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Abstract. A polynomial mesh on a multivariate compact set or manifold is a 
sequence of finite norming sets for polynomials whose norming constant is 
independent of degree. We apply the recently developed theory of polynomial 
meshes to an elementary discrete approach for polynomial optimization on 
nonstandard domains, providing a rigorous (over)estimate of the convergence 
rate. Examples include surface/solid subregions of sphere or torus, such as caps, 
lenses, lunes, and slices. 
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1 Introduction 

In this paper we connect, in a general and elementary way, the theory of 
polynomial meshes with the theory of polynomial optimization. We begin by 
the definition of polynomial mesh, a notion that has been playing a relevant role 
in recent research on multivariate polynomial approximation. 

We recall that a polynomial mesh of a compact subset  of d  (or more 

generally of a manifold d  ) is a sequence of finite norming subsets 

n K  such that the polynomial inequality 

 , ( )
n

d
nKp c p p K   ‖ ‖ ‖ ‖ , (1) 

holds for some constant 1 (independent of  and  but dependent in general 
on ), where 

 ( ) ( ) , 1 , ( ) ( ( ))s d
n n n n ncard N s N N K dim K      . (2) 

Here and below we denote by ℙ  the subspace of d-variate polynomials of 
total degree not exceeding n restricted to K. For example, we have that 

1 2 3 /6 for the ball in 3  and 1  for 
the sphere . 
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Observe that n  is ℙ -determining (i.e. a polynomial vanishing there 

vanishes everywhere on ), consequently ( )n ncard N ; a polynomial mesh 

may then be termed optimal when 1. All these notions can be given more 

generally for dK   but we restrict here to real compact sets. They are 

extensions of notions usually given for d . 

Among the relevant properties of polynomial meshes we recall that they are 
affinely invariant, can be extended by finite union and product and by algebraic 
transformations, are stable under small perturbations, and overall they are near 
optimal for polynomial least squares, and contain near optimal interpolation 
subsets (in the sense of the growth rate of the Lebesgue constant); cf. for 
example [1,2]. Moreover, they are nice discrete models of Bernstein-Markov 
measures, cf. [3]. 

As shown in the seminal paper [2], where the notion of the polynomial mesh 
was originally introduced, uniform meshes are polynomial meshes (on compact 
sets admitting a Markov polynomial inequality) only for high density (and thus 
for high cardinality), whereas to get low cardinality we need nonuniform 
meshes, with a distribution that is related in a deep way to the pluripotential 
equilibrium measure of the compact set (cf. for example [1,3]). 

Optimal polynomial meshes, i.e. polynomial meshes with optimal cardinality 
growth, namely ( ) ( )n ncard N  , have been constructed on various classes 

of compact sets, such as polygons and polyhedra, sections of a disk, sphere, 
ball, torus, convex bodies and star-shaped domains, general compact sets with 
regular boundary; we refer the reader to, for example, [4-7] and the references 
therein, for a comprehensive view of properties, construction methods and 
applications. 

2 Optimization on Optimal Meshes 

Polynomial optimization on uniform grids of standard domains (box, simplex) 
has been an object of some interest in the last twenty years (cf. for example 
[8,9] and the references therein), whereas nonuniform grids (of Chebyshev type) 
together with the corresponding polynomial inequalities have been considered 
only on multidimensional boxes, for example in [10] and more recently in [11]. 

On the other hand, the general theory of polynomial meshes (which is 
ultimately a matter of discrete polynomial inequalities) has not yet entered the 
framework of continuous optimization. The following proposition estabilishes a 
possible connection. 
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Proposition 1. Let { }n  be a polynomial mesh of a compact set .dK  
Denote by max ( ) , min ( ) ,x K x Kp p x p p x     

 max ( ) , min ( ) ,
mn mnm x m xp p x p p x   

  (3) 

the continuous and discrete extrema of d

np  , where m , 2m  . 

Then, the following estimate holds: 

 max{ , } ( )m m mp p p p E p p    , (4) 

 
1/ log( ) log( )

~ , .
m

m
c c c

E m
m m

   (5) 

Proof. First, observe that if n  is a polynomial mesh with constant , then 

mn  is a polynomial mesh with constant 1/mc . In fact, if d
np  then 

m d
mnp   and we can write: 

 .
mn mn

m m m m
K Kp p c p c p   ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖   

Now consider the polynomial ( ) ( ) d
nq x p x p    which is nonpositive in . 

We have that | |Kq p p p p   ‖ ‖  , and | |
mn m mq p p p p   ‖ ‖ . Then by 

Eq. (1)   

 1/( 1)
mn mn

m
m Kp p q q c q     ‖‖ ‖‖ ‖‖  

 1/ 1/( 1) ( 1)( ) .m m
Kc q c p p    ‖‖  

The other estimate in Eq. (4) is obtained similarly, taking ( ) ( )q x p x p   which 

is nonnegative in . 

We conclude by observing that 1/ log( )/ log( )/ log( )
1 1m c m c m c

c e e
m

     by the 

mean value theorem and the monotonicity of the exponential function. □ 

Observe that the error  is relative to the range of , a usual requirement in 
polynomial optimization; in particular, we may say that  and  are 1

-approximations to the corresponding polynomial extrema, cf. e.g. [8]. 
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The complexity of the discrete optimization is proportional to the number of 
evaluations of the polynomial, i.e. to the cardinality of mn . If { }n  is an 

optimal mesh then Eq. (2) holds with 1 and ( ) ( )mn mncard N  . We may 
now distinguish two situations. 

