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A B S T R A C T

Abnormal cortical oscillations are markers of Parkinson's Disease (PD). Transcranial alternating current stimu-
lation (tACS) can modulate brain oscillations and possibly impact on behaviour. Mapping of cortical activity
(prevalent oscillatory frequency and topographic scalp distribution) may provide a personalized neurother-
apeutic target and guide non-invasive brain stimulation. This is a cross-over, double blinded, randomized trial.
Electroencephalogram (EEG) from participants with PD referred to Specialist Clinic, University Hospital, were
recorded. TACS frequency and electrode position were individually defined based on statistical comparison of
EEG power spectra maps with normative data from our laboratory. Stimulation frequency was set according to
the EEG band displaying higher power spectra (with beta excess on EEG map, tACS was set at 4 Hz; with theta
excess, tACS was set at 30 Hz). Participants were randomized to tACS or random noise stimulation (RNS),
5 days/week for 2-weeks followed by ad hoc physical therapy. EEG, motor (Unified Parkinson's Disease Rating
Scale-motor: UPDRS III), neuropsychological (frontal, executive and memory tests) performance and mood were
measured before (T0), after (T1) and 4-weeks after treatment (T2). A linear model with random effects and
Wilcoxon test were used to detect differences.

Main results include a reduction of beta rhythm in theta-tACS vs. RNS group at T1 over right sensorimotor
area (p= .014) and left parietal area (p= .010) and at T2 over right sensorimotor area (p= .004) and left frontal
area (p= .039). Bradykinesia items improved at T1 (p= .002) and T2 (p= .047) compared to T0 in the tACS
group. In the tACS group the Montréal Cognitive Assessment (MoCA) improved at T2 compared with T1

(p= .049).
Individualized tACS in PD improves motor and cognitive performance. These changes are associated with a

reduction of excessive fast EEG oscillations.

1. Introduction

Parkinson's disease (PD) is characterized by motor impairment and
cognitive decline. Neuronal oscillations play a pivotal role in the

pathophysiology of PD. Synchronized neuronal oscillations correlate
with distinct behavioral states (Buzsáki and Draguhn, 2011; Engel et al.,
2001). A deviation from physiological frequency bands is a hallmark of
a wide group of pathologies, namely thalamo-cortical dysrhythmias or

https://doi.org/10.1016/j.nicl.2019.101768
Received 9 July 2018; Received in revised form 22 January 2019; Accepted 10 March 2019

Abbreviations: BDI-II, Beck Depression Inventory-II (BDI-II); EEG, electroencephalography; GDI, Gait Dynamic Index; GDS, Geriatric Depression Scale; MCID,
minimal clinical important difference; MMSE, Mini Mental State Examination; NIBS, non-invasive brain stimulation; PD, Parkinson's Disease; RNS, random noise
stimulation; STAY-Y, State-Trait Anxiety Inventory; UPDRS III, Unified Parkinson's Disease Rating Scale-motor; tACS, transcranial alternating current stimulation;
tDCS, transcranial direct current stimulation; TMS, transcranial magnetic stimulation; SM, sensorimotor area; L, left; R, right; FFT, fast Fourier Transform; TMT A and
B, trail making test, form A and B

⁎ Corresponding author.
E-mail addresses: alessandra.delfelice@unipd.it (A. Del Felice), leonoracastiglia@gmail.com (L. Castiglia), emanuela.formaggio@unipd.it (E. Formaggio),

manuela.cattelan@stat.unipd.it (M. Cattelan), scarpa@stat.unipd.it (B. Scarpa), pmanganotti@units.it (P. Manganotti), elena.tenconi@unipd.it (E. Tenconi),
stef.masiero@unipd.it (S. Masiero).

NeuroImage: Clinical 22 (2019) 101768

Available online 18 March 2019
2213-1582/ © 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2019.101768
https://doi.org/10.1016/j.nicl.2019.101768
mailto:alessandra.delfelice@unipd.it
mailto:leonoracastiglia@gmail.com
mailto:emanuela.formaggio@unipd.it
mailto:manuela.cattelan@stat.unipd.it
mailto:scarpa@stat.unipd.it
mailto:pmanganotti@units.it
mailto:elena.tenconi@unipd.it
mailto:stef.masiero@unipd.it
https://doi.org/10.1016/j.nicl.2019.101768
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2019.101768&domain=pdf


oscillopathies (Llinas et al., 1999).
Studies in idiopathic PD and animal models suggests that dopamine

