
remote sensing  

Article

Impacts of Climate Change on Lake Fluctuations in
the Hindu Kush-Himalaya-Tibetan Plateau

Xiankun Yang 1,2,* , Xixi Lu 3,4, Edward Park 5 and Paolo Tarolli 6

1 School of Geographical Sciences, Guangzhou University, Guangzhou 510006, China
2 Rural Non-Point Source Pollution Comprehensive Management Technology Center of Guangdong Province,

Guangzhou University, Guangzhou 510006, China
3 Department of Geography, National University of Singapore, Singapore 117570, Singapore;

geoluxx@nus.edu.sg
4 College of Environment and Resources, Inner Mongolia University, Hohhot 010021, China
5 Earth Observatory of Singapore, Nanyang Technological University, Singapore 639798, Singapore;

epark@ntu.edu.sg
6 Department of Land, Environment, Agriculture and Forestry, University of Padova, Agripolis,

viale dell’Università 16, 35020 Legnaro (PD), Italy; paolo.tarolli@unipd.it
* Correspondence: yangxk@gzhu.edu.cn; Tel.: +86-158-1008-5522

Received: 22 March 2019; Accepted: 4 May 2019; Published: 7 May 2019
����������
�������

Abstract: Lakes in the Hindu Kush-Himalaya-Tibetan (HKHT) regions are crucial indicators for
the combined impacts of regional climate change and resultant glacier retreat. However, they lack
long-term systematic monitoring and thus their responses to recent climatic change still remain only
partially understood. This study investigated lake extent fluctuations in the HKHT regions over the
past 40 years using Landsat (MSS/TM/ETM+/OLI) images obtained from the 1970s to 2014. Influenced
by different regional atmospheric circulation systems, our results show that lake changing patterns
are distinct from region to region, with the most intensive lake shrinking observed in northeastern
HKHT (HKHT Interior, Tarim, Yellow, Yangtze), while the most extensive expansion was observed in
the western and southwestern HKHT (Amu Darya, Ganges Indus and Brahmaputra), largely caused
by the proliferation of small lakes in high-altitude regions during 1970s–1995. In the past 20 years,
extensive lake expansions (~39.6% in area and ~119.1% in quantity) were observed in all HKHT
regions. Climate change, especially precipitation change, is the major driving force to the changing
dynamics of the lake fluctuations; however, effects from the glacier melting were also significant,
which contributed approximately 31.9–40.5%, 16.5–39.3%, 12.8–29.0%, and 3.3–6.1% of runoff to lakes
in the headwaters of the Tarim, Amu Darya, Indus, and Ganges, respectively. We consider that
the findings in this paper could have both immediate and long-term implications for dealing with
water-related hazards, controlling glacial lake outburst floods, and securing water resources in the
HKHT regions, which contain the headwater sources for some of the largest rivers in Asia that sustain
1.3 billion people.

Keywords: lake fluctuation; remote sensing; climate change; glacier retreat; Hindu Kush Himalayas;
Tibetan Plateau

1. Introduction

The Earth’s climate is changing due to human emissions of greenhouse gases and is projected
to continuously change throughout the 21st century, even at unprecedented rates in recent human
history [1]. Impacts of climate change on high-elevation regions (e.g., the Himalayas, Rockies, Andes,
and the Alps) are expected to be much more significant due to their higher sensitivity to temperature
and precipitation changes [2]. Therefore, lakes in the high-elevation regions have been considered
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one of the most efficient indicators of terrestrial climate change [3,4]; however, investigating their
responses to the combined impacts of both climate change and resultant glacier retreat still remains
largely unknown.

The Hindu Kush-Himalaya-Tibetan (HKHT) regions, with a total lake surface area over 50,000 km2,
are the highest lake regions on Earth. The lakes in these regions play important roles in maintaining
the water balance of some of the largest Asian rivers [5,6] (Figure 1), and for hydrological cycles
that sustain around 1.3 billion people in Asia [7]. Over the past decades, the HKHT regions have
experienced dramatic climate changes [8]. The most widely reported effects include rapid alterations
of hydrological cycles that were caused simultaneously by climate change and its induced-glacier
retreat. These will undoubtedly cause disruptions to downstream water supplies [2,9,10]. Ongoing
climate change over succeeding decades could have additional negative impacts across these regions,
including cascading effects on downstream river flows, water-related hazards, glacial lake outburst
floods, and on riverine biodiversity [11,12]. Lake systems in this area are key components within the
hydrological cycles largely controlling the supply and storage of water. However, they have recently
experienced strong spatiotemporally heterogeneous changes in their hydrological regimes [13–15].
As most lakes in this region are rarely impacted by anthropogenic activities [16], it is of a paramount
importance to investigate the coupled impacts of climate change and glacier retreat on hydrological
cycles and other related environmental disturbances in the HKHT regions.
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Figure 1. Geographical settings of the Amu Darya, Tarim, Indus, Ganges, Brahmaputra, Salween, 
Mekong, Yangtze, Yellow rivers, and Hindu Kush-Himalaya-Tibetan (HKHT) Interior (also known 
as Tibetan Plateau Interior). The blue, orange, and black arrows depict that climate change in the 
HKHT regions was revealed by three distinct patterns: (1) Amu Darya, Indus, northern part of Ganges, 
and western part of Tarim associated with the impact of the westerlies, (2) Brahmaputra, Salween, 
and southern part of Ganges controlled by the Indian summer monsoon (ISM), and (3) Mekong, 
Yangtze, Yellow, and most part of the HKHT Interior resulted from the mix of ISM and Eastern Asian 
monsoon (EAM). 

