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Reducibility, a constructive dual of spatiality1
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Abstract: An intuitionistic analysis of the relationship between pointfree and
pointwise topology brings new notions to light that are hidden from a classical
viewpoint. In this paper, we study one of these, namely the notion of reducibility
for a pointfree topology, which is classically equivalent to spatiality. We study its
basic properties and we relate it to spatiality and to other concepts in constructive
topology. We also analyse some notable examples. For instance, reducibility for
the pointfree Cantor space amounts to a strong version of Weak König’s Lemma.
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Introduction

A characteristic feature of constructive Mathematics, that is, Mathematics developed
without using the Law of Excluded Middle (LEM), is that each “classical” notion splits
into several, no longer equivalent concepts. Even more distinctions appear when also
other “usual” foundational principles are omitted, such as the Power-Set Axiom (PSA).

A constructive investigation of the relationships between pointwise and pointfree
topology brings new notions to light that were hidden from a classical viewpoint.
Reducibility is one of these. It has its origin in the work of the second author [22],
and it has already been studied extensively in the case of the Zariski spectrum of a
commutative ring by Rinaldi, Sambin and Schuster [19]. Roughly speaking, reducibility
is one possible manifestation of a well-known classical notion, that of spatiality for a
pointfree topology (locale). Constructively, “spatiality” as in the standard formulation
and “reducibility” are two different concepts.

1This paper is included in the Proceedings of the Fifth Workshop on Formal Topology, Institut
Mittag-Leffler, June 2015 (editors Thierry Coquand, Maria Emilia Maietti and Erik Palmgren).
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2 F Ciraulo and G Sambin

The aim of this paper is to give an introduction to reducibility and prove some of basic
results about it. We relate reducibility to other central concepts, first of all spatiality, and
we analyse some notable examples. For instance, the pointfree version of the Cantor
space reducibility amounts to a version of Weak König’s Lemma (WKL). This is in
accordance with the well-know fact that spatiality for such a space is Brouwer’s Fan
Theorem (FAN) and that, classically, FAN and WKL are equivalent.

The notion of a reducible topology was originally introduced in [22] in the framework
of so called positive topologies (formal topologies with positivity relations), where it
naturally arises. Therefore, after having analysed reducibility in the case of locales,
in the second part of the paper we move to the more general framework of positive
topologies.

This paper is written in the spirit of a minimalist approach to the foundations of
mathematics as developed by Maietti and Sambin [17, 15], though not explicitly within
the formal system proposed therein. This essentially means that all definitions and
proofs we give remain sound within virtually all possible foundations (usual set theories,
topos-valid mathematics, intuitionistic type theories, constructive set theories, et cetera).
To achieve this aim, we refrain from using any logical or set-theoretic principle which is
not part of even one of the above mentioned foundations. Surely among those principles
are LEM and PSA. So the word “constructive” in the title refers to the fact that (i)
we use intuitionistic rather than classical logic, and (ii) we take care of distinguishing
between arbitrary collections of objects and sets.2 A clear advantage of our approach is
that all readers can follow our arguments, regardless of their own foundational attitude.
From time to time we will remark what would happen if some of these principles were
accepted. We will say that a result is classical if it depends on LEM and impredicative
if it depends on PSA.

Finally we introduce some notation: for S a set, we write P(S) for the collection of all
subsets of S; and for given U and V in P(S), we write U G V to mean that U ∩ V is
inhabited.

1 Preliminaries

Concrete spaces. Let (X, τ ) be a topological space and let B = { ext a | a ∈ S} be
2The precise meaning of these two terms depends on the specific foundational theory one

adopts. What we have in mind is the Minimalist Foundation of Maietti and Sambin, but other
interpretations are possible: for instance, one could read a collection as a (not necessarily proper)
class in the usual set-theoretic sense.
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Reducibility, a constructive dual of spatiality 3

a base for τ indexed by some set S . In this case, (X, τ ) can be presented as a triple
X = (X,, S) where x  a is x ∈ ext a (plus those conditions on  which make the
ext a’s a base for τ ). This we call a concrete space: it is a topological space in which
the topology is set-based, that is, there exists a base which is a set, and the points form
a set.

There are important examples of topologies whose points cannot be assumed to form a
set in the minimalist foundation. This happens, for instance, for real numbers defined
as Dedekind cuts. On the other hand, the open intervals with rational endpoints, which
are indexed by the set Q×Q, form a base for such a topology. In fact, there are many
concrete examples of topologies like that: a base exists which is a set, even though the
whole collection of opens can be too large to be a set predicatively. Thereby, according
to Maietti and Sambin [18], our choice of developing topology over a minimalist
framework necessarily leads us to a point-free approach, that is, one which is focused
on opens rather than on points.

1.1 Locales and formal topologies

It is well known that the open sets of a topological space form a frame: they are
closed under finite meets and arbitrary joins with respect to inclusion, and binary meets
distribute over joins. A frame homomorphism is a map which preserves finite meets
and arbitrary joins. Every continuous map between two topological spaces defines, by
inverse image, a frame homomorphism between the corresponding frames of opens,
but in the opposite direction. A locale is a frame regarded as a generalized topological
space. The category of locales is the opposite of the category of frames, so that the
direction of arrows coincides with that between topological spaces.

Formal topology is, to a first approximation, a theory of “locales-with-bases”, which
is suitable for a predicative framework. A predicative approach requires, first of all, a
more careful definition of a frame: it is a partially ordered collection with finite meets
and set-indexed joins. A base for a frame L is a set S ⊆ L such that {a ∈ S | a ≤ x} is
a set for every x ∈ L , and x =

∨
{a ∈ S | a ≤ x}. This we call a set-based frame. All

the information about a set-based frame can be encoded in a “cover relation”, say �,
where a � U means a ≤

∨
U , for a ∈ S and U ⊆ S . This is the motivating example

for the following definition.

Definition 1.1 A formal cover on a set S is a relation � ⊆ S×P(S) which satisfies
the following conditions for all a ∈ S and U,V ⊆ S:

Journal of Logic & Analysis 11:FT1 (2019)



4 F Ciraulo and G Sambin

(1) if a ∈ U , then a � U ;

(2) if a � U and u � V for all u ∈ U , then a � V ; and

(3) if a � U and a � V , then a � ↓U ∩ ↓V ,

where ↓U = {a ∈ S | a � {u} for some u ∈ U}.

Each formal cover has an associated frame of formal opens, namely those subsets of
the form {a ∈ S | a � U} for U ⊆ S . The set(-indexed family) of all ↓a for a ∈ S is a
base for that frame, because every formal open {a ∈ S | a � U} is the join of all ↓u for
u ∈ U . So set-based frames are essentially the same thing as formal covers, and a frame
homomorphism between two set-based frames can be presented as a(n equivalence class
of ) particular binary relations between the corresponding bases (see Sambin [21] for
details).