depletion induces an excessive synchronization in the beta range
(15–30 Hz) in the basal ganglia and associated circuits (Neumann et al.,
2017). Beta oscillations in the subthalamic nucleus are coherent with
oscillations in ipsilateral sensorimotor (SM), adjacent premotor cortex
(Lalo et al., 2008; Marsden et al., 2001), supplementary motor area,
dorsolateral prefrontal cortex and primary motor cortex in PD (Priori
and Lefaucheur, 2007). This pathological synchronization reduces
during voluntary movements (Kühn et al., 2005), with L-dopa admin-
istration (Brown et al., 2001) and with deep brain stimulation (Kühn
et al., 2008). Low frequency theta oscillations (4–7 Hz) have been as-
sociated with resting tremor (Hutchison et al., 1997). Cognitive and
motor functions have a neurophysiological correlate in beta rhythms
(Engel and Fries, 2010; Joundi et al., 2012); the fast pathological
neuronal synchronization in PD might be a con-causal factor of motor
and cognitive impairments (Eusebio and Brown, 2009; Shimamoto
et al., 2013; Stein and Bar-Gad, 2013).

Transcranial alternating current stimulation (tACS) is a user-
friendly, portable technique, which can modulate cortical activity
(Helfrich et al., 2014; Del Felice et al., 2015). TACS provides a low-
intensity alternating current with a sinusoidal pattern applied to the
scalp. This oscillatory stimulation paradigm is distinct from transcranial
direct current stimulation, which is a continuous non-oscillatory cur-
rent trialed in PD with no clear-cut beneficial motor effects (Elsner
et al., 2016). TACS forces the membrane potential to oscillate away
from its resting potential towards slightly more depolarized or hy-
perpolarized states; during the depolarization state, neurons are more
likely to fire in response to other neurons – a mechanism called “sto-
chastic resonance” (McDonnell and Abbott, 2009). The eventual effect
is that of an increase of neuronal firing time-locked to the frequency of
stimulation, defined entrainment. TACS therefore exerts a modulatory
but non-dominant influence.

We tested the hypothesis that a non-invasive stimulation, though
potentially different from the natural oscillations of the target brain
region, could modulate neuronal networks and shift oscillations into a
physiological range. We recorded cerebral activity with electro-
encephalography (EEG) on an individual basis to tailor the stimulation.
Theta-tACS was applied if fast frequencies showed a higher spectral
frequency power and beta-tACS if slow frequencies showed higher
spectral frequency power over the area of major power representation.
An active sham [random noise stimulation (RNS)] was used as sug-
gested by a recent consensus statement (Thut et al., 2017). An ad hoc
physical rehabilitation program was associated and electroencephalo-
graphic and behavioral correlates recorded at baseline, after treatment
and at 1-month follow-up to test treatment after-effects.

2. Materials and methods

This is a cross over, double-blinded, randomized trial. The protocol
was approved by the Ethics Committee of University Hospital (protocol
n. 3507/AO/15). Participants provided written informed consent. The
study was registered on ClinicalTrials.Gov (NCT03221413) and in-
cluded PD as a model of fast oscillopathy and chronic pain as a model
for slow oscillopathy. These are preliminary data from the PD arm.
CONSORT guidelines for cross-over trials are still under development
(Pandis et al., 2017); we used the standard CONSORT checklist (Sup-
plementary material 1).

2.1. Participants

People with PD were recruited from a Specialist Clinic. Inclusion
criteria were: diagnosis of idiopathic PD within the last 5 years (UK
Brain Bank criteria, Clarke et al., 2016); stable dose of antiparkinsonian
therapy for at least 4 weeks; off-medication motor Hoen and Yahr 1–2.
Exclusion criteria were: psychiatric disorder; benzodiazepine treatment;

MMSE<23; contraindications to neurostimulation.
A sample size of 15 yields a power>99% to detect a mean of paired

differences (Unified Parkinson's Disease Rating Scale-motor [UPDRS]
pre- and post-stimulation score difference) of 10 points with sig-
nificance level of 0.05 using a two-sided paired t-test.

2.2. Motor and neuropsychological evaluations

Motor impairment was measured by the same trained physician
experienced with UPDRS, blinded to treatment arm, in an off state. Gait
Dynamic Index (GDI) was used to assess gait.

Neuropsychological tests (frontal-executive functions, memory and
mood) were administered and scored by a neuropsychologist blinded to
the treatment group. Tests are listed in Table 1.

At each time-point parallel versions were used to overcome the risk
of learning effects. Presentation order of cognitive tasks was rando-
mized to contrast sequencing biases. For detailed description see
Appendix A.

2.3. EEG data acquisition and analysis

Ten minutes of open-eyes resting state EEG signal (32-channels
system; BrainAmp 32MRplus, BrainProducts GmbH, Munich, Germany)
were acquired using an analogic anti-aliasing band pass-filter at
0.1–1000 Hz and converted from analog to digital using a sampling rate
of 5 KHz. The reference was between Fz/Cz and ground anterior to Fz
(Formaggio et al., 2017).

