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Abstract: Although cable driven robots are a type of parallel manipulators, the evaluation of their
performances cannot be carried out using the performance indices already developed for parallel
robots with rigid links. This is an obvious consequence of the peculiar features of flexible cables—a
cable can only exert a tensile and limited force in the direction of the cable itself. A comprehensive
performance evaluation can certainly be attained by computing the maximum force (or torque)
that can be exerted by the cables on the moving platform along a specific (or any) direction within
the whole workspace. This is the idea behind the index—called the Wrench Exertion Capability
(WEC)—which can be employed to evaluate the performance of any cable robot topology and is
characterized by an efficient and simple formulation based on linear programming. By significantly
improving a preliminary computation method for the WEC, this paper proposes an ultimate
formulation suitable for any cable robot topology. Several numerical investigations on planar and
spatial cable robots are presented to give evidence of the WEC usefulness, comparisons with popular
performance indices are also provided.
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1. Introduction

Cable driven robots, or simply cable robots, are relatively simple parallel manipulators, operating
in planar or spatial arrangements, formed by attaching multiple cables to a moving platform, on which
the end-effector is fitted. In cable robots, the cables are driven by motors which can extend or retract
the cables by winding or unwinding them from pulleys (also called winches or drums). In this sense
cables are usually said to be active. Cable robots have several desirable advantages compared to
conventional serial and parallel robots. For this reason they have been studied thoroughly since the
early 90’s [1] and promise to significantly increase performances of today’s industrial robots in terms of
payload, workspace and dynamic performances: they can be designed to have a very large workspace,
a very high load capacity, or to generate very high speed motions [2], always with considerable energy
efficiency. Their unique features, arising from parallel kinematics combined to minimal moving masses,
make them amongst the most promising robotic devices in the industrial and service field, as it is
proved by the ever-growing number of cable robot families that has been developed by research
institutions and private companies [3,4].

Very often, cable robots are designed to be redundant (i.e., with more active cables and hence
motors, than degrees of freedom (dofs) of the moving platform, see for example, Reference [2]),
however, fully actuated (i.e., with a number of active cables equal to the dofs, see for example,
Reference [5]) and underactuated (i.e., with less active cables than dofs, see for example, Reference [6])
topologies have been studied too. Moreover, cable robots can exhibit a hybrid design (i.e., with
both cables and rigid link mechanisms [3,7]). Redundant cable robots are the sole robots which can
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completely restrain the moving platform of a cable robot: in order to fully constrain the moving
platform of a cable robot, it is required that the number of cables is greater by one than the number
of dofs of the moving platform (see for example, [8]), hence a redundant configuration is needed.
The condition on the number of cables is only necessary but not sufficient: a cable robot can be
underconstrained, even if the number of cables is greater than the number of dofs. It is typically
the case of the so-called cable suspended robots. Generally speaking, a high number of cables may
lead to overconstrained configurations (see for example, Reference [2]), while a lower number of
cables leads necessarily to underconstrained robots, which must rely on gravity to keep positive
tensions in the cables (see for example, References [9,10]). Indeed, contrary to fully constrained or
overconstrained cable robots, the underconstrained ones cannot take advantage of redundant cables
to set a desired tension distribution in the cables. This makes operating underactuated cable robots
particularly challenging.

A major requirement that has to be met in cable robots is ensuring that during operation all
the cables are under adequate tension (at least cable slackness must be prevented in all the cables)
and that such a tension is below the maximum permissible value related to the torque limits of the
winch motors or to the tensile force limits of the cables [5]. In practice, this makes it necessary to
take into account explicitly the bilateral bounds on cable tensions reflecting both the unilateral nature
of cables as actuators (cables can pull but are unable to push the end-effector) and the additional
constraints posed, on the upper bound, by cable and motor physical properties and, on the lower
bound, by safety margins or end-effector stiffness requirements [11,12]. The latter requirements
usually suggest imposing a lower bound for cables forces greater than 0. Clearly, the evaluation of
the performances of a cable robot cannot neglect such peculiarities of cable robots and the complexity
arising from the need of keeping bounded cable tensions. As a result, though cable driven robots are
basically parallel robots, the traditional performance indices developed for parallel robots (see for
example, [13–16]) are inadequate and cannot be employed straightforwardly.

So far, just a few examples of performance indices for cable robots have been proposed in
literature. They have mainly been conceived as extensions to cable robots of traditional Jacobian-based
performance indices. In [17] an evolution of the Yoshikawa manipulability has been proposed. In [18]
the condition number has instead been applied as is, by restricting the analysis to a specific workspace.
In [19] the Kinematic Sensitivity Index [20] has been modified in order to achieve the best workspace
region of cable robots. An evolution of the isotropy index, called tension factor, has been proposed
in [21]: the tension factor is an isotropy index, defined in the joint space, which evaluates the ratio
between minimum and maximum cable tensions. Another interesting isotropy index has been defined
in [9] for evaluating the inertial properties of two cable robots designed for rehabilitation. In the same
work, a maximum isotropic force has been defined in order to find the minimum force that can be
exerted in any direction. The index in [8] has been then extended for application to reconfigurable
cable robots [22,23].