The increasing availability of satellite remote sensing data with sufficient spatiotemporal 
resolutions and their global coverage allow for rapid and cost-effective investigations of lake 

Figure 1. Geographical settings of the Amu Darya, Tarim, Indus, Ganges, Brahmaputra, Salween,
Mekong, Yangtze, Yellow rivers, and Hindu Kush-Himalaya-Tibetan (HKHT) Interior (also known
as Tibetan Plateau Interior). The blue, orange, and black arrows depict that climate change in the
HKHT regions was revealed by three distinct patterns: (1) Amu Darya, Indus, northern part of Ganges,
and western part of Tarim associated with the impact of the westerlies, (2) Brahmaputra, Salween,
and southern part of Ganges controlled by the Indian summer monsoon (ISM), and (3) Mekong,
Yangtze, Yellow, and most part of the HKHT Interior resulted from the mix of ISM and Eastern Asian
monsoon (EAM).

The increasing availability of satellite remote sensing data with sufficient spatiotemporal
resolutions and their global coverage allow for rapid and cost-effective investigations of lake fluctuations
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across large areas over a longer-term. Applications of remote sensing are thus advantageous over
traditional field-based methods in detecting and analyzing the dynamics of alpine lakes, such as
changes in lake abundance, surface elevation, water storage, surface area, and their interactions with
glaciers. Such approaches are even more beneficial in studying lakes in remote areas like HKHT regions
where field-based lake measurements are limited. There are several studies that have investigated
lake changes using satellite imagery in the HKHT regions: Gardelle, Arnaud [17], Khadka, Zhang [18],
Kulkarni, Rathore [19], Lei, Yang [14], Mao, Wang [20], Mergili, Müller [21], Song, Huang [13], Yang
and Lu [22], Zhang, Yao [23], and Zhou, Wang [15]. These studies used a few representative years (i.e.,
1975, 1990, and 2000) to examine the lake responses to climate change. However, a continuous lake
fluctuation history at annual-resolution has not yet been analyzed; and furthermore, the role of glacier
retreat in lake fluctuation history has never been examined before.

Here we investigated lake extent fluctuation history and its relationship with climate change and
glacier retreat in the entire HKHT regions (e.g., the upstream regions of the Amu Darya, Indus, Ganges,
Brahmaputra, Salween, Mekong, Yangtze, Yellow and Tarim rivers, plus the HKHT Interior) over the
past 40 years mainly using remote sensing techniques. We analyzed 3910 Landsat-MSS/TM/ETM+/OLI
images (Figure 2) on the Google Earth Engine Platform using supervised classification. Using the lake
surface area delineated annually (A) and estimated water storage volume (S), we derived inter-annual
lake water storage change (∆S), which indicates the lake water balance changes. This balance is the
result of lake inflow, precipitation, and evaporation over the lake water area [13,15]. Since precipitation
and evaporation over the lake water area could be driven from climatic data, the annual river inflow and
runoff could be calculated. Based on this principle, a catchment water balance model was developed
to assess the lake runoff composition, which was then used to identify the predominant driving forces
to lake fluctuations over the past 40 years in this area. The objective of this study is to address the
following questions: (1) How did the lakes in the HKHT regions respond to climate change and glacier
retreat? (2) What are the patterns of lake fluctuation in different regions and what are the driving forces
of these? (3) What is the role of glacier retreat in lake fluctuation history?
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2. Datasets and Methods

2.1. Datasets and Data Processing

The study area covered all the HKHT regions and the HKHT Interior, a total of 3.85 million km2,
which is equivalent to the 4.28 billion Landsat pixels (30 m). Initial water detection was performed using
Google Earth Engine (GEE), a free cloud platform with large-scale computational facility designed
for parallel computation of satellite imagery. GEE includes an almost complete image set of Landsat
MSS (60 m)/TM (30 m)/ETM+ (30 m)/OLI (30 m) obtained from the USGS Earth Resources Observation
and Science archive. We selected 3910 dry-season (from September to November) images from a
total of 9124 available Landsat images (Figure 2). Dry-season images are useful in lake delineation
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as they generally represent the annual hydrological condition. Satellite images were pre-processed
with standard procedures including: (1) image resampling to ensure all images have consistent spatial
resolution of 30 m, (2) transformation of raw digital numbers to top of atmosphere reflectance based on
image metadata using a method developed by NASA [24], and (3) cloud removal. All preprocessing
procedures were checked covering all the major river basins in the HKHT regions based on an approach
prototyped for the Tibetan Plateau.

To analyze the causes of lake fluctuations, some other auxiliary datasets (other than Landsats)
were used, which are summarized in Table 1. These datasets can be divided into four categories:
(1) grid-interpolated climatic data based on ground observations, including daily mean temperature,
precipitation, evapotranspiration, solar radiation, soil moisture, and derived monthly and yearly
products; (2) yearly land cover data, which are secondary products derived from Landsat images
during lake delineation using supervised image classification techniques; (3) geomorphic data derived
from grid DEM data; and (4) some ancillary data, such as glacier spatial distribution, reliable
information about lake surface area, and storage volume. The ancillary data, used to validate and
enhance our results, were collected from various sources, such as official reports from governments,
public lake databases (e.g., World Lake Database (http://wldb.ilec.or.jp/), Global Lake Database
(http://www.worldlakes.org/lakes.asp), China Lake Scientific Database and Chinese lake catalogs), as
well as results released by previous studies [22,25,26]. We were very conservative in data collection; i.e.,
only lake storage volumes that appeared in multiple sources were used to guarantee the data quality.
After preprocessing, all raster data were co-registered, correlated, organized by year, merged as an
annual product, and converted to Tagged Image File Format (TIFF) files. This chain of processing was
performed using Python programming with integrated ArcGIS ArcPy scripting module to generate
batch processing tasks to handle large image datasets.

Table 1. Summary of climatic, physical, and geomorphic information as well as data sources used in
this study.

Definition Variable Name Unit Data Source

Climatic variables a

Mean annual precipitation
Monthly precipitation

P
P(Jan)

mm yr−1

mm yr−1

Asian Precipitation—Highly-Resolved
Observational Data Integration Towards
Evaluation (APHRODITE) dataset [27] for
1975–2015.