Data were processed in Matlab (MathWorks, Natick, MA) using
scripts based on EEGLAB toolbox (Delorme and Makeig, 2004) and
dedicated custom-made code (Fig. 1). EEG recordings were down-
sampled at 500 Hz and band-pass filtered 1–30 Hz. Visible artifacts (i.e.,
eyes movements, cardiac activity, scalp muscle contraction) were re-
moved using an independent component analysis; data were processed
using an average reference. A fast Fourier transform (FFT) was applied
to non-overlapping epochs of 2 s and averaged across epochs. The re-
cordings were Hamming-windowed to control for spectral leakage.

Power spectral density (μV2/Hz) was estimated for all frequencies
and the relative power (%) was computed by dividing the power of each
frequency band with the total power in the range 1–30 Hz according to
the equation:
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where x is the EEG channel, P is the power spectral density, b1 and b2
are the frequencies (Hz) in the range of interest: b1= 1, b2= 4 for
delta; b1= 4.5, b2= 7.5 for theta; b1=8, b2= 10 for alpha1;
b1= 10.5, b2=12.5 for alpha2¸ b1= 13, b2= 30 for beta.

Control data from twenty-one healthy volunteers (9M; mean age
45.14 years, standard deviation [SD] 14 years) were obtained

Table 1
Neuropsychological assessment.

Test administered only at T0 Edinburgh Handedness Inventory
Trait Anxiety Inventory
Brief Intelligence Test

Operator administered questionnaires Montreal Cognitive Assessment (MoCA)
Trail Making Test (A and B)
Rey-Complex Figure Test (copy and 3′
delayed recall)
Digit-Symbol task
Hopkins Verbal Learning Test-Revised
Phonemic Verbal Fluency task

Self-reported questionnaires State-Trait Anxiety Inventory (STAY-Y)
Beck Depression Inventory-II (BDI-II)
Geriatric Depression Scale (GDS), short
version
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(Formaggio et al., 2017) using the same EEG montage.
Comparison of controls versus each participant was performed using

a z-test (p < .05) (Duffy et al., 1981). A statistical map defines the
electrodes, in which relative power value differs from those of the
control group. From this comparison, we derived frequency (most re-
presented frequency band) and site of stimulation (scalp area in which
the prevalent EEG frequency focalized).

2.4. Study design, outcomes, stimulation parameters, and tACS treatment

The design was a cross over, double-blinded, randomized trial.
Block randomization was generated by a computer (allocation ratio
1:4). The template for intervention description and replication (TIDieR)
checklist was used (Supplementary material 2). Recruitment started in
May 2016; follow up was completed in September 2017.

Primary outcome was a reduction of 30% of UPDRS III off-medi-
cation score. This proportion was derived from the 10.8 reduction in
score considered to be a large clinical difference in PD trials, con-
sidering a mean UPDRS III score of around 30 for the sample popula-
tion. Proportion of people with PD displaying an excess of beta band
activity was the primary outcome of the assessment phase. Secondary
outcomes were modifications of frequencies of oscillatory brain ac-
tivity, measured as spectral power modifications, and improvement of
behavioral tests after tACS.

EEG acquisition and clinical assessments were performed before
(T0) and immediately after stimulation (T1), and at 4-weeks follow-up
(T2) (Fig. 2). The experiment consisted of two-weeks (5 days a week)
sessions of tACS (real condition) or transcranial random noise stimu-
lation (tRNS) (active sham condition). Stimulation sessions lasted

30min. TACS and RNS arms were separated by an 8-week period. Each
stimulation session was immediately followed by a one-hour phy-
siotherapy session (see Table 2 for protocol).

Stimulation was applied by a battery driven external stimulator
(BrainStim, E.M.S., Bologna, Italy) via two sponge electrodes (5×7
cm). Stimulation frequency was set according to the EEG band dis-
playing higher relative power (with beta excess on EEG map, tACS was
set at 4 Hz; with theta excess, tACS was set at 30 Hz). Electrodes were
positioned respectively over the scalp area in which the power spectral
difference was detected and over the ipsilateral mastoid (see Fig. 3 for
explicative cases). Intensity was 1 to 2mA (sinusoidal current
minimum/maximum). RNS was an alternate current with random am-
plitude and frequency (1–2mA; 0–100 Hz) with electrodes applied over
the same sites as for real stimulation.

2.5. Statistical analysis

Region of interests (ROIs) were identified based on electrodes lo-
cation: right (R) frontal ROI: Fp2, F8, F4; right motor ROI: FC2, FC6,
C4, Cp2; right parietal ROI: CP6, P8, P4 and same for left (L) hemi-
sphere.

