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We investigate the behavior of the solution of a mixed problem for the Poisson equation in a domain with two moderately

close holes. If %1 and %2 are two positive parameters, we define a perforated domain Ω(%1, %2) by making two small

perforations in an open set: the size of the perforations is %1%2 while the distance of the cavities is proportional to %1. Then,

if r∗ ∈ [0,+∞[, we analyze the behavior of the solution for (%1, %2) close to the degenerate pair (0, r∗). Copyright c© 0000

John Wiley & Sons, Ltd.
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1. Introduction

The present paper continues the work begun in [1] on the analysis of mixed problems in domains with moderately close small

holes, i.e., perforations such that the distance between them tends to zero ‘not faster’ than the size. In [1] the authors have

considered a mixed boundary value problem for the Laplace equation, in the present paper instead we focus on the Poisson

equation. In order to introduce the problem, we fix once for all a natural number n ∈ N \ {0, 1}. Then we consider α ∈]0, 1[,

three subsets Ωi
1, Ωi

2, Ωo of Rn, and two points p1, p2 in Rn satisfying the following assumption:

Ωi
1, Ωi

2, and Ωo are bounded open connected subsets of Rn of class C1,α such that Rn \ clΩi
1, Rn \ clΩi

2,

and Rn \ clΩo are connected and that 0 ∈ Ωi
1 ∩Ωi

2 ∩Ωo ; the points p1 and p2 belong to Ωo and p1 6= p2.
(1)

The symbol ‘cl’ denotes the closure. For the definition of functions and sets of the usual Schauder classes C0,α and C1,α, we

refer to Gilbarg and Trudinger [2, §6.2]. Then we take r∗ ∈ [0,+∞[ and we fix an open neighborhood Ũ of (0, r∗) in R2, such

that (
p1 + %2clΩi

1

)
∩
(
p2 + %2clΩi

2

)
= ∅ ,

(
%1p

1 + %1%2clΩi
1

)
∪
(
%1p

2 + %1%2clΩi
2

)
⊆ Ωo ∀(%1, %2) ∈ Ũ . (2)

Next we introduce the perforated domain

Ω(%1, %2) ≡ Ωo \
2⋃
j=1

(
%1p

j + %1%2clΩi
j

)
∀(%1, %2) ∈ Ũ .

In other words, the set Ω(%1, %2) is obtained by removing from Ωo the two sets %1p
1 + %1%2clΩi

1 and %1p
2 + %1%2clΩi

2. As

(%1, %2)→ (0, r∗), both the size of the perforations and their distance tend to 0. For (%1, %2) ∈ Ũ∩]0,+∞[2, we want to introduce

a mixed problem for the Poisson equation in Ω(%1, %2). Therefore, as Poisson datum, we take a function F such that

F is of class C0(clΩo) and is real analytic in a neighborhood of 0. (3)
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For each pair (%1, %2) ∈ Ũ∩]0,+∞[2 we consider the following mixed problem
∆u(x) = F (x) ∀x ∈ Ω(%1, %2) ,

∂
∂ν
%1p

j+%1%2Ωi
j

u(x) = 0 ∀x ∈ %1p
j + %1%2∂Ωi

j ,∀j ∈ {1, 2},

u(x) = 0 ∀x ∈ ∂Ωo ,

(4)

where ν%1p
j+%1%2Ωi

j
denotes the outward unit normal to %1p

j + %1%2∂Ωi
j for j ∈ {1, 2}. If (%1, %2) ∈ Ũ∩]0,+∞[2, problem (4) has a

unique solution u[%1, %2] in C1,α(clΩ(%1, %2)). Our aim is to investigate the behavior of the solutions u[%1, %2] as the pair (%1, %2)

approaches the degenerate value (0, r∗), in correspondence of which both the size and the distance between the holes collapse

to 0. In particular, in the present paper, we show how the behavior of the solution of a mixed problem for the Poisson equation

can be deduced from the analysis carried out in [1] for the Laplace equation.