Annual rainfall during
monsoon season PM mm yr−1 APHRODITE dataset for 1975–2015.

Mean annual land
evapotranspiration ET inches yr−1

Global Land Data Assimilation System product,
GLDAS_NOAH025_M dataset (http://disc.sci.
gsfc.nasa.gov/services/grads-gds/gldas)

Mean annual temperature T F◦ * 10 APHRODITE dataset [27] for 1975–2015.

Mean max annual
temperature Tmax F◦ * 10 APHRODITE dataset [27] for 1975–2015.

Mean monthly temperature T(Jan) F◦ * 10 APHRODITE dataset [27] for 1975–2015.

Mean max monthly
temperature Tmax(Jan) F◦ * 10 APHRODITE dataset [27] for 1975–2015.

Snow Snow cm Annual snowfall, (APHRODITE) dataset [27]
for 1975–2015.

Solar radiation SR mm yr−1
GLDAS/Noah LSM Level 4 product
(GLDAS_NOAH025_M) (http://disc.sci.gsfc.
nasa.gov/services/grads-gds/gldas)

Soil moisture SM kg m−2 GLDAS_NOAH025_M dataset (http://disc.sci.
gsfc.nasa.gov/services/grads-gds/gldas)

http://wldb.ilec.or.jp/
http://www.worldlakes.org/lakes.asp
http://disc.sci.gsfc.nasa.gov/services/grads-gds/gldas
http://disc.sci.gsfc.nasa.gov/services/grads-gds/gldas
http://disc.sci.gsfc.nasa.gov/services/grads-gds/gldas
http://disc.sci.gsfc.nasa.gov/services/grads-gds/gldas
http://disc.sci.gsfc.nasa.gov/services/grads-gds/gldas
http://disc.sci.gsfc.nasa.gov/services/grads-gds/gldas
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Table 1. Cont.

Definition Variable Name Unit Data Source

Physical variables

Snow cover extent SA km2

Image classification results, derived from
Landsat images provided by the USGS Earth
Resources Observation and Science (EROS)
archive [28]

Bare land area BA km2 Image classification results derived from
Landsat images provided by EROS archive [28]

Meadowland area MA km2 Image classification results derived from
Landsat images provided by EROS archive [28]

River/stream surface area WA km2 Image classification results derived from
Landsat images provided by EROS archive [28]

Agricultural area (cropland) AA km2 Image classification results derived from
Landsat images provided by EROS archive [28]

Glaciered area GA km2 GLIMS dataset [29]

Geomorphic Variables

Catchment area CA km2 Derived from DEM data Shuttle Radar
Topography Mission (SRTM) DEM data c [30]

Catchment relief CR m Derived from SRTM DEM data [30]

Flow length L km Derived from SRTM DEM data [30]

Mean catchment elevation H m Derived from SRTM DEM data [30]

Average catchment slope S Degree Derived from SRTM DEM data [30]

Drainage density DD km km−2 Derived from SRTM DEM data [30]

Catchment wetness index CW – Derived from SRTM DEM data [30]

Stream gradient SG m km−1 Derived from SRTM DEM data [30]
a Precipitation and temperature data were evaluated and calibrated using ground observations. Ground
observations were obtained from two organizations, Global Historical Climatology Network (GHCN) and
China Meteorological Administration (CMA). 572 ground observations, covering all the HKHT regions, were
obtained from GHCN (https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-
historical-climatology-network-ghcn). Data from 184 meteorological stations in China were collected from CMA
(http://cdc.cma.gov.cn/home.do). We then resampled the precipitation and temperature data to 1 km spatial
resolution. The resampled data was calibrated with regard to vertical lapse rates [31]. b The variable is unitless.
c The 3 arc-second (~90 m) SRTM DEM data were void-filled, hydrologically conditioned, and resampled to create
two DEM datasets with 0.25◦ and 1 km spatial resolution, respectively, as input datasets to calibrate precipitation
and temperature data.

2.2. Lake Delineation

We delineated lakes by analyzing 3910 Landsat images on the GEE platform using a supervised
classification method by a support vector machine (SVM) classifier [32]. 400 regions of interest (ROI)
for six classes (snow and glacier, bare land, meadowland, forest land, water body, and cropland) were
visually digitized from Google Earth high-resolution images from different years to assess the spectral
characteristics and to assign a class to each image pixel according to mathematical algorithms [33].
SVMs are an attractive option in water body investigations due to their capability to generalize well with
limited training samples (i.e., a common limitation for remote sensing of remote places like the HKHT
region). The SVM methods classify objects through the concept of the margin, which is defined to be
the shortest distance between the decision boundary and any of the samples. The decision boundary is
chosen to be the one for which the margin is maximized. The margin is defined as the perpendicular
distance between the decision boundary and the closest of the data points. Maximizing the margin
leads to a particular choice of decision boundary. The location of this boundary is determined by a
subset of the data points, known as support vectors [34]. The overall accuracy was accessed using
confusion matrices, based on another 1000 ROIs. However, the major concern for this study was water
bodies. The deviation area index (DAI) [22,35] was used to quantify the difference between the lake

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-ghcn
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-ghcn
http://cdc.cma.gov.cn/home.do
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surface area derived from Landsat images and the area delineated using high-resolution images from
Google Earth in the same year. The DAI is defined as follows:

DAI = (AG −AS)/AG (1)

where AG is the surface area of lakes and reservoirs delineated in high resolution images using Google
Earth polygon tool; AS is the surface area derived from Landsat images. The DAI values generally
vary from −∞ to 1. Water bodies with values close to zero have the best match between the two areas,
while moving to the extremes indicate higher deviations. 200 randomly selected lakes with an area
range of 0.1 km2—484 km2 were tested and validated using this index.