The first occurs when  is polynomial determining (i.e. polinomials vanishing 
there vanish everywhere in )d , for example when  has nonempty interior; in 

this case ~ / ! (for  fixed and → ∞). 

The second occurs when  is a compact subset of a real algebraic variety 
d  (which is determining for polynomials restricted to  ). In this case 
(( ) )mnN mn   with . For example, if the variety is the zero set of an 

irreducible real polynomial of degree , then 

 ( ( )) ( ( )) ,d d
mn mn mn

mn d mn k d
N dim K dim

d d

     
      

   
   (6) 

for , and thus ~
!

 for → ∞ (  and  fixed). To 

illustrate this point, we have that the sphere is a quadric 2 , whereas the 
torus is a quartic 4  surface in 3 variables, see for example [12] for 
the relevant algebraic geometry notions. 

Now, fix ∈ 0,1 . Following the usual definitions (cf. for example [8]), to get 
a 1 -approximation scheme from Proposition 1, that is 

 max{ , } ( ) ,m mp p p p p p     (7) 

we should take  1( )m m     , since  1
mE m  (for fixed ), a rough 

estimate being log( ) /mE c c m . Then  1mn n  , and by the 

considerations above  1( )mnN n   , with  (if  is polynomial 

determining on d ), or  (if  is not polynomial determining on d , for 
example a subset of an algebraic variety). 

As recalled in the introduction, optimal polynomial meshes have been 
constructed on compact sets with different structures, by various geometrical 
and analytical tools. Some of these constructions are simple and efficient, other 
require deep analytical results and are difficult to implement.  
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In order to give an example of a class of compact sets where optimal 
polynomial meshes are known, we show in Table 1 a number of standard 
circular sections of disk, sphere and torus, that are obtained by cutting the 
geometric objects by lines or planes, or by making suitable set intersections or 
differences. The sections are grouped by the constant  of the corresponding 
optimal polynomial meshes, whose cardinality is displayed. We do not go here 
into details of the construction and of the mesh constant estimation, which are 
based on suitable bilinear trigonometric transformations and ‘subperiodic’ 
trigonometric polynomial inequalities (indeed, circular arcs and thus 
subintervals of the period are involved); cf. for example [7,13,14] with the 
references therein. 

Table 1 Some standard planar, surface and solid circular sections together with 
the corresponding polynomial mesh parameters. 

 ( )mncard   (bound) Section type 

√2 4 1 entire cicle 

2 4 1 
2 1 4 1  

4 1

circle arc 
entire disk/disk annulus 

entire sphere/torus 

2√2 2 1 4 1  
4 1  

 
2 1 4 1  

disk sector/segment/zone/lens 
surface spherical cap/collar 

surface toroidal cap/collar/slice 
entire ball/solid torus 

spherical shell 
4 4 1  

 
 

2 1 4 1  

planar lune 
surface spherical rectangle/lune 

surface toroidal rectangle 
solid spherical cap/cone/lens/zone 

solid toroidal cap/slice/zone 

4√2 2 1 4 1  spherical square pyramid 

8 4 1 solid lune 

To show a specific application, by Proposition 1 and Table 1 we see that one 
can obtain an approximation of the extremal values of any trivariate polynomial 
of degree 4 (restricted to a surface spherical or toroidal cap of any angular 
extension) within about 10% of the polynomial range 2√2, 10 , 

by evaluating the polynomial on the optimal polynomial mesh given by a grid 
of 161×161 points. By no loss of generality, on the sphere we can take a polar 
cap. The grids have the form 

 ( ) ,mn mn mn    (8) 

 ( , ) (( cos( ))cos( ),( cos( ))sin( ), sin( )) ,R r R r r           

with 0 (sphere) or 0 (torus), 
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  2 / (4 2), 1 4 1 (0,2 ) , mn j j mn j mn           

and 

  2arcsin(sin( / 2) ), 0 4 , ,
2 2 2mn i it i mn
                   

   
  

0 /2, where  are the zeros of the Chebyshev polynomial  
in 1,1 ; cf. [14, Proposition 1]. See Figure 1, where similar grids for 

2 are plotted for the purpose of illustration. 

 

Figure 1 Optimal polynomial mesh on a spherical cap (left) and on a toroidal 
cap (right). 

In order to make a numerical example, we consider the minimization of a 4th-
degree trivariate polynomial with random coefficients, restricted to a polar cap 
of the unit sphere. In Table 2 we report the maximum and the average relative 
error /  over 1000 trials for the coefficients, on 5 angular 

extensions 2 , namely  (the entire sphere), /2 (an emisphere), 
, , .  

Table 2 Maximum and Average Error (1000 trials) in the minimization of 4th-
degree Random Polynomials on a 161×161 grid of some Spherical Caps. 

  /  /  /  /  
max err 2e-4 2e-4 2e-4 1e-4 1e-4 
avg err 7e-5 5e-5 5e-5 4e-5 5e-5 

The extremal values  and  have been computed in spherical coordinates by 

the Chebfun2 package (cf. [15]). We see that the real errors are much below the 
(1 / )m  estimate given in Proposition 1, suggesting that at least on such 

domains and meshes this is only a rough overestimate and that the existence of 
sharper bounds should be investigated by different techniques. 
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3 Conclusion 

To conclude this paper, we may observe that polynomial optimization on 
optimal polynomial meshes is ultimately a sort of fully discrete ‘brute-force’ 
approach, not suitable for high-precision optimization (or for high-dimensional 
optimization). Nevertheless, it gives a first insight into the possibility of using 
the general theory of polynomial norming inequalities in the framework of 
continuous optimization and in practice could also play a role in low dimension, 
as a starting step for more sophisticated optimization procedures. 
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