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Abstract. We discuss a scheme for parametric amplification of the quantum
fluctuations of the electromagnetic vacuum in a three-dimensional microwave
resonator and report preliminary measurements to test its feasibility. In the
present experimental scheme, the fundamental mode of a microwave cavity is
non-adiabatically perturbed by modulating the index of refraction of a nonlinear
optical crystal enclosed therein. Intense, multi-GHz laser pulses as those delivered
by a mode-locked laser source impinge on the crystal to accomplish the n-index
modulation. We theoretically analyze the process of parametric generation, which
is related to the third-order nonlinear coefficient χ(3) of the nonlinear crystal,
and assess suitable experimental conditions for generating real photons from the
vacuum. Second-order nonlinear processes are first analyzed as possible source
of spurious photons in quantum vacuum experiments when an ideal, mode-locked
laser source is considered. The combination of a crystal non-null χ(2) coefficient
and a real mode-locked laser system, i.e. featuring offset-from-carrier noise and
unwanted secondary oscillations, is also experimentally investigated in the second
part of the work, paving the way for future experiments in three-dimensional
cavities.



Microwave fields generation in a cavity with laser-excited nonlinear optical materials 2

PACS numbers: 42.50.Pq, 42.65.-k, 42.65.Yj

23 March 2018



Microwave fields generation in a cavity with laser-excited nonlinear optical materials 3

1. Introduction

Illuminating a nonlinear crystal with a powerful laser
beam, one can change the refractive index of the
sample. A modulation of the laser beam intensity
results in a time variation of the refractive index. If
the crystal is put inside an electromagnetic cavity, the
time variation of the refractive index can be interpreted
as a time variation of the optical length of the cavity.
Hence, this arrangement can be used for studies of
the so called Dynamical Casimir Effect (DCE) –
an intriguing prediction of the quantum theory that
photons could be generated from the quantum vacuum
state in cavities with moving boundaries (see [1–3] for
the most recent reviews). Such ideas were discussed
for a long time by many authors [4–13].

We consider a possibility of DCE in a microwave
cavity, enclosing a nonlinear crystal, whose refractive
index is modulated by near infrared (NIR) high-
intensity laser pulses. A preliminary analysis made
in [14] showed that such a scheme could be feasible
for crystals possessing sufficiently big third-order

nonlinear susceptibility coefficients χ(3). However,
real crystals possess also the second-order nonlinear
susceptibility coefficients χ(2). Although it is known
that χ(2) must be zero in crystals possessing the
inversion symmetry [15], this is true, as a matter of
fact, in the idealized case of infinite ideal crystals,
whereas real crystals of finite size do show the second-
order nonlinear effects, either due to the presence
of some impurities/defects or due to the loss of the
inversion symmetry in the regions nearby the surface
[16–20]. The generation of microwave radiation in
the cavity containing different nonlinear materials with
high χ(2) coefficients, irradiated with intense infra-red
pulse trains, was reported in [21, 22]. Although this
phenomenon can find various useful applications, it
should be considered as a spurious effect in the DCE
experiments, because the related mechanism can be
considered as totally classical, i.e. having nothing
in common with the existence and amplification of
quantum fluctuations of the electromagnetic field. This
will be shown in section 2.4. Therefore one of our main
objectives is to evaluate, how strong this spurious effect
could be in experiments with real third-order nonlinear
crystals. This is the subject of section 2.

The second part of the paper is devoted to
a feasibility study, in which we experimentally
investigate the limitations related to the utilization of
the laser system that allows repetition rates as high as
those requested in the DCE experiment (multi-GHz
repetition rates), the mode-locked laser. Moreover,
we systematically study the phenomenon of direct
microwave generation related to the utilization of a
nonlinear crystal endowed also by a χ(2) coefficient.

2. Theoretical model

Since variations of the refractive index are very small
(due to the smallness of the nonlinear coefficients χ(3)),
the cavity design is dictated by the necessity to reach a
maximal sensitivity of cavity eigenfrequencies to these
small variations. This can be achieved in a reentrant
cavity, shown in Fig. 1. The main part of the gap
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Figure 1. The theoretical problem we consider: a reentrant
microwave cavity is perturbed by laser pulses impinging on a
nonlinear crystal that is placed in the gap region. The length of
the crystal along the laser propagation direction x is L and hg is
the height of the gap. The train of pulses lasts Tt and its energy
is U .

between the flat base and the cylindrical post is filled
in with a nonlinear dielectric material (crystal). We
assume that the electric field in the fundamental cavity
mode is almost uniform inside the gap. This crystal
is periodically illuminated with intense laser micro
pulses of a few picosecond duration, within a macro
pulse of total duration about a few microsecond. The
change of refractive index of the crystal due to the χ(3)

nonlinear coefficient leads to periodical changes of the
instantaneous cavity eigenfrequency. These periodical
variations, in turn, should result in the generation of
microwave quanta from the initial vacuum state. In
this section we give the theoretical description of this
effect, showing that the number of generated quanta
depends on the total energy of the macropulse. We
also discuss how to diminish spurious effects due to
the imminent presence of χ(2) nonlinearities.

2.1. Basic field equations

We start with the Maxwell equations in the CGS units

rotE = −1

c

∂B

∂t
, (1)

rotH =
1

c

∂D

∂t
=

ε(r)

c

∂E

∂t
+

4π

c

∂PNL

∂t
. (2)

The form of the second equation means that we
neglect the frequency dependence of the dielectric
permeability. Consequently, this is a simplified model.
Another assumption is that the nonlinear part of the
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polarization vectorPNL(t) depends on the electric field
components at the same time instant:

PNL
i = χ

(2)
ijkEjEk + χ

(3)
ijklEjEkEl, (3)

where coefficients χ
(2)
ijk and χ

(3)
ijkl do not depend on time.