Subobjects. A nucleus on a frame X is a map j : X → X such that the conditions
x ≤ j(x) = j(j(x)) and j(x ∧ y) = j(x) ∧ j(y) hold identically. The collection Xj of all
fixed points of j is a frame, actually a quotient of X . As a locale, it corresponds to a
regular subobject of X ; this is called a sublocale.

When a locale is represented as a formal cover (S,�), each of its sublocales can be
presented as a formal cover (S,�′), on the same set S , such that

(1) � ⊆ �′ , and

(2) if a �′ U and a �′ V , then a �′ (↓U ∩ ↓V).

(See, for instance, Vickers [26].)3

1.2 Points and spatiality

Given a point x in a topological space (X, τ ), the familyN (x) of all open neighbourhoods
of x form a completely prime filter in the frame of all open sets τ . Completely prime
filters of τ correspond to frame homomorphism from τ to P(1), the power of the
singleton set 1 = {0}. A point of a locale L is a frame homomorphism from L to
P(1). In fact, P(1) is the initial object in the category of frames, that is, the terminal
object in the category of locales. Note that P(1) is a set-based frame which corresponds
to the formal cover (1,∈), and it is isomorphic to 2 = {0, 1} if and only if LEM holds.

3Note that (i) a sublocale is presented by a larger cover, and (ii) ↓ is defined in terms of the
ambient cover � .
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Reducibility, a constructive dual of spatiality 5

Proposition 1.2 Let L be the a set-based frame and let (S,�) be the corresponding
formal cover. There is a bijection between completely prime filters of L and subsets
α ⊆ S which satisfy the following conditions for all a, b ∈ S and U ⊆ S:

(1) α is inhabited;

(2) if a � U and a ∈ α , then U G α; and

(3) if a ∈ α and b ∈ α , then c ∈ α for some c with c ≤ a and c ≤ b.

Proof Here is a sketch of the proof. If F is a completely prime filter of L, then
αF = S ∩ F satisfies all the above conditions. Conversely, given α as above, Fα =

{x ∈ L | α G {a ∈ S | a ≤ x}} is a completely prime filter.

Definition 1.3 A formal point of a formal cover S = (S,�) is a subset α ⊆ S which
satisfies the conditions in the previous proposition. We write Pt(S) for the collection of
formal points of S .

Spatial formal covers. In a concrete space X = (X,, S), the set(-indexed family)
B = { ext a | a ∈ S} is a base for the frame of opens; therefore, the frame of opens
corresponds to a formal cover on B . Up to isomorphisms, the same frame can be
presented as a formal cover on S itself, namely (S,�X ), where

(1) a �X U
def⇐⇒ ext a ⊆

⋃
u∈U

ext u.

As shown by the second author [22], ext becomes in fact a frame isomorphism between
the open subsets of X and the formal opens of (S,�X ).

Formal covers of the form (S,�X ) are spatial, in the sense of the following definition.

Definition 1.4 A formal cover S = (S,�) is spatial if a � U follows from the
assumption that a ∈ α⇒ α G U for every formal point α .4

For, if X is a concrete space, then every subset of the form 3x = {a ∈ S | x  a} is
a formal point, and the condition a ∈ 3x ⇒ 3x G U for all x ∈ X means precisely
a �X U .

Impredicatively, a formal cover (locale) S = (S,�) is spatial if and only if there exists
a concrete space X = (X,, S) such that � = �X . In fact, S is spatial precisely when

4Note that a ∈ α⇒ α G U follows from a � U , for every formal point α .
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6 F Ciraulo and G Sambin

� is the cover relation induced by the “large” concrete space (Pt(S),3, S), where Pt(S)
is the collection of formal points of S .

An example: the topology of radical ideals. Given a commutative ring R with unit,
let us write a � U when a belongs to the radical ideal

√
U generated by U , as done

by Rinaldi, Sambin and Schuster [19]. This is a cover relation whose formal open
subsets are precisely the radical ideals of R. In this case, the last clause in the definition
of a formal cover becomes equivalent to the following: if a � U and a � V , then
a � U · V where U · V = {u · v | u ∈ U and v ∈ V} and · is multiplication in R. This
rule corresponds to the well known fact that the lattice of radical ideals is distributive.
Moreover, such a cover relation is finitary in the sense that a � U holds if and only if
a � K for some finite subset K ⊆ U (see Ciraulo and Sambin [5] for more details) .

Classically, the formal points are just the complement of prime (radical) ideals. Therefore,
spatiality holds precisely when, for every a outside a radical ideal

√
U , there exists a

prime ideal P ⊇ U such that a /∈ P. In other words, spatiality means that the radical
ideal generated by a given U ⊆ R is the intersection of all prime ideals that contain U .

2 Reducibility for formal topologies and locales

A locale L is spatial when x ≤ y follows from the assumption that p(x) = 1⇒ p(y) = 1
for every point p : L→ P(1). Classically, this is equivalent to saying that whenever
x � y there exists a point p such that p(x) = 1 6= p(y). The aim of the present paper is
to study the constructive properties of the following form of spatiality.

Proposition 2.1 In the presence of LEM, the following are equivalent for a locale L:

(1) L is spatial.

(2) For every join-preserving map ϕ : L → P(1) and every a ∈ ϕ−1(1), there
exists a frame homomorphism p : L → P(1), that is, a point of L such that
a ∈ p−1(1) ⊆ ϕ−1(1).

Proof Classically, every ϕ as above is of the form x 7→ ¬(x ≤ b) for some b ∈ L
(take b =

∨
{x ∈ L | ϕ(x) = ∅}) and so (2) becomes exactly spatiality: if ¬(a ≤ b),

then there exists a point p such that p(a) = 1 and p(b) = 0.

Definition 2.2 We call a locale reducible if it satisfies the property (2) in the previous
proposition.

Journal of Logic & Analysis 11:FT1 (2019)



Reducibility, a constructive dual of spatiality 7

Intuitionistically, every reducible locale L satisfies the following property:

if ϕ(a) = 1 and ϕ(b) = 0 for some suplattice homomorphism ϕ : L → P(1), then
there is a frame homomorphism p : L→ P(1) with p(a) = 1 and p(b) = 0.

A join-preserving map ϕ : L→ P(1) carries the same information of the completely
prime semi-filter (upward closed subset of L inaccessible by joins) ϕ−1(1). If L is the
set-based frame presented by a formal cover (S,�), then one can show that completely
prime semi-filters, and hence join-preserving maps ϕ : L → P(1), correspond to
splitting subsets in the sense of the following definition.

