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Abstract. We prove existence and uniqueness of solutions for a sweeping process driven by a prox-
regular moving set with an integral forcing term, where the integrand is Lipschitz with respect to
the state variable. The problem is motivated by a model introduced by Brenier, Gangbo, Savaré
and Westdickenberg [Sticky particle dynamics with interactions, J. Math. Pures Appl. 99 (2013)].
The proof is based on a general type of penalization.

1. Introduction

We consider the Cauchy problem for the time dependent evolution inclusion

(1) ẋ(t) ∈ −NC(t)(x(t)) +

∫ t

0
f(s, x(s)) ds, x(0) = x0 ∈ C(0),

where the state variable x belongs to a Hilbert space H, C(t) ⊂ H is a (mildly non-convex) moving
set and f is Lipschitz with respect to x. The dynamics can be seen as an integral perturbation of
the so called sweeping process, namely the differential inclusion

(2) ẋ(t) ∈ −NC(t)(x(t)), x(0) = x0 ∈ C(0),

that was introduced by J.-J. Moreau in the Seventies. Existence (or existence and uniqueness)
results for such Cauchy problem, with or without a local (i.e., non-integral) perturbation were later
obtained by several authors under various types of assumptions (see, e.g., references contained in
[2, 6]). The original motivation was quasistatic elastoplasticity, but other models – in different
fields, like electric circuits [1, Chapter 6], population dynamics [9], or soft robotics [8] – lead to (2)
or to the more general problem

(3) ẋ(t) ∈ −NC(t)(x(t)) + f(t, x(t)), x(0) = x0 ∈ C(0),

This dynamics is classical as long as the solution does not touch the boundary of C(t) (since the
normal cone at an interior point is {0} and so the evolution of x is driven only by f(t, x)), while the
presence of −NC(t)(x(t)) becomes relevant when x(t) ∈ ∂C(t). Actually, −NC(t)(x(t)) represents
a reaction of the constraint x(t) ∈ C(t) that forces the solution x to satisfy it at all times. Indeed,
satisfying this constraint is built in the dynamics, since NC(y) = ∅ for all y 6∈ C.

A particular case of the problem (1), that is under investigation in the present paper, appeared
in [5, Section 1.2], where the authors propose a model for a one dimensional flow of particles
subject to a force field that is generated by the fluid itself. The actual model is indeed a system of
PDE’s, but in the case of a finite number of particles, the evolution is the second order differential
inclusion (to be interpreted in the sence of measures, since ẋ may exhibit jumps)

(4) ẍ ∈ −NKN (x) + f(x).

The above problem involves, as (1) does, the normal cone to a set, that in the model appearing
in [5] is the first orthant KN of RN , where N is the number of particles. Since the flow is one
dimensional, particles cannot overtake each other, and this is why they are confined in KN . The
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simplest way to force the invariance of KN under a flow is adding to the dynamics the (normal)
reaction of the constraint. By exploiting the – nontrivial – monotonicity property

NKN (x(s)) ⊆ NKN (x(t)) for all 0 < s ≤ t,
along an evolution curve x(·) that satisfies a condition called “global stickiness”, it is possible to
integrate (4) and arrive to a first order problem that is essentially an autonomous version of (1).

Of course, existence and uniqueness of solutions to (1) is not surprising, at least as long as
the moving set C satisfies the regularity property called “prox-regularity” (see, e.g., [6]) and f
is Lipschitz, and this is exactly what is proved in the present paper. Our argument is based on
a penalization technique, that goes back to Moreau and was generalized in [10, 12] to problems
involving a perturbation of local type. This method consists in weakening the hard constraint
x(t) ∈ C(t) by penalizing the growth of the distance to C(t). The classical technique uses an
approximation of the dynamics which involves the gradient of the squared distance, that is multi-
plied by a parameter that eventually tends to −∞. However, the squared distance is only C1+ in a
neighborhood of C(t). To serve some purposes in Control Theory – precisely looking for necessary
optimality conditions – one is interested in finding extra differentiability for the right hand side of
the approximate dynamics, more precisely one seeks for the C2+ regularity of the approximating
term. This is why in this paper we generalized the penalization method by using a higher power
of the distance to C(t). The argument developed here is strongly based on [10, 12], but it requires
two differential inequalities that seem to be new (see, however, [7] for related results).