Boundary value problems in domains with small holes have been largely investigated by means of asymptotic analysis. It is

impossible to provide a complete list of contributions and for a more detailed description we refer to [3]. Here we mention, e.g.,

Ammari and Kang [4], Maz’ya, Movchan, and Nieves [5], Maz’ya, Nazarov, and Plamenevskij [6, 7], Novotny and Soko lowsky [8].

Moreover, we observe that boundary value problems in domains with moderately close holes have been object of investigations

in Bonnaillie-Noël, Dambrine, Tordeux, and Vial [9, 10], Bonnaillie-Noël and Dambrine [11], and Bonnaillie-Noël, Dambrine, and

Lacave [12]. In particular, in [10] the authors carefully analyze the case when %1 and %2 are specific functions of a positive and

small parameter ε. More precisely, they take %1 = εβ and %2 = ε1−β, for β ∈]0, 1[ and compute asymptotic expansions.

Here, instead, we analyze the behavior of the solution of problem (4) by representing u[%1, %2] in terms of real analytic maps

and of known functions of %1 and %2 (for the definition of real analytic maps, see Deimling [13, p. 150]). Then, if for example

we know that u[%1, %2] equals a real analytic map defined in a whole neighborhood of the degenerate pair (0, r∗), then we know

that such a map can be expanded in power series of (%1, %2). Such an approach has been proposed by Lanza de Cristoforis

and exploited for the analysis of problems for the Laplace operator in a domain with a small hole (cf., e.g., [14, 15], Lanza de

Cristoforis [16, 17]). For domain perturbation problems in spectral theory, we mention, e.g., Buoso and Provenzano [18] and

Lamberti and Lanza de Cristoforis [19]. The present paper is organized as follows: in Section 2, we introduce some preliminary

results, while in Section 3 we prove our main theorem on the asymptotic behavior of u[%1, %2] as (%1, %2)→ (0, r∗).

2. Preliminaries

In this section, by classical potential theory, we formulate problem (4) in terms of integral equations on ∂Ωi
1, ∂Ωi

2, and ∂Ωo . In

order to do so, we denote by Sn the function from Rn \ {0} to R defined by Sn(x) ≡ 1
sn

log |x | if n = 2, and by Sn(x) ≡ 1
(2−n)sn

|x |2−n
if n > 2. Here sn denotes the (n − 1)-dimensional measure of the boundary of the unit ball Bn(0, 1) of Rn. Sn is well-known to

be a fundamental solution of the Laplace operator. Now let α ∈]0, 1[ and let Ω be a bounded open subset of Rn of class C1,α.

If µ ∈ C0,α(∂Ω), we introduce the simple layer potential v [∂Ω, µ] by setting

v [∂Ω, µ](x) ≡
∫
∂Ω

Sn(x − y)µ(y) dσy ∀x ∈ Rn .

The symbol dσ denotes the area element of ∂Ω. The function v [∂Ω, µ] is continuous in Rn. In addition, the function

v+[∂Ω, µ] ≡ v [∂Ω, µ]|clΩ belongs to C1,α(clΩ), and the function v−[∂Ω, µ] ≡ v [∂Ω, µ]|Rn\Ω belongs to C1,α
loc (Rn \Ω). We also

set C0,α(∂Ω)0 ≡
{
f ∈ C0,α(∂Ω) :

∫
∂Ω
f dσ = 0

}
. As usual, to convert a boundary value problem for the Poisson equation into

a problem for harmonic functions, we introduce a Newtonian potential P [F ]. Thus, if F is as in (3), we set

P [F ](x) ≡
∫

Ωo
Sn(x − y)F (y) dy ∀x ∈ clΩo .

By (3) and by standard elliptic regularity theory, one deduces that P [F ] ∈ C1,α(clΩo) and that P [F ] is real analytic in a

neighborhood of 0. In order to introduce the integral equation formulation of our problem, we define the map Λ = (Λ1,Λ2,Λ3)