Here we use the standard notation from [15] and the
standard summation rule over repeated indexes. If the
electric field amplitude in the laser beam slowly varies
with time (in the time scale which is several orders
of magnitude bigger than the period of oscillations of
the infrared laser light), then vector PNL(t) contains,
besides rapidly oscillating terms, also small terms
varying in that long time scale. As a consequence,
these terms produce a slowly varying electric field.
Therefore we can write the total electric field as the
sum of a weak microwave (RF) field E(R) and a strong
near infrared laser field E(L). Since we are interested
here in the dynamics of the field E(R) (assuming that
the time dependence of the laser field is given), we
perform averaging equations (1)-(3) over time intervals
of the order of 10−13 − 10−12 s, which are much longer
than the period of oscillations of the laser field, but
much shorter than the period of oscillations of the
RF field. The RF field components practically do not
change after such an averaging. On the other hand, if
the laser field is quasi-monochromatic, we may assume
that

E
(L)
j = E

(L)
j E

(L)
k E

(L)
l = 0, (4)

where the bar means the average value. This procedure
eliminates the laser field components from equation
(1). But these components give contributions to the
average nonlinear polarization vector PNL:

PNL
i = χ

(2)
ijkE

(L)
j E

(L)
k + aijE

(R)
j , (5)

aij = E
(L)
k E

(L)
l

(

χ
(3)
ijkl + χ

(3)
ikjl + χ

(3)
ilkj

)

. (6)

We have neglected here small terms proportional to

E
(R)
j E

(R)
k and E

(R)
j E

(R)
k E

(R)
l , since the RF field is

supposed to be much weaker than the laser one.
We consider the laser beam propagating in the x

direction (see Figure 1), whose electric field vector is
polarized along the vertical y axis. ‡ For this geometry,
the part of the polarization vector arising due to the
second order nonlinearity can be written as

P(2) = (4π/c)χ(2)
max(r)b(r)I(r; t), (7)

where I = (c/4π)
[

E(L)
]2

is the time-average Poynting

vector of the laser beam, χ
(2)
max(r) is the maximal

‡ Actually, the electric field inside the beam has also a small
x component, due to the equation divE = 0. However, the
ratio |Ex/Ey| is of the order of [23] λz/d2, where λ is the laser
wavelength, y is the vertical displacement from the beam axis,
and d the effective length of the beam. Therefore |Ex/Ey| ∼
λ/d ≪ 1 even for y ∼ d, provided the relation d ≫ λ is satisfied.

value of coefficients χ
(2)
ijk at point r inside the nonlinear

crystal, and vector b(r) has the following components:

bi(r) = χ
(2)
i22(r)/χ

(2)
max(r). (8)

The tensor aij defined by equation (6) has the following
components in the specific case under consideration:

aij = (4π/c)I(r; t)
[

χ
(3)
ij22 + χ

(3)
i2j2 + χ

(3)
i22j

]

.

Neglecting the anisotropy of coefficients χ
(3)
ijkl , we have

aij = 0 if i 6= j [15] . Assuming that χ
(3)
ii22 = χ

(3)
i2i2 =

χ
(3)
i22i = χ

(3)
2222 ≡ χ(3), we can rewrite equation (2) as

rotH =
1

c

∂

∂t
[ε̃(r; t)E] +

4π

c
J(r; t), (9)

with

ε̃(r; t) = ε(r) + 48π2χ(3)(r)I(r; t), (10)

J(r; t) = (4π/c)χ(2)
max(r)b(r)∂I(r; t)/∂t. (11)

Hereafter E and H in all equations will mean the
averaged RF electric and magnetic fields, whereas the
laser field will be hidden in the averaged intensity
I(r; t). We see that the third order nonlinearity results
in a change of the effective dielectric constant inside
the nonlinear crystal, which is proportional to the laser
intensity. The second order nonlinearity gives rise to
an effective current, which is proportional to the time

derivative of laser intensity ∂I/∂t.
It is convenient to rewrite equations (1) and (9) in

terms of the electric induction vector D and magnetic
field vector H (assuming B = H for non-magnetic
media):

rot [D/ε̃(r; t)] = −(1/c)∂H/∂t, (12)

rotH = (1/c)∂D/∂t+ (4π/c)J(r; I(r; t)). (13)

Excluding vector H, we arrive at the inhomogeneous
second order equation

rotrot

(

D

ε̃(r; t)

)

= − 1

c2
∂2D

∂t2
− 4π

c2
∂J(r; I(r; t))

∂t
, (14)

which contains a source term proportional to the
second-order derivative of the averaged laser intensity.

2.2. Reduction to forced nonstationary oscillators

Since the time variable t enters equation (14) through
the function I(r; t) only, we can look for its solutions
in the form of the expansion over ‘instantaneous’ basis

D(r, t) =
∑

n

Qn(t)Dn(r; I), (15)

where functions Dn(r; I) satisfy the equation

rot rot

(

Dn(r; I)

ε̃(r; I(r; t))

)

=
ω2
n(I)

c2
Dn(r; I) (16)
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with a ‘frozen’ function ε̃(r; I(r; t)). It is important
that functions Dn(r; I) form a complete orthogonal set
with respect to the following scalar product:
∫

Dn(r; I)Dm(r; I)

ε̃(r; I(r; t))
d3r = δmn. (17)

To obtain equations for coefficients Qn(t) we put
expansion (15) in equation (14) with account of (16),
multiply the equation thus obtained by the function
Dm(r; I)/ε̃(r; I(r; t)) and integrate over the whole
cavity volume, using the orthogonality property (17).