We carried out supervised classification of 170 Landsat MSS images to obtain the initial look of
the lake status and quantity in the 1970s. The MSS images were primarily obtained from the image
collection of Landsat Global Land Survey 1975. However, because of the failure of the Landsat 4,
no complete annual results were produced for the years 1976–1988. The subsequent data for the year
1989 was primarily produced from Landsat-4 and -5 imageries. A few gaps were filled with scenes
acquired by Landsat MSS images. The data was then updated using 2323 Landsat TM/ETM+/OLI
images on a year-by-year basis. Yearly products for 1989 to 2014 were derived. In 2003, the scan-line
corrector (SLC) on the Landsat ETM+ failed, and the images acquired after the SLC failure are referred
to as SLC-off images. SLC gap-filled products phase one methodology [36] was used to fill the gaps in
Landsat SLC-off images to be used in this study. Gap filling first requires you to identify the location
within an image to be filled. A gap mask was established for each band that marks existing data
with 1 and missing data in the gap and fill areas with 0. These gap masks could be directly obtained
from GEE. The masks were provided in 8-bit images with identical dimensions to the corresponding
image bands. Once the gaps are identified, the linear histogram matching approach was used to find a
linear transformation between one product to another, which was used to fill the gaps with previously
acquired Landsat ETM+ images (Figure 3).
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Figure 3. A representative example of lake gap-fill results, using Landsat ETM+ bands 3, 2, 1.

After classification, water bodies were co-registered, correlated, organized by year, and then were
converted to polygons stored in a geodatabase. For small polygons with an area lower than 0.0036 km2

were removed. For this study, a lake was defined as an area of variable size filled with water, localized
in a catchment, which is surrounded by land, and apart from any river or other outlet that feeds or
drains the lake. We thus visually inspected and manually removed river networks and shadows.
Based on these results, a detailed lake fluctuation history over the past 40 years was reconstructed. The
delineation uncertainty varies slightly from ~3.1% in 1995 to 1.4% in 2015. The detailed classification
accuracy assessment is elaborated in the following section.

Lake fluctuations in this study refer to the lake surface area changes (shrinking or expansion).
Using the ancillary data, we first developed an area-based estimation of lake storage volume. In fact,
many studies have demonstrated the robust power relationship between surface areas and the lake
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volumes at both regional and global scales [35,37]. The formula for the power relationship between
storage volume (S; 106 m3) of a lake and its surface area (A; km2) is demonstrated as follows:

S = aAb (2)

where a and b are constants; A is delineated area in remotely sensed images.

2.3. Estimating Annual Glacier Melt Contribution

As most lakes in HKHT regions are rarely influenced by human activities, lake variations are
more closely associated with climate changes including precipitation, lake evaporation, and land
evapotranspiration, as well as glacier meltwater. Considering these key factors influencing lake
fluctuation, here we used a simple basin-wide hydrological model to simulate annual glacier melt
contribution (GMC) to water balance in lake catchments based on the lake variation history from
743 representative lake catchments. The lake catchments were selected based on the three following
criteria: (1) the selected lake size is greater than 0.5 km2 to reduce uncertainty; (2) the selected lakes
should have complete history data for each year; (3) the lakes should cover all the ten HKHT regions,
however, the number of selected lakes for each region varied with the region size. Specifically, 38,
98, 27, and 83 catchments were selected from Amu Darya, Brahmaputra, Ganges, and Indus basins,
corresponding to 48, 105, 278, and 33 catchments from Tarim, Yangtze, HKHT Interior, and Yellow
River basins. Due to the sparse population of lakes in Mekong and Salween basins, only 10 and
24 catchments were used in the two basins. Lake annual storage change rate (∆Sw, in million m3) can
be calculated by the difference between lake area (Acur in km2) in current year and that in the previous
year (Apre in km2):

∆Sw =
dS
dt

= a
(
Ab

cur −Ab
pre

)
(3)

For a closed non-glaciated catchment, its water balance can be expressed as the following equation:

Rp = ∆Sw + EL (4)

where Rp (in million m3) is annual precipitation-induced runoff. EL denotes annual lake evaporation
(in million m3), which equals the lake surface area (A) multiplied by annual evaporation rate (in m),
that was estimated using the Penman-Monteith method [38] from climatic data (see Table 1). A negative
∆Sw means that a lake receives less water from runoff than its loss from evaporation; and conversely,
a positive ∆Sw indicates surplus of water from runoff, leading to the lake expansion.

Choice of models to estimate Rp depends on the data availability and accessibility. Generally,
process-based models, attempting to simulate hydrological processes (e.g., interception, infiltration,
actual evapotranspiration, and interplay with groundwater) at a reasonable level of accuracy, seem to be
viable approaches for this study. However the determination and validation of various parameters [39]
are particularly challenging for this study due to the limited field information. Thus, an indirect
approach based on regional multivariate regression (RMR) [40–42] was used. RMR accounts for spatial
variations in catchment runoff those are caused by regional differences in catchment characteristics
directly or indirectly affecting the runoff production. A multiple regression model was used to model
the relationship between Rp and catchment characteristics (Table 1):

Rp = eβ0 ·Xβ1
1 ·X

β2
2 · · ·X

β3
3 ·v (5)

For each of the nine river basins and HKHT interior. Here Xi, i = 1, . . .m are catchment features or
climatic characteristics. βi, i = 1, . . .m are model parameters; v is lognormally distributed model errors.
Multiple regression models were developed to relate runoff with the easily measured geomorphic,
physical, and climatic variables since the lake runoff characteristics are not homogeneous across the
huge HKHT regions due to spatial variabilities in geomorphic, physical, and climatic characteristics
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affecting runoffs. A river basin could be considered as a relatively homogeneous region, deriving a
more accurate regression model. Thus, a multiple regression model for each river basin was developed.
The explanatory variables (Equation 5) for each regression model were determined using stepwise
regression procedures. The key criterion for selecting the most appropriate variables was that regression
coefficients were significantly different from zero. The mean square error and the coefficient of multiple
determination (R2) were also applied to distinguish between explanatory variables which met the first
criterion. Thus, the selected explanatory variables for each regression model could be slightly different.