from Ũ × C0,α(∂Ωi
1)× C0,α(∂Ωi

2)× C0,α(∂Ωo)0 × R to C0,α(∂Ωi
1)× C0,α(∂Ωi

2)× C1,α(∂Ωo) by setting

Λ1[%1, %2, θ
i
1, θ

i
2, θ

o , ξ](t) ≡ 1

2
θi1(t) +

∫
∂Ωi1

DSn(t − s)νΩi1
(t)θi1(s) dσs + %n−1

2

∫
∂Ωi2

DSn
(

(p1 − p2) + %2(t − s)
)
νΩi1

(t)θi2(s) dσs

+

∫
∂Ωo

DSn
(
%1p

1 + %1%2t − y
)
νΩi1

(t)θo(y) dσy + νΩ1 (t) ·DP [F ](%1p
1 + %1%2t) ∀t ∈ ∂Ωi

1 ,

Λ2[%1, %2, θ
i
1, θ

i
2, θ

o , ξ](t) ≡ 1

2
θi2(t) +

∫
∂Ωi2

DSn(t − s)νΩi2
(t)θi2(s) dσs + %n−1

2

∫
∂Ωi1

DSn
(

(p2 − p1) + %2(t − s)
)
νΩi2

(t)θi1(s) dσs

+

∫
∂Ωo

DSn
(
%1p

2 + %1%2t − y
)
νΩi2

(t)θo(y) dσy + νΩ2 (t) ·DP [F ](%1p
2 + %1%2t) ∀t ∈ ∂Ωi

2 ,
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Prepared using mmaauth.cls



M. Dalla Riva and P. Musolino

Mathematical
Methods in the
Applied Sciences

Λ3[%1, %2, θ
i
1, θ

i
2, θ

o , ξ](x) ≡ (%1%2)n−1
2∑
j=1

∫
∂Ωi

j

Sn(x − %1p
j − %1%2s)θij (s) dσs

+

∫
∂Ωo

Sn(x − y)θo(y) dσy + ξ + P [F ](x) ∀x ∈ ∂Ωo ,

for all (%1, %2, θ
i
1, θ

i
2, θ

o , ξ) ∈ Ũ × C0,α(∂Ωi
1)× C0,α(∂Ωi

2)× C0,α(∂Ωo)0 × R. As done in [1, §5], by classical potential theory and

the theorem of change of variable in integrals, we can transform problem (4) into an equivalent system of integral equations.

Proposition 2.1 Let α ∈]0, 1[. Let Ωi
1, Ωi

2, Ωo , p1, p2 be as in (1). Let r∗ ∈ [0,+∞[. Let Ũ be as in (2). Let F be as in (3).

Let (%1, %2) ∈ Ũ∩]0,+∞[2. Then the unique solution u[%1, %2] in C1,α(clΩ(%1, %2)) of problem (4) is delivered by

u[%1, %2](x) ≡(%1%2)n−1
2∑
j=1

∫
∂Ωi

j

Sn(x − %1p
j − %1%2s)θij [%1, %2](s) dσs

+

∫
∂Ωo

Sn(x − y)θo [%1, %2](y) dσy + ξ[%1, %2] + P [F ](x) ∀x ∈ clΩ(%1, %2) ,

where (θi1[%1, %2], θi2[%1, %2], θo [%1, %2], ξ[%1, %2]) is the unique quadruple (θi1, θ
i
2, θ

o , ξ) in C0,α(∂Ωi
1)× C0,α(∂Ωi

2)× C0,α(∂Ωo)0 ×
R such that

Λ[%1, %2, θ
i
1, θ

i
2, θ

o , ξ] = 0 . (5)

By Proposition 2.1, the analysis of problem (4) is equivalent to that of equation (5). In particular, for (%1, %2) = (0, r∗) we

have the following lemma. For a proof we refer to [1, §5].

Lemma 2.2 Let α ∈]0, 1[. Let Ωi
1, Ωi

2, Ωo , p1, p2 be as in (1). Let r∗ ∈ [0,+∞[. Let Ũ be as in (2). Let F be as in (3). Then