For each frequency band, a linear model with random effects was
employed to investigate the effects of treatment, time and ROI on the
frequency. After multivariate analysis, Wilcoxon signed-rank tests for
paired data were performed to test the difference in relative power
average for each ROI at T1 or T2, with respect to T0in each group (tACS
and RNS).

Statistical analysis was applied to subgroups (created on the basis of
their prevalent EEG rhythm: theta-tACS group stimulated in theta and

Fig. 1. Schematic representation of workflow of EEG analysis at single subject level. After pre-processing, FFT was applied to non-overlapping 2-s epochs and then
averaged across epochs. Power spectral density was estimated for all frequencies and the relative power (%) was computed for delta (1–4 Hz), theta (4.5–7.5 Hz),
alpha1 (8–10 Hz), alpha2 (10.5–12.5 Hz) and beta (13–30 Hz) frequency ranges, producing different topographical maps. Relative powers of a single subject were
statistically compared (z-test) to relative powers of a control group. From this comparison, we derived the frequency band and the site of stimulation, based on
statistically significant different electrodes.

Fig. 2. Experimental design.
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beta-tACS group stimulated in beta, as described above). The dimension
of the subgroup with prevalent slow rhythm (beta-tACS) allowed only
the application of the non-parametric Wilcoxon signed-rank test.

The same statistical analysis was performed also for cognitive and
motor variables for accounting for treatment and time simultaneously.

3. Results

Twenty subjects were enrolled out of 29 potential candidates. See
Fig. 4 for flow diagram. Fifteen subjects completed the study (9M;
mean age 69 ± 6.3 years; mean disease duration 6.3 ± 4.8 years;
mean L-dopa dose 528.5 ± 290mg). For demographics, see Table 3.
PD participants were slightly older than controls (p < .01) but did not
differ for other demographic variables (sex, years of education).

Ten participants showed a prevalence of beta rhythm and were
stimulated in theta frequency (theta-tACS group). Five had a prevalent
slow rhythm and were stimulated in beta (beta-tACS group) (statistical
significance at p < .001) (Table 4). None among participants showed a
concomitant beta and theta excess on statistical maps.

Multivariate analysis in the group stimulated in theta showed main
effect for factor “ROI” (p < .0001) in delta; “treatment” (p= .0001),
“time” (p= .0006) and “ROI” (p= .002) in theta; “treatment” and
“ROI” (p < .0001) in alpha1; “time” (p= .0002) and “ROI”
(p < .0001) in alpha2; “treatment” (p < .0001), “ROI” (p < .0001)
and “time” (p= .012) in beta.

No significant differences were found in delta and alpha1 bands. A
theta power increase at T1 after theta-tACS was detected over L-frontal
area (p= .0027) and L-SM (p= .037), compared to RNS. A power in-
crease was observed in alpha2 after theta tACS at T1 vs. T0 over R-SM
(p= .004) and over L-parietal area (p= .010); an increase at T2 vs. T0

was detected over the same areas (R-SM: p= .002, left parietal area:
p= .027). Main results include a reduction of beta rhythm in theta-
tACS vs. RNS group at T1 over R-SM (p= .014) and L-parietal area
(p= .010) and at T2 over R-SM (p= .004) and L-frontal area (p= .039)

(Fig. 3). In theta-tACS group beta rhythm reduction over R-SM persisted
at T2 (p= .049).

Functional tests showed an effect on motor performance for factor
“time” (p= .0009). Mean UPDRS III score change for the whole group
after tACS was −5.9 point from T0 toT1 (mean reduction of 17% of
baseline) and –4.82 from T0 toT2 (mean reduction of 14% of baseline).
In the subgroup with beta excess mean reduction was −8.25 points
from T0 toT1 (mean reduction of 23.5% of baseline) and −5.6 from T0

toT2 (mean reduction of 15.3% of baseline). Bradykinesia items im-
proved at T1 (p= .002) and T2 (p= .047) compared to T0 in the theta-
tACS group.

Cognitive tests showed an effect in factor “time” for MoCA
(p= .029) and TMT_B (p= .041). MoCA improved at T2 between theta-
tACS and RNS (p= .046). In the theta-tACS group MOCA improved at
T2 vs. T1 (p= .049).

Complete motor and neuropsychological results are reported in
Tables 5 and 6 respectively.

Beta-tACS did not yield significant results.

4. Discussion

TACS delivered with a personalized paradigm associated with ad
hoc rehabilitative treatment in people with PD can correct excessive
fast cerebral oscillations and improve bradikynesia and cognitive
functions.

