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This study proposes a probabilistic approach for the quantitative

assessment of reach- and network-scale hydrological connectivity

as dictated by river flow space–time variability. Spatial

dynamics of daily streamflows are estimated based on climatic

and morphological features of the contributing catchment,

integrating a physically based approach that accounts for the

stochasticity of rainfall with a water balance framework and a

geomorphic recession flow analysis. Ecologically meaningful

minimum stage thresholds are used to evaluate the connectivity

of individual stream reaches, and other relevant network-scale

connectivity metrics. The framework allows a quantitative

description of the main hydrological causes and the ecological

consequences of water depth dynamics experienced by river

networks. The analysis shows that the spatial variability of

local-scale hydrological connectivity is strongly affected by

the spatial and temporal distribution of climatic variables.

Depending on the underlying climatic settings and the critical

stage threshold, loss of connectivity can be observed in the

headwaters or along the main channel, thereby originating a

fragmented river network. The proposed approach provides

important clues for understanding the effect of climate on the

ecological function of river corridors.
1. Introduction
River networks are key elements of the landscape, as they represent

ecological corridors for biological species and contribute

significantly to shape the hydrological response of catchments

[1–3]. In the large majority of existing theoretical and experimental

works concerning the propagation of waterborne diseases,

ecological dispersion and catchment-scale biogeochemistry (e.g.

[4–8]), river networks are thought of as static connections between

fixed nodes defined on the basis of the topography of the terrain

[9–12]. However, empirical observations suggest a dynamic

behaviour of the flowing network, which is a reflection of the

underlying space-and-time variability of hydrological processes.

The continuous expansion and contraction of stream width and
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depth in response to time-variant hydroclimatic forcing (e.g. rainfall) may create physical disconnections

between river segments [13,14]. Therefore, the ecological function of river networks can be significantly

reduced by unfavourable local hydraulic conditions that challenge the migration of fishes, propagules and

invertebrates, with notable implications for the composition of metacommunities [15–18].

Climate, vegetation and landscape properties determine the natural flow regime of rivers, which their

ecological integrity depends upon [19–21]. In view of the role of rivers as ecological corridors, conceptual

models of species distribution have been developed addressing spatial and temporal biodiversity patterns

in riverine systems [5,22]. However, these studies are based on static networks defined solely on the basis of

geomorphological features and, therefore, they cannot capture the effect of hydrological processes on the

ecological function of rivers. The intertwined link between reach-scale ecological processes and discharge

variability in rivers has received much attention in the literature [23–26]. For instance, several methods

based on the physical simulation of habitats have been developed to predict flow-based alteration of

habitat characteristics [27–29]. Nevertheless, the study of the network-scale ecological implications of

discharge dynamics is a relatively new discipline [14,30]. Most existing studies are focused on individual

river reaches and thereby neglect the spatial dimension of rivers.

According to the river continuum concept, rivers are hydrological continua where ecological

processes and species dynamics take place [31]. Following this pioneering concept and its successors

[32,33], the riverscape paradigm offers a new perspective for integrating ecological processes with

spatial dynamics of hydrological regimes [34]. There is growing recognition that river flow regimes

control the magnitude of in-stream processes [35], as well as the connectivity between source areas

and the catchment outlet, with important implications for biodiversity and ecological functions of

rivers across scales [30,36]. For instance, empirical relationships between fluvial species activities and

flow variability have been recognized, in particular, as influencing fish and aquatic invertebrate

migration [15,25,37,38]. Meanwhile, theoretical approaches have been developed to quantify how

the connectivity structure of habitat networks constrains or promotes the ecological function of rivers

[39–41]. However, in all these studies a causal connection between river network connectivity and

first-order climatic and hydrological drivers is missing, and little is known about the role of

hydrological drivers that shape the ecological function of stream networks.

To fill this gap in our knowledge, we propose here a probabilistic framework able to investigate

quantitatively the principle of causality that drives the link among the following cascade of processes:

(i) climatic driving forces (rainfall and evapotranspiration), (ii) the hydrological response of rivers, (iii)

the connectivity of the network structure, and (iv) the fate of ecological species therein. This work is a

physically based analytical characterization of streamflow regimes at network scale that explicitly

accounts for the randomness of rainfall. The flow regime is defined through the probability

distribution of discharge, expressed as a function of lumped parameters that embody long-term

climatic and landscape features of the contributing areas. Probability distributions of water stages are

consequently derived and used to predict the hydrological and ecological impacts of hydro-climatic

fluctuations by means of suitable stage and connectivity thresholds.
2. Methods
2.1. Streamflow model
The seasonal probability distribution of streamflows is derived by using a mechanistic analytical model

which is based on a stochastic description of catchment-scale water storage dynamics. Model details are

provided in the following sections. The methods are based on the work proposed by Botter et al. [42] and

further developed in [43,44].
2.1.1. Rainfall model

The catchment-scale water storage is controlled by the stochasticity of rainfall. In this paper, we have

extended a lumped formulation widely used in the literature [45–52] by implementing a spatio-

temporal Poisson process for the stochastic generation of daily rainfall. The occurrence of rain events

is described by a counting process {N(t, X), t � 0} of rate lrain(t, X) . 0, which is a multi-dimensional

Poisson process representing the number of rain events occurring per unit time and per unit area. The

process is decoupled into two independent Poisson processes, one in time (with rate lt) and one in a

two-dimensional space (with rate lx ly). In order to define the position of the rain events within the
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domain, the coordinates of the rain cells are assumed to be uniformly distributed across the domain. The

model reproduces a precipitation process in which rain events are made up by circular cells of constant

duration (1 day) during which random rain depths occur. The radius of each cell is assumed to be an

exponentially distributed random variable independent of the other attributes of the cell (e.g. position,

intensity), and distributed with the following probability density function (PDF):

pr(r) ¼ k exp�k r , (2:1)

where the parameter k ¼ 1/krl is the inverse of the mean radius. Likewise, rain intensity within each cell

is an exponentially distributed random variable, whose PDF is:

pz(z) ¼ m exp�mz , (2:2)

where the rate m ¼ 1=hz(X)i is the inverse of the mean depth pertaining to each cell centred in X ¼ (x, y).

Cells can overlap and the rainfall depth is the sum of the intensity of all cells active at the given time.

Using the rainfall generation model described above, spatially distributed rainfall scenarios

are produced to simulate different types of climate (i.e. dry, intermediate and wet [53]), thereby

originating different patterns of spatially averaged rainfall depths (a[L]) and average rainfall frequency

(lP[T21]) along the river network. These are calculated by analysing the time series of synthetic

rainfall, spatially averaged over the contributing areas of each network node.
6:181428
2.1.2. Water balance model

The dynamics of specific streamflow at each node of the network is impacted by positive increments

corresponding to rainfall events filling the soil water deficit caused by plant transpiration in the

contributing catchment and producing drainage. When the rainfall infiltrating into the hydrologically

active layer (i.e. the layer of soil that actively contributes to the hydrological response, whose porosity

and depth are indicated as n and Zr, respectively) exceeds the critical saturation value s1 (representing

the water-holding capacity), the excess of water becomes streamflows. Note that in between rainfall

events the evapotranspiration, ET [LT21], reduces the soil moisture to the wilting point sw (for which

ET ¼ 0); hence, the maximum soil water storage capacity available to plants is w0 ¼ (s1 2 sw)nZr.