Finally, we note that other history dependent evolution inclusions were considered in [13].

2. Preliminaries

2.1. Notations and results in nonsmooth analysis. Our state variable x belongs to a sep-
arable Hilbert space H. For a set C ⊂ H, the distance to C is denoted by dC , that is dC(x) =
infy∈C ‖y − x‖. The metric projection onto C is the possibly empty set πC(x) = {y ∈ C :
‖y − x‖ = dC(x)}. In the case where the metric projection is nonempty and is a singleton, the
unique element belonging to πC(x) will be denoted by projC(x). The Hausdorff distance between
subsets of H is denoted by H(·, ·) and the open tubular neighborhood of radius ρ of a set C is
Cρ := {x ∈ H : dC(x) < ρ}. The (proximal) normal cone to C at x ∈ C is the set of those vectors
ζ ∈ H such that there exists σ ≥ 0 with the property

〈ζ, y − x〉 ≤ σ‖y − x‖2 ∀y ∈ C.
Prox-regular sets will play an important role in the sequel. The definition was first given by Federer
in finite dimensional spaces, under the name of sets with positive reach, and later studied by several
authors (see the survey paper [6]) in general Hilbert spaces.

Definition 1. Let C ⊂ H be a closed set and ρ > 0 be given. We say that C is ρ-prox-regular
provided the inequality

(5) 〈ζ, y − x〉 ≤ ‖y − x‖
2

2ρ

holds for all x, y ∈ C and ζ ∈ NC(x) is a unit vector.

In particular, every convex set is ρ-prox regular for every ρ > 0, and every set of the type
{x ∈ H : ψ(x) ≤ 0}, where ψ : H → R is of class C1,1 with non vanishing gradient at every
point x where ψ(x) = 0, is ρ-prox regular, and ρ depends only the Lipschitz constant of the
gradient of ψ (see [6, Example 64]). In this case, the (proximal) normal cone to C at x ∈ C is
the nonnegative half ray generated by the unit external normal. Prox-regular sets enjoy several
properties, including uniqueness of the metric projection, differentiability of the distance (in a
subset of a suitable tubular neighborhood) and normal regularity, which hold true also for convex
sets, see, e.g. [6]. We state the main properties that we are going to use in the present paper.

Proposition 2. Let ρ > 0 be given and let C ⊂ H be ρ-prox-regular. Then dC is differentiable on
Cρ \ C, and

∇dC(x) = (x− projC(x))/dC(x) for all x ∈ Cρ \ C.
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Moreover, ∇dC is Lipschitz with Lipschitz constant 2 in C ρ
2
\C. Finally, projC is well defined and

is Lipschitz with Lipschitz constant 2 in C ρ
2
.

The proof of this Proposition can be found, e.g., in [6], that contains also the original references.
As it is clear from the preceding Proposition, the distance to a prox-regular set C is never

differentiable at the boundary ∂C of C. Instead, this is not the case for a power higher than one
of dC . Actually, for each m ∈ N, m ≥ 2, the function x 7→ dmC (x) is differentiable in the whole

of Cρ and in particular ∇dmC = 0 on C, because ∇dmC (x) = mdm−2C (x)(x − projC(x)), provided

dC(x) < ρ. In what follows we will denote the gradient of dmC by mdm−1C (x)∇xdC(x) also at the
points x belonging to ∂C.