In [24] a novel approach to cable robot performance evaluation has been proposed and applied to
solely redundant cable robots. The approach is based on the computation of the maximum force which
can be exerted by the active cables on the moving platform along a specific direction. By extending
the reasoning behind such an approach, in [25] a novel performance index called Wrench Exertion
Capability (WEC) has been firstly introduced. The reason for referring the evaluation to a given
direction comes from a typical practical need when designing a cable robot: predicting the maximum
force or torque that can be exerted on the moving platform along a direction of interest, usually keeping
either null or limited wrench components, both in terms of forces and torques, along the other directions.
This is basically what is meant by evaluation of the WEC of a cable robot along a direction. In [25]
a preliminary formulation of the method has been introduced, as well as a validation restricted to
planar cable robots. This paper improves such a formulation and extends it to spatial cable robots
therefore setting an ultimate formulation of the method.
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The WEC appears more versatile than other performance indices since it can be used to perform
various analyses. Not only can the WEC be employed for maximum force/torque evaluations but also
to compute the minimum force/torque values which can be guaranteed throughout the workspace,
irrespective of the direction and for isotropy evaluations. All these analyses allow getting considerable
insight into cable robot performances and give the possibility to perform comprehensive comparisons
among the performances of cable robots with different topologies and alternative cable layouts: indeed,
such comparative investigations often need to be carried out since it is apparent that not only are the
performances of cable robots influenced by the number of active cables but also by their geometrical
arrangement. A challenging example of WEC employment is given by some recent recovery strategies
in case of cable failure [26,27].

The paper is organized as follows. The WEC formulation is first developed in Section 2: the
formulation is based on the theory developed in [25] which is here revised and extended to generic
spatial robots. In Section 3 three illustrative examples of computation of the WEC are provided. Firstly,
the WEC is employed to compare the performances of two fully actuated planar cable robots with
different cable layouts. A comparison is also made with state-of-the-art performance indices. Secondly,
performance changes due to variations in the number of cables are investigated by referring to a planar
and cable suspended robot. Thirdly, an investigation is proposed to show the benefits related to the
use of the WEC in the evaluation of the performances of a spatial cable robot. The conclusions are
stated in Section 4.

2. Wrench Exertion Capability

Suppose that for a given pose of the moving platform of a cable robot you were interested
in evaluating the maximum force or torque that cables can exert on the platform, along a certain
direction. Such an interest could be motivated by a variety of reasons, including, for example,
the need to identify the regions of the workspace where the robot best performs in terms of initial
acceleration, payload capacity or capability to react to external disturbances (forces or torques). Clearly,
the maximum force or torque that the cables can exert on the moving platform, along a given direction,
depends on the maximum force that each cable can exert. Less obviously, such a wrench exertion
capability also depends on the minimum tension of the cables that must be guaranteed to avoid cable
slackness or to meet a desired stiffness requirement for the robot platform. At least, cable tension must
be greater than zero to guarantee that cable forces can be maintained tensile. Computing the WEC
index for a cable robot basically consists in performing the aforementioned evaluation taking into
account cable tension limits explicitly.

The computation of the WEC suggested in this work is based on the solution of a linear
programming problem involving cable tensions, cable tension limits and a novel representation
of the so-called wrench matrix. The wrench matrix S of a cable robot, also called structure matrix,
is usually defined as the matrix relating the wrench wc exerted by the cable forces on the moving
platform to the tension vector τ containing the cable forces τi (see Figure 1). It can be immediately
recognized that in the most general case of a spatial cable robot driven by m cables, it holds: wc = Sτ,
where the structure matrix S takes the following form:

S =

[
u1 u2 . . . um

r1 × u1 r2 × u2 . . . rm × um

]
(1)

As schematically shown in Figure 1, vectors ui and ri are respectively the unit vector running
along the ith cable, (oriented from the moving platform, that is, the box painted in grey in the scheme,
towards the ith cable output point on the fixed frame) and the vector from the centre of mass (G) of the
moving platform to the point where the ith cable is connected to the moving platform.
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Figure 1. Schematic representation of the moving platform of a spatial cable robot and of the vectors
involved in the computation of the wrench exerted by the cables on the platform.

The structure matrix S only allows computing the cable wrench wc exerted by the cables on the
moving platform. In general, this is not the sole wrench applied to the moving platform. In order

to compute the total wrench w :=
[

fT tT
]T

applied to the moving platform, external loading,
including, for example, gravity force, should be taken into account. In the previous definition of w
vectors f and t are respectively the overall forces and torques exerted on the moving platform by
the cables and the external forces. To account explicitly for external forces, a novel definition for the
wrench matrix (denoted by W) is introduced, which is obtained by simply aggregating the structure
matrix S and the external wrench we:

w = wc + we = Sτ + we = [S we]

{
τ

1

}
:= W

{
τ

1

}
(2)

Once the matrix definition of W in Equation (2) is introduced, it is possible to develop cable robot
performance analysis following a well-established approach. It is common knowledge that in the
performance analysis of parallel manipulators it has been proved convenient to split Jacobian matrices
into their “translational” and “rotational” parts [13] in order to evaluate independently the translational
and rotational capabilities of parallel robots. By applying the same idea to the novel definition of
the wrench matrix of a cable robot, it is here suggested to split W into two parts, namely W f and Wt

