of the base weighted
projective line - with stackiness Za and Zb respectively. By the Atiyah–Bott isomorphism,Horb,T (Xa,b)

is then generated by the (Thom push-forwards) of 1 i
a
, 1 j

b
, α = 0, . . . , a − 1, β = 0, . . . , b − 1.

Writing x ,
∑

c∈{a,b},α∈Zc x
α,c1α

c
for a point x ∈ Horb,T (Xa,b), the orbifold J-function

Jγ,cXa,b(x, ζ) ,
δα,0

ζ
+ xα + ζ

∑
n≥0

∑
β∈Z

1

n!

〈
1 γ
c

1− ζψ
, x⊗n

〉Xa,b
0,n+1,β

, (3.82)

gives a system of flat co-ordinates for the Dubrovin connection on T (Horb,T (Xa,b)). As Frobenius
manifolds, the quantum cohomologies of Xa,b and Ya,b are isomorphic [21], with the undeformed
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flat coordinates related as [12]

xα,a =
a−1∑
γ=0

εαγa τ
a−1−γ − εαa ,

xβ,b =
b−1∑
β=0

εβγb τ
γ+a+1 − εβb , (3.83)

where εc , e
2πi
c , and by the Divisor Axiom the localized components of JXa,b are the unique set

of flat coordinates of the Dubrovin connection such that

Jγ,cXa,b(x, ζ) ' ζeζx
0,c

(1 +O(x)) . (3.84)

This can be compared with the behavior of the twisted periods at x = 0, where the integrals
appearing in Eqs. (3.34)–(3.37) can be explicitly evaluated in terms of the Euler Beta function.
The result is

Π = (B(a) ⊕ B(b))JXa,b (3.85)

where

B(a)
jk = ε(j−n/2)ζν

a

ε−jka

a

 −ε
k/2
a

Γ( ζν+ka )Γ(1−ζ)
Γ( ζν+ka −ζ)

for 1 ≤ k ≤ a− 1

Γ(ζν/a)Γ(1−ζ)
ζΓ(1+ζ(1+ν/a))

for k = 0
(3.86)

B(b)
jk =ε

(j−n/2)(ξ+a)
b

ε−jkb

b

 −ε
k/2
b

Γ( ξ+a−kb
+1)Γ(1+ζ)

Γ( ξ+a−kb
−ζ+1)

for 1 ≤ k ≤ b− 1

Γ((a+ξ)/b)Γ(1+ζ)
ζΓ(1+(ξ+a)/b−ζ)) for k = 0

(3.87)

The composition U , (A(a)B(a) ⊕ A(b)B(b)) gives the transition matrix from the vector-form of
the orbifold J-function to the one of the resolution. Closed-form knowledge of U has important
applications to the Crepant Resolution Conjecture [22], as well as to its generalization to open
Gromov–Witten theory [10]; in particular, by the block diagonal form of Eqs. (3.80), (3.81), (3.86)
and (3.87), the genus zero results in [10] generalize immediately to the case at hand. Similarly,
Proposition 3.4 makes it an exercise in book-keeping to generalize to arbitrary (a, b) the quantized
Crepant Resolution Conjecture proven in [10] for the case b = 0.

3.5.2 Pure braid group actions in quantum cohomology

A further application of Theorem 3.1 and Proposition 3.4 is a complete characterization of the
monodromy group of the Dubrovin connection. By Theorems 2.14 and 3.1, the open setM(2),reg

a,b,ν ,

M(2)
a,b,ν \ ∆a,b,ν of regular points for the pencil of flat connections of Eq. (2.85) on M(2)

a,b,ν is the
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complement of the arrangement of hyperplanes {qi = qj}i 6=j . Equivalently, it is isomorphic to the
configuration space of a+ b-distinct points in P1 \ {0, 1,∞},

M(2),reg
a,b,ν 'M0,a+b+3. (3.88)

Any simple loop σ inM(2),reg
a,b,ν then gives a monodromy action on Solλ,

Mσ : π1(M(2),reg
a,b,ν )→ Aut(Solλ), (3.89)

which is a representation of the colored braid group in a + b + 2 strands, as π1(M0,a+b+3) '
PBa+b+2. Monodromy matrices in the twisted period basis can be computed explicitly [53]; the
resulting representation is the Gassner representation [25], with weights specified as in Eq. (2.91).

Remark 3.7. By the T -equivariant version of Iritani’s integral structures in quantum cohomology,
this pure braid group action carries through to an action on the T -equivariant K-groups of Xa,b

and Ya,b. Very recently, pure braid group actions on the derived category of coherent sheaves were
constructed in [26] for a family of toric Calabi–Yau obtained from deformations of resolutions of
type A surface singularities; when the variety is a threefold, their examples coincide precisely with
Ya,b. It would be interesting to establish a clear link between ourD-module construction and theirs.

Acknowledgments. We would like to thank Mattia Cafasso, John Gibbons, Chiu-Chu Melissa Liu and Dusty Ross for

discussions. We would also like to thank the American Institute of Mathematics for hosting the workshop “Integrable

systems in Gromov–Witten and symplectic field theory” in January 2012, during which this paper was started. A. B.

was partially supported by a Marie Curie IEF under Project n.274345, and by an INdAM-GNFM Progetto Giovani

2012 grant. P. R. was partially supported by a Chaire CNRS/Enseignement superieur 2012-2017 grant. S.R was par-

tially supported by the European Research Council under the ERC-FP7 Grant n.307074.