Definition 2.3 Let (S,�) be a formal cover. A subset Z ⊆ S is called splitting if

a � U & a ∈ Z =⇒ U G Z

for every a ∈ S and U ⊆ S .

Note that being splitting is part of the definition of a formal point. Note also that
splitting subsets are closed under unions.

Definition 2.4 A formal cover (S,�) is reducible if for every splitting subset Z ⊆ S
and every a ∈ Z , there exists a formal point α such that a ∈ α ⊆ Z .

In other words, a formal cover is reducible when splitting subsets are precisely the
unions of formal points.

2.1 On the relation between reducibility and spatiality

A discrete locale is one whose underlying frame is P(S) for some set S . Such a frame
corresponds to the formal cover (S,∈). Its sublocales are all of the form (S,�) where
a � U & a � V ⇒ a � U ∩ V for all a ∈ S and U,V ⊆ S .

Proposition 2.5 Every sub-locale of a discrete locale is reducible.

Proof Let S = (S,�) be a sublocale of the discrete locale P(S), and let a ∈ Z with Z
a splitting subset of S . We claim that {a} is a formal point of S . Since {a} trivially
satisfies the first and third condition in Proposition 1.2, it is sufficient to show that {a}
is splitting. This amounts to showing that a � U ⇒ a ∈ U for every U ⊆ S . The
assumption a � U together with a � {a}, which always holds, implies a � U ∩ {a}.
Together with a ∈ Z , this gives (U ∩ {a}) G Z because Z is splitting. Hence, in
particular, U ∩ {a} is inhabited, that is, a ∈ U .
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8 F Ciraulo and G Sambin

Proposition 2.6 The statement “every sub-locale of a discrete locale is spatial” is
equivalent to LEM.

Proof In the presence of LEM, reducibility and spatiality coincide; so one half of
the statement follows from Proposition 2.1. As for the other half, we show that the
apparently weaker assumption “every closed sub-terminal locale is spatial” already
yields LEM. Closed sub-locales of 1 correspond to nuclei of the form jP(X) = X ∪ P
for P ∈ P(1). We claim that the sublocale of fixed points of jP is spatial if and only if
P∪−P = 1. Of course, the map jP(Q) 7→ Q is the only potential frame homomorphism
from the fixed points of jP to P(1). This is a well-defined map (and hence a point) if
and only if P = ∅. So spatiality for the sublocale corresponding to jP amounts to the
statement ∀Q,R[(P = ∅ ⇒ Q ⊆ R)⇒ Q ⊆ R ∪ P], which says that P ∪ −P = 1 (take
Q = 1 and R = −P).

As a corollary of the previous two propositions, we have that reducibility does not
imply spatiality intuitionistically. We will show (paragraph on Baire space at the end
of the following section) that spatiality does not imply reducibility either.

3 The formal cover associated to a tree

For S a set, let List(S) be the set of finite lists of elements of S , regarded as the full
S-tree (every node has S-many immediate successors). We introduce some notation: 〈〉
is the empty list, which is the root of the tree, and 〈a1, . . . , an〉 is the list with elements
a1, . . . , an ∈ S; |l| ∈ N is the length of the list l; and lk is the concatenation of the two
lists l and k . We say that l is an initial segment of lk , for any k , and that l〈a〉 is an
immediate successor of l, for every a ∈ S .

We consider the smallest formal cover � on List(S) such that every node (except the
root) is covered by its immediate predecessor as well as by the set of its immediate
successors. This is expressed formally by an inductive generation as explained by
Sambin [20], Coquand, Sambin, Smith and Valentini [9], and Ciraulo, Maietti and
Sambin [4].5 The intuitive idea is that l � U holds when every infinite path which

5It is possible to show that � is the smallest relation which satisfies the following conditions:
(i) if l ∈ U , then l � U ; (ii) if l = k〈a〉 and k � U , then l � U ; and (iii) if l〈a〉 � U for all
a ∈ S , then l � U . The existence of such a cover requires a specific mathematical assumption
which gives a natural extension of the minimalist foundation.
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Reducibility, a constructive dual of spatiality 9

passes through the node l also passes through some node in U . Actually this idea
becomes a fact precisely when such a topology is spatial, as we now see.

It can be shown that a subset T ⊆ List(S) is splitting if and only if

(i) T is closed under initial segments, and

(ii) if l ∈ T , then some immediate successor of l belongs to T .

An inhabited T which satisfies (i) is, by definition, a sub-tree of List(S).6 Clearly, (ii) is
a positive way of saying that T has no finite branches, hence no leaves. Therefore, an
inhabited splitting subset is what some authors, especially in descriptive set-theory, call
a pruned sub-tree of List(S).

A formal point of (List(S),�) is thus a pruned sub-tree α ⊆ List(S) which, in addition,
satisfies the following: for all a, b ∈ S , if l〈a〉 ∈ α and l〈b〉 ∈ α , then a = b. Therefore
it is (identifiable with) an infinite path.

We say that a sub-tree T of List(S) is strongly infinite when it contains a pruned
sub-tree. Every strongly infinite tree contains arbitrary-long branches, that is, it has
infinite height; in particular, it has infinitely many nodes.7

Proposition 3.1 For a set S , the following are equivalent:

(1) The formal cover on List(S) is reducible.

(2) Every pruned sub-tree of List(S) contains an infinite path.

(3) Every strongly infinite sub-tree of List(S) contains an infinite path.

Proof 1⇒ 2. If T is pruned, then 〈〉n� T . By reducibility, there is a formal point
α ⊆ T , that is, an infinite path in T .

2⇒ 3. If T is strongly infinite, then it contains a pruned sub-tree.

3⇒ 1. Assume l ∈ T with T splitting; so T is pruned. Consider the sub-tree Tl given
by those lists in T which are comparable with l. Note that Tl is pruned as well, hence
strongly infinite. By assumption, Tl contains an infinite path, which necessarily passes
through the node l. In other words, there is a point α with l ∈ α ⊆ Tl ⊆ T .

6Here we do not require T to be decidable, which, on the contrary, is a quite common
requirement in the literature on constructive mathematics.

7The converse is true classically (in ZFC set theory), provided that S is finite, that is, every
infinite, finitely branching tree is strongly infinite (because of König’s Lemma: every infinite,
finitely branching tree contains an infinite path). This fact cannot hold constructively: by using
a result of Berger, Ishihara and Schuster [3, Proposition 19], one can show that the assumption
“every infinite binary tree is strongly infinite” implies LLPO. We thank Tatsuji Kawai for
pointing out this result to us.
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It is well known that the statement “every pruned tree has an infinite path” is equivalent
(over ZF set theory) to Dependent Choice. This fact holds also in the minimalist
foundation, as we now show. Dependent Choice (DC) is the assumption that the
following principle DC(X ) holds for every set X .

