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Abstract: This paper deals with the non-linear modelling of synchronous machines by using the flux linkage as a state variable.
The model is inferred from a conventional set of measurements where the relation between the currents and the flux linkages in
the rotating reference frame (also known as dq reference frame) are known by measurements or estimated through finite-
element simulations. In particular, the contribution of this paper is twofold: first, it proposes a method to extract the non-linear
model information which can be easily implemented in electric drives, without the need of offline post-processing of the data.
Second, it mathematically demonstrates that the method converges to the final result in a stable way. An example based on
experimental measurements of the current-to-flux look-up tables of an 11-kW synchronous reluctance machine is shown,
proving the feasibility of the proposed method.

1 Introduction
In modern electric drives, digital modelling of electric machines
play an essential role in the regulation of torque and speed. Precise,
dynamically fast and robust (against parameter variation)
regulation requires models which are more than just linear.
Moreover, as the drives technology develops and more
sophisticated solutions for position- and speed-sensorless control
are implemented, the use of non-linear models to accurately
reproduce the machine behaviour may be required, if not for the
control algorithm itself, at least to prove the stability of robust
control structures in suitable simulations [1].

As a matter of fact, electric machines are very non-linear
devices. The most evident non-linearity is the magnetic saturation,
which does not allow to describe the relation between currents and
flux linkages with just a simple proportional gain (the inductance)
[2]. In the case of synchronous machines, and depending on the
design, the magnetic saturation is sometimes accompanied by the
magnetic cross-saturation, where the direct-axis flux linkage is
influenced by the quadrature-axis current and vice versa [3, 4].
Other important non-linear effects relate to slot effects [5], iron
losses [6], and the variation induced by temperature changes of
stator/rotor resistances [7], and flux linkages due to magnets [8].

Focusing on magnetic saturation with cross-saturation in
synchronous machines, it is known that such effects can be either
estimated with finite element analysis or measured with
experimental tests, typically during the commissioning stage of an
electric drive [9]. Such information usually comes in the form of
flux linkages as function of currents, typically in the dq reference
frame. However, the inclusion of such non-linear information in
digital models is not straightforward, because it depends on
whether the dq currents or the dq flux linkages are used as the state
variables.

In this perspective, very limited scientific material focuses on
methodologies that allow for a description of the magnetic
saturation with cross-saturation effects when the flux linkage is the
state variable, in all digital models where such choice is made. One
of such works is [10], where a polynomial approximation approach
is used. However, the problem of calculating the reverse saturation
function (from flux linkages to stator currents) from the simulated

or measured saturation curves is only partially explored in its
nature. Therefore, this work proposes some further steps towards
the implementation and commissioning of synchronous machine
models with the flux linkage as the state variable, by:

• Proposing a method to obtain the reverse magnetic saturation
functions, by means of a scheme that can be easily implemented
and executed in any drive control board.

• Demonstrating the stability of the method and the conditions for
its convergence.

The paper is organised as follows: Section 2 recalls the basics of
synchronous machine modelling, while Section 3 describes the
proposed method to extract the non-linear inverse saturation
curves, from a set of saturation curves which return the flux
linkages as function of currents. Section 4 analyses the
convergence of the method, proving its stability. Section 5
demonstrates the use of the method on the saturation curves of 11-
kW synchronous reluctance machine (SynRM), followed by some
final remarks in the conclusions.

2 Synchronous machine model theory
There are essentially two ways to model synchronous machines,
shown in (1) in their space-vector equation form in a dq reference
frame synchronous to the rotor:

disdq
dt = L−1(usdq − Rsisdq − Jωmeλsdq)

dλsdq
dt = usdq − Rsisdq − Jωmeλsdq

(1)

where u, i, λ are the space vectors of stator voltages, currents and
flux linkages, respectively. L is the incremental inductance matrix
and J accounts for the dq-axes cross-coupling:
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L =
Ldd Ldq

Lqd Lqq
=

∂λsd
∂isd

∂λsd
∂isq

∂λsq
∂isd

∂λsq
∂isq

, J = 0 1
1 0 (2)

It is worth to recall that the conservation of energy principle
implies the reciprocity condition in (2), hereafter expressed on the
left for the currents as state variables (upper equation in (1)) and on
the right for the flux linkages as state variables (lower equation in
(1)):

∂λsd
∂isq

= ∂λsq
∂isd

∂isd
∂λsq

= ∂isq
∂λsd

(3)

The iron losses are excluded, since this work focuses on the
relation between flux linkages and currents. Anyway, more
accurate models including iron losses are available in literature, for
example in [6, 11, 12].

The model with the stator currents as state variables implies the
calculation of the incremental inductances L, defined as derivatives
of the flux linkage with respect to the currents. Consequently, the
use of stator flux linkages for real-time modelling purposes (for
example, in full-order observers where the flux estimation is
available) is to be preferred, since simpler equations are obtained
[10]. The related block schematic is reported in Fig. 1. 