Our experiment sets out to provide a personalized approach for
neurostimulation. The change of paradigm into which medicine is in-
curring needs to be translated into neurophysiology and neuro-
stimulation. Current neurostimulation designs have up to now targeted
cerebral areas, which were hypothesized to play a role in the pathology,
but individual mapping has not been a prerequisite.

Excess of beta band in PD has been related to motor symptoms
(Brittain and Brown, 2014); the degree of beta suppression correlates
with the change in UPDRS-III scores (Oswal et al., 2016). Our

Table 2
Physiotherapy exercises for Parkinson's disease.

Activities Basic exercises

Relaxation exercises (5 min) Breathing exercises to promote expansion of the chest (diaphragmatic and costal breathing)
Intersegmental coordination exercises

Active joint mobilization (10min) Exercises for upper and lower limbs in the supine position, on the side, on all fours, sitting, standing
Exercises to release shoulder and pelvic girdle
Pelvic anteversion and retroversion movements
Exercises for cervical spine in sitting position (flexion-extension, lateral bending, rotation)
Exercises for the trunk sitting and standing (flexion and rotation)

Stretching exercises (10min) Exercises to stretch the ischio-cruralis muscles
Exercises to stretch the muscles of the posterior kinematic chain
Exercises to stretch adductor muscle of the hip
Exercises to stretch the hip extrarotator muscle
Exercises to stretch lumbar muscles (in the supine position, each knee, in turn, is brought to the chest)
The “bridge” exercise to stretch the muscles of the anterior abdominal wall, glutei, quadriceps and hamstring

Strengthening exercises in a functional context (10min) Exercises to strengthen the dorsal muscles (arms extended and hands outstretched as though to take something)
Lateral bending (arms lying along the body and hands reaching down as though to pick up something)
Stretching using the wall bars

Balance training (10min) Path with obstacles
Balance exercises performed in order of difficulty:
- heel-to-toe walking
- lateral walking crossing the legs
- walking along a path on surfaces of different texture (foam mats, mats containing sand etc...)
Ball exercises

Overground gait training (10min) Overground gait training (forwards, backwards and lateral)
Walking on the spot

Machine exercises (10min) Treadmill
Cycle ergometer
Cyclette
Leg extension
Leg press
Proprioceptive footboard
Elliptical trainer
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population showed a prevalence of beta rhythm and a subgroup dis-
played a prevalence of theta power. This is in line with reports in PD of
an EEG slowing, possibly related to cognitive impairment in PD
(Caviness et al., 2016); although such a straightforward relation did not
emerge in our sample due to the exclusion of overt cognitive impaired
participants, this finding supports the notion that not every subject with
PD will have an excess of beta.

Individual definition of the treatment protocol lies on the assump-
tion of a different prevalent rhythm and lateralization of it. PD starts
with a unilateral basal ganglia involvement, which reflects into a la-
teralization of EEG activity and has been associated with clinical dis-
ability (Mostile et al., 2015).

Individual targeting of frequency and site of stimulation appears
thus mandatory to optimize treatment effects.

Previous studies reported discordant outcomes of tACS in PD. TACS
applied to the forehead with a frequency of 77.5 Hz did not significantly
influence off-medication UPDRS scores in subjects in the initial stages
(Shill et al., 2011). Lack of efficacy could be due either to positioning of
the stimulator (frontal instead of motor cortex) or to inadequate fre-
quency (Pogosyan et al., 2009).

Rhythmic non-invasive brain stimulation (NIBS) techniques have
been shown to effectively modulate frequency bands (Herrmann et al.,
2016). By strengthening the up- and down states of neuronal en-
sambles, which constitute the oscillatory network, tACS facilitates the
spiking of neurons during down-phases, which in turn elicits further
spiking by adjacent neurons (McDonnell and Abbott, 2009). The state-
dependent oscillatory behavior of the brain is supported by perturba-
tional studies, in which the on-going brain activity is disrupted by an
external stimulus, i.e. transcranial magnetic stimulation. Overall brain

activity subsides in the few milliseconds after the TMS pulse, only to
show a rebound in the oscillatory activity which was prevalent im-
mediately before the perturbation (e.g. during slow waves sleep, a re-
bound in delta band) (Manganotti et al., 2013; Del Felice et al., 2011).
Taken together these observations consolidate the view that brain in-
trinsic dynamic networks are highly non-entropic systems, which tend
spontaneously to return to the point of equilibrium – or into the phy-
siological oscillatory range.

Our aim was to interfere with pathological oscillations and shift
oscillatory brain activity into its physiological range. Although the
neurophysiological and theoretical framework of rhythmic NIBS en-
trainment supports the view of an oscillatory substrate for modulation
to take effect, we tested the hypothesis that brain rhythms could indeed
be shifted into their natural oscillatory range.