DC(X ): given an element a ∈ X and a total relation R ⊆ X × X, there is a functional
relation f ⊆ N× X such that f (0) = a and ( f (n), f (n + 1)) ∈ R for all n ∈ N.8

Lemma 3.2 Given a set S , consider the following:

(i) DC(T ) holds for every pruned sub-tree T ⊆ List(S).

(ii) The formal cover on List(S) is reducible.

(iii) DC(X ) holds for every X ⊆ S .

Then (i) =⇒ (ii) =⇒ (iii).

Proof Given a pruned sub-tree T ⊆ List(S), let us consider the relation R ⊆ T × T
given by all pairs (l, l〈a〉) with l〈a〉 ∈ T . Such a relation is total since T is pruned. So
DC(T) provides us with a function f ⊆ N×T such that f (0) = 〈〉 and, for every n ∈ N,
f (n + 1) = f (n)〈a〉 for some a ∈ S . So {f (n) | n ∈ N} is the required infinite path in T .

Given any total relation R ⊆ X × X and any a ∈ X , we can define inductively a
sub-tree TR ⊆ List(S) by means of the following clauses: (i) 〈〉 ∈ TR ; (ii) 〈a〉 ∈ TR ;
and (iii) if l〈x〉 ∈ TR and (x, y) ∈ R, then l〈x, y〉 ∈ TR . Clearly TR is pruned precisely
because R is total. By Proposition 3.1, there is an infinite path α ⊆ TR . The set
{(|l|, x) ∈ N× X | l〈x〉 ∈ α} is a well-defined function which does the job required by
DC(X ).

Proposition 3.3 The formal cover on List(S) is reducible for all sets S if and only if
DC holds.9

Proof It follows at once from the previous lemma.

8In the minimalist foundation of Maietti and Sambin [17, 15] the notion of a function from
N to X , in the set-theoretic sense of a functional relation f ⊆ N× X , is kept distinct from that
of a sequence of elements of X , that is, a term in the type N→ X . This means that the axiom of
unique choice is not included in the “minimalist” system. Thus common formulations of DC,
which require the existence of an operation, are definitely stronger than our formulation above.

9For partial results in this direction see Sambin [22], Maietti [16], and Rinaldi, Sambin and
Schuster [19, Proposition 7.8].
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Baire space. Let us have a closer look to the case S = N. Spatiality for such a topology
is equivalent to Monotone Bar Induction (see Fourman and Grayson [11] and Gambino
and Schuster [14] for details). An inhabited splitting subset U of (List(N),�) is a
spread.10 So, the Baire formal cover is reducible precisely when every spread contains
an infinite path. (See Maietti and Sambin [18] for more on this topic; in the decidable
case, this is sometimes called Brouwer’s Spread Lemma.)

As a corollary we get that spatiality does not imply reducibility. We thank Tatsuji
Kawai for suggesting the following argument. In [12, Theorem 3.4] Fourman and
Hyland show that the internal theory of the topos Sh(R) of sheaves over the reals satisfies
the principle of Monotone Bar Induction, which expresses spatiality of the Baire space.
On the contrary, the axiom of choice from numbers to numbers AC-NN fails in the
internal logic of Sh(R) because the Dedekind and Cauchy reals do not coincide there
[12, page 289]. Recall that AC-NN is the following: given a total relation R ⊆ N× N,
there exists a functional relation f ⊆ N× N such that (n, f (n)) ∈ R for all n ∈ N. We
want to show that AC-NN becomes provable if the Baire space is reducible. Indeed,
given a total relation R ⊆ N× N, one can define a spread U by induction by means of
the following clauses: (i) 〈〉 ∈ U ; and (ii) if l ∈ U and (|l|, x) ∈ R, then l〈x〉 ∈ U . If
α is a path (= ideal point) in U, then {(|l|, x) ∈ N × N | l〈x〉 ∈ α} is a well-defined
function f with (n, f (n)) ∈ R for all n ∈ N.

Cantor space. By specializing to the case S = 2 we get Cantor formal cover (List(2),�).
By a result of Fourman and Grayson [11], such a locale is spatial precisely if the full
Fan Theorem holds (for arbitrary, not necessarily decidable, bars). See Gambino and
Schuster [14] for details.

We now can add a dual statement. Reducibility of Cantor space amounts to the following:
every pruned binary tree contains an infinite path. By Proposition 3.1, this is equivalent
to the statement every strongly infinite binary tree contains an infinite path, which is
manifestly a weak version of the Weak König’s Lemma.

4 Positive Topologies

In a concrete space X = (X,, S), also the closed subsets of X have their “formal
companions” in S . In order to see this, we first define

restU = {x ∈ X | 3x ⊆ U}
10The usual definition of a spread includes decidability of U ; see, for instance, Troelstra and

van Dalen [25].
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12 F Ciraulo and G Sambin

where 3x = {a ∈ S | x  a} is the system of (indexes of ) basic neighbourhoods of x .
When U ranges over the subsets of S , the subsets restU of X describe all closed sets.
Each closed set, however, can be the image of several subsets, unless a canonical choice
is made as follows. Let us consider the following positivity relation between elements
and subsets of S . For a ∈ S and U ⊆ S , we put

(2) anX U ⇔ ext a G restU ⇔ (∃x ∈ X)(a ∈ 3x ⊆ U).

As shown by the second author [22], rest becomes one-to-one when restricted to
subsets of the form {a ∈ S | anX U}. These we call formal closed subsets.

The following definition from [22] captures much of the structure (S,�X ,nX ) induced
by a concrete space.

Definition 4.1 A positive topology is a triple S = (S,�,n) where � is a formal
cover and n ⊆ S× P(S) satisfies the following conditions for all a ∈ S and U,V ⊆ S:

(1) if an U , then a ∈ U ;

(2) if an U and b ∈ V for all b with bn U , then an V ; and

(3) if a � U and an V , then un V for some u ∈ U (compatibility).

The relation n is called a positivity relation and subsets of the form {a ∈ S | an U}
are called formal closed. For X a concrete space, SX = (S,�X ,nX ) is a positive
topology. Positive topologies of this kind are called representable (by a concrete
space).

Positive topologies from an algebraic point of view. Now, let (S,�,n) be a positive
topology and let L be the complete lattice (of formal open subsets) presented by (S,�).
What does n and the formal closed subsets present?11 The compatibility rule says
precisely that every formal closed subset F is splitting (Definition 2.3).