The drawback of such formulation is that the magnetic
saturation has to be modelled in the form isdq = fdq

−1(λsdq), where fdq
is the function relating the stator currents to the flux linkages:

λsdq = fdq(isdq) =
λsd(isd, isq)
λsq(isd, isq)

(4)

It is worth to note that the flux linkage is a typical result of self-
commissioning identification procedures of synchronous machines,
in the form of two bi-dimensional look-up tables (LUTs). Solutions
that generate LUTs are available in the literature, as for example
[9] for the case of synchronous reluctance machines.

3 Proposed method
Once stored, the LUTs describing fdq can be used to determine the
inverse function fdq

−1 by means of the schematic shown in Fig. 2,
which is an easily-implementable loop algorithm running within
the drive control board for each selected flux reference. In the
block diagram, C represents a suitable MIMO (i.e. two-inputs, two-
outputs) controller that is designed to stabilise the feedback loop,
and to guarantee the regulation of the output λsdq to the specified
set-point λsdq*  with a satisfactory settling (i.e. convergence) time.
Each point of the flux-to-currents LUTs describing the inverse map
isdq = fdq

−1(λsdq) is obtained by setting an appropriate value of the
flux linkage reference vector λsdq* , and then evaluating the value of
the current vector isdq achieved at steady state (such value certainly
exists, provided that C is a stabilising controller that guarantees
zero steady-state regulation error). Obviously, the resolution of the
LUTs so obtained is in trade-off with the memory consumption and
the computing time of the control board microprocessor/FPGA. 

The next section shows that a pure integral controller is
sufficient to guarantee stability and perfect regulation of the flux
linkage. An upper bound to the convergence time is also derived,
which can be used next as a design constraint for the controller
gain.

4 Convergence analysis
This section is devoted to the convergence analysis of the proposed
method. A sufficient condition (inverse function theorem) for the
local invertibility of the function fdq, assumed to be sufficiently
smooth (at least continuously differentiable) over a compact set D,
is that the Jacobian matrix L = ∂fdq/∂isdq is not zero on D, namely

det L(isdq) ≠ 0 ∀isdq ∈ D (5)

This condition is certainly verified for any isdq ≠ 0, since L is a
positive definite matrix (as a matter of fact, (1 = 2) isdq

T Lisdq is the
stored magnetic energy, which is a positive definite function [13]).

Consider a pure integral controller of the type:

disdq
dt = ke with k > 0 (6)

Thanks to the positive definiteness of the inductance matrix L, it is
possible to show that there always exists a suitable choice of the
integral gain k that stabilises the feedback loop, with a prescribed
upper-bound to the settling time. For such purpose, consider the
quadratic, positive-definite function:

V(e) = eTe = ∥ e ∥2 (7)

Such function is a valid Lyapunov function that can be used to
prove the asymptotic stability of the closed loop, provided that its
time derivative V̇(e) is a negative-definite function [14]. It holds
that:

V̇(e) = 2eTė = 2eT d
dt [λsdq* − fdq(isdq)]

= −2eTL
disdq
dt = − 2keTLe

(8)

Being L a non-singular symmetric matrix, the application of the
Rayleigh's inequality [14] yields:

λmin(L)∥ e ∥2 ≤ eTLe ≤ λmax(L)∥ e ∥2 (9)

where λmin(·) and λmax(·) denote the minimum and maximum
eigenvalues. Remind that all the eigenvalues of a symmetric matrix
are real; moreover, a symmetric matrix is positive definite if and
only if all its eigenvalues are positive. Hence, after combining (9)
with (8), it follows that

V̇(e) = 2keTLe ≤ − 2kλmin(L)∥ e ∥2 < ⋯ < − 2 km∥ e ∥2

< 0 (10)

where

m =
Δ

min
u ∈ D

λmin(L) (11)

which proves the asymptotic stability of the closed-loop system for
any choice of the integral gain k > 0 (note that m certainly exists
because D is compact). The condition (10) can be used to derive an
upper bound to the rate of convergence to zero of the regulation
error norm ∥ e ∥. By using definition (7), from (10) it follows that

V̇(e) ≤ − 2 kmV(e) (12)

Fig. 1  Machine model with flux linkage as state variable
 

Fig. 2  Simplified schematic of the proposed method for the determination
of the inverse magnetic saturation map
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which in turns yield

V(e(t)) ≤ V(e(0))exp( − 2 kmt) (13)

or, equivalently

∥ e(t) ∥ ≤ ∥ e(0) ∥exp( − kmt) (14)

for t ≥ 0. Therefore, from (14), it follows that the regulation error
norm will certainly be less than a prescribed threshold eT when

t > 1
km In ∥ e(0) ∥

eT
(15)

which represents an upper bound to the settling time of the
regulation loop – indeed, the error can settle to zero faster than the
upper bound specified in (14). Both the bounds (14) and (15)
depend on the initial value ∥ e(0) ∥ of the regulation error norm.
By assuming that the initial state of the integrator (6) is zero, then
the initial error norm ∥ e(0) ∥ is upper bounded by

e0, maxΔ max
idq ∈ D

∥ fdq(isdq) − fdq(0) ∥ (16)