Interestingly, only theta stimulation applied mainly over the SM
area modified both neurophysiological and behavioral parameters. EEG
frequencies showed a slowing associated with a reduction of bradyki-
nesia score and an improvement of cognitive functions.

We do not have a clear explanation for this finding. PD is generally
known as a beta oscillopathy; slow rhythms are associated with cog-
nitive decline and considered a prognostic marker of it (Olde Dubbelink
et al., 2013). One hypothesis is that beta excess could be more easily
correct because it oscillates in an encircled circuit – thalamo-cortico-
basal network. Slow rhythms, particularly in sub-cortical cognitive
impairment, are a diffuse phenomenon. A focal stimulation, such as
tACS, is thus likely to interrupt a defined circuit but is unlikely to im-
pact on a pan-cortical phenomenon such as global slowing.

An active sham stimulation was used. A recent consensus statement
(Thut et al., 2017) raised the issue of the effects of an electrical

Fig. 3. Example of statistical comparison. Statistical maps derived from two subjects with PD vs. control group: one subject stimulated in theta range (Pt 4) and one in
beta range (Pt 8). (Left) Participant 4 shows higher beta activity, compared to controls, over FC1 and C3. He was stimulated in theta range over C3 (black circle at T0).
Beta activity reduction was observed after real stimulation but not after sham stimulation. (Right) Participant 8 shows higher theta activity, compared to controls,
mainly over left frontal areas. He was stimulated in beta range over F3 (black circle at T0). No significant modifications were observed after both real and sham
stimulation.
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Fig. 4. Study flow diagram.

Table 3
Baseline demographic and clinical characteristics of included participants.

Subject Age (years) Sex Duration of
disease (years)

L-Dopa
dose (mg)

Education
(years)

1 72 Male 2 800 16
2 64 Female 2 450 5
3 73 Male 1 200 13
4 79 Male 10 300 5
5 80 Female 3 300 13
6 69 Male 9 750 8
7 61 Female 11 600 11
8 75 Male 18 600 13
9 71 Male 6 400 17
10 63 Male 7 450 10
11 68 Male 2 300 17
12 60 Male 2 200 17
13 65 Female 8 400 5
14 66 Female 6 600 17
15 83 Female 4 400 5

Table 4
Stimulation parameters.

Subject Prevailing band Stimulation site Stimulation frequency

1 Beta FC1 - Left mastoid 4 Hz
2 Beta FC5 - Left mastoid 4 Hz
3 Beta C3 - Left mastoid 4 Hz
4 Beta C3 - Left mastoid 4 Hz
5 Alpha2 CP5 - Left mastoid 4 Hz
6 Theta CP5 - Left mastoid 30 Hz
7 Alpha1 Pz - Right mastoid 30 Hz
8 Theta F3 - Left mastoid 30 Hz
9 Beta FC5 - Left mastoid 4 Hz
10 Beta C4 - Right mastoid 4 Hz
11 Beta C4 - Right mastoid 4 Hz
12 Beta C4 - Right mastoid 4 Hz
13 Beta C4 - Right mastoid 4 Hz
14 Theta C4 - Right mastoid 30 Hz
15 Theta CP5 - Left mastoid 30 Hz
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stimulation in modulating brain function: RNS, which does not deliver a
definite sinusoidal stimulus, has been suggested as an effective control.
Indeed, data on RNS are inconclusive regarding its influence on motor
and cognitive performances (Ho et al., 2015; Tyler et al., 2018).

The effectiveness of our intervention compared to an active sham
further strengthens our findings. No significant effects on brain rhythms
and motor scores were recorded during sham, confirming that clinical
and neurophysiological outcomes are causally related to tACS – and
thus a modulation of on-going brain oscillations.

The coupling of physical therapy with neurostimulation has a ra-
tional in physical therapy being a mainstay of current PD treatment; it
improves motor and cognitive functions in individuals with mild to
moderate impairment (Petzinger et al., 2013) and has been included as
adjuvant to pharmacological and neurosurgical approaches
(Abbruzzese et al., 2016; Duchesne et al., 2015). Association of physical
therapy to tACS has a dual aim: exercise activates cortical sensori-motor
areas, priming the neuronal population. TACS may also be useful in
amplifying cortical plasticity during neurorehabilitation (Block and
Celnik, 2012).