2.2. Two differential inequalities.

Lemma 3. Let r : [0, T ]→ R be a nonnegative absolutely continuous function and let K1,K2 > 0.
Suppose that r(0) ≤ η and, for some ε > 0,

(6) ṙ(t) ≤ ε+K1r(t) +K2

√
r(t)

∫ t

0

√
r(s) ds ∀t ∈ [0, T ].

Then

r(t) ≤ 2(η + ε) e(max{K1,K2}+2)t +

(
e

(
max{K1

2
,
K2
2
}+1

)
t − 1

)2

2(K + 1)2
ε ∀t ∈ [0, T ].

Proof. Assumption (6) implies

(7) ṙ(t) ≤ ε+K1(r(t) + ε) +K2

√
r(t) + ε

∫ t

0

√
r(s) + ε ds.

Setting zε(t) :=
√
r(t) + ε, one obtains from (7)

żε(t) ≤
ε

2zε
+

1

2

(
K1zε(t) +K2

∫ t

0
zε(s) ds

)
≤
√
ε

2
+

1

2

(
K1zε(t) +K2

∫ t

0
zε(s) ds

)
.

Set again vε(t) :=
∫ t
0 zε(s)ds. Then

v̈ε(t) ≤
√
ε

2
+
K1

2
v̇ε(t) +

K2

2
vε(t) ≤

√
ε

2
+K

(
v̇ε + vε

)
,

where K = max
{
K1
2 ,

K2
2

}
. Set at last wε(t) := v̇ε(t) + vε(t). It follows from the above inequality

that

ẇε(t) = v̈ε(t) + v̇ε(t) ≤
√
ε

2
+ (K + 1)v̇ε(t) +Kvε(t)

≤
√
ε

2
+ (K + 1)wε(t)

for all t ∈ [0, T ].
Now by applying Gronwall’s Lemma to wε and recalling that wε(0) ≤

√
η + ε, one obtains that

wε(t) ≤
√
η + ε e(K+1)t +

e(K+1)t − 1

K + 1

√
ε

2
.

By observing that both vε and v̇ε are nonnegative, the thesis follows. �

Lemma 4. Let m ∈ N, m ≥ 2, and ε,K1,K2 > 0 be given. Let r : [0, T ] → R be Lipschitz and
nonnegative. Assume that r(0) = 0 and

(8) ṙ(t) ≤ −K1

ε
rm−1(t) +K2 for a.e. t ∈ [0, T ].

Then

(9) r(t) ≤ Kε
1

m−1 ∀t ∈ [0, T ],

for a suitable constant K depending only on K1,K2,m.
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Proof. Let t̄ be a maximum point for r on [0, T ]. If r(t̄) = 0, there is nothing to prove. Otherwise,
there exists a sequence {ti} in [0, T ] with the following properties:

(10) ti ↑ t̄, r is differentiable and (8) holds at ti, and lim
i→∞

ṙ(ti) = ξ ≥ 0.

Indeed, if for every sequence tj ↑ t̄ such that r is differentiable at tj it holds

lim sup
j→∞

ṙ(tj) < 0,

then there exist δ > 0 and η < 0 such that ṙ(s) ≤ η for each s ∈ [t̄−δ, t̄] at which r is differentiable.
Consequently, the generalized gradient of r at each s ∈ [t̄−δ, t̄] is contained in the half line (−∞, η].
Therefore, by the nonsmooth Mean Value Inequality (see [11, Corollary 3.51])

r(t̄) ≤ r(t̄− δ) + ηδ < r(t̄− δ).
Consequently, t̄ is not a maximum point for r, a contradiction.

Take now a sequence {ti} that satisfies the properties stated in (10). Then, along this sequence

ṙ(ti) ≤ −
K1

ε
rm−1(ti) +K2,

so that, by passing to the limit,

ξ ≤ −K1

ε
rm−1(t̄) +K2.

Since ξ ≥ 0, we obtain
K1

ε
rm−1(t̄) ≤ K2,

that yields (9), with K =
(
K2
K1

) 1
m−1

. �

3. Standing assumptions and statement of the results

Let T > 0 be given and let H be a separable real Hilbert space. The assumptions on the moving
set C and on the perturbation f are as follows.