Writing Dn(r; t) = D
(0)
n (r) +Kn(r; I), where D

(0)
n (r)

is the solution to Eq. (16) with time independent
function ε(r) instead of ε̃(r; I(r; t)) (i.e., without
perturbations caused by the laser illumination), we
obtain the following set of coupled ordinary differential
equations for coefficients Qn(t):

Q̈n + ω2
n(t)Qn +

∑

m

[

2Q̇mGmn +Qmhmn

]

= Fn,

where time-dependent functions Gmn(t), hmn(t), and
Fn(t) are given by some integrals containing scalar
products of functions Dn(r; I) with time derivatives
of functions Km(r; I) and J(r; I(r; t)). However, it can
be shown that the terms containing small coefficients
Gmn(t) and hmn(t) can be neglected [14]. § Thus we
arrive at the set of uncoupled equations for the forced
harmonic oscillators with time-dependent frequencies

Q̈n + ω2
n(t)Qn = Fn(t), (18)

where

Fn(t)

(4π)2
= −

∫

d3rχ
(2)
max

[

∂2I(r; t)/∂t2
]

b(r)E
(0)
n (r)

c
∫

d3r ε(r)
[

E
(0)
n (r)

]2 . (19)

It is convenient to normalize the basis functions
D

(0)
n (r) = ε(r)E

(0)
n (r) in such a way that the total

energy of the field equals ~ωc (formally, ‘one photon’
inside the cavity). This means that the electric energy
equals ~ωc/2, i.e.,
∫

d3r ε(r)
[

E(0)
n (r)

]2

= 4π~ωc. (20)

In such a case, the variable Q(t) is dimensionless, as
well as the quantity

N =
1

2

(

Q2 + Q̇2/ω2
c

)

, (21)

which has the meaning of the number of quanta in the
selected field mode (between and after the laser pulses).

§ These terms are important for cavities with equidistant

frequency spectra [24], but for realistic 3D cavities the intermode
coupling is insignificant in the case of parametric resonance,
when laser intensity I(t) varies periodically at twice the
frequency of some selected mode, as was shown in [25, 26].

2.3. Parametric amplification due to χ(3) nonlinearity

If χ(2) = 0, then F (t) ≡ 0, and we have the problem of
parametrically excited oscillator. Here quantum effects
of the amplification of the initial vacuum oscillations
can manifest themselves. This case have been analyzed
already in [14], so that here we bring the main results of
that study with some modifications. Considering the
excitation of the fundamental cavity mode, we omit
hereafter index n in equation (18) and write ω(t) =
ωc [1 + β(t)], where ωc is the unperturbed fundamental
cavity angular eigenfrequency (ωc = 2πfc) and the
small correction β(t) is proportional to the product of
χ(3) and the instantaneous pulse power P (t). Therefore
β(t) = 0 during intervals between the laser pulses.

The maximal number of quanta that could be
generated from the initial vacuum quantum state after
n pulses equals [27–29]

Nn = sinh2 (nν) , ν = ωc

∣

∣

∣

∣

∫ tf

0

β(t)e−2iωctdt

∣

∣

∣

∣

, (22)

provided the repetition rate of laser pulses is chosen as

fl = 2fc(1− ϕ/π), ϕ = −ωc

∫ tf

0

β(t)dt. (23)

Here we assume that β(t) = 0 at t = 0 and t = tf .
To find the function β(t), we use the known for-

mula [30–32] for small variations of the eigenfrequency
of an ideal cavity due to small variations of dielectric
permeability ε inside the cavity:

δω

ω
≈ −

∫

δε(r)E2 dV

2
∫

ε(r)E2 dV
. (24)

Here E(r) is the unperturbed electric field of the chosen
resonance mode and ε(r) is the dielectric function in
the unperturbed cavity. Assuming that the electric
field is approximately uniform in the gap region of the
reentrant cavity hosting the nonlinear crystal, we can
write β(t) = RY (t), where Y (t) =

∫

δε(r; t) dV . The
geometrical coefficient R can be found if the derivative
∂ω/∂ε for the given geometry of cavity and crystal
is known (e.g. through numerical simulations). If
the perturbation δε is constant throughout the crystal
volume, we can write two equalities: β = RδεLScr

and β = (∂ω/∂ε)δε/ωc, where Scr is the crystal cross
section area. Consequently, R = (∂ω/∂ε)/ (ωcLScr).

For the Kerr type nonlinearity with the refractive
index n = n0 + n2I (where n2 = 12π2χ(3)/n2

0 [15]) we
have δε(r; t) = 2nGn2I(r; t), where nG is the refractive
index in the microwave domain. If the transverse size
of the laser beam is smaller than that of the crystal,

Y (t) = η

∫ L

0

dx

∫

I(r; t) dS = η

∫ L

0

dxP (x; t).

where η = 2nGn2 and P (x; t) =
∫

I(r; t) dS is the pulse
power at point x and instant t. Consequently,

ν = ωcηRG, G =

∣

∣

∣

∣

∣

∫ tf

0

dt

∫ L

0

dxP (x; t)e−2iωct

∣

∣

∣

∣

∣

. (25)
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Let us consider sharp rectangular laser pulses of
duration τ and power P0. Then function P (x, t) equals
P0 or zero, depending on the relation between τ and the
propagation time through the crystal Tp = L/vg, where
vg is the group velocity of the laser pulse. Calculating
the integral in (25) we get

G = upL |sinc (ωcτ) sinc (ωcTp)| , (26)

where up = Pτ is the energy of a single laser pulse and
sinc(x) ≡ sin(x)/x. For short laser pulses (ωctf ≪ 1)
and short crystals (ωcTp ≪ 1) we have G = upL, where
up = Ptf is the energy of a single pulse. Hence the
number of produced RF quanta Nn depends on the
total energy of macropulse U = nup [14]:

Nn = sinh2 (|n2|UK) , K =
2nG

Scr

∂ω

∂ε
. (27)

Equation (27) shows that to generate, say, 10
photons from the vacuum, one needs the product
n2UK ≈ 2. One of possible materials with the
necessary symmetry and χ(2) = 0 in the bulk could
be diamond with n2 ≈ 10−15 cm2/W. For the total
energy U = 1 J, we need K ≈ 2 × 1015 s−1cm−2. To
evaluate possible realistic values of the coefficient K,
we notice that if the gap height hg is much smaller than
the post diameter d, the standard LC-formula for the
resonance frequency ω = 1/

