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Behavioral Anomaly Detection in Forensics

Analysis
Sherenaz Al Haj Baddar, Alessio Merlo Member, IEEE, and Mauro Migliardi

Abstract—In cybercrimes pertaining to networking activities,
forensics activities and user privacy rights are often competing
forces as it is illegal to examine messages contents without a
court warrant. Furthermore, examination without users per-
mission may be impossible if cryptography has been used.
Thus, lightweight forensics tools, capable of providing a first
line of warning without infringing users privacy are needed.
We argue that packet summarization, combined with dynamic
anomaly detection, could provide evidences sufficient to identify
malicious actor(s) within a network. Moreover, when an evidence
that entities are straying from normal behavior exists, without
breaching their privacy, legal access to their messages contents
becomes possible. Our contribution in the field of lightweight
forensics tools is twofold: first we introduce CATTURE, a
lightweight statistical detector capable of identifying behavioral
anomalies among network nodes timely, without jeopardizing
users’ privacy; second, we leverage the expertise of network
administrators to ground statistical behavioral anomalies, and
cite related events to reduce false positives and increase the
sensitivity of the system towards false negatives.

Index Terms—anomaly detection, outlier detection, forensic
analysis, profiling, sketching

I. INTRODUCTION

Cybercrime is on the rise, yet network forensics still struggle

with the problem of identifying misdemeanors without com-

promising innocent users’ privacy. In fact, while looking into

a user data stream may in some cases provide incriminating

information, in most countries it is illegal to do so without an

explicit warrant. Moreover, recent studies on digital forensics

cite several challenges among which is the lack of effective in-

stant anomaly detection tools, which deprives forensic analysis

tools from initial leads vital for their operations (see, e.g., [9],

[7], [14]). Hence, it is necessary to adopt a layered approach

where forensics tools both lightweight and privacy preserving

are deployed to provide a first level of detection for suspicious

behaviors. When such a behavior is detected, further investi-

gation will be deployed targeting a limited subset of the traffic

with the twofold advantage of reducing the computational

requirements and, if necessary, providing the basis for the

request of an actual warrant. We introduce CATTURE, a

lightweight, privacy-preserving, behavioral anomaly detection

tool that does not assume any prior knowledge on what

constitutes an anomaly. The CATTURE investigation is based

only on anonymized traffic features and its results respect the
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legal constraints defined by the EU for the publication of

network traffic. Furthermore, we show how it is possible to

leverage the specific knowledge and expertise of the network

administrators of a specific site in order to ground statistical

signatures and statistically anomalous behaviors to specific

unseasonal events in order to cull the number of false positives

without reducing the sensitivity of the system and generating

false negatives.

After generating packets statistical summaries in terms of a

pre-defined set of features for all nodes observed, CATTURE

generates clusters according to each feature then aggregates

nodes with similar patterns together forming profiles. In order

to identify malicious activities, outlier detection is deployed

to single out profiles with extreme feature values, relatively

speaking, and label the nodes comprising them as anomalous.

One of the most problematic aspects of anomaly detection

solutions is their inability to cope with special events and

ephemeral modifications without generating a flurry or false

positives [4], [5]; at the same time, the sensitivity to changes

in behavior that are specifically dangerous or suspicious are

often treated not differently from any other change and thus

can lead to very troublesome false negatives. For these reasons,

we have decided to “ground” our statistical analysis to the

actual meaning of events by fusing the wisdom of network

experts, actually, the expertise of the system managers of

the sites where our tool has been tested. This way, we

enrich our statistical anomaly detection system with expert-

knowledge reducing the frequency of both false positives and

false negatives.

Structure of the paper. Section 2 highlights related work,

while Section 3 presents the CATTURE architecture and

describe its operations in details. Section 4 reports the ex-

periments conducted using an actual dataset collected from

a campus network. It also illustrates the results obtained

considering the insights provided by network administrators.

Finally, the conclusions and future work of this study are

depicted in Section 5.

