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1 Introduction and motivation

In four spacetime dimensions gauge three-forms do not carry any propagating degrees of

freedom, nevertheless they can induce non-trivial physical effects. Their importance was

recognized in cosmology, where they have been employed to provide a dynamical way to

generate the cosmological constant [1–5]. More recently, gauge three-forms have been used

as tools to investigate gauge axionic shift symmetries, both for introducing new inflationary

models [6–10] and for addressing the strong CP -problem [11–16]. Indeed gauge three-forms

have been embedded in theories enjoying global or local supersymmetry [17–30]. In this

context, they might provide new insights for nonlinear realizations of supersymmetry [31–34]

and for their natural coupling to membranes which, firstly explored in cosmology [2, 3], was

also extended in supersymmetric theories [24, 35–38].

More generically, gauge three-forms can be seen as counterparts of constant parameters

appearing in four-dimensional effective theories, for which they provide a dynamical origin.

For example, in [5,39–43] the parameters appearing in the F -term potential of Type II string

theory compactified over Calabi-Yau three-folds were interpreted as expectation values of the

field-strengths of some gauge three-forms. It is in fact of prominent importance that all the

parameters of the effective field theories stemming from string theory, but the string length,

can be understood as expectation values of some fields and, in this respect, the presence of

gauge three-forms may come to help.

In this spirit, in [40,41] four-dimensional theories with N = 1 global and local supersym-

metry have been analysed. A procedure has been given to construct Lagrangians encoding

gauge three-forms, which are on-shell equivalent to a generic class of chiral models. In par-

ticular, the chiral superfields in the latter are substituted in the former by variant versions,

which contain gauge three-forms as highest components. Once such three-forms are inte-

grated out, parameters are introduced which contribute to the superpotential of the given

chiral model.

In this work we elaborate on these results in two directions. First of all, we extend the

procedure of [40,41] in order to incorporate also N = 1 vector superfields. This will allow us

to construct models in which the Fayet–Iliopoulos parameter is generated dynamically. Sec-

ondly, we investigate N = 2 rigid supersymmetric Lagrangians for N = 2 vector multiplets

and we reformulate them in terms of new variant multiplets containing gauge three-forms as

non-propagating degrees of freedom. Since an N = 2 vector superfield contains three real

auxiliary fields, as a consequence of the procedure we propose, for any such a superfield three

real parameters are going to be generated dynamically. On the contrary to the N = 1 case,

in which only specific parameters of a given superpotential can be interpreted as vacuum

expectation values of the field strength of gauge three-forms, the approach in the N = 2 case

is covering a more general situation, in which the entire potential has a dynamical origin.

In other words, an N = 2 off-shell Lagrangian for variant vector multiplets will contain
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no parameters at all, since they are all going to be introduced when integrating out the

non-propagating gauge three-forms.

As an application, the partial breaking of global supersymmetry is reviewed [44–53] and

reconstructed in the formulation with variant multiplets. The mutual orientation of the

gauge three-forms will dictate whether the original, off-shell N = 2 supersymmetry may be

partially broken to N = 1, once the gauge three-forms are set on-shell. We then construct

an effective field theory with partially broken supersymmetry, which leads to an action of

the Born–Infeld type [46,54], in which the supersymmetry breaking parameter appearing in

front of the Lagrangian is generated dynamically. The information contained in this effective

description is entirely encoded into boundary terms, which are necessary in the presence of

gauge three-forms.

Throughout this work we use the superspace conventions of [55] and, even in the case of

extended supersymmetry, most of the calculation are performed at the N = 1 superspace

level for convenience.

2 Three-forms in N = 1 global supersymmetry

In four dimensions, gauge three-forms can be accommodated inside the auxiliary compo-

nents of N = 1 superfields. Variant formulations of chiral and vector superfields have been

constructed in [56], where the usual complex or real scalar auxiliary fields are exchanged

with (the Hodge-dual of) field strengths of these three-forms. In this section, following the

method introduced in [40], Lagrangians are constructed for variant superfields, which are on-

shell equivalent to the standard ones. One of the advantages of dealing with these alternative

Lagrangians resides in the fact that the parameters appearing inside them, as for example

in the superpotential or in the Fayet–Iliopoulos term, are going to be generated dynamically

as vacuum expectation values. In addition, the variant N = 1 superfields introduced in

this section will be essential ingredients to construct variant N = 2 superfields in the next

sections.