Assuming that the relationship is valid also for a glaciated catchment, the total runoff is the sum
of Rp and annual glacier runoff (Rg). Rg could thus be estimated as follows:

Rg = ∆Sw + EL −Rp (6)

The relative GMC can be calculated using this equation:

GMC =
Rg

Rg + Rp
·100% (7)

The GMC for each large river basin is actually the averaged result over the selected lake catchments;
Rg and GMC are assumed to be 0 for non-glaciated lake basins. The results from the model were
cross validated. The predicted results were also compared with other predications. Detailed model
validation, accuracy assessment, and uncertainty analysis are elaborated in the Discussion section.
The Mann-Kendall test for precipitation and temperature trends was executed to determine the driving
forces to lake fluctuations.

3. Results

3.1. Lake Fluctuation History

The results show that, during the first 20 years from the 1970s (~1975 to 1995), differences in lake
changing patterns are apparent for different regions (Figure 4). The most intensive shrinkage was
observed in northeastern HKHT (HKHT Interior, Tarim, and Yangtze) characterized by the greatest
reduction in number of lakes (−56.3%, −34.0%, and −7.0%, respectively) and the lake surface area
(−11.7%, −14.1%, and −13.3%, respectively). In contrast, extensive lake expansion was observed in
the western and southwestern HKHT (Amu Darya, Ganges, Indus, and Brahmaputra) due to the
proliferation of small lakes in high-altitude regions (154.9%, 267.3%, 162.2%, and 78.9%, respectively)
(Figure 5). The total lake surface area started with a modest shrinking from of 43,006 (±668) km2 in the
1970s to 38,472 (±826) km2 in 1996, with a decrease of approximately 11.0%, followed by a rapid increase
(~40.0%) from the lowest in 1996 to the highest point (53,702 ±707 km2) in 2013 (Figure 4). In the
last three years, the total lake surface area decreased slightly from its peak in 2013, but still oscillated
around 50,000 km2. The observed lake fluctuations are more drastic than previously reported [13,14,23],
especially the observed decreasing trend in the 1990s. Despite the observed increasing trend in the
upper Yellow basin in the first 20 years, if artificial lakes (such as Longyangxia Reservoir closed in
1992) built in this period are excluded, the lake area in the Yellow River basin was actually decreased
by 192 km2 (~7.9%) in the same period.
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Figure 5. Lake density variation across the HKHT regions for the three important milestone years 1975
(initial status with 44,688 lakes with a total area of 43,006 km2), 1996 (the inflection point from lake
shrinking to lake expansion with 38,311 lakes with a total area of 38,472 km2) and 2015 (present status
with 84,855 lakes with a total area of 52,846 km2).

The results indicated that the number of large lakes (surface area > 1 km2) in the HKHT regions
decreased from 1196 in the 1970s to only 1009 in 1996, and then soared by 57.2%, peaking at 1586 in
2013. For instance, just in the HKHT Interior, Yangtze, Yellow, and Tarim basins, 202 (~22.0%) large
lakes shrunk or disappeared in the first two decades. Despite the overall decreasing trend (490 large
lakes shrunk by over 20%) in the four regions, 79 large lakes still experienced expansion. Among the
79 expanded lakes, 33 lakes are located in westerlies-affected regions, namely, Amu Darya, Indus,
northern part of Ganges, and western part of Tarim. Another 46 lakes are in older glacial or permafrost
landscapes (Figure 6). Smaller lakes (surface area < 1 km2) experienced a more significant fluctuation:
42.5% of small lakes were vanished in the aforementioned four regions, in contrast to the lakes in the
Amu Darya, Indus, and Ganges basins where the number has almost doubled in the same period.
In the next two decades, lake expansion is more pronounced—almost all basins experienced lake
expansion—944 large lakes showed a significant increasing trend (>20% of increase in surface area)
(Figure 7).
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3.2. Possible Causes of Lake Fluctuation

The causes of lake fluctuation remain tangled due to elusive precipitation trends in the high-altitude
regions [43,44]. The data indicates that temperature increases (0.1~0.6 per decade) in the HKHT regions
are more pronounced compared to the lower elevation regions [1,45], thus leading to a rapid retreat of
glaciers in recent decades [3,46]. Our results illustrated that the spatial and temporal characteristics
of lake fluctuation and their responses to climate change and glacier retreat revealed three distinct
patterns: (1) the impacts of the westerlies and glacier retreat in the Amu Darya, Indus, northern part
of Ganges, and western part of Tarim, (2) the impacts of Indian summer monsoon (ISM) and glacier
retreat in southern part of Ganges, Brahmaputra, Salween, and southern part of the HKHT Interior,
and (3) the interplay of ISM and East Asian monsoon (EAM) in the Mekong, Yangtze, Yellow, and
most part of the HKHT Interior (Figures 1 and 4). Our results reflected previous reports about climatic
controls on precipitation in the HKHT regions [47,48]. Despite the important role of glacial retreat
in lake fluctuation, climate change (e.g., global warming or anomalous precipitation) was still the
dominant force for lake fluctuations in the HKHT regions.

In the Amu Darya, Indus, northern part of Ganges, and western part of Tarim basins, which were
affected by the westerlies and glacier retreat, increased precipitation in the 1990s (Figure 8) has caused
expansions of lakes and glaciers in some areas [49]; however, after 2000 glacier retreat became more
prominent, through the formation of numerous (glacial) lakes in high-altitude regions [21] resulting in
the surge of average lake elevation (Figure 9). According to the lake fluctuation history for Amu Darya,
Indus, Ganges, and Tarim in Figure 4, lake expansion in the westerlies affected basins is still significant
in the second period (1992–2015), especially during the period after 2000. The Mann-Kendall (MK)
Test (Figure 8) indicated that, in the first period (1975–1995), only the Amu Darya, Indus, northern part
of Ganges, and western part of Tarim basins experienced an increasing trend in precipitation, followed
by lake expansion correspondingly.
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Figure 9. The 100% stacked column charts of relative abundances of lakes in different elevation ranges
and the line charts of year-by-year variations in average lake surface elevation in the HKHT Interior
and the upper reaches of the nine Asian rivers.