the system of equations

1

2
θi1(t) +

∫
∂Ωi1

DSn(t − s)νΩi1
(t)θi1(s) dσs + r n−1

∗

∫
∂Ωi2

DSn
(

(p1 − p2) + r∗(t − s)
)
νΩi1

(t)θi2(s) dσs

−
∫
∂Ωo

DSn(y)νΩi1
(t)θo(y) dσy + νΩ1 (t) ·DP [F ](0) = 0 ∀t ∈ ∂Ωi

1 ,

1

2
θi2(t) +

∫
∂Ωi2

DSn(t − s)νΩi2
(t)θi2(s) dσs + r n−1

∗

∫
∂Ωi1

DSn
(

(p2 − p1) + r∗(t − s)
)
νΩi2

(t)θi1(s) dσs

−
∫
∂Ωo

DSn(y)νΩi2
(t)θo(y) dσy + νΩ2 (t) ·DP [F ](0) = 0 ∀t ∈ ∂Ωi

2 ,∫
∂Ωo

Sn(x − y)θo(y) dσy + ξ + P [F ](x) = 0 ∀x ∈ ∂Ωo ,

has a unique solution (θi1, θ
i
2, θ

o , ξ) in C0,α(∂Ωi
1)× C0,α(∂Ωi

2)× C0,α(∂Ωo)0 × R, which we denote by (θ̃i1, θ̃
i
2, θ̃

o , ξ̃).

Remark 2.3 Under the assumptions of Lemma 2.2, if ũ is the unique function in C1,α(clΩo) such that ∆ũ = F in Ωo and that

ũ = 0 on ∂Ωo , then ũ = v+[∂Ωo , θ̃o ] + ξ̃ + P [F ].

We are now ready to analyze equation (5) around the degenerate pair (%1, %2) = (0, r∗).

Proposition 2.4 Let α ∈]0, 1[. Let Ωi
1, Ωi

2, Ωo , p1, p2 be as in (1). Let r∗ ∈ [0,+∞[. Let Ũ be as in (2). Let F be as in

(3). Let (θ̃i1, θ̃
i
2, θ̃

o , ξ̃) be as in Lemma 2.2. Then there exist an open neighborhood U of (0, r∗) in R2 and a real analytic map

(Θi
1,Θi

2,Θo ,Ξ) from U to C0,α(∂Ωi
1)× C0,α(∂Ωi

2)× C0,α(∂Ωo)0 × R such that U ⊆ Ũ , and that

(θi1[%1, %2], θi2[%1, %2], θo [%1, %2], ξ[%1, %2]) = (Θi
1[%1, %2],Θi

2[%1, %2],Θo [%1, %2],Ξ[%1, %2]) ∀(%1, %2) ∈ U∩]0,+∞[2 ,

and that (θ̃i1, θ̃
i
2, θ̃

o , ξ̃) = (Θi
1[0, r∗],Θi

2[0, r∗],Θo [0, r∗],Ξ[0, r∗]).

Proof. As in [1], our strategy consists in applying the Implicit Function Theorem to equation Λ[%1, %2, θ
i
1, θ

i
2, θ

o , ξ] = 0 around

the point (0, r∗, θ̃
i
1, θ̃

i
2, θ̃

o , ξ̃). First of all, we note that, by definition, Λ[0, r∗, θ̃
i
1, θ̃

i
2, θ̃

o , ξ̃] = 0. Then the real analyticity of Λ in

a neighborhood of (0, r∗) follows by standard properties of integral operators with real analytic kernels (cf. [20, §4]), by real

analyticity results for the composition operator (cf. Valent [21, Thm. 5.2, p. 44]), and by classical mapping properties of layer

potentials (cf. Miranda [22], Lanza de Cristoforis and Rossi [23, Thm. 3.1]). Then we turn to compute the differential of Λ at