(where W :=
[

W f
T Wt

T
]T

) to analyze separately force and torque exertion capabilities.
The proposed analysis is particularly useful when it is referred to a specific direction of interest

not necessarily coinciding with an axis of the absolute reference frame. Since the force and torque
components in vector w are expressed in an absolute reference frame, in order to refer the evaluation
to a specific direction d, a rotation matrix R can be introduced to define such a direction of interest
univocally in the absolute reference frame adopted [13]. Once the direction d is defined, symbols o1
and o2 are used to denote two orthogonal directions which, combined with d, provide a Cartesian
reference frame. The following expressions can be adopted to rotate matrices W f and Wt:[

R 0
0 R

]T{
W f
Wt

}
:=
[

wT
fd

wT
fo1

wT
fo2

wT
td

wT
to1

wT
to2

]T
(3)

Then, for example, the WEC of a fully constrained cable robot can be expressed in terms of the
maximum force w f d that can be exerted along the direction d while keeping bounded cable tensions

and given values w̃R of the other wrench components. Such a WEC may be referred to as WEC f
d ,

since it involves a force evaluation along a direction of interest d and can be computed by solving the
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following linear programming problem (henceforth, the symbol 4 stands for the component-wise
inequality):

WEC f
d := max

(
w fd

= wT
fd

{
τ

1

})
s.t. :




wT

fo1

wT
fo2

wT
td

wT
to1

wT
to2


{

τ

1

}
:= A

{
τ

1

}
:= w̃R

τmin 4 τ 4 τmax

(4)

Similarly, if the torque exertion capability along a direction d is to be evaluated, the WECt
d can be

computed by simply solving the linear programming problem stated as follows:

WECt
d := max

(
wtd = wT

td

{
τ

1

})
s.t. :




wT

fd

wT
fo1

wT
fo2

wT
to1

wT
to2


{

τ

1

}
= A

{
τ

1

}
= w̃R

τmin 4 τ 4 τmax

(5)

In general, a default value for w̃R should be 0 because, when a cable robot is designed, a practical
need may consist in predicting the maximum force that can be exerted along a prescribed direction
while keeping null wrench components, both in terms of forces and torques, along the other directions.
For example, this is the case when it is necessary to accelerate the moving platform along a specific
direction belonging to a path, while keeping the platform orientation unaltered. This is coherent with
the typical investigation objectives presented at the beginning of this section.

The possibility of meeting imposed requirements on the full set of values w̃R of the wrench
components excluding the one which is maximized, may only be assured in fully actuated and
redundant cable robots. Conversely, when a cable robot is underactuated this is generally impossible.
Nonetheless, a suitable redefinition of the linear programming problem allows extending the
application of the WEC index to such cable robots. Indeed, in underactuated cable robots it is impossible
to apply the proposed optimization unless enough equations in the linear problem A

{
τT 1

}T
= w̃R

are removed. This is a consequence of the fact that it is impossible to assign finite values to all the w̃R
components but only to m− 1 of them, where m is the number of active cables. Instead of just removing
from the linear programming problem the proper number of equality constraints, we suggest replacing
them with inequality constraints imposing upper and lower bounds to the wrench components to
which finite values cannot be assigned. As an example, consider the problem statement in Equation (6)
which refers to a spatial cable robot with 6 dofs driven by 3 active cables: in order to compute a WEC f

d ,
finite values are assigned only to 2 force components (w̃R) while the torque components of the overall
wrench are limited by upper and lower bounds (w̃B).

WEC f
d := max

(
w fd

= wT
fd

{
τ

1

})
s.t. :



[
wT

fo1

wT
fo2

]{
τ

1

}
= A

{
τ

1

}
= w̃R

wT
td

wT
to1

wT
to2

−wT
td

−wT
to1

−wT
to2


{

τ

1

}
=

[
B
−B

]{
τ

1

}
4 w̃B

τmin 4 τ 4 τmax

(6)
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In particular, if we compare Equation (6) with the formulation in Equation (4), it is apparent
that the constraints in the form of equalities removed from A

{
τT 1

}T
= w̃R have been replaced by

a suitable set of constraints in the form of inequalities
[
BT − BT]T{

τT 1
}T

4 w̃B.
The presented extension of the WEC definition to underactuated cable robots addresses a more

general problem and gives the opportunity to make comparisons among considerably different robot
topologies keeping a goal-driven approach.

Equation (7) provides a conclusive and general formulation of the WEC, suitable to any cable
robot topology, where Γ is a generalized force (i.e., Γ can be either a force or torque component of the
wrench vector w projected along the direction d of interest).