Motor outcome improved immediately after the conclusion of real
stimulation. The study protocol set a very conservative cut-off (30%
reduction from baseline). This result was not obtained but we are
confident in supporting the efficacy of intervention. The MCID for

UPDRS III is set at 2.5 points for minimal, 5.2 for moderate, and 10.8
for large differences (Shulman et al., 2010). Our population showed an
overall reduction of 5.9 points and a reduction of 8.25 points in the
subgroup with beta spectral power excess EEG. These results account
for a moderate effect, despite a reduction of 17–23.5% of baseline score
instead of the 30% defined by the protocol.

We observed a specific reduction of the bradykinesia UPDRSIII sub-
items with almost no effect on gait and posture. This finding supports
the causal link of beta band excess and bradikynesia with a mechanism,
which mimics deep brain stimulation effects on axial impairment – i.e.
scarce efficacy.

We found an improvement of cognitive abilities (prefrontal-execu-
tive) at follow-up. This finding may be attributed to increased neuronal
plasticity that may make treatment benefits on cognition more evident
later in time (Reato et al., 2013). The time interval between end-of-
treatment and follow-up represents a precious period for consolidation.

We used parallel versions of tests to overcome any learning effect in
repeated test.

The main limitation is the small sample size. To overcome this issue
large, multicentre studies are mandatory. In fact, we did not consider
age difference between PD participants and controls as main limitation.
In light of the known slight slowing of EEG rhythms in the elderly, with
a shift of beta to alpha rhythm and a projection of alpha towards more
anterior regions, we deemed this finding not relevant for data inter-
pretation. Indeed, PD shows an increase of the relative beta power (i.e.
the beta absolute power divided by the power calculated in the whole
spectrum) compared to healthy volunteers: considering that we would
expect a slight slowing of faster EEG rhythms in the elderly, our finding
of a beta excess over sensorimotor areas is all but more significant.

A potential bias could have been concomitant drug therapy, af-
fecting stimulation effects, although dosage of any group was main-
tained stable to avoid confounders. Intra-subject data comparison re-
duced this bias.

5. Conclusion

These data provide evidence of the efficacy of personalized tACS
coupled with physical therapy on motor and cognitive symptoms in PD.
Long term efficacy and different schedules need to be investigated to
determine the real feasibility of tACS as an add-on home therapy.
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Appendix A. Neuropsychological testing

The Edinburgh Handedness Inventory (Oldfield, 1971) is an inter-
view about the preferred use of hands, feet, eyes and ears (32 items).
Individuals with Edinburgh scores between −69 and+69 were con-
sidered “mixed-handed” and those with scores higher than +69 were
considered “fully right-handed”.

The State-Trait Anxiety Inventory (Spielberger et al., 1983) is a 40-
item self-report questionnaire assessing state and trait anxiety levels.
Scores range from 20 to 80, with higher scores indicating higher levels

Table 5
Motor scores: UPDRS III and Gait Dynamic Index scores.

Motor items Real tACS RNS

T0 T1 T2 T0 T1 T2

UPDRS-III
UPDRS-III total score 33,29 27,36 28,46 33,18 30,54 25,11
Bradikynesia score 3 2,42 2,58 2,97 2,86 2,24
Tremor score 0,47 0,36 0,42 0,58 0,21 0,5
Axial symptoms score 0,83 0,84 0,72 0,82 0,79 0,59

Dynamic Gait Index 20,79 21 20,71 20,21 21,21 21,5

Table 6
Neuropsychological scores.

Neuropsychological items Real tACS RNS

T0 T1 T2 T0 T1 T2

Clinical scales
Beck depression
inventory-II

5 7 7,57 9,21 6 8

Geriatric depression
scale

5,21 4,43 3,79 3,21 3,5 4,5

State trait anxiety
inventory Y1

37,57 40,86 40 37,36 41,29 36,57

Screening for dementia
Montreal cognitive
assessment

24,79 22,71 26,5 23,71 24,79 23

Attention and working memory
Trail making test

TMT-A 48,71 52,86 49,79 54,64 52,5 48,93
TMT-B 116,07 78,83 96,43 173,5 119,79 108,29
Delta trail 67,36 37,29 50,5 118,86 67,29 59,36

Digit symbol
substitution test

45,86 43,71 42 41,43 42,71 46,07

Executive function
Phonemic fluency 31,43 30,86 31,79 30,14 30,36 31,43

Visuospatial abilities
Rey complex figure

Copy 26,36 25,21 24,71 24,07 26,29 26
Copy-time 136,36 123,43 124,43 175 155,57 141,93
Memory 15,61 14,96 14,82 12,71 13,79 12,93
Memory-time 147,71 152,5 119,29 130,43 114 135,43

Verbal learning and memory
Hopkins verbal learnig
test-revised

21,43 20,79 21,71 19,43 20,29 20,71
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of anxiety severity.
The Brief Intelligence Test (TIB) (Colombo et al., 2002) gives an

estimate of the intellectual ability level previous to the onset of the
disorder (i.e., premorbid intellectual ability); the test is the Italian
version of the National Adult Reading Test. The task consists in reading
34 irregular Italian words which violate typical stress rules. Successful
word reading is thought to be linked to prior achievements and not to
current cognitive ability.