The fluctuation patterns in the region affected by ISM and glacier retreat genuinely indicated
the interplay between climate change and glacier retreat, but the coupled effects were superimposed
by short-term lake fluctuations before 2000 as the precipitation did not show any clear trend [50].
The surge in both number and average elevation of lakes, as opposed to the slight decreasing trend in
precipitation after 2000 (Figure 9), indicated the impact of glacier retreat on lake creation.

In the region affected by the mixture of ISM and EAM, lake shrinking rate in the first period
exhibited a gradient variation from north to south and from central west to east [51–53], but the lake
expansion rate in the second period showed a reversed trend [14,23], which nearly aligned with the
gradient change in spatial precipitation patterns. Regarding a relatively small number of glaciers in
these areas (Table 2), inter-annual lake fluctuations are likely to directly relate to the annual precipitation
variations, and hence are a better indicator of water balance change, especially in closed-basin lake
systems. Decreased precipitation and resultant increased evaporation (especially in the HKHT Interior)
were most likely the causes of lake shrinking in the early 1990s; while conversely, rapid lake expansion
in the recent 20 years indicated increased precipitation and the climate change interplayed by the ISM
and EAM [54].
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Table 2. Summary of the recent changes in glacier runoff contribution to annual flow in the HKHT
Interior and the upper reaches of nine large Asian rivers.

River Basin Characteristics GMC to Annual Lake Flow (%)

Basin Basin Area
(km2)

Upstream
Area (km2)

Annual
Flow(m3/s)

No. of
Glaciers

Glaciated
Area (%) 1975–1990 1991–2000 2001–2015

Affected by
westerlies

Amu Darya 534,739 393,558 2,123 7,804 1.7 27.0 26.5 33.3
Indus 1,081,718 499,244 5,533 10,867 2.6 19.5 17.3 24.6
Tarim 1,152,448 303,410 146 11,732 5.7 34.2 37.0 38.1

Affected by
ISM

Ganges 1,016,124 235,940 18,691 6881 1.2 4.2 4.9 5.4
Brahmaputra 651,335 398,238 19,824 11,527 2.7 5.2 5.4 5.6

Salween 271,914 108,070 1,494 2,100 1.5 3.6 4.2 4.4

Affected by
EAM

Mekong 805,604 83,959 11,048 393 ~0.01 0.59 0.6 0.8
Yangtze 1,722,193 468,266 34,000 1,378 0.1 1.9 2.0 2.3
Yellow 944,970 213,840 1,365 129 ~0.02 0.3 0.4 0.4
HKHT
Interior 986,612 986,612 n/a 6,014 0.7 3.3 3.9 4.1

Data source: World Resources Institute database [55]; International Center for Integrated Mountain Development
(ICIMOD) technical report [56]; and Global Land Ice Measurements from Space (GLIMS) Glacier Database [29].
Note: The hydrological data may be different depending on the location of the gauging stations.

3.3. Impact of Glacier Melt on Lake Fluctuations

To discover the predominant driving forces to lake fluctuations, we selected 743 lake catchments
(covering 65.6% of large lakes in the HKHT) to simulate glacier melt contribution (GMC) to water
balance changes in each lake catchment during the period 1970s–2015. The annual GMC was determined
by the averaged GMC values evaluated over the selected individual lake catchments within the river
basin. The results, illustrated in Figure 10 and summarized by three periods in Table 1, indicate that
the roles of precipitation and glaciers vary significantly over different basins and catchments. But the
GMC to total lake annual flow has increased with varying degrees in almost all basins except the
decrease during the period 1991–2000 in the westerlies-impacted Amu Darya and Indus basins.
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In the arid Tarim basin, glacier runoff contribution to the flow makes 31.9~40.6%, the highest
among the ten studied regions, indicating the key role of glacier melt in complementing deficient
precipitation in the Tarim basin. In the Amu Darya and Indus basins, glacier runoff contributions to
the annual lake flow make 16.5~39.3% and 12.8~29.0%, respectively, which are also of high importance
to maintain water balance and to counteract high lake evaporation in summer. This is because in these
basins, usually most of the precipitation occurs in winter and hence summer runoff mainly depends
on glacier storage capacity [57]. Remarkably, although the absolute amount of temperature-driven
glacier melt has continued to increase with slight fluctuations, the relative contribution is significantly
disturbed by the precipitation fluctuations. For example, increased precipitation and relatively low
temperature has weakened the contribution of glacier runoff in the Amu Darya basin in the 1990s [49].

The situation is converse in the HKHT Interior and the Yangtze basin, where precipitation-induced
runoff is the predominant driving force, supplying 95.4~97.2% and 97.3~98.4% of lake water, respectively.
The water short fall in the early 1990s and the significant water surplus after 2000 are mainly attributed
to the precipitation fluctuations, which, in turn, influence the runoff into the lakes [35,58]. Indeed,
only a small number of large lakes (e.g., Nam Co, Selin Co, and Zhari Nam Co) in the two basins
are glacier-fed. Successive expansion of these lakes have been reported [15,22,59]. However, in the
lake shrinking period 1990–1996, reduced precipitation (Figure 8) and resultant more cloud-free days
have induced the highest GMC in 1994 in the HKHT Interior. Although EAM has been considerably
intensified during the recent years and as a result, more precipitation could be transported to the
plateau during the monsoon season in the past 20 years [60] (Figure 8). Raised temperature-induced
glacier melt has grown even slightly faster. Despite the increasing trend of GMC after 1996, it still has
not exceeded the peak of 1994. The combined effects favor coherently rapid lake expansion in both the
HKHT Interior and the Yangtze basin.