2.1 Double three-form chiral multiplets and dynamical generation

of the linear superpotential

Three-form multiplets are chiral multiplets whose non-propagating degrees of freedom are

encoded into gauge three-forms, rather than complex scalar fields. Both single and double

three-form multiplets can be constructed [20, 21, 56] in which, respectively, one or two real

non-propagating degrees of freedom are replaced by three-forms. In [40] it was shown how to

dynamically pass from ordinary chiral multiplets to three-form multiplets at the Lagrangian

level. The construction is reviewed here for the case of the double three-form multiplet and
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by looking at a simple example.

Consider a chiral multiplet X. It can be expanded in chiral coordinates in superspace as

X = ϕ+
√
2 θψ + θ2f, (2.1)

where ϕ is a complex scalar, ψ a Weyl fermion and f a complex scalar auxiliary field.1 The

most general Lagrangian, up to two derivatives, which can be constructed solely in terms of

this ingredient is

L =

∫

d4θ K(X, X̄) +

(
∫

d2θW (X) + c.c

)

, (2.2)

where K(X, X̄) is the Kähler potential and W (X) is the superpotential, which is a holomor-

phic function of X. Without loss of generality, the superpotential can be rewritten as

W (X) = cX + Ŵ (X) , (2.3)

where c is a complex constant and the function Ŵ (X) is holomorphic. The bosonic compo-

nents of (2.2) are

L
∣

∣

bos
= −Kϕϕ̄∂mϕ∂

mϕ̄+Kϕϕ̄f f̄ +
[

(c+ Ŵϕ(ϕ))f + c.c.
]

(2.4)

and, setting the auxiliary field f on-shell

f = − c̄ +
¯̂
Wϕ̄

Kϕϕ̄

, (2.5)

the Lagrangian becomes

L
∣

∣

bos, on-shell
= −Kϕϕ̄∂mϕ∂

mϕ̄− V(ϕ, ϕ̄) , (2.6)

where the scalar potential is

V(ϕ, ϕ̄) = 1

Kϕϕ̄

∣

∣

∣
c+ Ŵϕ(ϕ)

∣

∣

∣

2

. (2.7)

As shown in [40], the Lagrangian (2.2) can be thought of as originating from a par-

ent Lagrangian for the double three-form multiplet, in which the parameter c is generated

dynamically. To construct such a Lagrangian we can start from

L =

∫

d4θK(X, X̄) +

(
∫

d2θ

(

ΦX +
1

4
D̄2(ΣΦ̄)

)

+

∫

d2θ Ŵ (X) + c.c.

)

, (2.8)

1The reader is referred to appendix B for more details on the component structure of the superfields

introduced here and in the following.
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where, with respect to the (2.2), the linear part of the superpotential has been promoted as

∫

d2θ cX →
∫

d2θ

(

ΦX +
1

4
D̄2(ΣΦ̄)

)

. (2.9)

Here Φ is a chiral superfield with no kinetic terms, which will ultimately play the role of

Lagrange multiplier, while Σ is a complex linear multiplet, namely a complex scalar multiplet

which is constrained by

D̄2Σ = 0. (2.10)

Its superspace expansion is

Σ =σ +
√
2θψ +

√
2θ̄ρ̄− θσmθ̄Bm + θ2s̄+

√
2θ2θ̄ζ̄

− i√
2
θ̄2θσm∂mρ̄+ θ2θ̄2

(

i

2
∂mBm − 1

4
✷σ

)

,
(2.11)

where σ and s are complex scalar fields, ψ, ρ and ζ Weyl fermions, while the complex vector

Bm can be interpreted as being the Hodge-dual of a complex three-form B3 = 1
3!
Bmnldx

m ∧
dxn ∧ dxl as

Bm =
1

3!
ǫmnlpBnlp . (2.12)

As a consistency check, it is possible to integrate out Σ from (2.8) and recover the original

Lagrangian (2.2). Since the superfield Σ is constrained, it is not possible to take directly its

variation. However, the constraint (2.10) can be solved as

Σ = D̄α̇Ψ̄
α̇ , (2.13)

with Ψ̄α̇ an unconstrained spinorial superfield. The variation with respect to Ψ̄α̇ produces

D̄α̇Φ̄ = 0 (2.14)

and, since Φ chiral, the only possibility is that

Φ = c , (2.15)

with c an arbitrary complex constant. Plugging (2.15) into (2.8) we thus obtain the La-

grangian (2.2).