√
LC can be used, where L

is the inductance of the cavity and C is the capacitance,
approximated by the simple plain capacitor formula.
Assuming that the dielectric crystal occupies all the
gap, we can write (in the SI units) C ≈ εε0Scap/hg,
where Scap is the area of the crystal side parallel to the
post. The transverse area of crystal is Scr ≈ L⊥ · hg,
where L⊥ is the crystal width (it is close to the post
diameter d). Using the chain of equalities

∂ω

∂ε
= −1

2

(

LC3
)−1/2 ∂C

∂ε
= − ω

2C

C

ε
= − ω

2ε
,

we get the estimation

K ≈ ω/(hgL⊥

√
ε). (28)

The cavity used in the preliminary measurements had
ω = 1.44 × 1010 rad/s, hg = L⊥ = 3mm and ε ≈ 9 (a
ZnSe crystal in the gap). Then K ≈ 5× 1010 s−1cm−2,
which is a very small number. Considering a smaller
cavity with the same geometry, we may suppose that
the necessary value of coefficient K could be achieved
for the cavity scaled by the factor 30 (taking into
account that the cavity eigenfrequency scales inversely
proportional to the cavity size). This would be a very
small cavity, but probably its size could be increased
if higher values of the derivative ∂ω/∂ε were found for
some more sophisticated design of the cavity geometry.

2.4. Influence of the χ(2) surface nonlinearity

Although χ(2) = 0 in the bulk part of the ideal diamond
crystal, this coefficient is different from zero in a thin
region near the surface. We suppose that the laser
beam propagates totally inside the crystal, so that only
the surfaces x = x0 and x = x0 + L (perpendicular to
the propagation direction) can give a contribution to
the vector P(2) and to the effective ‘force’ (19) (we
omit again the mode index n). Then we can write
(following [16])

χ(2)
max(r) = χ̃(2)

max(x0, y, z)δ(x− x0)

+ χ̃(2)
max(x0 + L, y, z)δ(x− x0 − L), (29)

where x0 is left boundary of the crystal.
Let us assume for the sake of simplicity that the

cavity mode electric field is uniform in the crystal

volume and coefficients χ̃
(2)
max do not depend on their

arguments, as well as the dielectric permeability ε
inside the crystal and vector b in equation (7). Then
the effective force (19) can be written as

F (t) = χ̃(2)
maxR̃

[

∂2P

∂t2
(x0; t) +

∂2P

∂t2
(x0 + L; t)

]

, (30)

where

R̃ = − (4π)2 (b · Egap)

c
∫

εE2 dV
, P (x; t) =

∫

I(x, y, z; t) dydz.

Note that for the lossless crystal we have

P (x0 + L; t) = P (x0; t− Tp), Tp = L/vg. (31)

As was shown in the preceding subsection,
small time variations of the frequency ω(t) manifest
themselves only after a great number of pulses. On
the contrary, the effect of the time dependent force
F (t) can be seen already after a few pulses. Therefore
it is sufficient to consider the case of ω = ωc =
const to estimate the contribution of the second-order
surface nonlinearity to the RF field generation in the
cavity. This way we arrive at the standard problem of
excitation of a harmonic oscillator by an external time
dependent force F (t).

It is convenient to introduce the complex
amplitude ξ(t) = Q̇ + iωcQ. Its evolution according
to equation (18) is given by the well known formula

ξ(t) = e−iωct [ξ0 +A(t)] . (32)

The constant amplitude ξ0 is determined by the initial
conditions (e.g., some preloaded field or a thermal
stochastic field), whereas

A(t) =

∫ t

0

F (t′)eiωct
′

dt′. (33)

Then the quantity N (t), defined by equation (21),
reads as N (t) = |ξ(t)|2/(2ω2

c). In particular, in
the case of an initial thermal field, the phase of
the complex number ξ0 is random, so that after
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averaging over many measurements we have 〈N (t)〉 =
[

|ξ0|2 + |A(t)|2
]

/(2ω2
c). We suppose that the laser

illumination starts at t = 0 and stops at t = Tf . To find
the final amplitude Af for t > Tf we put expression
(30) into (33) and perform two integrations by parts.
Taking into account account (31), we obtain

Af = −χ̃(2)
maxR̃ω2

c

(

1 + eiωcTp
)

∫ Tf

0

P (t)eiωctdt, (34)

where P (t) is the time dependent power of the laser
pulses. After the series of n identical and strictly
periodic pulses of duration τ and periodicity T , the
standard formula for the ‘time diffraction’ on n ‘time
slits’ yields

|An|2 = |A1|2
[

sin (nωcT/2)

sin (ωcT/2)

]2

, (35)

where A1 is given by formula (34) with Tf replaced
by the duration of a single ‘micropulse’ tf . For short
pulses (ωcτ ≪ 1) and short crystals (ωcTp ≪ 1)

we have |A1| =
∣

∣

∣
2χ̃

(2)
maxR̃

∣

∣

∣
ω2
cup, independently of the

concrete form of function P (t).
The pulse repetition rate in the DCE experiments

must be close to the twice cavity frequency, but with
some small deviation [27]. Writing T = (1 + φ)Tc/2
with |φ| ≪ 1, we can neglect the small phase φ in the
denominator of fraction in equation (35). Therefore
the number of ‘spurious’ quanta, that can be added to
the initial level |ξ0|2/(2ω2

c) due to the χ(2) nonlinearity
after n laser pulses, can be evaluated as

N (2)
n = 2

{

χ̃(2)
maxR̃ωcup sin [nπ(1 + φ)/2]

}2

. (36)

The microwave signal due to the χ(2) nonlinearity, can
thus exhibit some kind of ‘beats’ with period ∆T ≈
Tc/φ. Actually, the real temporal behavior of the
microwave signal can be even more complicated than
predicted by this simple model, as shown in section 4.1.

