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It is well-known that a night of good sleep reinforces various cognitive functions, including 

memory processing (see Lim & Dinges, 2010 for a review). Specifically, the consolidation of newly 

acquired memories is thought to benefit from sleep (Rasch and Born, 2013), based on studies showing 

improved performance (e.g., memory enhancement or reduced forgetting, depending on the task) 

after sleep than after a similar time spent awake (Chambers, 2017).  

Although the effect of sleep on the consolidation (i.e., the process of transforming newly 

acquired information into long-term memories) of explicit, hippocampal-dependent, declarative 

memory seems to be widely  supported (see Rasch & Born, 2013 for a review), the impact of sleep 

on more complex functions seems to be less clear. For example, studies testing the effect of sleep on 

tasks requiring a constant updating of information in working memory, such as rapid serial visual 

presentation tasks and sequence learning, have provided conflicting results (Cellini et al., 2015; 

Durrant, Taylor, Cairney, & Lewis, 2011; Fischer, Drosopoulos, Tsen, & Born, 2006; Nemeth et al., 

2010). Nevertheless, accumulating evidence suggests that sleep is an essential period for extracting 

the overarching rules underlying a set of new information (i.e., the gist) and to integrate them into 

existing knowledge, leading to an update of existing schemas (Lewis, Knoblich, & Poe, 2018; 

Stickgold & Walker, 2013).  

Grounded on this literature, a recent study published in The Journal of Neuroscience, (Lutz 

and colleagues 2018) investigated the effects of overnight sleep on the formation, consolidation and 

abstraction of an internal cognitive model (i.e., a schema representing upcoming stimuli), using a 

predictive coding approach. Predictive coding theories hypothesize that information processing is 

organized hierarchically (Raus & Pourtois, 2013). That is, we would use our learned models to predict 

upcoming congruent stimuli (top-down processing), whereas we would use the stimuli themselves 

(when incongruent with our models) to modify our predictions and update our models (bottom-up 

processing) (Rao & Ballard, 1999). In other words, model-congruent stimuli would be processed in 

a top-down modality, whereas model-incongruent stimuli would be processes in a bottom-up one.  



In the study of Lutz et al. (2018), subjects were tested before and after a retention period 

consisting of either a night of undisturbed sleep or a period of wake consisting of controlled, non-

strenuous and non-learning routine activities (between group design: sleep vs. wake). In order to 

generate internal models, participants were trained on a 12-item implicit deterministic sequence of 

visual stimuli. Stimuli were grayscale Gabor gratings sequentially appearing at six peripheral 

locations on a computer screen, tilted either at an angle of 45° or 135° from a central fixation point. 

Participants had to indicate the position of each stimulus pressing the appropriate button on a 

keyboard. Thirty minutes after the training phase, participants completed the pre-retention test. In the 

test phase sequences, stimuli deviating from the original learned sequence were introduced. 

Specifically, in the test phase, sequences contained standard (congruent with the original sequence), 

deviant (incongruent from the original sequence) and “follower standard” stimuli, i.e., a standard 

stimulus which comes right after a deviant one which is supposed to elicit a behavior more likely 

similar to deviant than standard stimuli. The same sequences were then retested after the retention 

period, consisting of either sleep or wake. Importantly, to test the effects if sleep on the abstraction 

of internal models and their use across different temporal contexts, the authors manipulated the 

response-to-stimulus intervals (i.e., the delay between when a subject made a response and when the 

next stimulus was presented) between pre- and post-retention assessment (e.g. long response-to-

stimulus intervals in pre-phase and short response-to-stimulus intervals in post-phase).  

The authors reasoned that if sleep supports the consolidation of an internal implicit sequence 

model, then subjects tested after a period of sleep should show increased error rates for deviant 

stimuli, compared with subjects tested after wakefulness, because their predictive model is more 

consolidated and their sequence learning is stronger. In other words, if the sequence is well 

consolidated in an internal model, participants should make an error whenever the present sequence 

deviates from the standard. Moreover, because a consolidated predictive model should allow one to 

restore behavior as soon as the environment again reveals as predicted and produce appropriate motor 



responses, a more consolidated internal sequence model should be also reflected in reduced error 

rates for follower standard stimuli Lutz et al. (2018).  