On the other hand, it is possible to integrate out from (2.8) both the Lagrange multiplier

Φ and the chiral multiplet X. The variation with respect to X gives the superspace equations

of motion

Φ =
1

4
D̄2KX − ŴX , (2.16)
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while the variation with respect to the Lagrange multiplier replaces the old chiral superfield

with a new one, which is expressed in terms of the complex linear multiplet Σ

X = −1

4
D̄2Σ̄ ≡ S . (2.17)

The superfield S is called double three-form multiplet and it has been constructed dynamically

from the Lagrangian (2.8). It is chiral and it can be expanded in superspace as

S = ϕS +
√
2 θψS + θ2fS. (2.18)

Its components, in terms of those of Σ, are (see Table 1)

ϕS = s, (2.19)

ψS
α = ζα +

1

2
iσm

αβ̇
∂mψ̄

β̇ , (2.20)

fS = −i∗F̄4 = −i∂mB̄m, (2.21)

with
∗F4 =

1

4!
εklmnFklmn, Fklmn = 4∂[kBlmn] . (2.22)

In addition, with respect to the standard chiral superfield X, the multiplet S is invariant

under the shift

Σ → Σ + L1 + iL2, (2.23)

where L1 and L2 are real linear superfields. As a consequence, the complex three-form Bklm

undergoes a gauge transformation of the type

Bklm → Bklm + 3∂[k (Λ1 + iΛ2)lm] . (2.24)

where Λ1mn and Λ2mn are components of real gauge two-forms. In this sense, the complex

linear superfield Σ contains a gauge three-form among its components. Moreover, with an

appropriate gauge choice, it is possible to set ψα = ρα = 0 and the fermionic component of

S becomes ψS
α = ζα. Therefore, the double three-form multiplet S shares the same degrees

of freedom as a chiral multiplet, even though its auxiliary component is not a complex scalar

field, but it is the Hodge-dual of the field strength of the gauge three-form Bklm.

Plugging (2.16) and (2.17) into (2.8), the desired Lagrangian in terms of S is obtained

L =

∫

d4θ K(S, S̄) +

(
∫

d2θ Ŵ (S) + c.c

)

+ Lbd , (2.25)

where

Lbd =
1

4

(
∫

d2θD̄2 −
∫

d2θ̄D2

)[(

1

4
D2KS̄ − ¯̂

WS̄

)

Σ

]

+ c.c. (2.26)
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Superfield Spin-0 Spin-1
2

Non-propagating

X ϕ ψα f

S s ψS
α Bmnp

Table 1: The off-shell degrees of freedom of the ordinary chiral superfield X and of the

double three-form multiplet S. The complex auxiliary field f of X is replaced by a complex

gauge three-form in the variant version.

are boundary terms which are necessary to ensure the correct variation of the action with

respect to the gauge three-form [2, 3, 28]. The bosonic components of (2.25) are

L
∣

∣

bos
= −KSS̄∂ms∂

ms̄− 1

4!
KSS̄F

klmnF̄klmn +
[

−iŴS(s)
∗F̄4 + c.c.

]

+ Lbd, (2.27)

where

Lbd =
1

3!
∂k

[

iBlmn

(

−iKSS̄F̄
klmn − εklmn ¯̂

WS(s)
)]

+ c.c. . (2.28)

As it can be shown from (2.27), indeed the boundary terms (2.28) cancel those originating

from the variation of the action defined by (2.27) with respect to the gauge three-form. The

potential of the parent Lagrangian (2.27) can be obtained by setting the gauge three-form

on-shell:

∂k

[

iKSS̄F
klmn − εklmnŴS(s)

]

= 0 (2.29)

whence

iFklmn =
c+ ŴS(s)

KSS̄

εklmn , (2.30)

with c an arbitrary complex constant. Plugging the solution (2.30) in (2.27) we obtain

exactly the model (2.6). The advantage of starting from the Lagrangian (2.27), rather than

(2.4), is that no supersymmetry breaking parameter appears. In fact, in (2.27) the complex

constant c is dynamically generated by solving the equation of motion for the gauge three-

form. In other words, the constant c has been promoted to the vacuum expectation value

of the particular combination which appears in (2.29) or, equivalently, the choice of such

a parameter has been traded for the specification of the boundary condition for the gauge

three-form.

2.2 Three-form vector multiplet and dynamical realization of the

Fayet–Iliopoulos term

In this subsection, we extend the procedure of [40] to the case of a Fayet–Iliopoulos parameter,

which is going to be dynamically generated as vacuum expectation value of a real gauge three-

form. The discussion is again performed at the Lagrangian level and a parent Lagrangian for
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a variant vector multiplet will be introduced. Such a multiplet, which has been previously

constructed for example in [51,56], accomodates a real gauge three-form as non-propagating

field, in analogy with (2.17).

Given a vector multiplet V , the minimal Lagrangian which can be built is

L =

(

1

4

∫

d2θW αWα + c.c.