Flow-producing rainfall events result from the buffering effect operated by catchments during

wetting–drying cycles and they are approximated by a new marked Poisson process, whose

frequency is l , lP[T21]. The ratio f ¼ l/lP identifies the runoff coefficient (mean discharge scaled

to the mean precipitation), which defines the partition of the incoming rainfall into streamflows and

ET. f is influenced by climate, soil and vegetation features according to the following equation [42,51,54]:

f ¼ DIg
g=DI e�g

gG(g=DI , g)
, (2:3)

where G(� , � ) is the lower incomplete Gamma function, DI is Budyko’s dryness index (the ratio between the

mean potential evapotranspiration kPETl and the mean rainfall kPl) and g is the maximum soil water storage

capacity w0, normalized to the mean rainfall depth in the contributing catchment, a.
2.1.3. Recession flow model

Excess rainfall (fraction of water storage exceeding s1) is released from the soil as river streamflow following

a nonlinear catchment-scale storage discharge relation (i.e. Q/ V b) [43,55]. The resulting dynamic of daily

specific discharge (i.e. per unit catchment area) at a station is governed by the following equation:

dq(t)
dt
¼ �Kq(t)a þ jt, (2:4)

where K and a are the recession coefficient and the recession exponent, respectively, and jt formally embeds

the stochastic increments of q induced by effective rainfall pulses. A geomorphological recession flow model

is then used to estimate the parameter describing the recession flow behaviour (a . 0) resulting from

the drainage of the contributing catchment [2]. The procedure is grounded on the idea that the

hydrological response is linked to the morphological properties of the hillslope-network system. In this

model, the recession rate is directly proportional to the distance of the furthest source from the outlet

and the recession flow is controlled by the shrinking of the active drainage network (for further details

see [2,51]). As a consequence, the parameter a can be estimated from morphological data.
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The recession coefficient K, which depends on both the network morphology and the moisture of the

catchment, is calculated as K ¼ u(al)12a [51], where (al) is the mean specific discharge, a is the

geomorphic recession exponent and u is the shrinking rate of the network in between rain events.
 lsocietypublishing.org/journal/rsos
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2.1.4. Probabilistic description of streamflows

The streamflow PDF at network scale emerges directly as a result of aggregation of spatial heterogeneity

of climatic and geomorphic features in the contributing areas of each channel site. This is captured by

the proposed model by calculating the parameters expressing the frequency and intensity of effective

rain events (l and a) and the recession behaviour (K and a) for every point along the network, as

spatially integrated quantities in the corresponding contributing catchment. There are three different

types of PDFs of streamflow, depending on the value of the exponent a which determines the rate

of decrease of q during recessions. The case a ¼ 1 implies a linear storage–discharge dynamic

(dq/dt ¼ 2kq þ jt) in which the decay of flow between subsequent events is exponential-like. The

corresponding steady-state PDF of specific river discharge developed by Botter et al. [42] is shown

here in non-dimensional form,

pQ(q) ¼ G(l=k)�1

ak
q
ak

� �l=k�1

exp � q
a k

� �
: (2:5)

Equation (2.5) represents a Gamma distribution with shape parameter l/k and rate parameter ak. The

general solution of the PDF for the case a = 1, 2 is

pQ(q) ¼ C�q�a exp � q2�a

aK(2� a)
þ lq1�a

K(1� a)

� �
, (2:6)

where C� is the normalization constant, such that
Ð1

o pQ(q) dq ¼ 1. Note that, when a , 1, the recession

between two subsequent runoff events is faster than that of an exponential function. In this case,

there is an atom of probability in q ¼ 0 (po ¼ C�(K=l)d(q)) that must be added to the continuous part

of equation (2.6) as the system tends to remain in a zero-discharge state for some time before

experiencing a new jump [43]. Moreover, in the case 1 , a , 2, the decay is slower than an

exponential function and the system cannot reach the condition of zero discharge, even when the

inter-arrival between two rainfall events becomes extremely large. The extension of equation (2.6) to

the case a ¼ 2 is an inverse Gamma [56], in which the streamflow distribution has a power-law tail

much heavier than the exponential tail corresponding to the case a ¼ 1.

All these equations were applied pointwise along all the streams of the test catchment. Therefore,

model parameters are the expression of climatic and landscape attributes in the contributing

catchment and vary in space along the network.

In the framework used in this paper, flow regimes can be classified based on the variability of river

flows [21], which results from the interplay between the frequency of flow-producing rainfall events and

the mean catchment response time. When the mean inter-arrival of effective rainfall events is shorter than

the duration of the flow pulses delivered from the contributing catchment, a persistent supply of water is

guaranteed to the stream from catchment soils. This type of regime is termed persistent as the coefficient

of variation of streamflow (CVQ) is smaller than 1. On the contrary, when the mean inter-arrival between

flow-producing rainfall events is larger than the typical duration of the resulting flow pulses, significant

streamflow fluctuations are observed. In this case, the preferential state of the system is typically lower

than the mean and the flow regime (termed erratic) is characterized by a pronounced flow variability

(CVQ . 1).
2.2. Stage dynamics and connectivity measures
The temporal and spatial variability of streamflows affects patterns of hydraulic variables (e.g. water

depth, flow velocity and bottom shear stress), which influence the distribution of communities and

species abundance in fluvial ecosystems [25]. In this work river width, depth and velocity are

assumed to increase downstream according to the power-law relationship proposed by Leopold [57].

Accordingly, site-specific PDFs of relevant flow variables can be derived from the corresponding

streamflow distribution, pQ(q), using additional information on the geomorphic and hydraulic

properties of the river cross section. In doing that, the following working hypothesis is introduced: (i)

flow conditions are locally uniform, (ii) the river cross section approximates a rectangular shape, and
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(iii) the water depth is much smaller than the river width. In this framework, water depth (i.e. stage) is

assumed to scale with discharge as [57]:

h ¼ h0Qd ¼ h0(Aq)d, (2:7)

where A is the catchment area, h0 is the stage associated with the unitary discharge and d is a dimensionless

parameter experimentally found to be close to 0.3 for many rivers worldwide [25,58]. Equation (2.7)

represents the ‘at-a-station’ stage–discharge relationship. The parameter h0, which in general depends

on the geometrical characteristic of the cross section, is assumed to be constant and equal to

0.4 [sdm123d] in this study. The rationale behind this assumption is given below. For a given basin

(figure 1), the at-a-station stage–discharge relationship would require that the parameter h0 scales

downstream (i.e. h ¼ h0(i)QdAS , where i is the considered node); the corresponding downstream

relationship (sensu [57]), on the other hand, assumes that h0 is uniform downstream for a given

frequency of discharge (i.e. h ¼ h0QdDS ). Since in most cases the slope dAS ≃ dDS, as demonstrated

by Leopold [57], it follows that h0 in equation (2.7) should be roughly uniform (figure 1) along the network.