In the Ganges basin, abundant annual precipitation (915~1360 mm yr−1 for the upstream area) is
concentrated in summer, which predominantly determines the annual river flow [57]. This makes,
in general, the contribution from the glacier melt relatively less significant (3.3–6.1%) to annual flow
into lakes. However, glacier runoff can still be important for some lake catchments at high elevations
(up to 14.2%). For example, in the Ganges basin, many lakes are located at high elevations and increased
GMC indicated that the glacier melt affects hydrological cycles in lake catchments. The situation is
similar in the Brahmaputra and Salween basins, the regions heavily influenced by summer monsoon.
Glacier melt, which peaks in summer, is almost negligible in the high summer flow. In the Brahmaputra
basin, for example, a relatively slow rise in air temperature (0.29ºC per decade) and small fluctuation
in precipitation caused the contribution of glacier melt to lake run offs to be insignificant. Additionally,
sublimation plays an important role in overall glacier ablation because of the low air humidity and
prevalence of cloudless weather conditions [61], which consequently reduce the meltwater discharge
from glaciers to lakes.

Our study also demonstrated dramatic anthropogenic impacts on lake fluctuations in the Yellow
River basin that have been rarely reported in previous studies. The damming of the Gyaring and
Ngorning lakes at 4300 m above sea level and the construction of the Longyangxia reservoir at 2700 m
and 11 other large artificial lakes in the upstream reaches have notably disturbed natural lake evolution
in recent decades. In contrast to a sharp increase in artificial lakes, rapidly shrinking natural lakes will
undoubtedly degrade and interrupt local lake wetland ecosystems and water security issues.

4. Discussion

The accuracy of lake delineation was primarily influenced by image quality such as resolution,
cloud cover, and shadows. For example, mixed pixels made some small lakes difficult to be extracted.
Although the SRTM DEM data was used to identify and remove shadows, the effects could not
be completely removed. The results indicated that most of DAI values vary between −0.3 and
0.3 (Figure 11) indicating that the two datasets match well. With the increase of the surface area,
the absolute values of DAI become close to zero, indicating that the larger lakes are more accurately
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delineated. The results also showed that more DAI values for small water bodies were greater than
zero, indicating that small water bodies delineated in high-resolution images were slightly larger than
their corresponding area derived from Landsat images. This is not surprising, because in Landsat
images only the lakes with inlets larger than 30 m (60 m for MSS imagery) could be identified. Although
the accuracy for small lakes (<1 km2) is relatively low, lakes with area greater than 1 km2 contribute
93±2.8% to the total surface area. Therefore, the relatively low accuracy for small water bodies has
minimal impact on area-based analysis.
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We used RMR runoff models (see the methodology section) for cross validation of regression
models. The adjusted R2 values for the ten regressions to estimate the annual runoff based on climatic
and physical characteristics vary from 0.74 for the HKHT Interior basin to 0.46 for the Salween River,
with an average of 0.63 (Figure 12 and Table 3). The R2 values for the Salween and Mekong basins are
relatively low because of too small sample size (n = 24 and 10, respectively). The uncertainty in the RMR
runoff models is primarily related to the reliability of the simulated physical and climatic characteristics
of catchments. For example, the climatic characteristics determine the overall uncertainty of glacier
runoff estimation. However, compared to other populated regions, currently available meteorological
records for high mountains in remote areas are sparse and do not well capture the rapidly changing
alpine climate [62,63]. Accuracy of some of the meteorological forcing datasets used in this study
(i.e., APHRODITE, TRMM, and GLDAS) also may not be sufficient, particularly for precipitation.
Although they reflect orographic and rain shadow effects, they are not ideal for reproducing the effects
of wind and snow avalanches, which might play an essential role in the alpine settings as a surrogate
of snow relocation [64]. Relying on the rugged alpine topography, any concave shape in the mountains
becomes an efficient trap for preferential snow accumulation, in many areas sustaining a glacier. As a
result, glacier runoff in some lake catchments may be much higher than other glaciated areas. These
exceptional snow relocation and resulting glacier mass changes remain a challenge to be handled by
process-based models. For some small- and medium-sized lake catchments, these effects might become
even more significant. However, these exceptions are reflected in the lake fluctuations, thus we used
RMR analyses to estimate glacier runoff.
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Figure 12. Squared correlation coefficients (R2) of predicting annual lake runoff for each of the ten river
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Table 3. Regression models for the estimation of annual precipitation-induced runoff (Rp) using selected
basin characteristics.

Region β0 β1 β2 β3 β4 β5 R2

Amu Darya — CA
0.9861

ET(June)
−1.3177

P(Jan)
1.5988

P(July)
0.1885

T
−0.9632 0.6244

Indus 5.103 CA
0.9967

P
0.9945

P(Jan)
0.7732

Tmax
−2.6723 — 0.6728

Tarim −25.761 CA
0.8861

P
2.2365

CR
1.4141 — — 0.6613

Ganges −11.7978 CA
0.9571

P(Nov)
0.7742

S
0.5082

P(Sept)
1.3205 — 0.6014

Brahmaputra −15.481 CA
0.9908

P
1.7739

S
0.3527 — — 0.6618

Salween 7.8715 CA
0.9825

Tmax
−2.7132

P(Aug)
0.8242

P(May)
0.9432 — 0.4532

Mekong −27.761 CA
0.8861

P
2.2489

H
1.1841 — — 0.5119

Yangtze −9.855 CA
0.9723

P
2.0732

ET
−0.759

Snow
0.0399

P(July)
0.2156 0.7154

Yellow −6.088 CA
0.9802

P
1.9547

T
−1.1213 — — 0.6234

HKHT
Interior 3.559 CA

0.9627
P

1.7746
Tmax(June)
−2.4196 — — 0.7428

In Table 3, it can be seen that the key factors affecting runoff are catchment area (CA) and rainfall
(P); these two factors show a good positive correlation with runoff. Both of the two factors are involved
in the ten regression models. There are also several factors that are negatively correlated with runoff,
such as temperature (T and Tmax) and evaporation (ET). Since the environment in alpine regions is
extremely sensitive to climate change, an increase in temperature means an enhance in evaporation,
which in turn leads to a drop-in runoff. At the same time, from these ten models, we can also see the
different configuration in regression models due to the variations in rainfall pattern. For example,
in the Amu Darya basin, affected by the westerlies, rainfall mainly occurred in winter, but ET is the
highest in summer. The regression model for the Amu Darya basin is a good representative of the
interplay between temperature and rainfall on runoff generation.