The Montréal Cognitive Assessment (MoCA) is a 30-point brief
cognitive screening scale with short time of administration. The
Movement Disorders Society (MDS) rated MoCA scale as “re-
commended” for screening assessment in PD and proposed the fol-
lowing cut-offs: 20–21/30 for PD-D (PD and dementia) and 23–29/30
for PD-MCI (mild cognitive impairment) (Nasreddine et al., 2005). It
measures a broad spectrum of cognitive abilities that are relevant to PD:
in particular, it is developed to explore frontal cognitive domains (i.e.,
attention, executive functions, and conceptual thinking), all domains
frequently involved in early stage PD. The MoCA appears to be more
specific to the type of cognitive deficit showed by PD patients.

The Rey-Osterrieth Complex Figure Test (ROCF – Rey, 1941) is a
measure of visuo-spatial constructional abilities and visuo-graphic
memory, but also cognitive planning, organisational strategies and
executive functions. The task is composed of two parts, direct copying
(assessing perception and visuo-spatial construction) and delayed re-
production (assessing implicit visuo-spatial memory). We used the
three minutes (short) delay to assess visual memory. Given that re-
peated administrations of the ROCF resulted in significant improve-
ments of performance, we used alternative forms: the Modified Taylor
Complex Figure, and two out of the four complex figures devised for
repeated assessments by the Medical College of Georgia Neurology
group (Figs. 2 and 3) (Lezak et al., 2004). This task was used in other
disorders as a measure of central coherence (the ability to put together
different details in order to gain the “big picture”) by means of both the
Order of Construction Index (the order in which the different global
elements were drawn) and the Style Index (indicative of the degree of
continuity in the drawing process). The Central Coherence Index (CCI)
ranges from 0 (weak coherence) to 2 (strong coherence).

The Digit Symbol-Coding (from the Wechsler Adult Intelligence
Scale 4th edition; Wechsler, 2013), is a measure of grapho-motor
working memory and speed of processing. It consists of digit-symbol
pairs followed by a list of digits. Participants must write the corre-
sponding symbol under each digit (ranged from one to nine) as fast as
possible in a limited time interval (120″). Digit Symbol appears to be
relatively unaffected by intelligence, memory, or learning. Motor per-
sistence, sustained attention, response speed, visuomotor coordination,
all have some role in digit symbol performance, which is also affected
by education, gender and age. No practice effects appeared after re-
peated administering (Lezak et al., 2004).

The Hopkins Verbal Learning Test-Revised (Brandt, 1991) is a test
that assesses verbal learning and memory. The test consists of three
trials of free-recall of a 12-item composed of four words belonging to
three different semantic categories. The authors provide six parallel
forms leading to equivalent results in the normal population. We used
three lists (N 1, 5, and 6) and considered only the free-recall as outcome
measure.

The Trail Making Test A and B (Reitan, 1958) measures attentional
speed, sequencing, visual search and mental flexibility. Part A (TMT-A)
assesses motor speed, part B (TMT-B) assesses complex divided atten-
tion and set-shifting, B-A difference (i.e., B/A ratio) gives a measure of
cognitive shifting cost and allows us to control for motor impairment.
Practice effect is under discussion, especially in the case of short time
interval, and we used three parallel forms (LoSasso et al., 1998).

The Phonemic Verbal Fluency task (Newcombe, 1969) requires
patients to freely generate as many words as possible that begin with a
specific letter (phonemes) in 60 s. The task requires patients to retrieve
words of their language and to access their verbal lexicon, focus on the

task, select only words following specific rules and avoid repetitions
and words that start with phonemes close to the target one. It is
therefore considered dependent on executive control, beyond the in-
volvement of verbal abilities. The outcome consists in the total correct
words produced through three letters. In the literature different letter
combinations are available to longitudinal studies.

The Geriatric Depression Scale-15 item (Sheikh and Yesavage,
1986) is a self-administered instrument widely used to assess mood
levels in the elderly population. Suggested cut-off scores range from
7 ± 3 (mild depression) to 12 ± 2 (severe depression).

The Beck's Depression Inventory-II (Beck et al., 1996) was used to
assess depression. It consists of a 21-item questionnaire yielding a
composite score of self-reported symptom severity. Standard cut-off
scores are: 0–9=minimal depression, 10–18=mild depression,
19–29=moderate depression, and 30–63= severe depression.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2019.101768.
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