By coupling equations (2.6) and (2.7), the following analytical expression of the stage PDF is obtained:

pH(h)/
(h=ho)(1�a)=d

dhA(1�a)
exp � 1

aK(2� a)

(h=ho)1=d

A

 !(2�a)

þ l

K(1� a)

(h=ho)1=d

A

 !(1�a)
2
4

3
5: (2:8)

Water stage is a major control on the physical connection between two nodes of a river network.

For instance, large fish migrating towards headwater streams during drought periods may find it difficult

to reach their target in the case where minimum flow requirements are not guaranteed [17,59]. Likewise,

many ecological species could be particularly vulnerable to predation during migration in shallow water

[60]. Hence, low stages (associated with low flows) can be seen as a physical barrier that decreases the

chances of completing migratory movements, with implications for the composition of structured

metacommunities [16]. In line with [17], we assume here the existence of a minimum threshold stage, h�,
which is necessary to trigger the movement of biological species. When h , h�, the corresponding stream

is assumed to be ‘too dry’ to maintain the connection between upstream and downstream sites. In

general, h� is a function of the specific species considered and its sensitivity to droughts. For instance,

large fishes are likely to be characterized by larger values of h� than bacteria and propagules.

Considering the connectivity as a categorical and instantaneous variable (connected versus

disconnected) is less informative than focusing on temporally integrated quantities such as the frequency

and duration of hydrological conditions that allow for species migration (h � h�). Therefore, we evaluate

the connectivity of a given reach by considering the fraction of days within a season during which

hydrological conditions favourable to species movement are observed. The latter is calculated as the

exceedance probability of the stage threshold h�. This probability represents the probability of

experiencing water stages that ensure a physical connection between different sites of the network.

Connectivity metrics are based on the mathematical structure of the graph theory. In particular, stream

heads and confluences are represented by nodes, whereas branches of the river are seen as links. The
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relational schema of the graph is undirected, assuming that ecological communities in riverine landscapes can

move either upstream or downstream. In this paper, different connectivity measures are used, as follows.

— Local connectivity:

Clocal(n)
¼
ðþ1

h�
pH(h)(n) dh, (2:9)

where pH(h)(n) is the stage density function for the n-th node. Clocal measures the passage probability

through the node (n).

— Path connectivity:

Cpath(j,k)
¼
Y

n[j!k

Clocal(n)
, (2:10)

where n includes the set of nodes belonging to the path that connects node j to k. Cpath is calculated as

the product of the Clocal of all nodes from j to k and expresses the connection probability between a

pair of nodes, according to the hydrological dynamics in all the reaches of the path connecting j and k.

In the calculation of Cpath, temporal correlation of flows are neglected.

— Node connectivity:

Cnode(k)
¼ 1

N � 1

XN

j¼1
k=j

Cpath(j,k)
, (2:11)

where N is the total number of nodes and j and k are generic nodes of the network. Cnode is calculated

as the average value of the connectivity of the paths directed to the node k. Accordingly, it expresses

the probability for a single node to be connected with all the other nodes of the network.

— Network connectivity:

Cntw ¼
1

N

XN

n¼1

Cnode(n)
: (2:12)

Cntw expresses the connection probability of all the possible pairs of nodes within the entire river network;

Cntw is the average value of the probability of connecting any site to all other sites in the network.

2.3. Habitat suitability
The spatial variability of streamflow regimes not only affects river connectivity (equations (2.9)–(2.12)),

but also influences habitat distributions in rivers [14,25,61,62]. The ecological function of rivers relies on

the presence of a mosaic of different habitats connected through the river network. However, the same

ecological habitat can be used for different ecological functions (or not), depending on the local

streamflow availability. In this work, we include an empirical description of the ecological relevance

of each node of the network by considering a local habitat suitability function that accounts for how

the ecological functionality of a given site varies in time with streamflow. Habitat suitability curves

are a simple tool that describes species habitat preferences under different flow conditions,

summarizing the effect of environmental variables on species distribution in rivers [27,63]. In this

paper, an empirical Gamma function is used to model the relation between fish habitats and flow

availability [64],

HS(q) ¼ C exp (�Bq)qA�1, (2:13)

where A, B and C are empirical parameters dependent on the channel morphology, water temperature

and species length. The average value of the habitat suitability kHSl is then obtained as

hHSi ¼
ð1

0

HS(q)pQ(q) dq: (2:14)

Equation (2.14) quantifies the average ability of a given site to provide usable habitats under time-variant

flow conditions, taking into account the local flow regime. Therefore, climatic and landscape variables

affect, through pQ(q), both the connectivity along the network (equations (2.9)–(2.12)) and the average

habitat suitability of each node (equation (2.14)).
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2.4. Estimation of model parameters and simulations set-up
The rainfall model and spatially distributed potential evapotranspiration maps are used to simulate different

climate scenarios (appendix A). Climatic fields are then used as an input for the flow model, which is applied

to a representative stream network. Model parameters are estimated (for every node of the network) based

on the simulated rainfall and other hydrological and geomorphological properties of the upstream

contributing catchment. Equation (2.7) is used to derive the spatial and temporal variability of water

stages along the network. Then, the hydrological connectivity is calculated using stage thresholds

referred to different ecological species. Eventually, the ecological relevance of every node is considered by

accounting for the spatial variability of habitats driven by local flow conditions (see appendix A).
3. Results
3.1. Effects of precipitation and evapotranspiration on network connectivity
Rainfall frequency, intensity and amount are major drivers of the availability and variability of

streamflows, and thus they are likely to impact significantly on the hydrological connectivity of rivers.

In this section, the network connectivity is studied considering three different rainfall frequencies

(e.g. lP ¼ 0.1 d21, lP ¼ 0.5 d21 and lP ¼ 1 d21) under various climatic scenarios in terms of mean

precipitation kPl and mean potential evapotranspiration kPETl.
The network connectivity Cntw typically increases by increasing the mean precipitation depth, if the

frequency of the events is constant (figure 2a). Moreover, in wet climates (kPl . 300 mm/season)

connectivity also increases with increasing lP when the precipitation amount is kept constant. For high

frequencies of rain events the soil moisture is often close to the field capacity, thereby

originating persistent flow regimes (CVQ , 1) with relatively high flows. Conversely, in intermediate

climates (kPl ¼ 2002300 mm/season) Cntw can increase also when the rainfall frequency is reduced, as

low-frequency events have higher intensity (as the rainfall amount is constant). This circumstance reduces

the buffering capacity of the catchment and increases the mean streamflow and the mean stage along the
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network. For low values of kPETl (0.5 mm d21; figure 2b) the connectivity generally increases when: (i) lP is

kept constant and kPl increases and (ii) kPl is kept constant and lP increases. The latter mechanism is

particularly evident under wet climatic conditions, during which large rainfall inputs inhibit the buffering

capacity of the soil, leading to higher mean streamflows and higher connectivities throughout the network.

In order to evaluate the impact of evapotranspiration on the hydrological connectivity, Cntw was

calculated assuming different combinations of mean seasonal precipitation and evapotranspiration rate.