(0, r∗, θ̃
i
1, θ̃

i
2, θ̃

o , ξ̃) with respect to the variables (θi1, θ
i
2, θ

o , ξ) and we obtain the formulas

∂(θi1,θ
i
2,θ

o ,ξ)Λ1[0, r∗, θ̃
i
1, θ̃

i
2,θ̃

o , ξ̃](θ̄i1, θ̄
i
2, θ̄

o , ξ̄)(t) ≡ 1

2
θ̄i1(t) +

∫
∂Ωi1

DSn(t − s)νΩi1
(t)θ̄i1(s) dσs

+ r n−1
∗

∫
∂Ωi2

DSn
(

(p1 − p2) + r∗(t − s)
)
νΩi1

(t)θ̄i2(s) dσs −
∫
∂Ωo

DSn(y)νΩi1
(t)θ̄o(y) dσy ∀t ∈ ∂Ωi

1 ,
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∂(θi1,θ
i
2,θ

o ,ξ)Λ2[0, r∗, θ̃
i
1, θ̃

i
2,θ̃

o , ξ̃](θ̄i1, θ̄
i
2, θ̄

o , ξ̄)(t) ≡ 1

2
θ̄i2(t) +

∫
∂Ωi2

DSn(t − s)νΩi2
(t)θ̄i2(s) dσs

+ r n−1
∗

∫
∂Ωi1

DSn
(

(p2 − p1) + r∗(t − s)
)
νΩi2

(t)θ̄i1(s) dσs −
∫
∂Ωo

DSn(y)νΩi2
(t)θ̄o(y) dσy ∀t ∈ ∂Ωi

2 ,

∂(θi1,θ
i
2,θ

o ,ξ)Λ3[0, r∗, θ̃
i
1, θ̃

i
2, θ̃

o , ξ̃](θ̄i1, θ̄
i
2, θ̄

o , ξ̄)(x) ≡
∫
∂Ωo

Sn(x − y)θ̄o(y) dσy + ξ̄ ∀x ∈ ∂Ωo ,

for all (θ̄i1, θ̄
i
2, θ̄

o , ξ̄) ∈ C0,α(∂Ωi
1)× C0,α(∂Ωi

2)× C0,α(∂Ωo)0 × R. By classical potential theory and by arguing as in [1, §5],

one shows that ∂(θi1,θ
i
2,θ

o ,ξ)Λ[0, r∗, θ̃
i
1, θ̃

i
2, θ̃

o , ξ̃] is a linear homeomorphism from C0,α(∂Ωi
1)× C0,α(∂Ωi

2)× C0,α(∂Ωo)0 × R onto

C0,α(∂Ωi
1)× C0,α(∂Ωi

2)× C1,α(∂Ωo). Finally, a straightforward application of the Implicit Function Theorem for real analytic

maps in Banach spaces completes the proof (cf., e.g., Deimling [13, Theorem 15.3]). 2

3. A functional analytic representation theorem for u[%1, %2]

In this section, we exploit the analyticity result for the solutions of equation (5) in order to prove representation formulas for

u[%1, %2] in terms of real analytic maps. Before doing so, we need the following technical result, whose validity follows by the

real analyticity of the composition operator (cf. Valent [21, Thm. 5.2, p. 44]).

Lemma 3.1 Let α ∈]0, 1[. Let Ωi
1, Ωi

2, Ωo , p1, p2 be as in (1). Let r∗ ∈ [0,+∞[. Let F be as in (3). Let U be as in Proposition
2.4. Then there exists an open neighborhood UF of (0, r∗) contained in U such that for each j ∈ {1, 2} the function JF,j from
UF to R which takes (%1, %2) to

JF,j [%1, %2] ≡
∫

Ωi
j

F (%1p
j + %1%2t) dt

is real analytic. Moreover, for each j ∈ {1, 2}, we have JF,j [0, r∗] = F (0)|Ωi
j |n, where | · |n denotes the n-dimensional Lebesgue

measure.

We are now ready to prove our main result on the behavior of u[%1, %2].

Theorem 3.2 Let α ∈]0, 1[. Let Ωi
1, Ωi

2, Ωo , p1, p2 be as in (1). Let r∗ ∈ [0,+∞[. Let F be as in (3). Let ũ be as in Remark

2.3. Let U be as in Proposition 2.4. Let UF , JF,1, and JF,2 be as in Lemma 3.1. Then the following statements hold.

(i) Let ΩM be an open subset of Ωo such that 0 6∈ clΩM . Then there exist an open neighborhood UM,ΩM of (0, r∗) in R2 and

a real analytic map UM,ΩM from UM,ΩM to the space C
1,α(clΩM) such that

UM,ΩM ⊆ U , clΩM ⊆ clΩ(%1, %2) ∀(%1, %2) ∈ UM,ΩM ,

and such that

u[%1, %2](x) = UM,ΩM [%1, %2](x) ∀x ∈ clΩM ,

for all (%1, %2) ∈ UM,ΩM∩]0,+∞[2. Moreover, UM,ΩM [0, r∗](x) = ũ(x) for all x ∈ clΩM .