WECΓ
d := max

(
wΓd

)
s.t. :


A

{
τ

1

}
= w̃R[

B
−B

]{
τ

1

}
4 w̃B

τmin 4 τ 4 τmax

(7)

It is worth highlighting that in Equation (7) the dimensions of the matrices A and B are related to
the cable robot topology and to the specific constraints defined for the analysis, reflecting operational
requirements or specific features of the application. Let k be the number of rows of matrix
A (i.e., the number of linear equality constraints). The following inequality must always hold:
k ≤ min(n − 1, m − 1), where n is the number of degrees of freedom of the moving platform and
m is the number of active cables. The inequality holding for k reflects the practical need that the
maximum number of equality constraints cannot exceed n − 1 (being 1 the force or torque to be
maximized and n the overall number of wrench components) or m − 1 in the case of underactuated
robots. The maximum number of rows l of matrix B is instead equal to n − 1 − k: since one inequality
constraint can be introduced only if it is impossible, or not necessary for the given application,
to provide n − 1 constraints in equality form (i.e., if k < n − 1, then l can be greater than zero). As for
the number of columns of A and B, they are both equal to m + 1, that is, the size of the column vector{

τT 1
}T .

In conclusion, the WEC definition is strictly related to the constraints defined for the linear
programming problem. Such constraints depend on the topology and on the application. It is
important to notice that the formulation with inequality constraints can be always adopted, while exact
values to all the wrench components apart from the one maximized (i.e., a formulation with a full set
of n − 1 equality constraints) can be imposed only with fully actuated or redundant robot.

3. Results of WEC Application

The WEC computation presented in the previous section is here applied to the performance
analysis of different topologies of cable robots. The objective is to provide a clear proof of the
effectiveness and usefulness of the WEC when it is employed at the design stage to find the regions of
the workspace where a cable robot can best perform, or to compare different cable robot topologies or
cable layouts. Three representative investigations are carried out, addressing:

1. performance changes when robots have identical topologies but different cable layouts;
2. performance changes when a cable robot topology is altered by increasing the number of

active cables;
3. performance evaluation of a spatial redundant cable robot.

3.1. Analysis of Cable Robots with Different Cable Layout

The first investigation concerns the group of cable robots shown in Figure 2 which comprises two
redundant, planar and fully constrained cable robots with three dofs. The topology of the two robots
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analysed is identical but the points where cables are attached to the moving platform are different.
Therefore, it is said that the cable layouts are different. As shown in Figure 2, the moving platform of
the robots is rectangular (0.4 m × 0.2 m) and is driven by four cables attached to the four platform
vertices. The cable output points are located at the four vertices of a square. The coordinates (x, y) of the
cable output points, expressed in a reference frame located at the square centroid, are: A(−1 m, −1 m),
B(1 m, −1 m), C(1 m, 1 m) and D(−1 m, 1 m). It is assumed that the platform moves in a horizontal
plane (plane xy) and that the overall design of the platform the drive pulleys and the winches allow
avoiding cable interference in the robot with crossed cables (Figure 2, on the right). For both the robots,
the WEC can be computed by employing the formulations proposed in Equations (4) and (5), since
both the robots are redundant and the platform can be fully constrained. In this example, it has been
chosen to impose null wrench components (w̃R = 0) in the directions orthogonal to the one along
which a force or torque is maximized. Additionally, since no external wrench is assumed to be applied
on the platform, we is a null vector too.

Figure 2. Two cable robots with same topology and different cable layout.

This choice is mainly meant to simplify the comparative analysis of the results. The maximization
of all the three wrench components along the Cartesian axes x, y, z has been investigated, that is, two
forces acting along the positive directions of the axes x and y in the plane of motion and a torque about
the positive direction of axis z. For example, the WEC, in terms of maximum torque about the positive
direction of axis z, has been computed as follows:

WECt
z := max

(
wtz = wT

tz

{
τ

1

})
s.t. :


[

wT
fx

wT
fy

]{
τ

1

}
= A

{
τ

1

}
=

{
0
0

}
τmin 4 τ 4 τmax

(8)

WEC f
x and WEC f

y , with the obvious meaning for symbols, have been computed similarly,
always starting from the general formulation in Equation (7). Figure 3 collects all the results achieved.
In Figure 3a, the sketches of the two cable robots can be recognized: dash-dotted lines are employed to
connect the four cable output points; cables are represented by blue lines and the moving platform
is depicted in solid black line. A green quadrangle delimits the Static Equilibrium Workspace (SEW)
defined as the set of poses of the moving platform for which static equilibrium can be obtained while
maintaining positive tensions in all the cables. The SEW has been computed with the shown orientation
of the platform, that is, with the sides parallel to the x and y axes. As an example, the WEC has been
evaluated at point P(−0.2 m, 0.2 m) and refers to the force exertion capability along the positive
direction of axis x (see the red arrows and the red numbers). As far as the range of tensions that can
be resisted by the cables is concerned, without loss of generality, the maximum value has been set to
100 N while the minimum to 5 N. The arrows in bold line overlapped to the cables provide a scale
representation of the cable forces which allow achieving the maximum force represented by the red
arrow, whose module is the WEC f

x value, in N, computed at point P, which is also written below the
red arrow.