Figure 3a shows how the network connectivity changes as a function of rainfall frequency and for

increasing values of kPl, combined with a relatively high and uniform kPETl (3.5 mm d21). In particular, in

the wet scenario (kPl ¼ 450 mm/season) the connectivity increases with the frequency of rainfall due to the

higher mean streamflows associated with larger lP. This prevents significant soil water deficits in between

events, as confirmed by high values of the runoff coefficient in this case (blue dots in figure 3b), and leads

to persistent hump-shaped flow regimes, especially in the downstream reaches of the network. Conversely,

when the rainfall amount is low (kPl ¼ 150 mm/season), the runoff coefficient decreases as the rainfall

frequency increases. This suggests that in dry scenarios streamflow regimes could be erratic throughout the

river network, with enhanced network fragmentation for larger rainfall frequencies. When kPETl is

reduced to 0.5 mm d21 the connectivity systematically increases for higher rainfall frequencies, regardless

of the underlying precipitation amount. In these circumstances, the runoff coefficient f slowly decreases

with lP, though maintaining relatively high values under all climatic scenarios. This typically generates

persistent flow regimes, in which the variability of flows decreases as lP increases. The non-exceedance

probability of the critical stage h�, P[h , h�], is thus reduced and the network connectivity increases.

Further analysis is carried out by evaluating the effect of spatial patterns of evapotranspiration (namely

north–south, south–north, east–west and west–east directions) on Cntw for each climate scenario. Cntw

shows similar values regardless of the dominant direction of evapotranspiration gradients. This means

that spatial patterns of PET do not affect the average connectivity at the network scale.

3.2. Spatial variability of hydrological variables and connectivity along the river network
The analysis of the spatial patterns of hydrological and ecological variables is here performed focusing on

a relatively dry climatic setting (i.e. kPl ¼ 150 mm/season and spatially uniform kPETl ¼ 3.5 mm d21).

Three different values of the rainfall frequency are investigated (e.g. lP ¼ 0.1 d21, lP ¼ 0.5 d21 and
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lP ¼ 1 d21). It is worth nothing that the depth of rainfall is decreasing for increasing the frequency, lP, as

the mean precipitation (the product of the rainfall depth and the rainfall frequency [65]) remains constant

during the simulation.

Our simulations indicate that the runoff coefficient, f, plays a critical role in shaping spatial patterns

of connectivity. Under dry climates, f generally exhibits a power-law dependence on the drainage area

(i.e. f/ A2b). This is due to the reduction in the mean rainfall intensity and the increase in precipitation

frequency for larger contributing areas (the larger the catchment area, the higher the occurrence

probability of local rain events that involve only a small portion of the basin). Low rain frequency

(lP ¼ 0.1 d21) leads to high values of f in downstream sites (figure 4b). Hence, the intensity of the

events is sufficient to generate persistent flow regimes in most channel sites, thereby increasing Cntw.

Conversely, frequent events with reduced intensity (lP ¼ 1 d21) entail rather small and uniform values

of f along the network, reducing Cntw significantly (figure 4a).

The mean water depth, khl, generally increases with the drainage area (figure 4c), as a by-product of

the Leopold and Maddock scaling relation (equation (2.7)) [57]. However, khl slightly increases with A

when lP ¼ 1 d21 as long as f decreases with A as a power law with an exponent b close to 1 (figure 5).

Therefore, when b approaches 1 the mean depth khl, which scales as [A12b]d, tends to remain constant
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throughout the network. When khl remains nearly uniform along the network, the connectivity is affected

by second-order moments of the stage PDF. In particular, for increasing lP the coefficient of variation of the

stage distribution decreases, and the hydrological connectivity becomes a function of the relationship

between khl and h�. Figure 6 shows the water stage PDFs for increasing frequencies of rainfall events,

assuming kPl ¼ 150 mm/season. For high rainfall frequency (figure 6c), the pronounced decrease of f

with A promotes high probabilities of relatively small water stages (khl ≃ 150 mm) in downstream sites.

This strongly reduces the connectivity when h� . 250 mm. Therefore, in most circumstances, the runoff

coefficient represents a key factor governing the spatial patterns of the probability distribution of the

water stage along the network, and the ensuing connectivity. However, hydrological connectivity is also

strongly dependent on the stage threshold h�. Generally, low thresholds (h� ¼ 50 mm) produce high

connectivity everywhere along the network regardless of lP. Higher thresholds (h� ¼ 250 mm), instead,

produce high connectivities in downstream sites (Clocal ¼ 0.721) only for low frequency of rainfall (lP ¼

0.1 d21). Conversely, very low connectivities are observed throughout the network (Clocal , 0.1) for

higher values of lP (lP ¼ 1 d21). Therefore, under the same mean precipitation and for different values

of lP, different stage thresholds produce heterogeneous patterns of connectivity along the network

(figure 7).

Although the spatial variability of evapotranspiration does not affect the average connectivity of the

network, the impact of PET patterns on stage PDFs and local connectivity in dry climatic conditions is

noticeable. Figure 8 shows the probability distributions of water stages along the network for three

different evapotranspiration patterns. When kPETl is assumed to be spatially uniform, khl increases in

downstream sites as driven by the increase in the drainage area. If kPETl is assumed to increase

downstream, khl slightly decreases along the network because the increase of spatially averaged PET

from upstream to downstream sites enhances the decrease of the runoff coefficient for increasing

contributing areas (figure 8b). The increase of khl for larger contributing areas becomes less pronounced

when kPETl is assumed to decrease downstream. Spatial patterns of kPETl affect the tail of pH(h), which

is a second-order control on connectivity patterns. The probability of high water stages is reduced when

kPETl is spatially variable (insets of figure 8b,c), with a reduction of connectivity especially in

downstream sites. As a consequence, the same stage threshold used with different PET patterns

produces different spatial distributions of hydrological connectivity at a local scale (figure 9). Overall, the

analysis indicates the emergence of unexpected spatial patterns of connectivity induced by patterns of

evapotranspiration, especially under arid climatic conditions. High values of local connectivity are

observed not only in downstream sites (where the mean stage is typically higher) but also in river

reaches located in the middle of the network (figure 9b,c).
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3.3. Ecological value of hydrological connectivity
In this section, we investigate how the habitat availability and the hydrological connectivity interact in

response to space–time variability of climatic attributes. As a proof of concept, we refer here to the

specific example of spawning sites for Atlantic salmon, and their connectivity to the catchment outlet.

The spatial distribution of spawning sites for Atlantic salmon is modelled according to the assumptions

discussed in appendix A. Under these assumptions, the mean habitat suitability kHSl is strongly

dependent on the mean precipitation and streamflow. For very arid climates (kPl ¼ 150 mm/season)

downstream reaches are more suitable for spawning, whereas under wetter climatic conditions the

higher habitat suitability is located in the headwaters (figure 10).

To investigate the interaction between the spatial distribution of fish habitat suitability and hydrological

connectivity as driven by flow regimes, we introduce the concept of outlet connectivity, which is a useful
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metric to evaluate the accessibility of spawning sites from the outlet in a river network. The outlet

connectivity, Cout, is calculated using equation (2.11) with specific reference to the outlet. Cout expresses

the probability for the outlet to be connected with all network nodes, assuming that each node

represents a patch of suitable habitat where individuals can reproduce and survive. Thus, direct

connections between nodes are migration links between patches. However, in order to preserve the

ecological function of rivers, the hydrological connectivity must be guaranteed, especially in those nodes

whose ecological value is larger (in our example, the nodes where the habitat suitability is larger). Thus,

the ecological connectivity of the outlet, Ceco, can be calculated by weighting each outlet–node path

using a weight proportional to the mean habitat suitability of the node,

Ceco ¼
PN

n¼1
n=out

C(n!out) hHSinPN
n¼1

n=out
hHSin

: (3:1)

Then, a suitability index SI is used to assess the impact of hydrological dynamics on ecological

processes. SI is calculated as the ratio Ceco/Cout. If most ecologically suitable sites are located in nodes

that are mostly connected with the outlet, SI . 1. On the other hand, SI , 1 when the most suitable

sites are less hydrologically connected to the outlet. Key results of the application of the model under

different climatic settings and connectivity thresholds are summarized in table 1.