II. RELATED WORK

Recent research on forensics analysis has opted for applying

intrusion detection solutions to help identify malicious parties

pro-actively. Here we shed light on some state-of-the-art exam-

ples, like the Network Forensics based on Intrusion Detection

Analysis (NFIDA) system [6]. This system utilizes packet

headers to perform offline analysis that comprises pattern

matching and protocol analysis and utilizes library traces in

order to identify packets that convey malicious behavior. A hy-

brid attack detection and anti-honeypot-based forensics model
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addressing DDoS attacks in Machine-to-Machine networks,

HADFM, is depicted in [13]. The proposed solution utilizes

a decentralized intrusion detection framework that reacts to

detected threats in a real-time fashion. The Alert Detection

Expert System (ADES) forensics tool comprises intrusion

detection as depicted in [8]. ADES analyzes large amounts of

logs to identify DDoS attacks pro-actively using a combination

of Shannon-entropy concept and clustering algorithms. The

offline centralized forensics system depicted in [1], Admissible

Network Forensics Correlation Model (ANFCM), utilizes a

log-based intrusion detection component, then applies decision

tree algorithms in order to filter anomalous behaviors. After-

wards, ANFCM re-routes the logs to a central repository where

event-logs management functions are applied. The Fuzzy

Logic-based System for Origin of Attack Detection (FLSOAD)

is a network forensics tool that aims at identifying the origin

of attack using intrusion detection as depicted in [10]. It

comprises an expert system based on fuzzy logic to identify

the time, origin, and method of the attack. Behavioral anomaly

detection is also used in the network forensics with Dempster-

Shafer theory tool, NFDST, proposed in [12]. NFDST is a

decentralized digital evidence fusion tool that utilizes efficient

data mining and reasoning theory techniques to detect and

fuse anomalous behavior from different sources in a real-time

manner.

As depicted in these examples, network forensics analysis

tools that utilize intrusion detection vary with respect to their

processing style, thus while some operate in a centralized fash-

ion, others are distributed. Also, forensics tools responsiveness

differs, as some provide real-time responses as soon as abnor-

malities surface, as others digest the collected information and

provide feedback offline. As for the approach forensics tools

deploy, it spans machine learning and information theoretic

techniques among other approaches. The end-goal of a foren-

sics tool differs as well; some tools aim at identifying the

origin of an attack, while others aim at visualizing the attack.

Also, some forensic tools aim at reconstructing the attacks

while others aim at analyzing intrusion data. Table I depicts a

taxonomy of network forensic tools.

III. THE CATTURE ARCHITECTURE

The Cluster-based Anomaly deTection using skeTURE en-

gine (CATTURE) is an anomaly detection system targeted at

identifying network nodes with anomalous behavior without

jeopardizing users’ privacy. It also aims at providing an

understanding of the underlying network behavior by math-

ematically modeling the operations of the nodes comprising

the designated network.

In order to achieve its goal, CATTURE analyzes certain

features of the network traffic, using the sketch-based tool,

SKETURE, then applies an efficient clustering technique to

categorize the nodes within the network. Afterwards, CAT-

TURE applies a profiling approach to generate sets of patterns

that describe the behavior of the nodes. Then, it compares

these sets of patterns in order to identify the nodes that

are deviating from normal behavior. The CATTURE system

comprises three modules: i) the packet-analysis module, ii)

the profiling module, and iii) the anomaly detection module.

We now describe the operations of these modules, which are

depicted in Fig. 1.

A. The Packet Analysis Module

In order to model the behavior of a given node, its incoming

and outgoing packets need to be analyzed. CATTURE utilizes

SKETURE [3], the sketch-based packet analysis tool, for

packet analysis. As it splits time into equal intervals, SKE-

TURE examines the headers of the packets after obfuscating

their address information, and builds a statistical summariza-

tion of each node n’s behavior in terms of a pre-selected set of

features during each such interval [3]. In this study, we chose

the following features in order to summarize the behavior of

nodes:

• The packet size, in bytes

• The packet count

• The number of unique destinations

• The total amount of bytes

B. The profiling Module

The profiling module in CATTURE comprises two phases;

the clustering phase, and the reduction phase. The clustering

phase clusters the nodes according to each feature separately,

while the reduction phase aggregates the nodes with similar

clustering across different features into profiles. In this sub-

section we describe these two phases in detail.

1) The Clustering Phase: Clustering in CATTURE happens

at two levels; at the first level we cluster nodes according

to how long they have been active in the network, i.e., we

apply duration-based clustering, and label these clusters as

top-groups. At the second level, we cluster the nodes within

each top-group according to the values of their corresponding

features, i.e., we apply feature-based clustering. The duration-

based clustering in CATTURE creates three top-groups; the

Short-Lived top-group denoted by S , the medium-lived top-

group denoted by M, and the long-lived top-group denoted by

L. While top-group S contains the nodes that remained active

for the fewest time intervals, the L group contains the nodes

that were active for the most time intervals, whereas remaining

nodes get assigned to the M top-group. We chose to do this

duration-based clustering before analyzing nodes’ behaviors

because it is unlikely that nodes that appear sporadically

will behave like nodes that are active almost all the time.