Let C be a set-valued map from [0, T ] into the closed subsets of H such that

(C1) there exists α > 0 such that

H(C(t), C(s)) ≤ α|t− s| for all s, t ∈ [0, T ];

(C2) there exists ρ > 0 such that C(t) is ρ-prox-regular for each t ∈ [0, T ].

Remark. Verifiable sufficient conditions for the validity of (C2) were given in [3] in the case where
C(t) is defined through finitely many functional constraints.

Let Ω ⊂ H be open and such that C(t) ⊂ Ω for all t ∈ [0, T ]. Let f : [0, T ]× Ω → H be a map
such that

(f0) f(·, x) is measurable for all x ∈ Ω;
(f1) there exists β > 0 such that for a.e. t ∈ [0, T ] and all x ∈ Ω

‖f(t, x)‖ ≤ β;

(f2) there exists γ > 0 such that for a.e. t ∈ [0, T ] and all x, y ∈ Ω

‖f(t, y)− f(t, x)‖ ≤ γ‖y − x‖.
We are going to prove a well posedness result for Carathéodory solutions of the Cauchy problem

(11)

{
ẋ(t) ∈ −NC(t)(x(t)) +

∫ t
0 f(s, x(s)) ds a.e. in [0, T ]

x(0) = x0 ∈ C(0).

Our result reads as follows.

Theorem 5. Let the assumptions above stated hold. Then the Cauchy problem (11) admits one
and only one Carathéodory solution, that is defined on [0, T ], is Lipschitz with Lipschitz constant
α+ 2βT and depends continuously on the initial datum x0.
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The proof is based on a new variant of a regularization, otherwise called penalization, method
that goes back to Moreau and was adapted to perturbed sweeping processes of local type in [12]
(see also [10], where the case C independent of t was considered). The variant consists in allowing
a higher order power of the distance from the moving set.

4. Proofs

4.1. The regularization. Fix λ > 0 and m ∈ N, m ≥ 2. Consider the following integrodifferential
approximate Cauchy problem, that involves the gradient with respect to the state variable x of
the m-th power of the distance from C(t),

(12)

{
ẋ(t) = − 1

λ∇x
1
md

m
C(t)(x(t)) +

∫ t
0 f(s, x(s)) ds

x(0) = x0.

The problem (12) is meaningful, and admits one and only one solution, as long as x(t) remains in
the neighborhood of C(t) where the distance is differentiable (see Proposition 2). This certainly
holds in an interval [0, θ], for a suitable θ = θ(λ) > 0, since the starting point x0 belongs to C(0).
Our first result concerns global existence and uniqueness for (12), together with an estimate on
the distance of the solution x(t) from C(t).

Proposition 6. Under the assumptions stated in Section 3, there exists λ0 such that for all λ ≥ λ0
the problem (12) admits one and only one solution xλ defined on [0, T ]. Along this solution the
estimate

(13) dC(t)(xλ(t)) ≤ K λ
1

m−1 ∀t ∈ [0, T ]

holds, for a suitable constant K depending only on m,α, β. Moreover, xλ is Lipschitz with constant
α+ 2βT .

Proof. Set

θλ = sup
{
τ ∈ (0, T ] : (12) admits a unique solution x on [0, τ ] and dC(t)(x(t)) <

ρ

2
∀t ∈ [0, τ ]

}
,

that is well defined for all fixed λ > 0 because x(0) ∈ C(0).
Observe first that (12) can be rewritten, as long as t ∈ [0, θλ), as

(14) ẋ(t) = − 1

λ
dm−2C(t) (x(t))

(
x(t)− projC(t)(x(t))

)
+

∫ t

0
f(s, x(s)) ds, x(0) = x0.

Set

g(t) = dC(t)(x(t)).