Low stage thresholds produce high values of connectivity at local scale in both dry and wet climates,

as the probability to observe water depths larger than 50 mm is relatively high everywhere in the

network. Thus, the probability of the outlet being connected to the other nodes is high (Cout � 0.80).

In this case, most suitable sites (that are located downstream when the climate is dry or upstream

when the climate is wet) are properly connected to the outlet, and SI values are close to 1 under both

climatic scenarios. With larger stage thresholds (h� ¼ 200 mm), the most connected stream reaches are
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generally located close to the outlet, where the mean water stage is higher. In this case, the outlet

connectivity is severely reduced and Cout under the dry climate is 10 times smaller than the value

obtained under the wet scenario. Although the outlet is insufficiently connected with the entire

network, when precipitation is low (dry scenario), the most suitable sites are effectively connected to

the outlet since they are located downstream (SI . 1). On the other hand, when precipitation is high,

the most suitable reaches are located in the headwaters, which are poorly connected to the outlet.
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Table 1. Outlet connectivity, effective connectivity and suitability index for dry and wet climatic settings as a function of stage
water thresholds.

threshold (mm) climate Cout (2) Ceco (2) SI ¼ Ceco/Cout (2)

h� ¼ 50 dry 0.80 0.80 1.00

wet 0.85 0.70 0.80

h� ¼ 200 dry 0.05 0.07 1.40

wet 0.50 0.20 0.40

Dry: kPl ¼ 150 mm/season; lP ¼ 0.5 d21. Wet: kPl ¼ 350 mm/season; lP ¼ 0.5 d21.
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Thus, even though the overall values of Ceco and Cout are higher than those obtained in the dry scenario,

SI , 1. This implies that, for relatively high thresholds, spawning sites are less accessible under wet

climatic conditions. This simple example shows that, depending on the type of climate, the stage

threshold and the spatial distribution of habitats, the emerging patterns of connectivity can either

promote or limit ecological function of river networks.
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4. Discussion

The ecological function of rivers is guaranteed by the physical connection between network nodes, which is

driven by hydrological processes. Although connectivity metrics commonly found in the literature describe

the spatial configuration of the network [39,41], a causal connection between river network connectivity and

first-order climatic and hydrological drivers is missing. To fill this gap, the metrics proposed in this paper

quantify the physical connection of the network on the basis of the hydrological state of the system. Our

results indicate that the spatial variability of reach-scale connectivity might be controlled by the spatial

and temporal distribution of climatic variables. Precipitation distribution, in terms of rainfall frequency

and intensity, and spatial patterns of evapotranspiration concur to define the fraction of the hydrological

network available for biological dispersion. Frequently, river networks in arid environments may be

hydrologically disconnected because of insufficient water flows in relevant portions of the network.

Moreover, spatial gradients of climatic properties influence the hydrological response and the

connectivity of catchments whose size is larger than the integral scale of the relevant climatic

heterogeneity. Therefore, spatial patterns of climate are likely to alter existing scaling properties of

drainage networks inferred through purely geomorphological approaches [66].

Although the general influence of the hydrological connectivity on fauna migratory dynamics has been

already documented in the literature [14,15,17], quantitative assessments of ecologically relevant stage

thresholds remain problematic. In our framework, a critical connectivity threshold can be introduced to

identify the likelihood of hydrological conditions favourable to migratory movements. In particular, we

shall assume that two nodes with a local connectivity lower than a given threshold C� are physically

disconnected because the likelihood of hydrological conditions favourable to species movement is too

low. Lower values of C� are thus associated with greater efficiency during migration. Our simulations

evidence that the shape of the connected network might be significantly altered by the underlying

hydrological processes. This is represented in figure 11, which shows the shape of the connected

network under different scenarios, whenever all the reaches with Clocal , C� are removed from the

original network. During the dry season a low connectivity threshold (C� ¼ 10�2) breaks the network

into two disconnected parts (figure 11a, centre). Larger portions of the main river channel are

progressively excluded by increasing the connectivity threshold (figure 11a, right). The shape of the

network is also modified when different climatic conditions are considered (figure 11b). Interestingly,

under a wet climate the connectivity in the upper extent of the headwaters region is compromised;

conversely, the main channel gradually disappears in the dry climate as the connectivity is too low. This

dynamic behaviour of the flowing network might have a crucial impact on ecological models for species

dispersion and propagation of waterborne diseases [3]. The proposed approach provides a quantitative

framework that allows the description of the main hydrological causes and ecological consequences of

hydrological dynamics experienced by river networks in response to climatic forcing. As such, the

method could be integrated into network transport models currently used in spatial ecology, allowing

for the use of time-variant and locally disconnected network domains, of the type shown in figure 11.

This study focuses on spatial patterns of hydrological connectivity along individual river networks,

assuming that the number of network nodes is fixed and constant in time. An a priori definition of the

relevant drainage density is thus required. On the other hand, the application of the stochastic

approach to estimate the flow regime requires a minimum contributing area Amin, of the order of

some square kilometres. Therefore, the use of homogeneous criteria to identify the stream network in

different river systems should allow a fair comparison of the connectivity metrics proposed in this

paper across different catchments.

This work exploits a probabilistic framework for the characterization of the spatial variability of

streamflow regimes and water stage dynamics driven by external climatic forcing. The method

incorporates a number of hydrological models of proven robustness and wide applicability

[2,43,44,51,54]. Nevertheless, our model relies on a number of simplifying assumptions. The hydrological

model assumes a one-to-one relationship between catchment storage and discharge, which is here

inferred solely from geomorphic data. Moreover, the developed framework does not take into account

space–time variations in the relationship between river width and depth along the network. The

constant nonlinear relation used to derive water stages from discharges is an assumption that could be

relaxed only whenever in situ measurements of the geometry of cross sections along the river are

available. River bed is also assumed impermeable and possible interactions between the stream and the

surrounding environment are neglected. Nevertheless, the model is mathematically sound, has a reduced

number of parameters with a direct physical meaning and is computationally inexpensive. Therefore, the

approach represents an interesting prospect for eco-hydrological spatially explicit studies.
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5. Conclusion
In this paper, we propose an analytical approach where hydrological connectivity is explicitly linked to

driving hydroclimatic variables and catchment properties through the emergent spatial patterns of

streamflow regimes along river networks. The method is based on a stochastic generation of rainfall

able to reproduce different climatic scenarios in terms of rainfall frequency, intensity and amount.

Results confirm that precipitation regimes significantly impact the connectivity of river networks.

Network connectivity typically increases by increasing the mean precipitation and the frequency of

rainfall events. Under arid climatic conditions, network connectivity is higher for rare but intense

events, of the type found in semi-arid regions.