To estimate the number of spurious quanta, we
need the value of coefficient R̃, which strongly depends
on the mutual orientation of vectors b and Egap, i.e.,
on the orientation of the crystal optical axes. We
can estimate the maximal possible value |R̃|max by
assuming that the vectors are parallel and that the
electric field is concentrated in an ‘effective cavity
volume’ Vc. The cavity field in the gap region can
be evaluated from the normalization integral (20):
|Egap| ≈

√

4π~ωc/εVc, where Vc = LhgL⊥ is the
crystal volume (assuming that the crystal occupies

all the gap). Then |R̃|max ≈
[

~ωcεVcc
2/(4π)3

]−1/2
.

Therefore we obtain for the parallel vectors b and
Egapthe following (very rough) estimation:

N (2)
max ≈ 128π3ωc

~εc2Vc

(

χ̃(2)
maxup

)2

. (37)

This quantity depends on the energy of each short pulse
up, but it does not depend on the number of pulses n
and their total energy U .

Numerical evaluations can differ by many orders of
magnitude, since different authors gave rather different
values of the surface second order nonlinear coefficients
for the diamond. A model considered in [17] resulted
in the values of χ̃(2) up to 10−20m2/V in the SI units,
while experimental data given in [18] corresponded to
the values from 10−26m2/V to 6 × 10−24m2/V. To
transform these values to the Gaussian units one has
to multiply them by the factor 3 × 104/(4π) [15]. We

take the value χ̃
(2)
max = 10−15 in the Gaussian units

for the most pessimistic evaluation. The crystal used
in our experiments had the volume about 20mm3 (see
the next section). For the cavity scaled by the factor
of 30 this volume should be about 10−6 cm3, and the
cavity frequency ωc should be about 5×1011 s−1. Thus

we getN (2)
max ∼ 5×10−3 for ε = 5 and up = 2µJ. Hence

it seems that the surface effects are not dangerous for
ideal crystals like diamond. Nonetheless, if the bulk
χ(2) coefficient is different from zero (e.g., due to some
defects), then the number of spurious photons can be
not so small. In the next section we present the results
of experiments aimed at the study of the RF radiation
generated in a cavity containing crystals with nonzero
χ(2) bulk coefficients.

3. Experimental apparatus

In this section we describe the experimental apparatus,
schematized in Fig. 2, that has been used to investigate
possible spurious, χ(2)-related effects in a DCE
experiment based on the modulation of the index of
refraction of a nonlinear crystal. We remark that
detectable χ(3)-related parametric amplification effects
are not expected in the present apparatus, that is
characterized by a combination of parameters (cavity
frequency of resonance and gap size, laser repetition
rate, choice of the crystal) not adequate to satisfy the
requirements described in section 2.3.

3.1. The microwave cavity

The heart of our experimental scheme, shown in Fig. 2,
is a copper reentrant cylinder cavity. Its dimensions
are H = 26.2, D = 38 and h = 22.8 , d = 6
respectively external and internal cylinder height and
diameter in mm. The reentrant part of the cavity
is composed of a cylinder and of a cone to further
concentrate the field lines in the gap, as shown in Fig. 3,
where the nonlinear crystal under test can be set. The
displayed magnetic and electric field profiles of the
lowest frequency TM010 mode that we considered have
been obtained through numerical simulations based on
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Figure 2. Scheme of the experimental apparatus. The laser
master oscillator (M-OSC) delivers a CW train of infrared pulses.
An AOM selects a finite number of pulses to be amplified in A,
a double stage optical amplifier. The ultrafast photodiode PD
detects the loss of the curved mirror CM to monitor the laser
pulses repetition rate. A reentrant cylinder cavity hosts the
nonlinear crystal (ZnSe or KTP). Its dimensions are: H = 26.2,
D = 38 and h = 22.8 , d = 6 respectively external and internal
cylinder height and diameter in mm.

the finite element method (FEM).
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Figure 3. Electric (up) and magnetic (down) field profile in the
reentrant cylinder cavity used. The reentrant part of the cavity
is composed of a cylinder and a cone, whose smaller diameter
(on the crystal side) is of 4mm.

The loaded cavity quality factor QL = fc/∆f ,
where ∆f is the cavity linewidth, is about 2500 but the
non null tangent loss (tan δ) of crystals can significantly
degrade it. For instance, with ZnSe (tan δ = 0.0017 at
room temperature) we measured QL = 860.

Light can be made to directly impinge on the
nonlinear crystal through an aperture whose diameter
is comparable with the laser beam waist. Opposite to
the entrance hole, an equivalent aperture allows light
to exit the cavity. Field amplitudes in the cavity are
measured through a coaxial transmission line ended by

an inductive loop coupled to the cavity mdoe. A 33 dB
gain Miteq microwave amplifier is used to amplify the
microwave signals to a level greater than the noise
floor of a high-rate sampling digital oscilloscope (6GHz
bandwidth).

3.2. The laser oscillator

Stable emission of laser pulses at high repetition rate
is a necessary requirement to satisfy the parametric
resonance condition in a 3D microwave cavity and can
be obtained from passively mode-locked lasers [34].

In the present work we use a multi-GHz
passively mode-locked Nd:YVO4 laser (M-OSC, master
oscillator) that has been described elsewhere [35]. Its
repetition rate can be changed in the interval 4.6 ≤
fl ≤ 4.7GHz by properly adjusting the position of
the curved mirror (CM) and of the saturable absorbing
mirror (SAM) shown in Fig. 2. As the M-OSC output
pulse energy (≈ 5 pJ) is not sufficient to induce
significant changes of the dielectric properties in a
few cubic square millimeters nonlinear crystal, several
amplification stages (diode-pumped Nd:YVO4 and
Nd:YAG flash-lamp pumped modules) are employed
in order to enhance the pulse energy up to 10µJ at
1064nm wavelength. The amplified, 10 ps-long pulses
are delivered in groups of N ≈ 2000 pulses, separated
by tl = 1/fl ≈ 200 ps, so as to form 500 ns-long pulse
trains that can be repeated once per second.