Splitting subsets are closed under unions and so they form a suplattice as well, called
Split(S,�). The collection of formal closed subsets with respect to the given n turns
out to be a sub-suplattice of Split(S,�). Conversely, let M be a sub-suplattice of
Split(S,�). Then the relation an U ⇔ (∃Z ∈ M)(a ∈ Z ⊆ U) is a positivity relation
compatible with � and, moreover, the corresponding collection of formal closed subsets
is precisely M .12

11See Ciraulo and Vickers [8] for a more detailed answer to this question, especially in the
case of locales.

12This argument is impredicative unless M is set-based. In general, however, there is no
reason to assume that the suplattice of formal closed subsets is set-based. Therefore, we could
say that a positivity relation is a “more concrete” object than the suplattice of splitting subsets it
presents.
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Classically, Split(S,�) is isomorphic to Lop (L with reversed order). Hence a positivity
relation on a suplattice L is, classically, just a sub-suplattice of Lop , that is, the opposite
of a suplattice quotient of L .

On morphisms. In this paper we need not use the notion of a morphism between
positive (basic) topologies [22]. So, we skip a precise definition and we content
ourselves with the following idea. An arrow between positive (basic) topologies, from
S1 to S2 say, corresponds to a frame (suplattice) homomorphism f from the formal
open subsets of S2 to the formal open subsets of S1 (note the opposite direction). In
addition, f has to “respect” the positivity relations, in the following sense. If we regard
splitting subsets, and hence formal closed subsets, as join-preserving maps to P(1) (as
explained above), then U ◦ f must be one of the formal closed subsets of S2 whenever
U is formal closed in S1 (which makes sense since U ◦ f is splitting anyway).

Locales as “thick” positive topologies. In a positive topology (S,�,n) the following
is always true: if a n U , then a ∈ V ⊆ U for some splitting subset V (take V =
{x ∈ S | xn U}). Let us consider the relation

an� U
def⇐⇒ (∃V splitting)(a ∈ V ⊆ U)

(which makes sense in an impredicative setting). In [7], we showed that n� is
a positivity relation, actually the greatest among the positivity relations which are
compatible with �.

Definition 4.2 A positive topology (S,�,n) is called thick (or “localic”) if n = n� ,
which happens precisely when an U follows from the assumption that a ∈ V ⊆ U for
some splitting subset V .

So a thick topology is one in which formal closed subsets and splitting subsets coincide.
Thick positive topologies, that is, those of the form (S,�,n�), are impredicatively the
same thing as locales. In fact the notion of a morphism between thick positive topologies
reduces to that between the corresponding locales of formal opens. Also in a predicative
setting the examples of thick positive topologies abound. For instance Alexandrov
topologies are always thick (see 4.3 below).13 Classically (and predicatively) every
representable positive topology is thick.

13In general, if the cover relation � is defined by induction (like in the case of trees; see
Section 3 above), then it is possible to define a positivity relation n = n� by coinduction.
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4.1 Spatiality and reducibility for Positive topologies

By taking inspiration from the properties of a subset of the form 3x for x ∈ X in a
concrete space X , the second author reached the following definition of an ideal point
[22].

Definition 4.3 Let S = (S,�,n) be a basic or positive topology. A subset α ⊆ S is
an ideal point of S if

(i) α is inhabited,

(ii) α is formal closed, and

(iii) whenever {a, b} ⊆ α , there is c ∈ α with c � {a} and c � {b}.

We write IPtS for the collection of ideal points of S .

Ideal points correspond to global elements in the category of positive topologies. Note
that (ii) is stronger than the usual requirement for a formal point of (S,�), namely
that α is a splitting subset; so, the ideal points of (S,�,n) are generally fewer than
the formal points of (S,�). However, the ideal points of a thick positive topology
(S,�,n�) are precisely the formal points of (S,�).

Note that IPt(S) need not be a set predicatively. Impredicatively, on the contrary, one
always has a concrete space

(
IPt(S),3, S

)
and hence the induced positive topology

(S,�IPt,nIPt). Note that the two inclusions � ⊆ �IPt and nIPt ⊆ n always hold since
every ideal point is formal closed, hence splitting.

The notion of a reducible topology was originally introduced by the second author [22]
in the framework of positive topologies, where it naturally arises.

Definition 4.4 A positive topology (S,�,n) is called

spatial if �IPt = �, which happens precisely when a � U follows from the
assumption that a ∈ α⇒ α G U for every ideal point α;

reducible if nIPt = n, which happens precisely when a n U implies the
existence of an ideal point α such that a ∈ α & α ⊆ U ;

bi-spatial if it is both spatial and reducible.

This terminology is coherent with that of the previous sections. Indeed, spatiality and
reducibility for a thick topology (S,�,n�) are clearly equivalent to those for (S,�).
Note that if (S,�) is spatial, then (S,�,n) is spatial for every n, because of the chain
of inclusions � ⊆ �IPt ⊆ �Pt .
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A positive topology is reducible precisely when every formal closed subset is a union of
ideal points (compare this to the remark after Definition 2.4), that is, when the notion of
a formal closed set is “reducible” to that of a point.

On the relation between reducibility and spatiality for positive topologies. In
Subsection 2.1 above, we proved that reducibility and spatiality for a locale are not
comparable intuitionistically, although they coincide classically.

For positive topologies, in general, the implication “reducibility implies spatiality” also
fails classically. Let (S,�) be a non spatial formal cover and consider the positive
topology (S,�,nPt). One can show that its ideal points are precisely the formal points
of (S,�) and hence (S,�,nPt) is reducible; but not spatial. Note that (S,�,nPt) is
different from the thick positive topology (S,�,n�).

On the other hand, spatial positive topologies are always reducible in a classical
framework. Let S = (S,�,n) be spatial and assume a n U . If there were no ideal
point α such that a ∈ α ⊆ U , then a ∈ α would imply α G −U for all ideal points α ,
and hence a �−U would hold because S is spatial. By compatibility, there should be
some b ∈ −U such that bn U , hence b ∈ U . This is a contradiction.

Positive topologies and inclusion between spaces. Every inclusion of spaces corre-
sponds to a particular positive topology. To see this, let Y be a subset of X , which gives
a subspace Y of X in the obvious way. Now (S,�X ,nY ) is a completely legitimate
positive topology in which the formal closed subsets correspond to the closed subsets
of Y . In general, a binary positivity predicate is a way to select a collection of points
(see Sambin and Trentinaglia [23], Ciraulo and Vickers [8], and Section 4.1 below).

Each positive topology S = (S,�,n) determines a collection of ideal points IPt(S),
which is a sub-collection of all formal points Pt(S ′) of the locale S ′ = (S,�). This
gives impredicatively an inclusion of spaces IPt(S) = Y ⊆ X = Pt(S ′). In turn,
this inclusion gives back a positive topology (S,�X,nY ) whose formal open subsets
correspond to the opens of X , and the formal closed subsets correspond to the closed
subsets of Y . Note that such a positive topology coincides with S precisely when S is
reducible and S ′ is spatial. This happens in particular when S is bi-spatial, since the
chain of inclusions � ⊆ �X ⊆ �Y always holds.