While the results shown in Figure 3a refer to a single point P, the other plots of Figure 3 extend the
analysis to the whole SEW: WEC values have been computed only for the points belonging to the SEW
and without altering the moving platform orientation. Figure 3b shows the values (in N), taken by the
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WEC f
x , while Figure 3c shows the WEC f

y . Finally, Figure 3d addresses the torque exertion capabilities
of the robots by showing the WECt

z (in Nm). In all the subplots from Figure 3b–d WEC values are
represented by isolines. The regions where the best performances are achieved can be immediately
recognized: they are the ones where the isolines take the highest values (red lines). The comparison
of the WEC plots clearly highlights the superior performances that can be guaranteed by the robot
with crossed cables. First of all, such a robot, which has a wider SEW too, guarantees the possibility of
exerting high forces in the x and y directions in a wider subset of the SEW (notice the extension of the
red and orange isolines in subplots (b) and (c)). In terms of very maximum values taken by the forces,
there are no significant differences between the two robots. Conversely, the torque exertion capability
is completely different (see subplot (d)): the behaviour of the robot with crossed cables is preferable
since its cables can exert much higher torques.

Figure 3. Wrench Exertion Capability (WEC) comparison for the two redundant cable robots sketched
in Figure 2 in terms of analysis at point P (a), WEC f

x (b), WEC f
y (c) and WECt

z (d).

The WEC formulation can be further exploited to compute the minimum force values which can
be guaranteed along any direction and at any point of the SEW and to perform an isotropy evaluation
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based on comparing such minimum force values with the very maximum ones that can be exerted at
any point of the SEW. As an example, such analyses are presented in Figure 4 with reference to the sole
robot with crossed cables. Figure 4a represents such a robot at a generic point P(−0.3 m, −0.3 m).

The results of several repetitions of WEC f
d computations at point P made considering different

directions d are collected and depicted through a red polygon which provides a scale representation of
the maximum force that can be exerted along any radial direction d around P. An angular resolution
by 1◦ has been adopted to trace such a polygon, in other words, the polygon summarizes the output
of 360 distinct WEC f

d computations. The wrench exertion capabilities of the robot referred to all the
possible directions can be immediately inferred. The maximum and minimum exertable forces can
also be easily found: they are traced in green lines.

Figure 4. Scale representation of the maximum force that can be exerted along any direction at a point
P (a); minimum guaranteed force (b); isotropy evaluation (c) and Tension Factor (d).

If the same WEC f
d computation (i.e., repeated along any direction) is performed at each point of

the SEW, a minimum force value which can be guaranteed irrespective of the direction can be found.
Figure 4b shows such a value plotted through isolines. Getting such information at the design stage
may obviously be of great practical usefulness.

If, at any point, the ratio between the minimum and maximum exertable forces (e.g., those traced
in green lines for point P in the subplot (a)) is computed, isotropy can be evaluated effectively. Figure 4c
shows such ratios, which can be straightforwardly compared to the popular isotropy index called
Tension Factor (TF), proposed in [17]. The TF is the ratio between the minimum and the maximum
cable tension values achieved when the platform is in static equilibrium. In Figure 4d the TF computed
at each point of the SEW has been plotted by isolines. Apparently, subplots (c) and (d) provide different
indications in terms of robot isotropy, however it is the authors’ opinion that the one based on the
WEC is more useful in practice, since the TF provides a measure of robot isotropy in the joint space,
rather than in the Cartesian space.
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3.2. Analysis of Cable Robots with Different Number of Cables

The second investigation concerns the group of cable robots shown in Figure 5 which comprises
four underconstrained (or “cable suspended”) 3-dof cable robots differing in the number of cables
and/or in the cable layout. The robots are assumed to move in a vertical plane, hence, their platforms
are under the influence of gravity, which is essential to maintain tension in the cables in static conditions.
Hence, for this comparison, the plane of motion is plane xz, the vertical one. The moving platforms of
all the robots are assumed to be identical and share the same shape and dimensions of the of the cable
robots presented in Section 3.1. The cables are all attached to the platform upper vertices. The cables
output points are instead located at the two upper vertices of a square. The coordinates (x, z) of
such points, expressed in a reference frame located at the square centroid, are: A(−1 m, 1 m) and
B(1 m, 1 m). The first robot only has two cables and hence it is also underactuated. The other robots
are instead fully actuated or redundant (i.e., with four cables).

Figure 5. Cable suspended robots investigated comparatively by the WEC.

By comparing the performances of these robots, the effect of increasing the number of active
cables can be appreciated, also in relation to the cable layout adopted. This is the objective of such
a comparative analysis, whose results are collected in Figure 6. Robot performances are compared by
referring to the WEC f

x obtained by assuming that:

• cable tensions are to be kept in the range 5–100 N;
• a null overall torque must be exerted on the platform;
• a limited vertical force in the upwards direction must be applied to the platform. The lower and

upper bounds of such a vertical force have been set equal to, respectively, 0 and 5 N.

The mentioned constraints are coherent with the field of application where cable suspended
robots are very likely to be employed in the future: high speed pick and place manipulations (e.g.,
over-the-belt packaging). Indeed, if a cable suspended robot has to be employed for such tasks, it
is of apparent interest evaluating which is the maximum horizontal force that can be exerted on the
platform and hence applied to the picked object, while keeping a null torque on it (not to induce
rotations) and a bounded upward force (if a given force value in the vertical direction cannot be set
due to the limited number of cables available). Not only does imposing an upward force meet the
basic requirement of lifting the picked objects during the manipulation (a lower bound higher than
zero could be imposed to this purpose) but setting an upper bound could allow preventing the load
from being dropped at the start of the motion.