A source of spurious photons in a DCE experiment
is due to the finite duration of the train of laser
pulses. In fact, in the frequency domain the pulses
train can be represented by a series of regularly spaced
harmonics (the principal maxima) at frequencies fm =
mfl, integer multiples of the fundamental frequency
fl. The width of each harmonic is set by the duration
of the macro pulse Tt. If for simplicity we consider
rectangular pulses, the harmonics amplitude decreases
with increasing order, in much the same way as the
amplitude of the principal maxima in the interference
figure obtained with a diffraction grating made of
rectangular slits. The envelope Am of the amplitude
of the principal maxima in this case is given by

Am =

∣

∣

∣

∣

sin 2πmflτ

2πmflτ

∣

∣

∣

∣

(38)

where τ = 10 ps is the duration of each individual
pulse in the train. Note that N − 1 secondary maxima
appear between the harmonics and can be observed
as side lobes surrounding each principal maximum, as
can be noted in the central part of Fig. 4, where the
spectrum of a macro pulse consisting of N = 2000,
10 ps-long, rectangular pulses is displayed. In inset (a)
we show the envelope of all maxima, i.e., including
the secondary ones, of the diffraction-like spectrum
for the first two harmonics of the train. It has been
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Figure 4. Optical pulses in the frequency domain. A train
of pulses has a spectrum composed of several harmonics whose
relative amplitude is determined by the single pulse shape. When
a finite number of pulses is considered, secondary maxima are
observed between each harmonic, as shown in the central part
of the figure. In inset (a) we show the first two harmonics
and indicate the secondary maxima floor at the condition of
parametric resonance (fl = 2fc), calculated for the macro pulse
employed in the present work. The difference between trains of
rectangular and squared hyperbolic secant (sech) pulses of 10 ps
duration, separated by approximately 200 ps (fl = 5GHz), is
displayed in inset (b).

calculated for the macro pulse duration we used during
the present measurements (N = 2000, ∆t ∼ 450ns).
For DCE esxperiments, it is important to note that at
the cavity frequency fc = fl/2, the secondary maxima
envelope establishes a floor at the level of 10−3, which
can be relevant for the generation of χ(2)-related
photons. A cw pulsed laser excitation would instead
produce a sequence of perfectly isolated harmonics.
Unfortunately, there are no mode-locked oscillators
that can deliver in CW the requested laser/energy per
pulse, and we need to optically select and amplify only
a finite number of pulses.

For the sake of completeness we also report in
inset (b) of Fig. 4 the resulting harmonics envelope
when the actual optical pulse is considered, whose
temporal profile is given by a squared hyperbolic
secant. Such profile yields an envelope that differs
from the rectangular shape considered in Fig. 4 (a),
even though the difference between the two envelopes
for the first few harmonics is hardly detectable.

Up to now we have considered an ideal oscillator,
and identified the finite train duration as a possible
source of spurious photons in DCE experiments.
However, the actual spectrum of our mode-locked
oscillator can significantly differ from the ideal
situation, as shown in the example in Fig. 5, and
the influence of unwanted secondary oscillations of the
laser source must also be considered. For instance, in
addition to fl ≈ 4.6GHz and the second harmonic 2fl

Table 1. Second- and third-order nonlinear optical coefficients
of selected materials [42].

Material n2 (cm2/W) χ(3) (esu) d (pm/V)
diamond 1.3 · 10−15 1.8 · 10−13

GaAs 3.3 · 10−13 1.0 · 10−10 d14 = 90.4
ZnSe 3 · 10−14 4.4 · 10−12 50− 60

of the train of pulses, secondary oscillations at f1,2 < fl
emerge in the spectrum, that modulate the carrier
frequency fl and that in turn appear as sidebands to
each harmonic of the train.

In order to obtain a laser spectrum character-
ized by the smallest secondary oscillations, tiny adjust-
ments of the master oscillator curved mirror and the
SAM are performed while observing its photodiode sig-
nal at a spectrum analyzer (Agilent ESA-E E4405B).
We note that to thoroughly suppress unwanted sec-
ondary oscillations, some Q-switching instabilities nec-
essarily arise around the carrier, as proved for several
M-OSC different alignments and fl frequencies. In
Fig. 5 (b) the relaxation oscillations (f±

rx ∼ fl±3MHz)
in the spectrum of our passively mode-locked laser os-
cillator are also shown. These oscillations are in general
considered acceptable when their amplitude is at least
30 dB smaller than that of the carrier [37]. Until now,
there have been many reports of noise measurements
on mode-locked lasers [39–41], but almost always the
power density of phase noise up to a few MHz is re-
ported, whereas the secondary oscillations we observe
occur at a much higher frequency, from a few hun-
dreds MHz to approximately 2GHz. In the present
work we maintain the cleanest mode locking condition,
whereby both the secondary peaks and the relaxation
oscillations are kept at least 40 dB below the ampli-
tude of the carrier frequency fl. Once this condition is
met, the master oscillator repetition rate is locked to
a microwave oscillator by means of a feedback circuit
described elsewhere [38] and is thus stabilized during
the measurements.

3.3. The nonlinear crystal

As described in section 2, high speed switching
boundary conditions to the EM field can be realized
by exploiting the intensity dependent refractive index
n = n0 + n2I, where I is the laser intensity and n2 is
related to the nonlinear susceptibility by means of [15]

n2 = 12π2χ(3)/n2
0. (39)