Next, feature-based clustering executes for each top-group

separately. Thus, within each top-group, CATTURE applies

a divisive clustering algorithm, QUIST [2], considering each

feature separately. Considering a given top-group d as an initial

cluster with respect to a given feature f , CATTURE calculates

the overall average of node n values. Then, it sorts the set of

all such values across all nodes in d. After that, it applies the

QUIST spreadness metric which estimates the scatterness of

values within a set and determines whether the nodes within

the set need to be split into further sub-clusters or not. If

the spreadness value of the initial cluster exceeds a pre-set

threshold, the cluster is split into two parts at its median. This

process is repeated iteratively until each remaining cluster has
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TABLE I
TAXONOMY OF FORENSICS ANALYSIS TOOLS.

Forensics Tool Processing Responsiveness Approach Objective

CATTURE centralized real-time machine learning origin of attack
NFIDA [6] centralized offline machine learning analysis of intrusion data

HADFM [13] decentralized real-time hybrid reliable forensic evidence
ADES [8] centralized real-time hybrid reliable forensic evidence

ANFCM [1] centralized offline decision trees reliable forensic evidence and attack reconstruction
FLSOAD [10] centralized real-time fuzzy logic origin of attack

NFDST[12] decentralized real-time hybrid reliable forensic evidence

Fig. 1. The CATTURE Architecture

fewer nodes than a pre-defined size s, or has a spreadness

value below the pre-set threshold. QUIST also terminates when

the number of generated clusters reaches a pre-defined limit

K, whichever happens first. After creating separate clusters of

all features within each top-group d, the next phase reduces

the generated clusters into profiles.
2) The Reduction Phase: In this phase, CATTURE desig-

nates each cluster generated with respect to feature f , Cf , by

an interval comprising the minimum and maximum values that

it contains, denoted by [minCf ,maxCf ]. Then, it examines

the clusters to which each node belongs with respect to each

feature f , and creates a corresponding association, which

depicts each cluster to which a given node belongs with respect

to each feature f . Next, all nodes with identical associations

are assigned to a profile, pi. However, this may generate

numerous profiles; thus, CATTURE merges similar profiles.

More precisely, as profiles comprise associations, profiles pi
and pj are similar if their corresponding associations are sim-

ilar for each feature f . Also, two associations are considered

similar with respect to feature f if all the respective intervals

comprising them are similar. Two intervals are similar if either

one is contained in the other, or if most of their values are in

common. Furthermore, if the intervals are too close to each

other, i.e. the distance between the two furthest endpoints of

two intervals is less than or equal to a tolerance constant, then

they are considered similar.

Thus, if the associations of two profiles are similar, then

they are considered similar and are thus merged into a new

profile that contains all the nodes that appeared in both profiles

originally. The process of reducing similar profiles continues

until no profiles are similar.

C. The Anomaly Detection module

This module applies statistical outlier detection to isolate

outlier profiles with respect to each feature f . The technique

adopted is modified Z-Score, which comprises a standardized

score that measures how much a given value differs from

typical values within a set of values1 . We run this statistical

test across all profiles within a given top-group, d, with respect

to a particular feature f . If a profile passes the test, we

label it as normal with respect to feature f , otherwise, we

label it as abnormal with respect to feature f . If a given

profile is labeled normal with respect to all features f , then

it is labeled as normal. Otherwise, it is labeled as potentially

Outlier. Consequently, nodes that comprise that profile are also

labeled as potentially malicious.

This labeling serves as a first-level alarm, yet, it may

convey false alarms. Therefore, CATTURE checks its Ex-

ception repository for exceptions provided by the network

administrator; if a profile it labeled appears with a different

labeling in the repository, it fixes the label accordingly.

Administrators may also examine nodes within profiles

CATTURE labeled as Outlier and provide further feedback.

Upon doing so, the network administrator would either confirm

the CATTURE labeling of a given potentially Outlier profile,

or alternatively add that profile to CATTURE’s Exception

repository.

1https://www.ibm.com/support/knowledgecenter/en/SSWLVY 1.0.1/com.
ibm.spss.analyticcatalyst.help/analytic catalyst/modified z.html
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IV. EXPERIMENTATION AND RESULTS

In this section we present the dataset we used for assessing

CATTURE alongside the CATTURE implementation. Then,

we depict the preliminary results and highlight the insights

obtained from domain experts.