Evapotranspiration is a key factor controlling the rate of decrease of the runoff coefficient along river

networks, with noticeable effects on mean water stages and hydrological connectivity. A smooth

decrease of the rainfall runoff coefficient generates increasing mean stages for larger drainage areas;

vice versa, when the reduction in the runoff coefficient is faster (e.g. when rainfall events are frequent

and when evapotranspiration is spatially variable, especially under arid conditions), the mean stage

increases much slower downstream, making the connectivity dependent on the interplay between

flow variability and the stage threshold h�.
Our simulations show that spatial patterns of evapotranspiration strongly influence the variability of

the hydrological connectivity along the network, without impacting the mean network connectivity.

The proposed framework helps to identify the physical controls on hydrological connectivity and

their effect on ecological processes along river networks, as documented by the proof of concept
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pertaining to salmon migration discussed in §3.3. The analysis shows that, depending on the climate and

the spatial variability of habitat suitability, the resulting connectivity patterns can either promote or limit

the ecological function of river networks.

To provide a quantitative assessment of the impact of hydrological processes on the shape and the

extent of ecologically connected reaches, we have analysed the changes in the topological

configuration of the river network, when all the streams with insufficient connectivity are removed.

Our analysis reveals that under arid climates the main channel may become disconnected from the

tributaries, whereas under wet climates river networks tend to shrink from the headwaters. Therefore,

the shape of connected networks can be significantly impacted by the underlying hydrological dynamics.

The general mathematical formulation proposed in this paper encourages the application to other

synthetic networks and to real-world case studies. The method offers a robust basis to assess the

ecological impacts of streamflow variability in rivers, and it is thus suited to be coupled with spatially

explicit ecological network models.
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Appendix A
This section describes the estimation of the flow model parameters and the simulation set-up to predict

spatial patterns of hydrological connectivity across catchment scales in a theoretical case study. At first,

rain cells are generated using the three-dimensional Poisson rainfall model at the catchment scale.

Table 2 shows the parameter ranges used to reproduce different climatic scenarios. Parameters of the

spatially distributed rainfall model are assumed by referring to the literature values in terms of

rainfall frequency and rainfall intensity. Moreover, the integral scale of the climatic heterogeneity is

assumed to be smaller than the catchment size as the cells’ radii are meant to represent convective

rainfall. Note that, in the proposed framework, a periodic space domain is used to reduce bias from

edge effects.

The average frequency of rainfall events along the network, lP, is estimated by evaluating the relative

fraction of rainy days (rain depth greater than 1 mm) during the considered time period in the upstream

contributing area of each node. The mean rainfall depth, a, is then calculated for each realization of the

rainfall model as the spatially averaged rain intensity during wet days (i.e. the volume of rainfall is

divided by the number of wet days and the catchment area drained by each node). The frequency of

the effective rainfall, l, is then estimated considering the censoring effect of the soil catchment that

results in the reduction of flow-producing rate controlled by evapotranspiration. To this aim, spatially

distributed values of PET (i.e. PET(X)) are used. The runoff coefficient f is estimated using

equation (2.3), considering the potential evapotranspiration as a spatially averaged value in the

upstream contributing catchment. l is then calculated as the product flP for every node of the

network. The literature values of porosity n, rooting depth Zr, soil moisture at saturation s1 and

wilting point sw are considered and incorporated in equation (2.3) (table 3).

Parameters defining the storage–discharge relations are then derived by river network analysis as

detailed in §2.1.3. The river network estimation is derived from a representative digital elevation

model from which eight-flow direction and flow accumulation maps are calculated to identify stream

channels; then, the flow accumulation threshold equal to 25 unit area is applied to extract the channel

network. As specific morphological requirements are needed to estimate the recession parameter a
along the network (e.g. at least three junctions are required upstream to each considered node), a finer

resolution ancillary network with a larger drainage density is used to calculate the recession exponent

in the headwaters. Subsequently, considering both climatic and geomorphic features of the catchment,

the recession constant K is calculated as K ¼ u(al)12a using a constant value of u equal to 0.2 d21 [51].

The streamflow distribution calculated pointwise using equation (2.6) is finally used as the input to

derive the spatial and temporal variability of water depth by applying equation (2.7). The parameters of

http://dx.doi.org/10.5061/dryad.4r695ph
http://dx.doi.org/10.5061/dryad.4r695ph


Table 2. Model parameters for the rainfall generation model.

parameter symbol value units

temporal density lt 1.5 – 11 (d21)

spatial density along the x direction lx 0.7 – 1.2 (m21)

spatial density along the y direction ly 0.7 – 1.2 (m21)

mean rain cell depth kzl 15 – 4500 (mm)

mean rain cell radius krl 1 – 2 (km)

Table 3. Water balance parameters.

parameter symbol value units

soil moisture at saturation s1 0.5 (2)

wilting point sw 0.2 (2)

porosity n 0.3 (2)

rooting depth Zr 130 (mm)

Table 4. Example illustrating the minimum depth requirements for successful upstream migration of adult salmon and trout.

species of fish minimum depth (m)

pink salmon 0.18

chum salmon 0.18

coho salmon 0.18

sockeye salmon 0.18

spring chinook salmon 0.24

summer chinook salmon 0.24

fall chinook salmon 0.24

steelhead trout 0.18

Data from [68].
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the nonlinear discharge–depth relation are assumed to be constant along the river network. Connectivity

metrics are then calculated using two sets of critical stages: (i) low stage threshold (i.e. h� ¼ 5 cm), which

is assumed to be associated with smaller general species, such as bacteria or propagules, requiring small

amounts of water to disperse; (ii) high stage threshold (i.e. h� ¼ 25 cm), which is representative of fish

species that need relatively high water stages for migration [67]. A list of threshold examples associated

with adult salmon and trout taken from the literature is reported in table 4.

In order to evaluate the ecological function of the hydrological connectivity the habitat distribution is

also included in the simulation via equation (2.13), with specific reference to salmon migration towards

the headwaters. Several studies pertaining to Atlantic salmon, based on experimental data and hydraulic

models [64,69], have proposed a range of variability for parameters A, B and C in equation (2.13). The

minimum and the maximum value for each parameter are reported in table 5. In view of the

uncertainty associated with the parameters controlling habitat suitability distribution, which depends

on bed morphology, water quantity, water quality and size species, we considered intermediate

values of the literature ranges. Parameters are assumed constant throughout the river network.

Different parameter combinations were also tested without significant changes in the results presented

in this paper.



Table 5. Minimum and maximum values of the habitat distribution model. The parameter set used in the simulation is also
reported in the table ( penultimate column).

parameter min. max. assumed units

A 0.9 1.1 1.0 (2)

B 2.5 12.0 5.6 (L T21)

C 0.5 1.3 1.3 (T L21)
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Mykrä H, Bonada TMN. 2017 Do
metacommunities vary through time?
Intermittent rivers as model systems.
J. Biogeogr. 44, 2752 – 2763. (doi:10.1111/
jbi.13077)

19. Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard
KL, Richter BD, Sparks RE, Stromberg JC. 1997
The natural flow regime. BioScience 47,
769 – 784. (doi:10.2307/1313099)

20. Allan JD, Castillo MM. 2007 Stream ecology:
structure and function of running waters.
Dordrecht, The Netherlands: Springer.