Therefore a primary requirement is to find a material,
in which χ(3) is sufficiently large. Semiconductors often
possess a large third order susceptibility, typically in
the range 10−13 − 10−10 esu, while insulating solids
are characterized by a nonlinear coefficient χ(3) of the
order of 10−13 − 10−14 [42]. Eq. (39) applies both to
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Figure 5. Representative spectrum of the master oscillator acquired by a fast photodetector with bandwidth greater than 15GHz
(EOT InGaAs pin detector ET-3500). The spectrum extends up to 13.2GHz, the upper frequency of the spectrum analyzer. The
displayed amplitudes AN are obtained by means of dividing the logarithmic amplitudes observed in the optical signal spectrum by
the noise floor of the spectrum analyzer. Secondary oscillations, in addition to the first and second harmonic of the train of pulses
(respectively fl and 2fl), are indicated by f1 and f2. Since these frequencies represent a modulation of the intensity of the train
of pulses delivered by the master oscillator, they also appear as sidebands (fl ± f1,2) to each harmonic. It is worth noticing that
the amplitude of the peaks at f1,2 is more than 30 dB smaller than the carrier frequency at fl. On the right side our typical level

of the relaxation oscillations f±
rx is shown (50 dB smaller than the first harmonic peak amplitude), acquired with 30 kHz resolution

bandwidth.

a semiconductor and an insulating solid as diamond
for an incident photon energy smaller than the band
gap energy. In Table 1 we report values of χ(3),
n2 and the scalar second order nonlinear coefficient
d for some materials that we considered. The most
attractive material for such type of experiment appears
to be a semiconductor (GaAs), whose χ(3) is nearly
two orders of magnitude greater than in diamond, the
latter being used in many nonlinear optics applications
[19, 43]. However, we point out that infrared photon
(λ = 1064nm) absorption was observed in semi-
insulating GaAs, and this limits the possibility to use
it in our experiment, in which laser-excited carriers,
responsible of ohmic losses for the cavity microwave
field, are not allowed [44]. Absorption of photons with
energy smaller than the band gap is in fact possible
through the EL2−like defect [45]. In Table 1 we also
report the properties of ZnSe (zinc selenide), another
semiconductor belonging to the zinc-blende II-IV
group whose band gap is 2.7 eV at room temperature.

In the following sections we report measurements
carried out with ZnSe and KTP crystals.

4. Measurement results

4.1. Measurements with a KTP crystal

To better understand the role of the second order
nonlinear coefficient in the DCE experiment, we
have mounted in the cavity gap a potassium titanyl
phosphate (KTiOPO4, KTP) crystal, a material that
is being widely used for several second-order nonlinear
optical applications due to its high nonlinear d
coefficient [46].

The KTP χ(2)-related photons emitted at frequency fl
have been studied in a previous work with a cavity
receiver at fc ∼ fl [21]. The amount of generated
radiation has been demonstrated to be so high that
amplification was not needed and few hundred mV
signals were recorded at the oscilloscope with ∼
70MW/cm2 laser pulse intensity. Here we study the
KTP χ(2)-related photons detected in a DCE cavity
with fc ∼ fl/2. To establish a direct experimental
link between the cavity field and the infrared laser
spectra, we mount the device described in Ref. [36] on
the beam line before the cavity entrance. This device
allows acquisition of the spectrum of the KTP χ(2)-
related radiation without the bandwidth limitations of
the cavity. The inner and outer diameters of its coaxial
structure are such that the TEMmode cutoff frequency
is approximately 8.5GHz.

When the laser pulse impinges in the KTP crystal
set in the cavity gap, we observe modulated microwave
pulses, as shown in Fig. 6 for a set of six different laser
repetition rate values. The train of pulses starts at
t = 0 and lasts for an interval of 500ns, during which a
modulated microwave field is observed. Afterwards the
energy stored in the cavity exponentially decays with
the cavity time constant τL ∼ 200 ns.

Simultaneous acquisition of the corresponding
signal spectra in the wide-bandwidth coaxial device
are reported in Fig. 7. We observe that if unwanted
frequency peaks fi and the coupled fj in the infrared
laser train spectrum appear in the vicinity of fc, they
can beat and give rise to modulated pulses. In fact,
the period of the modulation in each panel of Fig. 6
corresponds exactly to the inverse of the frequency
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Figure 6. Modulated microwave pulses detected in the cavity
for a few different master oscillator alignments. The laser
excitation starts at instant 0 and lasts approximately 500 ns.
Exponential decay of the stored field is afterwards observed. The
repetition rate of the pulses fl was set to 1 = 4.6766GHz; 2 =
4.6767GHz; 3 = 4.67685GHz; 4 = 4.677GHz; 5 = 4.6761GHz;
6 = 4.6776GHz.

-95

-90

-85

-80

-75

-70

-65

-60
1 

A
 (

d
B

)

2 3

4
.6
7
6
8
5

-95

-90

-85

-80

-75

-70

-65

2.3 2.32 2.34 2.36 2.38

4

frequency (GHz)

A
 (

d
B

)

2.3 2.32 2.34 2.36 2.38

5

frequency (GHz)

2.3 2.32 2.34 2.36 2.38

6

frequency (GHz)

Figure 7. Coaxial structure wide-bandwidth detection. The
master oscillator secondary oscillations fi and fj = fl − fi,
detected in the master oscillator microwave spectrum in the
vicinity of fc = 2.33525 GHz (central frequency of each plot).
Their corresponding frequency is resolved to the best of 2MHz,
due to the macro pulse duration (Tt = 500 ns). For this reason
fi and fj are not resolved in the first plot. In plot number 5
additional frequencies are observed, but they do not influence
the corresponding plot in Fig. 6 because they are too far from
the cavity resonance.

difference of the peaks in Fig. 7, as resumed in Table 2.
Note that the frequency resolution cannot be better

Table 2. Identification of the pulsed microwave radiation
observed with the KTP crystal. In the first column we report
the value of the laser repetition rate that characterizes each
alignment as described in the caption of Fig 6; fi,j are the
frequencies of the secondary oscillations detected in the master
oscillator spectra displayed in Fig. 7. T is the period of the
modulation measured from the microwave pulses in Fig. 6.

fl T−1 fi fj fi − fj
(GHz) (MHz) (GHz) (GHz) (MHz)

1 4.6766 ∼ 1/Tt – – 6 2
2 4.6767 4.4±0.4 2.3365 2.3402 3.7
3 4.67685 6.6±0.6 2.3352 2.3413 6.1
4 4.677 8.7±0.7 2.3338 2.3427 8.9
5 4.6761 15.6±0.3 2.3305 2.3462 15.7
6 4.6776 20.5±0.6 2.3285 2.3492 20.7

than 2MHz due to the finite duration Tt ∼ 500ns of
the train and thus the detected secondary oscillations
fi and the coupled fj cannot be resolved when they
are very close (see for instance Fig. 7 (1)).