Recalling Lemma 3.1 in [12],

ġ(t)g(t) ≤
〈
ẋ(t), x(t)− projC(t)(x(t))

〉
+ αg(t) for a.e. t ∈ [0, θλ),

so that, a.e. in [0, θλ), we obtain by (14)

ġ(t)g(t) ≤

≤
〈
− 1

λ
dm−2C(t) (x(t))

(
x(t)− projC(t)(x(t))

)
+

∫ t

0
f(s, x(s)) ds , x(t)− projC(t)(x(t))

〉
+ αg(t)

= αg(t)− 1

λ
dmC(t)(x(t)) +

〈∫ t

0
f(s, x(s)) ds , x(t)− projC(t)(x(t))

〉
≤ (α+ βT )g(t)− 1

λ
gm(x(t)).

It then follows

(15) ġ(t) ≤ − 1

λ
gm−1(t) + α+ βT

for a.e. t ∈ [0, θλ) such that g(t) > 0. If g(t) = 0 and ġ(t) exists, the same argument of Lemma 3.3
in [12] shows that ġ(t) = 0, so that (15) holds for a.e. t ∈ [0, θλ). Invoking now Lemma 4 we obtain
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from (15) that (13) holds on [0, θλ), with K = (α + βT )
1

m−1 . From (13) one obtains immediately
that x is Lipschitz continuous on [0, θλ) with Lipschitz constant α+ 2βT .

By arguing exactly as in [12] one can show that actually Tλ = T , provided λ is large enough. �

4.2. Convergence: the finite dimensional case. In this section, H is assumed to be finite
dimensional.

For 0 < λ < λ0, let xλ be the solution of (12). It follows from Proposition 6 that the family
{xλ} is both bounded and Lipschitz continuous uniformly with respect to λ. Therefore there
exists a sequence λn → 0 such that the corresponding solutions xn := xλn converge weakly in
W 1,2([0, T ];H) to some x.

We claim that x is a solution of (11).
It is clear from (13) that x(t) ∈ C(t) for all t ∈ [0, T ]. We wish to prove that, for a.e. t ∈ [0, T ],

ẋ(t) ∈ −NC(t)(x(t)) +
∫ t
0 f(s, x(s)) ds, which amounts to showing that

(16)
〈
z(t)− ẋ(t), y − x(t)

〉
≤M‖y − x(t)‖2 ∀y ∈ C(t)

for a suitable constant M independent of both t and y, where we have set z(t) :=
∫ t
0 f(s, x(s)) ds.

Fix n ∈ N and set zn(t) :=
∫ t
0 f(s, xn(s)) ds. By (5), (14), and (13), for all n large enough xn

satisfies the inequality

〈
zn(t)− ẋn(t), y − projC(t)(xn(t))

〉
≤ Km−1

2ρ
‖y − projC(t)(xn(t))‖2 ∀y ∈ C(t).

Using the uniform convergence of xn and taking a strongly converging convex combination of the
ẋn we deduce immediately (16) (for the details, see [12] or [4]).

4.3. Convergence: the infinite dimensional case. In this section, H is a general Hilbert

space. Let λn ↓ 0, and let xn be the solution of (12) with λ = λn and let zn(t) :=
∫ t
0 f(s, xn(s)) ds.

The proof of convergence will be carried out by showing the further property that {xn : n ∈ N} is
Cauchy in L∞(0, T ;H). Actually, the weak compactness of {ẋn} follows from the uniform Lipschitz
continuity of {xn}, and showing that the weak W 1,2-limit of {xn} is a solution of (11) follows the
same lines of the preceding section. Fix h, k ∈ N. For h, k large enough, thanks to (13) both xh(t)
and xk(t) belong to the neighborhood C(t) ρ

2
where the metric projection is nonempty and is a

singleton. Thus, by (5), (14), and (13),

〈
zk(t)− ẋk(t),projC(t)(xh(t))− projC(t)(xk(t))