21. Botter G, Basso S, Rodriguez-Iturbe I, Rinaldo A.
2013 Resilience of river flow regimes. Proc. Natl
Acad. Sci. USA 110, 12 925 – 12 930. (doi:10.
1073/pnas.1311920110)

22. Muneepeerakul R, Azaele S, Botter G, Rinaldo A,
Rodriguez-Iturbe I. 2010 Daily streamflow
analysis based on a two-scaled gamma pulse
model. Water Resour. Res. 46, W11546. (doi:10.
1029/2010WR009286)

23. Camporeale C, Ridolfi L. 2006 Riparian
vegetation distribution induced by river flow
variability: a stochastic approach. Water Resour.
Res. 42, W10415. (doi:10.1029/2006WR004933)

24. Sabo JL, Post DM. 2008 Quantifying periodic,
stochastic, and catastrophic environmental
variation. Ecol. Monogr. 78, 19 – 40. (doi:10.
1890/06-1340.1)

25. Ceola S, Bertuzzo E, Singer G, Battin TJ,
Montanari A, Rinaldo A. 2014 Hydrologic
controls on basin-scale distribution of benthic
invertebrates. Water Resour. Res. 50,
2903 – 2920. (doi:10.1002/2013WR015112)

26. Bruno MC, Cashman MJ, Maiolini B, Biffi S,
Zolezzi G. 2015 Responses of benthic
invertebrates to repeated hydropeaking in semi-
natural flume simulations. Ecohydrology 9,
68 – 82. (doi:10.1002/eco.1611)

27. Vismara R, Azzellino A, Bosi R, Crosa G, Gentili
G. 2001 Habitat suitability curves for brown
trout (Salmo trutta fario L.) in the River Adda,
Northern Italy: comparing univariate and
multivariate approaches. Regul. Rivers Res.
Manage. 17, 37 – 50. (doi:10.1002/1099-
1646(200101/02)17:1,37::AID-RRR606.3.0.
CO;2-Q)

28. Parasiewicz P, Dunbar MJ. 2001 Physical habitat
modelling for fish—a developing approach.
Large Rivers 12, 239 – 268. (doi:10.1127/lr/12/
2001/239)

29. Vezza P, Parasiewicz P, Spairani M, Comoglio C.
2014 Habitat modeling in high-gradient
streams: the mesoscale approach and
application. Ecol. Appl. 24, 844 – 861. (doi:10.
1890/11-2066.1)

30. Datry T, Larned ST, Tockner K. 2014 Intermittent
rivers: a challenge for freshwater ecology.
BioScience 64, 229 – 235. (doi:10.1093/biosci/
bit027)

31. Vannote RL, Minshall GW, Cummins KW, Sedell
JR, Cushing CE. 1980 The river continuum
concept. Can. J. Fish. Aquat. Sci. 37, 130 – 137.
(doi:10.1139/f80-017)

32. Ward JV, Stanford JA. 1983 The serial
discontinuity concept of lotic ecosystems. In
Dynamics of lotic ecosystems (eds TD Fontaine,
SM Bartell), pp. 29 – 42. Ann Arbor, MI: Ann
Arbor Scientific Publishers.

33. Junk W, Bayley PB, Sparks RE. 1989 The flood
pulse concept in river-floodplain systems. Can.
Spec. Public Fish. Aquat. Sci. 106, 110 – 127.

http://dx.doi.org/10.1029/2008WR007124
http://dx.doi.org/10.1029/2008WR007124
http://dx.doi.org/10.1029/2010GL045415
http://dx.doi.org/10.1016/j.advwatres.2017.10.005
http://dx.doi.org/10.1016/j.advwatres.2017.10.005
http://dx.doi.org/10.1038/nature02152
http://dx.doi.org/10.1038/nature02152
http://dx.doi.org/10.1038/nature06813
http://dx.doi.org/10.1038/nature06813
http://dx.doi.org/10.1073/pnas.1217567109
http://dx.doi.org/10.1016/j.advwatres.2017.10.009
http://dx.doi.org/10.1016/j.advwatres.2017.10.009
http://dx.doi.org/10.1016/j.pt.2017.04.002
http://dx.doi.org/10.1016/j.pt.2017.04.002
http://dx.doi.org/10.1002/hyp.3360050107
http://dx.doi.org/10.1086/648220
http://dx.doi.org/10.1029/93WR02463
http://dx.doi.org/10.1002/hyp.10310
http://dx.doi.org/10.1002/hyp.10310
http://dx.doi.org/10.1073/pnas.1320890111
http://dx.doi.org/10.1073/pnas.1320890111
http://dx.doi.org/10.1002/rra.1144
http://dx.doi.org/10.1007/s10980-015-0164-x
http://dx.doi.org/10.1002/2016WR019244
http://dx.doi.org/10.1002/2016WR019244
http://dx.doi.org/10.1111/jbi.13077
http://dx.doi.org/10.1111/jbi.13077
http://dx.doi.org/10.2307/1313099
http://dx.doi.org/10.1073/pnas.1311920110
http://dx.doi.org/10.1073/pnas.1311920110
http://dx.doi.org/10.1029/2010WR009286
http://dx.doi.org/10.1029/2010WR009286
http://dx.doi.org/10.1029/2006WR004933
http://dx.doi.org/10.1890/06-1340.1
http://dx.doi.org/10.1890/06-1340.1
http://dx.doi.org/10.1002/2013WR015112
http://dx.doi.org/10.1002/eco.1611
http://dx.doi.org/10.1002/1099-1646(200101/02)17:1%3C37::AID-RRR606%3E3.0.CO;2-Q
http://dx.doi.org/10.1002/1099-1646(200101/02)17:1%3C37::AID-RRR606%3E3.0.CO;2-Q
http://dx.doi.org/10.1002/1099-1646(200101/02)17:1%3C37::AID-RRR606%3E3.0.CO;2-Q
http://dx.doi.org/10.1002/1099-1646(200101/02)17:1%3C37::AID-RRR606%3E3.0.CO;2-Q
http://dx.doi.org/10.1002/1099-1646(200101/02)17:1%3C37::AID-RRR606%3E3.0.CO;2-Q
http://dx.doi.org/10.1002/1099-1646(200101/02)17:1%3C37::AID-RRR606%3E3.0.CO;2-Q
http://dx.doi.org/10.1002/1099-1646(200101/02)17:1%3C37::AID-RRR606%3E3.0.CO;2-Q
http://dx.doi.org/10.1002/1099-1646(200101/02)17:1%3C37::AID-RRR606%3E3.0.CO;2-Q
http://dx.doi.org/10.1127/lr/12/2001/239
http://dx.doi.org/10.1127/lr/12/2001/239
http://dx.doi.org/10.1890/11-2066.1
http://dx.doi.org/10.1890/11-2066.1
http://dx.doi.org/10.1093/biosci/bit027
http://dx.doi.org/10.1093/biosci/bit027
http://dx.doi.org/10.1139/f80-017


royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:181428
20
34. Fausch KD, Torgersen CE, Baxter CV, Li HW. 2002