(ii) Let Ωm be a bounded open subset of Rn \ ∪2
j=1(pj + r∗clΩi

j). Then there exist an open neighborhood Um,Ωm of (0, r∗) in

R2 and a real analytic map Um,Ωm from Um,Ωm to the space C1,α(clΩm) such that

Um,Ωm ⊆ UF , %1clΩm ⊆ clΩ(%1, %2) ∀(%1, %2) ∈ Um,Ωm ,

and such that

u[%1, %2](%1t) = Um,Ωm [%1, %2](t)− δ2,n
(%1%2)2 log %1

2π

2∑
j=1

JF,j [%1, %2] ∀t ∈ clΩm ,

for all (%1, %2) ∈ Um,Ωm∩]0,+∞[2. Moreover, Um,Ωm [0, r∗](t) = ũ(0) for all t ∈ clΩm.

(iii) Let j ∈ {1, 2}. Let l ∈ ({1, 2} \ {j}). Let Ωm∗ be a bounded open subset of Rn \ clΩi
j such that (pj + r∗clΩm∗) ∩ (pl +

r∗clΩi
l) = ∅. Then there exist an open neighborhood Um∗,Ωm∗ of (0, r∗) in R2 and a real analytic map Uj,m∗,Ωm∗ from Um∗,Ωm∗

to the space C1,α(clΩm∗) such that

Um∗,Ωm∗ ⊆ UF , %1p
j + %1%2clΩm∗ ⊆ clΩ(%1, %2) ∀(%1, %2) ∈ Um∗,Ωm∗ ,

and such that

u[%1,%2](%1p
j + %1%2t) = Uj,m∗,Ωm∗ [%1, %2](t)

− δ2,n(%1%2)2

(
log(%1%2)

2π
JF,j [%1, %2] +

log %1

2π
JF,l [%1, %2]

)
∀t ∈ clΩm∗ ,

for all (%1, %2) ∈ Um∗,Ωm∗∩]0,+∞[2. Moreover, Uj,m∗,Ωm∗ [0, r∗](t) = ũ(0) for all t ∈ clΩm∗ .
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Proof. We proceed as in [1, §6]. We start by considering statement (i). We first note that the continuity of the restriction

operator implies that, by possibly taking a bigger ΩM , we can assume that ΩM is of class C1. Then there exists an open

neighborhood UM,ΩM of (0, r∗) in R2 such that UM,ΩM ⊆ U and that clΩM ∩ (∪2
j=1(%1p

j + %1%2clΩi
j)) = ∅ for all (%1, %2) ∈ UM,ΩM .

Now we define the map UM,ΩM from UM,ΩM to C1,α(clΩM) by setting

UM,ΩM [%1, %2](x) ≡ (%1%2)n−1
2∑
j=1

∫
∂Ωi

j

Sn(x − %1p
j − %1%2s)Θi

j [%1, %2](s) dσs

+

∫
∂Ωo

Sn(x − y)Θo [%1, %2](y) dσy + Ξ[%1, %2] + P [F ](x) ∀x ∈ clΩM ,

for all (%1, %2) ∈ UM,ΩM . Then the analyticity of UM,ΩM follows by standard properties of integral operators with real analytic

kernels, by standard properties of functions in Schauder spaces, by classical mapping properties of layer potentials (cf. Lanza de

Cristoforis and the second-named author [20], Miranda [22], Lanza de Cristoforis and Rossi [23, Thm. 3.1]), and by Proposition

2.4. In order to complete the proof of statement (i), we observe that Proposition 2.4 implies that

UM,ΩM [0, r∗](x) =

∫
∂Ωo

Sn(x − y)θ̃o(y) dσy + ξ̃ + P [F ](x) = ũ(x) ∀x ∈ clΩM .

We now turn to show the validity of statement (ii). As above, without loss of generality, we can assume that Ωm is of class C1.