According to the meteorological data, spatial variability of precipitation in the upper reaches of
the large rivers is in the range of 300–3000 mm in the Ganges and Brahmaputra basins, 250–2500 mm in
the Amu Darya and Indus basins, as well as 50–1000 mm in the HKHT Interior. The condition is similar
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for air temperature. Since the variability of precipitation over short distances is very high, a reliable
assessment of the amount of precipitation received by a small- to medium-sized lake catchments is
challenging. For that we used lapse rate approaches to calibrate the datasets, however, the highly
variable precipitation and temperature over space were still the major limitation in inaccurately
predicting the temperature and precipitation from ground observations.

In addition, the GMC for each river basin was an averaged value over the selected lake catchments.
However, due to the extremely uneven lake distribution in the HKHT regions, small sample size of
lakes in the Mekong, and Salween could have introduced some uncertainties in the assessment of
GMC impacts on lake fluctuations. Additionally, using climatological data from different sources and
the uncertainty in delineating the lake surface area from satellite images could also have influenced
the assessment. Figure 12 shows that, even within the same river basin, the GMC values vary greatly
depending on the glaciered area in the lake catchments. Therefore, we assessed an overall trend for
each of the whole river basins in the HKHT regions, rather than the individual lake catchments.

Compared with previous studies, this study illustrates some new discoveries. First, many studies,
including Mao, Wang [20], Zhang, Yao [23], and this study, reported lake shrinkage from the 1970s
to 1990s, followed by a period of lake expansion after 1990s, but the first two studies [20,23] did not
provide the exact time when the lakes in the HKHT regions changed from shrinkage to expansion;
while this study concluded that the transformation from shrinkage to expansion happened during
1995 to 1996. The number of large lakes (> 1km2) bottomed at 1009 in 1996, instead of 1109 in 1990
by Mao, Wang [20] or 1070 in 1990 by Zhang, Yao [23]. It should be noted that the studies by Mao,
Wang [20] and Zhang, Yao [23] investigated only the HKHT region within China, excluding the HKHT
regions within Afghanistan, Pakistan, Nepal, India, and other countries. If such regions are included,
the difference will be more significant. Second, the previous studies [13,20,23] only reported steady
lake expansion after the 1990s, but they failed to identify the peak of lake expansion in 2013 and the
slight drop from 2013 to 2014. Third, previous studies [13–15,17–20] have discussed the driving forces
for lake fluctuations, such as climatic factors, glacier retreat, permafrost degradation, but only a few
quantitative assessments were conducted regarding these factors. The direct effects on lake fluctuations
still remain largely unknown. The study assessed the role of glacier retreat on lake fluctuations and
quantified the glacier melt contribution to lake water balance changes in different regions and reported
the large variation in glacier melt contribution across the HKHT regions.

In addition, it should be noted that, some other factors (e.g., permafrost degradation) should not
be ignored in some areas. For example, hundreds of thermokarst lakes are spread in the HKHT Interior
region and the headwater region of the Yangtze. Based on the spatial distribution of permafrost and
temperature changes, permafrost degradation was most pronounced between the Himalayas and
Tanggula Mountains [20]. Although few studies have been conducted to investigate the relationships
between climatic variables, permafrost cover, and water balance of high-elevation inland lakes, due to
the lack of glaciological, geocryological, and hydrological information [65], the impact of permafrost
degradation on lake fluctuations should be highly emphasized in future studies.

5. Conclusions

Overall, our findings show that climate change and resultant glacier retreat has led to dramatic
changes in number of lakes, lake surface area, and their vertical distribution in the HKHT regions,
although the patterns of these changes are distinct from region to region. The results indicate that
glacier melt plays a critical role in the hydrological cycle by maintaining lake water balance in the
Amu Darya, Indus, and Tarim basins, but that was a negligible component in the lake water balances
in the HKHT Interior, Yangtze, and Yellow river basins. Our observations corroborate the previous
findings [54] that the most extreme glacial shrinkage occurred in the Himalayas with reduction in both
the glacier length and area, and for that the meltwater is important in sustaining water availability in
the Amu Darya, Indus, and Tarim basins [6,9,66]. Previous studies [6,51,60,61] have reported the rising
river flows due to glacier retreat in the HKHT regions. However, our results showed that the river flows
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and GMC fluctuations have no consistent trends but rather they are mainly controlled by the changing
climate, especially the precipitation (despite the significant differences in precipitation patterns over
basins and catchments) [44]. In the rainfall-runoff-dominated HKHT Interior and Yellow River basin,
the insufficient precipitation has derived two contradictory trends: Increased GMC but decreased
flows and shrinking lakes in the same period. These inconsistent trends could make water availability
in these regions highly vulnerable especially over the long term, implying the necessity of further
research on this topic. As GMC consistently increased in the Tarim, Ganges, and Brahmaputra basins,
it is essential to tackle extreme events and their inter-annual effects on downstream water availability.
Changes in the frequency of extreme events may increase the risk of natural flooding in the middle and
lower reaches of the Ganges and Brahmaputra rivers, while inter-annual shifts in downstream water
availability may consequently affect the regional food security in the arid Tarim basin where flow peaks
and growing seasons are not coinciding. The findings in this study may thus present both immediate
and long-term policy implications for dealing with water-related hazards, controlling glacial lake
outburst floods, securing water availability, protecting lake wetlands, and assessing regional climate
change and resultant glacier retreat in the HKHT regions.
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