A. The Padua Dataset

The Padua dataset comprises the traffic of the Department of

Information Engineering (DEI) at the University of Padua over

a month starting on April 5th 2015, and ending on May 5th,

2015 [3]. In order to perform our studies without jeopardizing

users’ privacy and to comply with the EU regulations, our

traces only comprised the following information per packet:

• obfuscated IP addresses

• packet timestamp

• packet length

B. Implementation

The implementation of CATTURE is based both on the

SKETURE tool depicted in [3] and on an implementation of

the profiling and anomaly detection modules in Java v. 8.0.

SKETURE was first used to generate per-minute summaries

for the traces collected on Monday April 27th 2015, Friday

May 1st 2015, and Sunday May 3rd 2015 each aside. Then,

the profiling module performed a first-level clustering that

generated 3 top-groups for Short-Lived, Medium-Lived, and

Long-Lived nodes. The Short-Lived group spanned nodes that

were alive for less than ten minutes, and comprised most

of the nodes, while Medium-Lived nodes were active for up

to 20 minutes and comprised only 6% of nodes observed.

Moreover, Long-Lived nodes were active for more than 20

minutes and up to 24 hours, and comprised around 15% of

nodes observed. We ran our experiments without utilizing an

exception repository as we have not had any pre-insights on

what would constitute an exception at the time.

C. Preliminary Results

In this subsection we summarize the labeled profiles CAT-

TURE generated for the Monday April 27th traces which,

according to the DEI network administrators, was rather a

regular working Monday on campus. We also contrast the

behavior exhibited by the network on that day with its behavior

on Friday May 1st which is an official Holiday in Italy and

with Sunday May 3rd which is a typical weekend day. Finally,

we highlight time and memory requirements of the profiling

and anomaly detection modules in CATTURE.

1) Network Behavior: Comparing the number of nodes

observed in 3 different days, namely Monday April 27th,

Friday May 1st and Sunday May 3rd, we notice that Monday

had the highest number of nodes. In fact, an official holiday

(May 1st) and a Sunday had only 54% of the nodes observed

on the Monday.

On the other hand, analyzing the number of profiles gen-

erated for each of the examined days, we observe that while

Monday April 27th had 98 profiles, Friday May 1st, although

an official holiday, had a close number of profiles, 92, while

Sunday as a weekend only had 83 profiles. Furthermore, nodes

that remained active on Friday were almost 50% of the nodes

reported on Monday; however, they produced 92 different

profiles. On the other hand, Sunday had a similar number

of nodes like Friday, yet, it had less profiles. This indicates

that network administrators probably had the nodes do some

routine tasks on Friday which they would not normally do on

a Sunday.

To gain a better understanding of how the observed nodes

behaved, we now illustrate a summary of the labeled profiles

exhibiting normal and outliers based on statical detection as

identified by CATTURE. While none of the reported packet

sizes in Short-Lived profiles on Monday were statistically

abnormal, 8% of Medium-Lived profiles had abnormal packet

sizes that ranged from almost 0.8KB up to almost 3KB.

Moreover, 28.2% of Long-Lived nodes exhibited statistically

abnormal packet sizes ranging between about 0.3KB up to

around 3.4KB. As network administrators asserted there were

no abnormalities reported that day, we will consider these

statistical outliers as false positives. Yet, should we have had

a priori knowledge on nodes roles, we could have identified

anomalies that were missed by the network administrators.

We now analyze the statistical analysis of packets count

in relation to duration clustering. First, only 0.26% of Short-

Lived nodes exhibited statistically anomalous behavior in

terms of packet counts, as they sent from almost 8.5K packets

to 140K packets per minute; at the same time, 7.5% of

Medium-Lived had statistically abnormal number of packets

per minute as almost 6.7% of them sent up to 6.5K packets

per minute, while almost 0.8% of them sent up to 53.5K

packets. As for Long-Lived nodes only 0.7% of them exhibited

statistically abnormal packet counts reaching up to 231K

packets per minute. Again, as network administrators stated

that they have not noticed any abnormalities on Monday April

27th, we will consider the CATTURE outliers false positives.

However, the existence of priori knowledge on nodes roles

should have helped us identify stealthy anomalies not spotted

by network administrators.