In other words, the upper bound on the vertical force could reflect a limitation to the maximum
vertical acceleration. In the comparative analysis, although the sole 2-cable robot is actually
underactuated, identical constraints in the form of inequalities have been set for all WEC computations
to make the comparison between different cable robot topologies fair. The problem is therefore stated
as follows for all the robots:

WEC f
x := max

(
w fx = wT

fx

{
τ

1

})
s.t. :



[
wT

ty

]{ τ

1

}
= A

{
τ

1

}
= 0[

wT
fz

−wT
fz

]{
τ

1

}
=

[
B
−B

]{
τ

1

}
4 w̃B

τmin 4 τ 4 τmax

(9)
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Generally speaking, the WEC f
x can be computed at any point achievable by the moving platform

statically or dynamically. In the subplots on the left of Figure 6, the computation is referred to
a generic point P(−0.2 m, 0.2 m). The lines employed in these plots have the same meaning of the
corresponding ones in Figure 4a. Here, however, a vertical green arrow is also adopted to provide
a scale representation of the external wrench we: the force of gravity acting on the platform. The mass
of the platform has been set equal to 5 kg.

In the subplots on the right of Figure 6, the analysis has been extended to all the points of the
Statically Feasible Workspace (SFW) defined as the set of the mobile platform poses for which static
equilibrium against gravity can be obtained using a limited range of cable tensions [3].

Figure 6. WEC f
x (a–d) for each of the different topologies of cable suspended robots presented in

Figure 5. WEC f
x are either computed at a single point P (plots on the left) or throughout the statically

feasible workspace (SFW) (plots on the right).
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The SFWs of all the robots, computed keeping the platform horizontal, are represented in the
subplots on the left of Figure 6, for clarity, delimited by green solid lines. The SFWs have been
geometrically bounded by the square box with vertices at A and B. The isolines in the plots
highlight the greatly different behaviors of the four cable driven robots: while for the underactuated
robot (subplot (a)) it is possible to find a solution to the problem stated in Equation (9) in just one
point of the SFW, by increasing the number of active cables, the force exertion capabilities improve
considerably. The subplots (b) and (c) prove that, for the given problem of maximizing a rightward
force, the two fully actuated robots behave very differently in their SFWs. The SFWs of the robots
are very different (basically symmetrical about the z axis) and not overlapped, which complicates
performing a straightforward comparison between the robots. Nonetheless, the plots provide clear
hints about the regions where these robots can best perform. Clearly, the most effective cable layout
could be identified once the geometrical features of the tasks to be executed and of the workcell were
known: in general, the cable arrangement of Figure 6b seems preferable since the WEC f

x takes high
values in a wider region of the workspace. Finally, in Figure 6d, the WEC f

x of the redundant robot is
plotted. Obviously, the availability of a fourth cable allows extending the SFW and improving the
performances within it. In particular, the rightward force exertion capability shows that this robot
merges the benefits of the fully actuated robots discussed earlier, at the expense of an increased cost,
design complexity and cable obstruction in the workspace.

3.3. Analysis of a 6-dof Overconstrained Spatial Cable Robot

The third investigation concerns the cable robot shown in Figure 7 which is a spatial redundant
cable robot with six degrees of freedom. The robot design and cable layout recall those of several
prototypes developed worldwide [1,2]. The moving platform of the robot is a parallelepiped
(0.4 m × 0.1 m × 0.2 m) that weighs 0.5 kg and is driven by eight cables attached to the eight
platform vertices. The cable output points are located at the eight vertices of a cube. The coordinates
(x, y, z) of the cable output points, expressed in a reference frame located at the cube centroid,
are: A(−1 m, −1 m, −1 m), B(1 m, −1 m, −1 m), C(1 m, 1 m, −1 m), D(−1 m, 1 m, −1 m),
E(−1 m, −1 m, 1 m), F(1 m, −1 m, 1 m), G(1 m, 1 m, 1 m) and H(−1 m, 1 m, 1 m).

Figure 7. The 6-dof overconstrained spatial cable robot investigated.
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For this robot, the WEC can be computed by employing the formulations proposed in Equations
(4) and (5), since the robot is redundant and the platform can be fully constrained. Also in this case,
it has been chosen to impose null wrench components (w̃R = 0) in the directions orthogonal to the one
along which a force or torque is maximized. Additionally, since gravity force is applied to the platform,
the third row of the we vector is equal to the gravity force, while the other rows contain null values.
The maximization of three representative wrench components along the Cartesian axes x, y, z has been
investigated. In particular, it has been chosen to maximize the two forces acting along, respectively,
the negative direction of the y axis and the positive direction of z axis. Finally, the torque acting about
the negative direction of the axis y has been analysed. As an example, the WEC, in terms of maximum
torque about the negative direction of axis y, has been computed as follows:

WECt
−y := max

(
wt−y = wT

t−y

{
τ

1

})
s.t. :




wT

f−y

wT
fO1

wT
fO2

wT
tO1

wT
tO2


{

τ

1

}
= A

{
τ

1

}
=

{
0
0

}

τmin 4 τ 4 τmax

(10)

where the direction d is achieved by setting the matrix R defined in Equation (3) equal to an elementary
rotation matrix of −90 degrees about the z axis (Rz(−90)).