Landscapes to riverscapes: bridging the gap
between research and conservation of stream
fishes: a continuous view of the river is needed
to understand how processes interacting among
scales set the context for stream fishes and their
habitat. BioScience 52, 483 – 498. (doi:10.1641/
0006-3568(2002)052[0483:LTRBTG]2.0.CO;2)

35. White JC, Hannah DM, House A, Beatson SJV,
Martin A, Wood PJ. 2017 Macroinvertebrate
responses to flow and stream temperature
variability across regulated and non-regulated
rivers. Ecohydrology 10, e1773. (doi:10.1002/
eco.1773)

36. Larned ST, Datry T, Arscott DB, Tockner K. 2010
Emerging concepts in temporary-river ecology.
Freshwater Biol. 55, 717 – 738. (doi:10.1111/j.
1365-2427.2009.02322.x)

37. Monk WA, Wood PJ, Hannah DM, Wilson DA,
Extence CA, Chadd RP. 2006 Flow variability and
macroinvertebrate community response within
riverine systems. River Res. Appl. 22, 595 – 615.
(doi:10.1002/rra.933)

38. Belmar O, Velasco J, Gutiérrez-Cánovas C,
Mellado-Dı́az A, Millán A, Wood PJ. 2013 The
influence of natural flow regimes on
macroinvertebrate assemblages in a semiarid
Mediterranean basin. Ecohydrology 6, 363 – 379.
(doi:10.1002/eco.1274)

39. Cote D, Kehler DG, Bourne C, Wiersma YF. 2009
A new measure of longitudinal connectivity for
stream networks. Landsc. Ecol. 24, 101 – 113.
(doi:10.1007/s10980-008-9283-y)

40. Eros T, Schmera D, Schick RS. 2011 Network
thinking in riverscape conservation—a graph-
based approach. Biol. Conserv. 144, 184 – 192.
(doi:10.1016/j.biocon.2010.08.013)

41. Samia Y, Lutscher F, Hastings A. 2015
Connectivity, passability and heterogeneity
interact to determine fish population persistence
in river networks. J. R. Soc. Interface 12,
20150435. (doi:10.1098/rsif.2015.0435)

42. Botter G, Porporato A, Rodriguez-Iturbe I,
Rinaldo A. 2007 Basin-scale soil moisture
dynamics and the probabilistic characterization
of carrier hydrologic flows: slow, leaching-prone
components of the hydrologic response. Water
Resour. Res. 43, W02417. (doi:10.1029/
2006WR005043)

43. Botter G, Porporato A, Rodriguez-Iturbe I,
Rinaldo A. 2009 Nonlinear storage-discharge
relations and catchment streamflow regimes.
Water Resour. Res. 45, W10427. (doi:10.1029/
2008WR007658)

44. Doulatyari B, Betterle A, Radny D, Celegon EA,
Fanton P, Schirmer M, Botter G. 2017 Patterns
of streamflow regimes along the river network:
the case of the Thur river. Environ. Model.
Softw. 93, 42 – 58. (doi:10.1016/j.envsoft.
2017.03.002)

45. Rodriguez-Iturbe I, Porporato A, Ridolfi L, Isham
V, Coxi DR. 1999 Probabilistic modelling of
water balance at a point: the role of climate,
soil and vegetation. Proc. R. Soc. Lond. A 455,
3789 – 3805. (doi:10.1098/rspa.1999.0477)
46. Laio F, Porporato A, Ridolfi L, Rodriguez-Iturbe I.
2001 Plants in water-controlled ecosystems:
active role in hydrologic processes and response
to water stress: II. Probabilistic soil moisture
dynamics. Adv. Water Res. 24, 707 – 723.
(doi:10.1016/S0309-1708(01)00005-7)

47. Ceola S, Botter G, Bertuzzo E, Porporato A,
Rodriguez-Iturbe I, Rinaldo A. 2010 Comparative
study of ecohydrological streamflow probability
distributions. Water Resour. Res. 46, W09502.
(doi:10.1029/2010WR009102)

48. Müller MF, Dralle DN, Thompson SE. 2014
Analytical model for flow duration curves in
seasonally dry climates. Water Resour. Res. 50,
5510 – 5531. (doi:10.1002/2014WR015301)

49. Park J, Botter G, Jawitz JW, Rao PSC. 2014
Stochastic modeling of hydrologic variability of
geographically isolated wetlands: effects of
hydro-climatic forcing and wetland bathymetry.
Adv. Water Res. 69, 38 – 48. (doi:10.1016/j.
advwatres.2014.03.007)

50. Basso S, Schirmer M, Botter G. 2015 On the
emergence of heavy-tailed streamflow
distributions. Adv. Water Res. 82, 98 – 105.
(doi:10.1016/j.advwatres.2015.04.013)

51. Doulatyari B, Betterle A, Basso S, Biswal B,
Schirmer M, Botter G. 2015 Predicting
streamflow distributions and flow duration
curves from landscape and climate. Adv. Water
Res. 83, 285 – 298. (doi:10.1016/j.advwatres.
2015.06.013)

52. Bertassello LE, Suresh P, Rao C, Park J, Jawitz
JW, Botter G. 2018 Stochastic modeling of
wetland-groundwater systems. Adv. Water Res.
112, 214 – 223. (doi:10.1016/j.advwatres.2017.
12.007)

53. Whittaker RH. 1975 Communities and
ecosystems. 2nd ed. New York, NY: MacMillan.

54. Porporato A, Daly E, Rodriguez-Iturbe I. 2004
Soil water balance and ecosystem response to
climate change. Am. Nat. 164, 625 – 632.
(doi:10.1086/424970)

55. Kirchner JW. 2009 Catchments as simple
dynamical systems: catchment characterization,
rainfall-runoff modeling, and doing hydrology
backward. Water Resour. Res. 45, W02429.
(doi:10.1029/2008WR006912)

56. Deal E, Braun J, Botter G. 2018 Understanding
the role of rainfall and hydrology in
determining fluvial erosion efficiency.
J. Geophys. Res.: Earth Surf. 123, 744 – 778.
(doi:10.1002/2017JF004393)

57. Leopold LB. 1953 The hydraulic geometry of
stream channels and some physiographic
implications. U.S. Government Printing Office,
252, pp. 1 – 57.

58. Raymond PA, Zappa CJ, Butman D, Bott TL,
Potter J, Mulholland P, Laursen AE, McDowell
WH, Newbold D. 2012 Scaling the gas transfer
velocity and hydraulic geometry in streams and
small rivers. Limnol. Oceanogr.: Fluids Environ.
2, 41 – 53. (doi:10.1215/21573689-1597669)

59. Tetzlaff D, Soulsby C, Youngson AF, Gibbins C,
Bacon PJ, Malcolm IA, Langan S. 2005
Variability in stream discharge and temperature:
a preliminary assessment of the implications for
juvenile and spawning Atlantic salmon. Hydrol.
Earth Syst. Sci. 9, 193 – 208. (doi:10.5194/hess-
9-193-2005)

60. Jonsson B, Jonsson N, Hansen LP. 2007 Factors
affecting river entry of adult Atlantic salmon in
a small river. J. Fish Biol. 71, 943 – 956. (doi:10.
1111/j.1095-8649.2007.01555.x)
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