With reference to the number of unique destinations of

packets we observe that none of the Short-Lived nodes con-

tacted more than 2304 different destinations per minute, while

36.15% of Medium-Lived nodes contacted at most one unique

destination per minute. On the other hand, 0.72% of Long-

Lived nodes contacted at most 390 unique destinations. As

CATTURE classified the Medium-Lived nodes with at most

one unique destination per minute together with Long-Lived

nodes with more than 20 unique destinations per minute as

statistically anomalous, we still cannot confirm that either one

of those nodes is actually anomalous unless we have further

information on their position in the network and the types of

tasks they were expected to do.

The statistical analysis of the total bytes transmitted by

nodes clustered according to their duration shows that about

6% of the Short-Lived nodes exhibited a statically anomalous

behavior by sending more than almost 0.2MB and up to

33MB of data per minute. Also, almost 15% of Medium-

Lived nodes sent more than 69KB and up to about 80MB

of data per minute, and were flagged as statistical anomalies.
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As for Long-Lived nodes, almost 18% of them exhibited

statistically anomalous behavior by sending more than 33KB

and up to about 342MB of data per minute. Aside from

being statistically abnormal, network administrators would

probably be interested in investigating such nodes to validate

their operations when such an observation is generated by

CATTURE.

We also compared the behavior exhibited by the nodes on

Monday, Friday, and Sunday, with respect to the maximum

value reported in each association across the 3 days. The

maximum average packet size reported on Friday and Sunday

exceeded the corresponding value reported on Monday for

Short-Lived nodes. While the maximum average packet size

reported in Short-Lived nodes on Monday was a bit below 4

KB, the maximum average packet size for Short-Lived nodes

on Friday and Sunday reached almost 5KB. According to the

network managers, this is probably due to the fact that more

machine-driven automated traffic was generated on Friday

and Sunday, compared to Monday, when human users were

around. Furthermore, while Long-Lived nodes behaved almost

similarly in the 3 days in terms of their packet sizes, Medium-

Lived nodes sent much smaller packets on Sunday compared

to Monday and Friday; on Sunday, Medium-Lived nodes sent

packets each of no more than 1.5KB, compared to Monday

and Friday were Medium-Lived nodes sent packets with sizes

almost twice as large.

Analyzing the behavior in the three days with respect

to packet counts, we observed that Short-Lived nodes on

Monday sent more packets; in fact, their maximum packet

count reached almost 150K packets per minute, while much

less activity was observed on Friday and Sunday where packets

sent per minutes did not exceed 80K. As Monday was a work-

ing day compared to an official holiday and a weekend, this

behavior is rather expected. Yet, when Medium-Lived nodes

are examined a different pattern is identified. Compared to

Medium-Lived nodes on Monday that sent almost 50K packets

per minute, and Medium-Lived nodes on Sunday which sent

almost no more than 20K packets per minute, Medium-Lived

nodes on Friday peaked them both by sending almost 400K

packets per minute. This is quite interesting as Friday was

an official holiday, thus, unless network administrators were

running pre-scheduled tasks that would cause Medium-Lived

nodes to send this much packets, this behavior implies an

anomaly in the 30% of these Medium-Lived nodes and further

investigation has been suggested.

We also compare the maximum number of unique destina-

tions nodes contacted per minute. In the 3 days we are con-

sidering, Short-Lived nodes contacted almost 2200 different

destinations per minute, while Medium-Lived nodes contacted

no more than 500 unique destinations in the 3 days. As for

the Long-Lived nodes, they contacted less than 500 unique

destinations per minute on Monday, and almost 100 unique

destinations per minute on Sunday. However, albeit being a

day-off, some Long-Lived nodes contacted almost 1200 unique

destinations on Friday. Again, unless network administrators

can assert that this behavior was normal due to some pre-

scheduled operations, one may suspect that these nodes were

involved in a malicious behavior and further investigation is

suggested.

Medium-Lived nodes also exhibited a different-than-

expected behavior on Friday compared to Monday and Sunday.

Some Medium-Lived nodes sent almost 600MB of traffic per

minute on Friday, while on Monday they did not exceed

100MB of traffic per minute. Also, Medium-Lived nodes on

Sunday did not send more than 4MB per minute. This further

confirms our previous notes on Medium-Lived nodes behavior.

As for Short-Lived nodes, their behavior on Monday compared

to Friday and Sunday is rather expected; Short-Lived nodes on

Monday sent up to 200 MB of data per minute, while their

counterparts on Sunday and Friday did not exceed 100MB

per minute. As for Long-Lived nodes, they did not send more

than 9.6MB per minute on Sunday, and almost no more than

200MB on Friday, but as expected, they sent around 350MB

of traffic per minute on Monday.