Figure 8 collects the results achieved. For the sake of clarity, in the left subplots of Figure 8,
the origin of the rotated reference frame is set at point (0 m, 0 m, −1 m) and the direction d is
highlighted by means of a red arrow. The results shown in the subplots on the left of Figure 8 refer
to a single point P. Dash-dotted lines are employed to connect the eight cable output points and
hence to represent the robot typical workspace; cables are represented by light-blue lines and the
moving platform is depicted in solid black line. As an example, the WEC has been evaluated at point
P(0.2 m, 0.4 m, 0.0 m). As far as the range of tensions that can be resisted by the cables is concerned,
without loss of generality, the maximum value has been set to 10 N while the minimum to 0.5 N.
The arrows in bold blue line overlapped to the cables provide a scale representation of the cable forces
which allow achieving the maximum force/torque represented by the red (in case of forces) or green
(in case of torque) arrows. In the subplots on the right, each analysis is extended to the whole SEW:
only the results achieved in some representative horizontal planes of the SEW are represented for
clarity. As usual, in these subplots WEC values are represented by isolines, the red ones identifying the
regions where the best performances are achieved (i.e., where the highest WEC values are achieved).
Figure 8a shows the values (in N), taken by the WEC f

−y, while Figure 8b shows the WEC f
z (N). Finally,

Figure 8c addresses the torque exertion capabilities of the robot by showing the WECt
−y (Nm).

As it has already stated for planar cable robots, the computed forces or torques can be exerted
statically by the end-effector on the environment or alternatively they can be interpreted as forces
or torques that the cables can apply to the end-effector to accelerate it. According to the latter
interpretation, the results plotted give immediate evidence of the workspace locations where the
highest dynamic performances can be achieved.
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Figure 8. WEC f
−y (a) WEC f

z (b) and WECt
−y (c) of the spatial cable robot presented in Figure 7. WEC are

either computed at a single point P (plots on the left) or throughout the static equilibrium workspace
(SEW) (plots on the right).

4. Conclusions

A comprehensive evaluation of the performances of any cable driven robot can be carried by the
proposed performance index named Wrench Exertion Capability (WEC), which allows evaluating
the maximum force or torque a cable robot can exert along a direction of interest. The WEC accounts
explicitly for the intrinsic cable tension limits and for the constraints which can be imposed to the
wrench components that are not maximized.

A linear programming problem is solved to compute the WEC. The problem makes use of
suitable partitions of a novel definition of the wrench matrix which has been introduced to simplify
the inclusion of external wrenches in the analysis. The WEC formulation proposed is general enough
to allow analyzing redundant, fully actuated and underactuated spatial cable robots. To this purpose,
the use of constraints in both the form of equalities and inequalities has been suggested and discussed.
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Finally, by a set of representative examples, it has been proved that the WEC can be adopted to
carry out complete and effective evaluations of the performances of cable robots either in absolute or
comparative terms.

Author Contributions: G.B. and A.T. conceived the study and designed the experiments; G.B. performed the
experiments; G.B. and A.T. analyzed the data; G.B. and A.T. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Albus, J.S.; Bostelman, R.; Dagalakis, N.G. The NIST ROBOCRANE. J. Robot. Syst. 1993, 10, 709–724.
[CrossRef]

2. Pott, A.; Mütherich, H.; Kraus, W.; Schmidt, V.; Miermeister, P.; Verl, A. IPAnema: A family of Cable-Driven
Parallel Robots for Industrial Applications. In Cable-Driven Parallel Robots; Bruckmann, T., Pott, A., Eds.;
Springer: Berlin/Heidelberg, Germany, 2013; pp. 119–134.

3. Trevisani, A. Planning of dynamically feasible trajectories for translational, planar, and underconstrained
cable-driven robots. J. Syst. Sci. Complex. 2013, 26, 695–717. [CrossRef]

4. Abdolshah, S.; Zanotto, D.; Rosati, G.; Agrawal, S. Performance evaluation of a new design of cable-suspended
camera system. In Proceedings of the International Conference on Robotics and Automation (ICRA),
Singapore, 29 May–3 June 2017; pp. 3728–3733.

5. Trevisani, A. Underconstrained planar cable-direct-driven robots: A trajectory planning method ensuring
positive and bounded cable tensions. Mechatronics 2010, 20, 113–127. [CrossRef]

6. Carricato, M.; Abbasnejad, G. Direct geometrico-static analysis of under-constrained cable-driven parallel
robots with 4 cables. In Cable-Driven Parallel; Bruckmann, T., Pott, A., Eds.; Springer: Berlin/Heidelberg,
Germany, 2013; pp. 269–285.