Consistent with these hypotheses, in the post-retention assessment, the sleep group showed 

higher error rates for deviant stimuli than the awake group. Moreover, the sleep group showed a 

greater increase in the prediction strength index (i.e., error rates for deviant stimuli minus error rates 

for follower-standard stimuli) from pre-to-post retention compared with the awake group. Error rates 

for follower-standard stimuli were comparable to standard stimuli in the post-sleep group, whereas 

in the awake group, error rates for follower-standard items were than for standard stimuli. Finally, 

when response-to-stimulus intervals varied from pre- to -post retention assessment, the prediction 

strength was increased after sleep but not after wake, reflecting the positive effect of sleep on the 

abstraction of internal model that can be used in different temporal contexts.  

This study showed that the sleeping brain is able to update internal models based on 

information acquired during wakefulness in order to better predict the external situations during the 

next waking period. However, how the sleeping brain updates internal models remains unclear. 

According to Honey et al. (2017), internal models are shaped by a continuous switching between 

externally and internally biased processing modes. In the externally biased mode, input from the 

environment shapes the ongoing neural activity in a button-up fashion, whereas in the internally 

biased mode neural activity reflects a top-down process that guides the perception and prediction of 

the external world. In this framework, the wake-sleep alternation is considered one of the switching 

situations between internal and external modes. Moreover, even within sleep, Honey et al. (2017) 

propose another switching mechanism: during non-rapid eye movement sleep (NREM), the sleeping 

brain processes external-like input via hippocampal replay (Ólafsdóttir, Bush, & Barry, 2018), 

whereas during rapid eye movement sleep (REM), which is characterized by an increased long-range 

cortico-cortical effective connectivity (Massimini et al., 2010) and by a high cholinergic tone 

(Hasselmo & McGaughy, 2004), the brain switches to an internally biased mode, promoting memory 

integration and model updating. Thus, this within-sleep switching mechanism may promote the 



consolidation of newly acquired external information during NREM and their integration into pre-

existing models during REM sleep. These models are then used during wakefulness to interact with 

the external world and can be updated during the following sleeping period.  

The hypothesis that internal-model updating mainly (but not exclusively) occurs during REM 

sleep has been also suggested by theoretical work (Llewellyn, 2016). In this work, Llewellyn also 

proposed a distinction between predictive and prospecting coding. Predictive coding refers to the 

anticipation of upcoming input during wake based on a specific ongoing event, whereas prospective 

coding creates offline probabilistic patterns (i.e., schema of plausible sequences of events created 

during sleep or resting periods)  based on past events. According to Llewellyn (2016), during REM 

the sleeping brain scans memories in order to find meaningful regularities between events and uses 

these regularities to create associations between the events. These associations generate prospective 

codes that can be used during wakefulness as a predictive as well as a perceptual/attentional codes to 

prepare and adapt our behaviors to constantly changing external events. 

These theoretical models concerning how sleep influences the updating of internal models fit 

well with the findings by Lutz et al. (2018). However, Lutz et al. (2018) monitored sleep between 

testing session via actigraphy, which cannot provide information about sleep architecture (e.g., time 

spent in NREM and REM) or on the neural dynamics during sleep. Future studies, building on the 

work of Lutz et al. (2018) should test the specific roles of REM sleep and neural activity during sleep 

in influencing prospective/predictive coding.  

In summary, the study by Lutz et al. (2018) provides evidence for a role of sleep in reinforcing 

the consolidation and abstraction of an internal sequence model. Which specific sleep stages facilitate 

these processes is yet to be clarified. Traditionally, REM sleep has been recognized as a key 

physiological state supporting the consolidation of implicit memories (Whitehurst, Cellini, McDevitt, 

Duggan, & Mednick, 2016). However, it is likely that both NREM and REM sleep interact to 

consolidate the regularities present in the environment and to use this information to update internal 

cognitive models. This idea prompts several questions: What is the impact of sleep disruption on the 



updating of internal models? In particular, what are the consequences for clinical populations 

characterized by abnormal REM sleep, such as narcolepsy or depression (Pillai, Kalmbach, & Ciesla, 

2011)? Moreover, given that the quantity of NREM and REM sleep varies across the human lifespan 

(Ohayon, Carskadon, Guilleminault, & Vitiello, 2004),  what are the consequences of age-dependent 

sleep changes on the updating of internal models? Further studies, combining behavioral, 

neurophysiological, and computational approaches, should address these questions to shed light on 

how our brains create and modify internal cognitive models. 
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