References
[1] M. J. Ablowitz and J. F. Ladik, Nonlinear differential-difference equations, J. Mathematical Phys. 16 (1975),

598–603. MR0377223 (51 #13396)

[2] M. Adler, E. Horozov, and P. van Moerbeke, The solution to the q-KdV equation, Phys. Lett. A 242 (1998), no. 3,
139–151. MR1626871 (2000b:37069)

[3] M. Adler and P. van Moerbeke, Integrals over classical groups, random permutations, Toda and Toeplitz lattices,
Comm. Pure Appl. Math. 54 (2001), no. 2, 153–205. MR1794352 (2003i:34198)

[4] H. Aratyn, E. Nissimov, and S. Pacheva, Construction of KP hierarchies in terms of finite number of fields and
their Abelianization, Phys.Lett. B314 (1993), 41–51, available at hep-th/9306035.

[5] P. S. Aspinwall and D. R. Morrison, Topological field theory and rational curves, Commun. Math. Phys. 151
(1993), 245–262, available at hep-th/9110048.

48

hep-th/9306035
hep-th/9110048


[6] L. Bonora and C. S. Xiong, The (N th,M th) KdV hierarchy and the associated W-algebra, J.Math.Phys. 35
(1994), 5781–5819, available at hep-th/9311070.

[7] A. Brini, Open topological strings and integrable hierarchies: Remodeling the A-model, Commun.Math.Phys.
312 (2012), 735–780, available at 1102.0281.

[8] , The local Gromov-Witten theory of CP 1 and integrable hierarchies, Commun.Math.Phys. 313 (2012),
571–605, available at 1002.0582.

[9] A. Brini, G. Carlet, and P. Rossi, Integrable hierarchies and the mirror model of local CP1, Physica D 241 (2012),
2156–2167, available at 1105.4508.

[10] A. Brini, R. Cavalieri, and D. Ross, Crepant resolutions and open strings (2013), available at 1309.4438.

[11] M. Bruschi and O. Ragnisco, Lax representation and complete integrability for the periodic relativistic Toda
lattice, Phys. Lett. A 134 (1989), no. 6, 365–370. MR979202 (90a:58066)

[12] J. Bryan and T. Graber, The crepant resolution conjecture, Proc. Sympos. Pure Math. 80 (2009), 23–42.
MR2483931 (2009m:14083)

[13] J. Bryan, S. Katz, and N. C. Leung, Multiple covers and the integrality conjecture for rational curves in Calabi-
Yau threefolds, J. Algebraic Geom. 10 (2001), no. 3, 549–568. MR1832332 (2002j:14047)

[14] A. Buryak, H. Posthuma, and S. Shadrin, A polynomial bracket for the Dubrovin-Zhang hierarchies, J. Differen-
tial Geom. 92 (2012), no. 1, 153–185. MR2998900

[15] M. Cafasso, Matrix biorthogonal polynomials on the unit circle and non-abelian Ablowitz-Ladik hierarchy, J.
Phys. A 42 (2009), no. 36, 365211, 20. MR2534519

[16] G. Carlet, The Hamiltonian structures of the two-dimensional Toda lattice and R-matrices, Lett. Math. Phys. 71
(2005), no. 3, 209–226. MR2141468 (2006m:37091)

[17] , The extended bigraded Toda hierarchy, J. Phys. A 39 (2006), no. 30, 9411–9435. MR2246697
(2007g:37066)

[18] G. Carlet, B. Dubrovin, and L. P. Mertens, Infinite-dimensional Frobenius manifolds for 2+1 integrable systems,
Math. Ann. 349 (2011), no. 1, 75–115. MR2753798 (2012b:53196)

[19] G. Carlet, B. Dubrovin, and Y. Zhang, The extended Toda hierarchy, Mosc. Math. J. 4 (2004), no. 2, 313–332,
534. MR2108440 (2005k:37168)

[20] J.-H. Chang, Remarks on the waterbag model of dispersionless Toda hierarchy, J. Nonlinear Math. Phys. 15
(2008), no. suppl. 3, 112–123. MR2452424 (2009m:35416)

[21] T. Coates, A. Corti, H. Iritani, and H.-H. Tseng, Computing genus-zero twisted Gromov-Witten invariants, Duke
Math. J. 147 (2009), no. 3, 377–438. MR2510741

[22] T. Coates, H. Iritani, and H.-H. Tseng, Wall-crossings in toric Gromov-Witten theory. I. Crepant examples, Geom.
Topol. 13 (2009), no. 5, 2675–2744. MR2529944 (2010i:53173)

[23] D. A. Cox and S. Katz, Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs,
vol. 68, American Mathematical Society, Providence, RI, 1999. MR1677117 (2000d:14048)

[24] L. Degiovanni, F. Magri, and V. Sciacca, On deformation of Poisson manifolds of hydrodynamic type, Comm.
Math. Phys. 253 (2005), no. 1, 1–24. MR2105635 (2005k:53150)

[25] P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst.
Hautes Études Sci. Publ. Math. 63 (1986), 5–89. MR849651 (88a:22023a)

[26] W. Donovan and E. Segal, Mixed braid group actions from deformations of surface singularities (2013), available
at 1310.7877.

49

hep-th/9311070
1102.0281
1002.0582
1105.4508
1309.4438
1310.7877


[27] B. Dubrovin, Geometry of 2D topological field theories, in “Integrable systems and quantum groups” (Monteca-
tini Terme, 1993), Lecture Notes in Math. 1620 (1994), 120–348, available at hep-th/9407018. MR1397274
(97d:58038)

[28] , Painleve transcendents and two-dimensional topological field theory, The Painlevé property, 1999,
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