7. Zi, B.; Sun, H.; Zhang, D. Design, analysis and control of a winding hybrid-driven cable parallel manipulator.
Robot. Comput. Integr. Manuf. 2017, 48, 196–208. [CrossRef]

8. Williams, R.L.; Gallina, P.; Vadia, J. Planar translational cable direct driven robots. J. Robot. Syst. 2003, 20,
107–120. [CrossRef]

9. Rosati, G.; Secoli, R.; Zanotto, D.; Rossi, A.; Boschetti, G. Planar robotic systems for upper-limb post-stroke
rehabilitation. In Proceedings of the ASME 2008 International Mechanical Engineering Congress and
Exposition (IMECE 2008), Boston, MA, USA, 31 October–6 November 2008.

10. Hernandez, E.; Valdez, S.I.; Carbone, G.; Ceccarelli, M. Design optimization of a cable-driven parallel robot
in upper arm training-rehabilitation processes. Mech. Mach. Sci. 2018, 54, 413–424.

11. Surdilovic, D.; Radojicic, J.; Krüger, J. Geometric stiffness analysis of wire robots: A mechanical approach.
In Cable-Driven Parallel Robots; Bruckmann, T., Pott, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 389–404.

12. Abdolshah, S.; Shojaei Barjuei, E. Linear quadratic optimal controller for cable-driven parallel robots.
Front. Mech. Eng. 2015, 10, 344–351. [CrossRef]

13. Merlet, J.P. Jacobian, manipulability, condition number, and accuracy of parallel robots. ASME J. Mech. Des.
2006, 128, 199–206. [CrossRef]

14. Gao, F.; Liu, X.; Gruver, W.A. Performance Evaluation of Two-degree-of-freedom Planar Parallel Robots.
Mech. Mach. Theory 1998, 33, 661–668. [CrossRef]

15. La Mura, F.; Romanò, P.; Fiore, E.; Giberti, H. Workspace Limiting Strategy for 6 DOF Force Controlled PKMs
Manipulating High inertia Objects. Robotics 2018, 7, 10. [CrossRef]

16. Seriani, S.; Gallina, P.; Gasparetto, A. A performance Index for Planar Repetitive Workspace Robots.
J. Mech. Robot. 2014, 6, 031005. [CrossRef]

17. Rosati, G.; Gallina, P. Manipulability of a planar wire driven active design. Mech. Mach. Theory 2002, 37,
215–228.

18. Pusey, J.; Fattah, A.; Agrawal, S.; Messina, E. Design and workspace analysis of a 6-6 cable suspended
parallel robot. Mech. Mach. Theory 2004, 39, 761–778. [CrossRef]

http://dx.doi.org/10.1002/rob.4620100509
http://dx.doi.org/10.1007/s11424-013-3175-1
http://dx.doi.org/10.1016/j.mechatronics.2009.09.011
http://dx.doi.org/10.1016/j.rcim.2017.04.002
http://dx.doi.org/10.1002/rob.10073
http://dx.doi.org/10.1007/s11465-015-0364-8
http://dx.doi.org/10.1115/1.2121740
http://dx.doi.org/10.1016/S0094-114X(97)00102-X
http://dx.doi.org/10.3390/robotics7010010
http://dx.doi.org/10.1115/1.4026826
http://dx.doi.org/10.1016/j.mechmachtheory.2004.02.010


Robotics 2018, 7, 15 16 of 16

19. Khalilpour, S.A.; Lololei, A.Z.; Taghirad, H.D.; Masouleh, M.T. Feasible Kinematic Sensitivity in Cable
Robots Based on Interval Analysis. In Cable Driven Parallel Robots; Bruckmann, T., Pott, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 223–249.

20. Cardou, P.; Bouchard, S.; Gosselin, C. Kinematic-Sensitivity Indicies for Dimensionally Nonhomogeneous
Jacobian Matrices. IEEE Trans. Robot. 2010, 26, 166–173. [CrossRef]

21. Pham, C.B.; Yeo, S.H.; Yang, G.; Chen, I.-M. Workspace analysis of fully restrained cable-driven manipulators.
Robot. Auton. Syst. 2009, 57, 901–912. [CrossRef]

22. Barbazza, L.; Oscari, F.; Minto, S.; Rosati, G. Trajectory planning of a suspended cable driven parallel robot
with reconfigurable end effector. Robot. Comput. Integr. Manuf. 2017, 48, 1–11. [CrossRef]

23. Abdolshas, S.; Zanotto, D.; Rosati, G.; Agrawal, S.K. Optimizing Stiffness and Dexterity of Planar Adaptive
Cable-Driven Parallel Robots. ASME J. Mech. Robot. 2017, 9, 031004:1–031004:11.

24. Boschetti, G.; Trevisani, A. Performance evaluation for cable direct driven robot. In Proceedings of the 12th
Biennial Conference on Engineering Systems Design and Analysis ESDA 2014, Copenhagen, Denmark,
251–27 June 2014.

25. Boschetti, G.; Trevisani, A. On the Use of the Wrench Exertion Capability as a Performance Index for
Cable Driven Robot. In Proceedings of the Thematic Conference on Multibody Dynamics ECCOMAS 2015,
Barcelona, Spain, 29 June–2 July 2015.

26. Berti, A.; Gouttefarde, M.; Carricato, M. Dynamic recovery of cable-suspended parallel robots after a cable
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