4.2 Bi-spatiality and the “size” of the collection of points

Given a concrete space X = (X,, S) and a (concrete) point x ∈ X , the subset 3x
= {a ∈ S | x  a} is an ideal point of SX = (S,�X ,nX ), hence a formal point of
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(S,�X ). When 3 is a bijection between X and IPt(SX ), then X is called weakly
sober. It is called sober if 3 is a bijection between X and Pt(S,�X ), in which case
IPt(SX ) = Pt(S,�X ) and so X is also weakly sober.

More explicitly, the difference between ideal points of SX and formal points of (S,�X )
is the following. The latter correspond to completely-prime filters of opens: given α
define Fα = { extU | U G α}; and given F define αF = {a ∈ S | ext a ∈ F}. An
ideal point of SX corresponds instead to a closed subset C ⊆ X which is irreducible in
the following sense14

extU G C & extV G C ⇒ ( extU ∩ extV) G C for all U, V

(classically this is equivalent to the usual notion of an irreducible closed subset). The
correspondence is as follows. To each α we associate restα and, vice versa, to each C
we associate 3C = {a ∈ S | ext a G C}. Classically, of course, the two notions of a
point are equivalent and so sobriety and weak sobriety coincide. Intuitionistically, the
picture is the following (see Aczel and Fox [2] and Fox [13]): every T2 space is weakly
sober, while the implication “every T2 space is sober” entails LPO.

Impredicatively, a positive topology S is bi-spatial if and only if it is representable by a
concrete space, namely

(
IPt(S),3, S

)
. A predicative version follows (cf Proposition

6.1).

Proposition 4.5 For every positive topology S , the following are equivalent:

(1) S is representable by a concrete space X .

(2) S is bi-spatial and IPt(S) is set-based.15

Moreover the following are also equivalent:

1′. S is representable by a weakly sober space X .

2′. S is bi-spatial and IPt(S) is a set.16

Proof Assume S = SX , with X a concrete space. If a �IPt U , then in particular
a ∈ 3x⇒ U G 3x for all x ∈ X . This is nothing but a �X U , which coincides with

14Such a constructive notion of an irreducible subset is taken from [22], where it appears
under the name “convergent subset”.

15In this case, with “set-based” we mean that there exists a set of ideal points which generate
all the others by union.

16See Curi [10] and Aczel and Curi [1] (and the literature cited therein) for more information
on when IPt(S) is a set. Clearly, if IPt(S) is a set, then it is also set-based; and the converse
holds provided that the topology on IPt(S) is T1 .
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Reducibility, a constructive dual of spatiality 17

a � U by assumption. Similarly, an U means a ∈ 3x ⊆ U for some x ∈ X , because
n = nX . So S is reducible because every 3x is an ideal point. Finally, every α is the
union of the 3x’s contained in it and so {3x | x ∈ X} is a base for IPt(S) (indexed by
the set X ).

Conversely, if IPt(S) is set-based with base {αx | x ∈ X}, then we consider the triple
X ≡ (X,, S), where x  a is a ∈ αx . We claim that S = SX and that X is a concrete
space. Clearly a � U implies a �X U because every αx is splitting. The opposite
direction holds because S is spatial: if a ∈ αx implies U G αx for all x ∈ X , then
the same holds for any ideal point α , since the αx ’s are a base for IPt(S); so a �X U
implies a �IPt U . The proof of n = nX is similar. Indeed nX ⊆ n holds because
every αx is formal closed. Since S is reducible, n ⊆ nX is equivalent to nIPt ⊆ nX ,
which holds because the αx ’s form a base for the ideal points. Finally, X turns out to
be a concrete space since every 3x = αx is an ideal point of SX .

We now come to the second part of the statement. Recall that X is weakly sober
precisely when the mapping x 7→ 3x is a bijection between X and IPt(SX ). So if X is
weakly sober, then IPt(SX ) is a set. Conversely, if IPt(S) is a set, then the structure(
IPt(S),3, S

)
is a completely legitimate concrete space representing S , as it is easy to

check.

Note that the following become equivalent within an impredicative framework: (i) S
is bi-spatial; (ii) S = SX for some concrete space X ; (iii) S = SX for some weakly
sober concrete space X . This does not hold predicatively, as shown by the following
example.

The Sierpinski formal cover. Let us consider the formal cover S induced by the
Sierpinski space (2,≤, 2), where 2 = {0, 1} and 0 ≤ 1. Here α ⊆ 2 is a formal point
if and only if 1 ∈ α . So we can define two maps between Pt(S) and P(1), where
1 = {0}, by putting Uα = {0} ∩ α and αU = U ∪ {1}. Clearly these are inverse to
each other and so Pt(S) can be identified with P(1). Predicatively, P(1) is not a set. In
view of Proposition 4.5, this shows that S cannot be represented by a (weakly) sober
space. So a positive topology induced by a concrete space need not be representable by
a (weakly) sober space, contrary to what happens impredicatively.

4.3 An example: Alexandrov topologies

If ≤ be a preorder (reflexive and transitive relation) on a set S , then (S,≤, S) is a
concrete space, that is, the subsets of the form ↓a = {x ∈ S | x ≤ a}, for a ∈ S , form a
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base for a topology on S . Therefore we can consider the induced bi-spatial positive
topology, say (S,�≤,n≤). For a ∈ S and U ⊆ S we then have

a �≤ U ⇐⇒ ↓a ⊆
⋃

u∈U ↓u ⇐⇒ ↑a G U
an≤ U ⇐⇒ ∃x(a ∈ ↑x ⊆ U) ⇐⇒ ↑a ⊆ U

where ↑x = {a ∈ S | x ≤ a}. The formal open (as well as the concrete open) subsets
are the lower sets with respect to ≤. Dually, the formal closed (as well as the concrete
closed) subsets are precisely the up upper sets. The ideal points turn out to be the
inhabited, upper sets which are also downward-directed. These not necessarily are of
the form ↑a with a ∈ S; for example, if (S,≤) is a linear, bottom-less order, then S
itself is a formal point.

As a topological space, (S,≤, S) is just the set S equipped with the so-called “lower
topology” with respect to ≤. This is nothing but the Alexandrov topology on (S,≥),
where ≥ is the specialization preorder, that is, x ≥ y if and only if x belongs to the
closure of y. In other words, positive topologies of the form (S,�≤,n≤) correspond
to Alexandrov spaces, that is, spaces in which any intersection of open subsets is
open. (See Sambin, Valentini and Virgili [24] for the connection between this kind of
topologies and Scott domains.)