〉
≤ Km−1

2ρ
‖projC(t)(xh(t))− projC(t)(xk(t))‖2,〈

zh(t)− ẋh(t),projC(t)(xk(t))− projC(t)(xh(t))
〉
≤ Km−1

2ρ
‖projC(t)(xk(t))− projC(t)(xh(t))‖2,

for a.e. t ∈ [0, T ]. Summing and rearranging the above inequalities, we obtain〈
ẋh(t)− ẋk(t), projC(t)(xh(t))− projC(t)(xk(t))

〉
≤ Km−1

ρ
‖projC(t)(xh(t))− projC(t)(xk(t))‖2

+
〈
zh(t)− zk(t), projC(t)(xh(t))− projC(t)(xk(t))

〉
.

(17)

For h, k large enough, thanks to (13) both xh(t) and xk(t) belong to the neighborhood C(t) ρ
2

where

the metric projection is Lipschitz with constant 2. By using also the Lipschitz continuity of f , the
right hand side of the above inequality is less than or equal to

4
Km−1

ρ
‖xh(t)− xk(t)‖2 + 2γ‖xh(t)− xk(t)‖

∫ t

0
‖xh(s)− xk(s)‖ ds.
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Therefore, by adding and subtracting xh(t) and xk(t) in the left hand side of (17) we obtain〈
ẋh(t)− ẋk(t), xh(t)− xk(t)

〉
≤ 2K

(
Km−1 + βT

)(
λ

1
m−1

h + λ
1

m−1

k

)
+ 4

Km−1

ρ
‖xh(t)− xk(t)‖2

+ 2γ‖xh(t)− xk(t)‖
∫ t

0
‖xh(s)− xk(s)‖ ds.

By setting rh,k(t) := 1
2‖xh(t)− xk(t)‖2 we are in the situation of applying Lemma 3, that implies

that {xn} is Cauchy.

4.4. Uniqueness and continuous dependence. Let u1, u2 be solutions of

u̇(t) ∈ −NC(t)(u(t)) +

∫ t

0
f(s, x(s)) ds

with u1(0) = x1, u2(0) = x2. We have, for a.e.

(18) −u̇i(t) +

∫ t

0
f(ui(s), s) ds ∈ NC(projC(ui(t))) ∀i = 1, 2.

Thus it follows from (5), (18), and Proposition 6 that〈
− u̇1(t) +

∫ t

0
f(u1(s), s) ds+ u̇2(t)−

∫ t

0
f(u2(s), s) ds , u2(t)− u1(t)

〉
≤ α+ βT

ρ
‖u2(t)− u1(t)‖2,

(19)

from which we obtain〈
u̇2(t)− u̇1(t), u2(t)− u1(t)

〉
≤
〈∫ t

0
f(u1(s), s)− f(u2(s), s) ds, u1(t)− u2(t)

〉
+
α+ βT

ρ
‖u1(t)− u2(t)‖2.

By noticing that∥∥∥∥∫ t

0
f(s, u1(s)) ds−

∫ t

0
f(s, u2(s)) ds

∥∥∥∥ ≤ ∥∥∥∥∫ t

0
f(s, u1(s)− f(s, u2(s) ds

∥∥∥∥
≤
∫ t

0
‖f(s, u1(s)− f(s, u2(s)‖ ds

≤ γ
∫ t

0
‖u1(s)− u2(s)‖ ds,

we obtain

d

dt

1

2
‖u1(t)− u2(t)‖2 ≤ γ‖u1(t)− u2(t)‖

∫ t

0
‖u1(s)− u2(s)‖ ds+

α+ βT

ρ
||u1(t)− u2(t)||2

Finally by setting r(t) := 1
2 ||u1(t)− u2(t)||

2 we get

ṙ(t) ≤ 2
α+ βT

ρ
r(t) + 2γ

√
r(t)

∫ t

0

√
r(s) ds.

We conclude the proof by invoking Lemma 3. �
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