Then there exists an open neighborhood Um,Ωm of (0, r∗) in R2 such that Um,Ωm ⊆ UF and that

clΩm ∩ (∪2
j=1(pj + %2clΩi

j)) = ∅ , %1clΩm ⊆ clΩo ∀(%1, %2) ∈ UM,ΩM .

We introduce the map Um,Ωm from Um,Ωm to C1,α(clΩm) by setting

Um,Ωm [%1, %2](t) ≡ %1%
n−1
2

2∑
j=1

∫
∂Ωi

j

Sn(t − pj − %2s)Θi
j [%1, %2](s) dσs

+

∫
∂Ωo

Sn(%1t − y)Θo [%1, %2](y) dσy + Ξ[%1, %2] + P [F ](%1t) ∀t ∈ clΩm ,

for all (%1, %2) ∈ Um,Ωm . We note that Proposition 2.4 implies that∫
∂Ωi

j

Λj
[
%1, %2,Θi

1[%1, %2],Θi
2[%1, %2],Θo [%1, %2],Ξ[%1, %2]

]
dσ = 0 ∀(%1, %2) ∈ U , ∀j ∈ {1, 2} .

Thus, by classical potential theory and by the Divergence Theorem, we have∫
∂Ωi

j

Θi
j [%1, %2] dσ = −

∫
∂Ωi

j

νΩj (t) ·DP [F ](%1p
j + %1%2t) dσt = −%1%2

∫
Ωi
j

F (%1p
j + %1%2t) dt ∀(%1, %2) ∈ U ,

for all j ∈ {1, 2}. Then by a simple computation, one verifies that

u[%1, %2](%1t) = Um,Ωm [%1, %2](t)− δ2,n
(%1%2)2 log %1

2π

2∑
j=1

JF,j [%1, %2] ∀t ∈ clΩm ,

for all (%1, %2) ∈ Um,Ωm∩]0,+∞[2. By possibly shrinking Um,Ωm , the real analyticity of Um,Ωm follows by standard properties of

integral operators with real analytic kernels, by classical mapping properties of layer potentials (cf. Miranda [22], Lanza de

Cristoforis and Rossi [23, Thm. 3.1], Lanza de Cristoforis and the second-named author [20]), by real analyticity results for

the composition operator (cf. Valent [21, Thm. 5.2, p. 44]), and by Proposition 2.4. Moreover, Proposition 2.4 implies that

Θo [0, r∗] = θ̃o and that Ξo [0, r∗] = ξ̃, and thus

Um,Ωm [0, r∗](t) =

∫
∂Ωo

Sn(0− y)θ̃o(y) dσy + ξ̃ + P [F ](0) = ũ(0) ∀t ∈ clΩm .

Thus the proof of statement (ii) is complete. We now consider statement (iii). As before, we can assume that Ωm∗ is of class

C1. Then there exists an open neighborhood Um∗,Ωm∗ of (0, r∗) in R2 such that Um∗,Ωm∗ ⊆ UF and that(
pj + %2clΩm∗

)
∩
(
pl + %2clΩi

2

)
= ∅

(
%1p

j + %1%2clΩm∗

)
⊆ Ωo ∀(%1, %2) ∈ Um∗,Ωm∗ .

We introduce the map Uj,m∗,Ωm∗ from Um∗,Ωm∗ to C1,α(clΩm∗) by setting

Uj,m∗,Ωm∗ [%1, %2](t) ≡ %1%2

∫
∂Ωi

j

Sn(t − s)Θi
j [%1, %2](s) dσs + %1%

n−1
2

∫
∂Ωi

l

Sn(pj + %2t − pl − %2s)Θi
l [%1, %2](s) dσs

+

∫
∂Ωo

Sn(%1p
j + %1%2t − y)Θo [%1, %2](y) dσy + Ξ[%1, %2] + P [F ](%1p

j + %1%2t) ∀t ∈ clΩm∗ ,

for all (%1, %2) ∈ Um∗,Ωm∗ . Then, by arguing as in the proof of (ii), one verifies the validity of (iii) (see also [1, §6]). 2
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