Finally, when secondary oscillations are not
detected in the vicinity of the cavity, the microwave
signal detected in the cavity is small, and presents
an instantaneous rise and no exponential decay of the
stored field at the end of the laser excitation. This
signal is investigated in detail in the following section
with the ZnSe crystal.

4.2. Measurements with a ZnSe crystal

The ZnSe crystal used is a parallelepiped 3×3×2mm3

in size whose short axis is aligned along the direction
of laser propagation (x axis). The signal in Fig. 8 is
observed when at t = 0 a train of laser pulses with
total energy U = 70.2mJ impinges on the ZnSe crystal.
As the laser beam gaussian diameter at the crystal
position is of approximately 2mm, the pulse intensity is
∼ 100MW/cm2. To understand the physical origin of
such signal, which can be a relevant source of spurious
photons in DCE experiments, in the lower part of
Fig. 9 we plot the spectrum of the microwave signal
of Fig. 8, obtained by averaging over 100 signal FFTs
(Fast Fourier Transform) calculated for each signal.
The cavity data are supplemented with the spectrum of
the laser master oscillator, shown in the upper part of
the Fig. 9. The laser oscillator repetition rate is set to
fl = 4.6347GHz and the displayed optical signal FFT
is obtained as described in section 3.2. In the optical
spectrum of the M-OSC several secondary oscillations
(f3,4 and the coupled f3,4 − fl) are detected, whereas
the microwave signal in the cavity displays only f4 and
its coupled frequency fl − f4. Note that the cavity
linewidth is 2.7MHz, and that |fc − f3,4| > 200MHz.
By varying the MOSC alignment conditions (as shown,
for instance, in Fig. 10), we observed that the area
under the peak at fc is roughly independent of the
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Figure 8. Microwave signal detected in the cavity. The
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100MW/cm2.
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oscillator spectrum. We believe that this signal is of
electronic origin, a crosstalk between the cavity and the
amplifier input that could possibly be reduced using a
much higher quality factor cavity resonator.

5. Discussion and conclusions

In this work we have studied both theoretically
and experimentally the parametric excitation of a
microwave cavity resonator with of a train of multi-
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Figure 10. Data are displayed as in Fig. 9 for a different
master oscillator configuration, whose repetition rate was in
this case set to fl = 4.6552GHz. As compared to the
previous oscillator alignment, in the laser spectrum much smaller
secondary oscillations around fc (f7 and its mirrored f7 − fl)
are displayed. Secondary oscillations f5,6 at a smaller frequency
than those observed in the previous example are in this alignment
detected.

GHz laser pulses acting on a nonlinear crystal enclosed
within the cavity itself. Our final aim is to establish
the suitable experimental conditions to study the DCE
in the three dimensional case.

In section 2 we have estimated the number of
photons that can be generated inside the cavity,
starting from the vacuum state of the electromagnetic
field, through excitation of the third order nonlinear
response of the crystal, proportional to χ(3). An
optimized cavity (and nonlinear crystal) geometry has
been proposed, which requires a much higher repetition
rate laser system (and, as a consequence, a smaller
cavity) than the one implemented in the preliminary
measurements reported in the second part of the
present work. Nonetheless, the non-optimized scheme
enables us to investigate possible spurious effects in
dynamical Casimir experiments. We singled out three
different processes of spurious photon generation. The
first one, studied theoretically in section 2.4, is related
to the evaluation of the maximal possible number
of the spurious RF quanta, generated by periodical
laser pulses, whose influence can be described within
a simple model of an oscillator, excited by a classical
force proportional to the χ(2) nonlinear coefficients.

The second one, described in section 3.2, is related
to the finite duration of the optical excitation and
it can be reduced by increasing the laser excitation
duration. We ought to consider here that in principle
the laser pulses cannot have exactly the same energy,
thereby creating a quantum noise floor between the
main peaks at fm = mfl also in the case of a cw laser
excitation [47].
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Both in the first and the second issues the laser
oscillator is considered to be ideal (i.e. the laser
spectrum contains only the harmonics fm). The third
problem is instead related to the actual oscillator,
that can exhibit secondary oscillations in the vicinity
of the cavity resonance, and its influence has been
experimentally studied in section 4.1. We have seen
that a very small modulation of the infrared train of
pulses intensity (the level of the detected secondary
oscillation fi,j is found to be more than 30 dB less
than the carrier frequency fl) is a direct source of
microwave photons. The effect is related to the
second order coefficient d of the nonlinear crystal,
in which a time-dependent polarization is produced
as a consequence of optical rectification (OR) [21].
Due to this phenomenon, the crystal behaves as if
it were an antenna that radiates an electromagnetic
field whose frequency content is directly related to
the laser spectrum. Therefore any optical frequency
component is to be regarded as a generation of photons
inside the cavity. We remark the fact that any optical
crystal is characterized by a second order nonlinearity.
Therefore, regardless how small it is, its role has to be
considered in the QED experiment.

Finally, both with a KTP and a ZnSe crystal,
even if the secondary oscillations near the cavity
resonance are reduced below our receiver sensitivity, a
spurious signal is detected, whose shape suggests its
possible origin, i.e. a cross-talk between the cavity
and the amplifier input. A higher quality factor cavity
could be of help to reduce this noise. Moreover, we
expect an improved detection scheme from the point
of view of electronic noise when the cavity and a low
noise amplification stage are both cooled to liquid
helium temperatures, as demonstrated in Ref. [49]. In
addition, at this temperature the number of thermal
photons kT/hν in the cavity mode is also very small,
necessary condition to start a DCE experiment.
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