More generally, if ≤1 and ≤2 are two partial orders on S , then one could wonder
whether (S,�≤1 ,n≤2) is a positive topology, that is, whether the compatibility condition
holds between �≤1 and n≤2 . This happens precisely when ≤1⊆≤2 . For, whenever
a ≤1 b, compatibility applied to the premises a�≤1 {b} and an≤2 ↑2a gives bn≤2 ↑2a;
this is ↑2b ⊆ ↑2a, that is, a ≤2 b. Conversely, if ≤1⊆≤2 , then �≤1 ⊆ �≤2 as well;
so compatibility between �≤1 and n≤2 follows from that between �≤2 and n≤2 .
Positive topologies of this form are called elementary.

In the case of an elementary topology, the formal open subsets are the lower subsets
with respect to ≤1 and the formal closed subsets are the upper subsets with respect to
≤2 . Note that the splitting subsets are upper subsets as well, but with respect to ≤1 .
Finally, ideal points turn out to be the inhabited, upper subsets with respect to ≤2 which
are also downward-directed with respect to ≤1 .

Proposition 4.6 For an elementary positive topology S = (S,�≤1 ,n≤2) the following
are equivalent:

(1) ≤1 = ≤2 .

(2) S is representable by a concrete space.

(3) S is spatial.
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(4) S is thick.

Furthermore, each of the above items implies that S is reducible, while the converse
holds provided that ≤2 (and hence ≤1 ) is antisymmetric.

Proof 1 ⇒ 2 because, by its very definition, a positive topology of the form
(S,�≤,n≤) is represented by the concrete space X = (S,≤, S).

2 ⇒ 3 by Proposition 4.5. Actually 2 implies that S is bi-spatial, hence reducible,
which is a piece of the second part of the statement.

3⇒ 4. In order to show that splitting subsets and formal closed subsets coincide, it is
sufficient to show that ≤1=≤2 (so we are actually proving that 3⇒ 1⇒ 4). If a ≤2 b,
then the implication a ∈ ↑2U ⇒ b ∈ ↑2U holds for every U . Since the ↑2U ’s are the
formal closed subsets, this gives a �≤1 {b} by 2, which means a ≤1 b.

4⇒ 1. For any given a ∈ S , we have a ∈ ↑1a ⊆ ↑2a. Since ↑1a is splitting and S is
thick, we get an≤2 ↑1a, that is, ↑2a ⊆ ↑1a. This means that a ≤2 b implies a ≤1 b
for all a, b ∈ S .

We now come to the last part of the statement. For every a, ↑2a ⊆ ↑2a means that
an≤2 ↑2a. By reducibility, there is some ideal point α with a ∈ α ⊆ ↑2a. This forces
α to be just ↑2a because α is upward closed w.r.t. ≤2 . Therefore reducibility implies
that every ↑2a is an ideal point. Now assume a ≤2 b. As {a, b} ⊆ ↑2a, there is c such
that (i) c �≤1 {a}, (ii) c �≤1 {b} and (iii) c ∈ ↑2a. Item (i) means c ≤1 a, from which
c ≤2 a follows. This together with (iii) gives c = a by antisymmetry of ≤2 . Hence
a ≤1 b by (ii).

The preorder ≤2 being antisymmetric is a necessary condition to prove the equivalence
between reducibility and the other items, as it is shown by the following example. Let
(S,≤1) be a downward-directed poset with at least two distinct elements. By taking ≤2

to be the always true binary relation on S , one gets an elementary positive topology
which is reducible, because S is the only inhabited formal closed subset and the only
ideal point, but not spatial. This shows again that “reducibility implies spatiality” fails
for positive topologies, in general (also classically).

5 On a strong form of overtness

In the intuitionistic theory of locales, the notion of overt (or open) locale is of some
importance. A locale L is overt if the unique frame homomorphism X → P(1) has
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a left adjoint PosL as a monotone map. Classically, every locale is overt. Even
intuitionistically PosL(x) 6= 1 is equivalent to PosL(x) = 0, which in turn is equivalent
to x = 0. However PosL(x) = 1 is intuitionistically stronger than x 6= 0 and so
PosX(x) = 1 can be read as a positive way to express that x is different from 0. Its
predicative counterpart is given by the notion of a formal topology (with a unary positivity
predicate), as defined by the second author [20]. This is defined as a triple (S,�,Pos)
where � is a formal cover and Pos is a predicate on S such that (i) {a ∈ S | Pos(a)} is
a splitting subset and (ii)

(
Pos(a)⇒ a � U

)
⇒ a � U for any given a ∈ S and U ⊆ S .

Definition 5.1 We say that a locale L is strongly overt when x ≤ y follows from the
assumption that ϕ(x) = 1⇒ ϕ(y) = 1 for every join-preserving map ϕ : L→ P(1).
Accordingly, we say that a formal cover (S,�) is strongly overt if a � U follows from
the assumption that a ∈ Z ⇒ U G Z for every splitting subset Z .

The term is justified by the following proposition, which we prove in the wider framework
of positive topologies (recall that locales can be identified with thick positive topologies,
and every splitting subset is formal closed in that case).

Definition 5.2 We say that a positive topology (S,�,n) is strongly overt if a � U
follows from the assumption that a ∈ V ⇒ U G V for every formal closed subset V .17

Proposition 5.3 Let S be a positive topology.

(1) If S is strongly overt, then it is overt.

(2) If S is spatial, then it is strongly overt.

(3) If S is strongly overt and reducible, than it is spatial.

Proof (1) Define Pos(a) as a n S and assume a n S ⇒ a � U . We claim that
a ∈ V ⇒ U G V for every formal closed subset V , which will give a � U by density.
From a ∈ V we have an S because V is formal closed. So a � U by assumption. By
using a ∈ V again, we get U G V by compatibility.

(2) Recall that S is spatial when a�U follows from the assumption that a ∈ α⇒ U G α
for every ideal point α . And every ideal point is formal closed by definition.

(3) Assume a ∈ α⇒ U G α for every ideal point α . We have to show that a � U . By
strong overtness, it is sufficient to show that a ∈ V ⇒ U G V for every formal closed
subset V . So let a ∈ V . By reducibility, there exists an ideal point α with a ∈ α ⊆ V .
So U G α by assumption and hence U G V because α ⊆ V .

17Such positive topologies are called “reduced” in Ciraulo and Sambin [7], and “dense” in
Sambin [22].
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In particular, the following equivalence holds for every positive topology:

bi-spatial ⇐⇒ strongly overt & reducible

Hence we obtain (see Proposition 4.5) the following “minimal” characterization of
those positive topologies which come from a concrete space:

S representable by a concrete space ⇐⇒


IPt(S) set-based
S strongly overt
S reducible

Classically, every locale is strongly overt, because x 7→ (x � b) preserves joins. More
generally, we obtained the following result in [7].