Note that it is always possible to assume that fdq(0) is equal to zero
(if not, as in the case of permanent-magnet motors, it is possible to
remove it from the values stored in the LUTs of the map fdq, prior
to the application the proposed method), so that

e0, max = max
isdq ∈ D

∥ fdq(isdq) ∥ = max
isdq ∈ D

∥ λsdq(isdq) ∥ (17)

By using (17) within (15), the following upper bound to the settling
time (to an error less than eT) is obtained:

t̄ s(eT) = 1
km In e0, max

eT
(18)

which is independent of the initial error norm ∥ e(0) ∥.
The condition (18) can be used as a design equation: in fact,

given the desired (maximum) settling time t̄ s(eT) as a control
performance specification, from (18) it is possible to determine the
controller gain that allows the fulfilment of the specification,
namely:

k = 1
mt̄ s(eT) In e0, max

eT
(19)

Note that (19) requires to compute (11). For the 2 × 2 inductance
matrix L in (2), with the additional reciprocity conditions (3), it is
immediate to verify that

λmin(L) = (Ldd + Lqq) − (Ld − Lq)2 + 4Ldp
2

2 (20)

so that (11) reduces to find the minimum of the function (20) over
D.

5 Test on experimental data
The experimentally obtained LUTs representing the current-to-flux
maps fdq of an 11 kW SynRM are shown in Fig. 3, over the set
D = {(isd, isq): isd ≤ 20 A, isq ≤ 20 A}. The differential
inductances, obtained by numerical differentiation of the data in
Fig. 3, are reported in Fig. 4. 

For calculating fdq
−1, assume that the required (maximum)

settling time to 2% of the nominal flux linkage λN = 0:57 Vs is
t̄ s(eT) = 10 ms (where eT = 0:02 λN). According to (18), the
integrator gain that satisfies such specification is k≃88 × 104. With
the proposed integral gain, the typical response of the normalised
error norm ∥ e(t) ∥/λN is shown in Fig. 5, on both a linear and a
logarithmic scale. 

The figure is obtained by iterating the proposed method for
each value stored in the LUT of the current-to-flux map fdq, and
then taking the slowest decaying response (dark solid line). The
dashed line is the upper-bound to the normalised error norm,
obtained by using (14) combined with (17).

It is noticed that the calculated upper bound is not very tight,
and indeed the computed bound is roughly twice the actual
maximum settling time. However, this condition is heavily
dependent on the profile of the current-to-flux map, i.e. the
machine under test. Different machines with different magnetic
saturation characteristics may show the bound to be closer to the
actual maximum settling time.

The final inverse flux-to-current map fdq
−1, resulting after the

application of the proposed method to each point of the LUTs in
Fig. 3 is shown in Fig. 6. With an upper-bound to the settling time
of 10 ms, the total time required for the calculation of the inverse
map fdq

−1 on a 33 × 33 point grid over D is approximately equal to
33 × 33 × 10 ms≃11 s. This time can be obviously reduced by
setting a smaller value of the settling time specification used to
compute the integrator gain – such choice will simply produce a
larger controller gain. 

However, since the control scheme of Fig. 2 used for the map
inversion is necessarily discrete in order to be simulated by a
digital micro-controller (for example, by using the forward Euler
method to approximate an integrator in the discrete time domain),

Fig. 3  Current-to-flux maps
(a) λsd = fd(isd, isq), (b) λsq = fq(isd, isq)
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Fig. 4  Differential inductance maps
(a) Ldd, (b) Lqq, (c) Ldq

 

Fig. 5  Convergence analysis
(a) Linear scale plot, (b) Logarithmic scale plot

 

Fig. 6  Flux-to-current maps
(a) isd = f d

−1(λsd, λsq), (b) isq = f q
−1(λsd, λsq)
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there is obviously a lower bound on the selectable settling time
specification, below which the discretisation becomes unstable. It
is not easy to provide an analytic expression for the lower bound (it
would be necessary to reformulate the entire analysis of Section 4
in the discrete time domain, which is a non-trivial task): from
extensive simulations, it has been noted that stability is guaranteed
whenever the required settling time is chosen larger than 50
sampling periods of the digital controller sampling time.

6 Conclusions
This paper discusses the calculation of the inverse magnetic
saturation curves from flux linkages to currents in the dq reference
frame, for their use in synchronous machine models where flux
linkages are the state variables. After proposing a methodology that
calculates the inverse curves based on a set of magnetic saturation
curves from currents-to-flux linkages, the paper demonstrates its
convergence, returning an upper bound limit for its settling time.
This result allows the inclusion of the method in the
commissioning of an electric drive, right after the estimation of the
magnetic saturation curves.

The method has been tested on the experimentally measured
magnetic saturation curves of a SynRM, proving its validity and
that of the convergence analysis.
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