The outliers identified by CATTURE were considered false

positives as network administrators stated that they have not

identified any malicious behavior on Monday April 27th.

Nevertheless, the number of outlier nodes CATTURE recog-

nized was way smaller than the actual network size, and the

nodes worrisome features were clearly identified. Thus, the

introduction of CATTURE allows adopting a second level of

analysis with reduced computational and privacy infringement

requirements.

2) Performance of CATTURE: If CATTURE fails at raising

the first-level alarm timely, malicious behavior could go unno-

ticed until it is too late. In our experiments, while generating

labeled profiles for 28MB of summaries required 5 seconds, it

took almost 25 seconds to generate such outcomes for 168MB

of summaries. As for memory consumption, the same set of

experiments showed that, while running CATTURE for 28MB

of summaries required 500MB of RAM, running it for 6 times

more input increased the memory required to only 600MB.

Hence we conclude that CATTURE is CPU hungry and the

computational requirements are almost linear with the amount

of data processed; however, the memory consumption pattern

shows a significant saturation effect.

D. Experts Insights and Discussion

We discussed the results and outlier labels we obtained

with the network administrators at the University of Padua.

Aside from asserting that they are not aware of any abnormal

behaviors on Monday April 27th, they expressed their concern

from having zombie nodes in their network. They also said

that having an orchestrated set of nodes that do a designated

action at a designated time is another source of concern.

This may imply that the majority of the outliers identified

by CATTURE as depicted in this section are false-positives,

yet, this does not eliminate the chance that some nodes were

actually abnormal. Discussion with network administrators

confirmed our approach of first doing a durational-clustering

and generate 3 top-groups. They said this would help them bet-

ter contrast nodes behaviors. Moreover, network administrators

re-emphasized the importance of tuning behavioral anomaly

detection solutions to the environment in which they operate.

Otherwise, statistical outliers may become irrelevant to nodes
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behavioral context. This tuning also helps ground normal

profiles and continuously improve the exception repository.

Identifying a priori behavioral groups and generating a priori

tags for each node may help grounding the statistical analysis.

As an example, in the DEI network it is possible to identify

three main behavioral groups: personal machines of staff mem-

bers; public machines for students; and servers. Among the

servers group further distinction may tag computational servers

differently from web-services servers. Intuitively, it is obvious

that these categories are too broad to allow pinpointing a single

node in the set and thus breach anonimity; nonetheless, to

guarantee the desired level of privacy, it is possible to design

the tagging so that is guarantees k-anonimity [11]. Adopting

this set of a priori tags would enrich the statistical analysis

performed by CATTURE.

V. CONCLUSIONS AND FUTURE WORK

In order to provide initial leads essential to effective investi-

gations, forensic analysis tools need to overcome the problems

of users’ privacy and of immediate response times. For these

reasons, in this paper we introduced CATTURE, a lightweight

statistical detector capable of identifying behavioral anomalies

both in time and among the network nodes population while

complying with the privacy rules of Italian law, one of the

most restrictive of the European Union in the field of privacy.

CATTURE not only uses statistical outlier detection to identify

anomalies, but also leverages domain experts’ knowledge to

help further refine its findings.

To evaluate the performance of CATTURE, we had it

summarize and analyze the packet traces of a campus network

on 3 days, Monday April 27th, Friday May 1st, and Sunday

May 3rd 2015. After building profiles of the nodes behaviors,

we applied a statistical outlier detection technique to identify

potentially malicious nodes. We contrasted the behavior of the

network on the 3 days and described the outliers identified, yet,

as the data were completely anonymized and the analysis was

performed post-mortem, it was not possible to perform further

investigations to identify the exact type of misdemeanor. We

then discussed profiles and labels generated by CATTURE

with network experts who suggested that labeling the nodes

with an a priori behavioral category general enough to avoid

privacy infringement (e.g., a web server vs. a desktop machine)

could have helped identify genuinely malicious nodes. Finally,

we depicted time and memory requirements of CATTURE on

dataset samples of varying sizes.

We will improve CATTURE to address a set of issues

highlighted by the domain experts like including a calendar-

themed exception repository that would allow CATTURE

to recognize when certain exceptions are likely to happen.

Moreover, we will introduce node tags that pre-assign roles

to nodes a priori, in order to pinpoint nodes deviating from

normal behavior without jeopardizing users’ privacy.
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