Proposition 5.4 In the presence of LEM, a positive topology is strongly overt if and
only if it is thick.

Proof A thick positive topology S can be identified with a formal cover (S,�), and
the formal closed subsets of S are precisely the splitting subsets of (S,�). Assume
a ∈ V ⇒ U G V for every splitting subset V . We have to show that a�U . Classically,
{x ∈ S | ¬(x � U)} is splitting. So if a � U were false, then ¬(u � U) would hold for
some u ∈ U . This is a contradiction.

Conversely, let Z be splitting in (S,�). We have to show that Z is formal closed in
S = (S,�,n) provided that S is strongly overt. By way of contradiction, assume Z
is not formal closed, so that there is some a ∈ Z such that ¬(an Z). We first claim
that a � −Z , where −Z is the set-theoretic complement of Z . By strong density, it
is sufficient to show that a ∈ V ⇒ −Z G V , that is a ∈ V ⇒ ¬(V ⊆ Z), for every
formal closed subset V . So let a ∈ V with V formal closed. If V ⊆ Z were true,
then we would have an V , and b ∈ Z for all b with bn V ; therefore we would get
an Z by the definition of a positivity relation (Definition 4.1), which contradicts the
assumption. This proves that a �−Z . Since Z is splitting, we get Z G −Z . This is a
contradiction.

Summing up, in the presence of LEM we have got the following picture for a positive
topology S :

S is reducible
S is thick ⇐⇒ S is strongly overt

}
⇐⇒ S is spatial

Intuitionistically, both the statement “every strongly overt positive topology is thick”
and its converse “every locale is strongly overt” are equivalent to LEM. The interested
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reader can turn the following sketch into a detailed proof, which can be found in [7].
For p any given proposition, consider the triple

(
{0, 1},∈,np

)
where 0np U is 0 ∈ U ,

and 1np U is the conjunction of 1 ∈ U and p ∨
(
p→ (0 ∈ U)

)
; then show that this is

a strongly overt positive topology, which is thick precisely when p ∨ ¬p holds. As for
the other statement, consider the closed sub-terminal locale

(
{0},�p), where 0 �p U

if and only if (0 ∈ U) ∨ p; show that it is strongly overt precisely when p ∨ ¬p holds.

The intuitionistic failure of the previous proposition can be understood from a different
perspective. If every strongly overt positive topology were thick, then every bi-spatial
positive topology of the form (S,�X ,nX ), with X a concrete space, would be thick
and hence it would coincide with the locale (S,�X ,n�X ). This would make weak
sobriety coincide with sobriety. As for the other statement, note that if all locales were
strongly overt, then they would all be overt, which is not the case intuitionistically.

6 Basic topologies

Sometimes it is useful to consider a structure more general than that of a positive
topology, namely that of a basic topology, as introduced by the second author [21, 22].
This is a triple (S,�,n) where � is just a basic cover, that is, a relation which satisfies
all but the last condition in the definition of a formal cover.

From an algebraic point of view, a basic cover is a presentation of a suplattices
(complete join-semilattice), actually a set-based one. A suplattice homomorphism (a
map which preserves all joins) between two set-based suplattices can be presented as
a particular binary relation (up to a suitable equivalence) between the corresponding
bases.

The definition of �X in equation (1), if applied to the case when X = (X,, S) is just
a binary relation between two sets, produces a basic cover, in general. On the other
hand, equation (2) does not depend on X being a concrete space, and so it produces a
positivity relation nX even if  is just a relation. So (S,�X ,nX ) is a basic topology
which we say to be representable by the relation X .

Let Closed(S) be the suplattice of formal closed subsets of a basic topology S (joins
are given by unions).
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Proposition 6.1 For every basic topology S , the following are equivalent:

(1) S is representable by a relation (as a basic topology).

(2) S is strongly overt, and Closed(S) is set-based.

Proof If S = SX for a certain X = (X,, S), then 3x is a formal closed set for
every x ∈ X . So if a ∈ V ⇒ U G V for every formal closed V , then in particular
∀x(a ∈ 3x ⇒ U G 3x). This is ∀x(x  a ⇒ (∃u ∈ U)(x  u)), that is, a �X U .
This shows that � = �X = �n and hence S is strongly overt. Now if V is formal
closed, then a ∈ V if and only if a nX V if and only if there exists x ∈ X such that
a ∈ 3x ⊆ V . So V is a union of subsets of the form 3x . This says that {3x | x ∈ X}
is a base for Closed(S).

Conversely, assume that Closed(S) is set-based with base {Vi | i ∈ I}. Let X be
(I,, S), where i  a is a ∈ Vi , so that 3i = Vi for every i ∈ I . So n = nX by an
easy calculation. By strong overtness, a � U means that a ∈ V implies U G V for
every V formal closed, which turns out to be equivalent to a ∈ Vi ⇒ U G Vi for every
i ∈ I . Thus a � U is the same as a �X U .

Under an impredicative view, of course, this says that “strongly overt” and “representable
by a relation” are one and the same notion.

Representable by a concrete space versus representable by a relation. A positive
topology which is representable by a relation need not be representable by a concrete
space, as we now show.

In a classical and impredicative framework, all locales are strongly overt and hence
representable by a relation. However not all locales are representable by a concrete
space, otherwise they would all be spatial.

Constructively, a similar counterexample can be given as follows. Put S = Q×Q where
Q is the set of rational numbers. Think of (a, b) ∈ S as an open interval on the real line.
Consider the binary relation (x, y) >< (a, b) on S defined by max{x, a} < min{y, b},
which says that the two intervals overlap. Consider next the basic topology (S,�,n)
represented by (S, ><, S). For a, b ∈ Q and U ⊆ S , the statement (a, b) � U says
that the interval (a, b) is contained in the closure of the open set corresponding to U ,
namely the union of all intervals in U . This implies that the complete lattice of formal
opens is isomorphic to that of regular open subsets of the real line (see, for instance,
Ciraulo and Sambin [6]). In particular, such a lattice is a frame and hence (S,�,n) is a
positive topology. Since the locale of regular open subsets of the real line has no points,
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a fortiori (S,�,n) has no ideal points. Therefore (S,�,n) is not spatial, hence not
representable by a concrete space.

This counterexample also shows that a representable positive topology need not be
spatial, nor reducible (otherwise it would be also spatial, since it is already strongly
overt; recall Proposition 5.3). Consequently, a strongly overt positive topology need not
be spatial, nor reducible.
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