)

+ ξ

∫

d4θ V (2.31)

where ξ ∈ R is the so called Fayet–Iliopoulos parameter. Focusing only on the bosonic sector

for simplicity, the components reads

L|bos = −1

4
FmnFmn +

1

2
D2 +

ξ

2
D , (2.32)

where we have neglected the total derivative which involves the gauge field and defined

Fmn ≡ 2∂[mvn]. Setting the auxiliary field D on-shell

D = −ξ
2
, (2.33)

we get

L|bos, on-shell = −1

4
FmnFmn −

ξ2

8
(2.34)

with a constant, semi-positive definite potential V = ξ2

8
.

In the spirit of the previous discussion, instead of considering (2.31), we can start from

the parent Lagrangian

L =
1

4

(
∫

d2θW αWα + c.c.

)

− 1

8

∫

d2θ D̄2(ΛV )− 1

8

∫

d2θ̄ D2(ΛV )

+
1

8

[
∫

d2θD̄2(ΛΣ) +

∫

d2θ̄D2(ΛΣ̄)

]

,

(2.35)

which is obtained by promoting the Fayet–Iliopoulos parameter ξ to a real Lagrangian mul-

tiplier Λ and conveniently adding new terms which contain the complex linear multiplet Σ

encoding the three-form.

First, we check that from this Lagrangian we get the usual Lagrangian (2.31). This can

be achieved by eliminating the dependence in (2.35) on the gauge three-form. By integrating

out the unconstrained spinorial superfields Ψα and Ψ̄α̇, such that Σ = D̄α̇Ψ̄
α̇, we get

DαΛ = 0, D̄α̇Λ = 0 , (2.36)

whence Λ is just a real constant ξ

Λ = ξ . (2.37)
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Once inserted into (2.35), the ordinary vector multiplet Lagrangian (2.31) is recovered.

Let us now follow a second path in order to express the parent Lagrangian solely in terms

of a new real three-form multiplet. The variation of the Lagrangian (2.35) with respect to

the Lagrangian multiplier Λ gives

V =
Σ + Σ̄

2
≡ U, (2.38)

which is a real multiplet containing a gauge three-form as auxiliary degree of freedom [51,56].

This can be understood as follows. We recall that Σ contains in its expansion a complex

vector Bm

1

4
σ̄mα̇α

[

Dα, D̄α̇

]

Σ| = Bm ≡ Bm + iCm , (2.39)

where Bm ≡ ReBm and Cm ≡ ImBm. As discussed before, we can interpret Cm as the

Hodge dual of a three-form Cmnp

Cm =
1

3!
εmnpqCnpq , (2.40)

whose four-form field strength G4 components are defined as

Gmnpq = 4∂[mCnpq] . (2.41)

Using (B.12) we get

1

4
σ̄mα̇α

[

Dα, D̄α̇

]

U | = Bm

1

16
D2D̄2U | = −1

2
∗G4 −

i

2
∂mB

m

(2.42)

where we have introduced ∗G4, which is the Hodge-dual of the field strength Gmnpq (see Table

2). Comparing (2.42) with the usual projection of an ordinary real multiplet V

1

4
σ̄mα̇α

[

Dα, D̄α̇

]

V | = vm

1

16
D2D̄2V | = D

2
− i

2
∂mv

m

(2.43)

we recognize that, in the variant formulation (2.42), the auxiliary field D of the ordinary

vector multiplet is replaced with the Hodge-dual of the field strength of the three-form Cmnp,

namely

D → − ∗G4 . (2.44)

Moreover, the Lagrangian (2.35) is invariant under the shift

Σ → Σ + Φ+ iL (2.45)
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Superfield Spin-1
2

Spin-1 Non-propagating

V λ vm D

U λU Bm Cmnp

Table 2: The fundamental off-shell component fields of the ordinary real superfield V and of

the real three-form multiplet U . The real auxiliary field D of the multiplet V is here replaced

by the real gauge three-form Cmnp.

with Φ and L being, respectively, an arbitrary chiral and real linear multiplet. This in turns

induces a gauge transformation for the vector three-form multiplet of the standard form

U → U + Φ + Φ̄. (2.46)

and reflects on the gauge transformation for the three-form Cmnp as

Cmnp → Cmnp + 3∂[mΛnp] (2.47)

where Λmn is an arbitrary real gauge two-form. This enforces the interpretation of Cmnp as

components of a gauge three-form.

Therefore the multiplet(2.38) is the counterpart of the chiral double three-form multiplet

and, in the following, we will dub it real (or vector) three-form multiplet.

The variation of the Lagrangian (2.35) with respect to the vector multiplet V produces

the superspace equations of motion

Λ =
1

2

(

DαWα + D̄α̇W̄
α̇
)

= DαWα , (2.48)

whose lowest component is

Λ| = 2 ∗G4 . (2.49)

Substituting (2.38) and (2.48) in (2.35) we get

L =

(

1

4

∫

d2θW αWα + c.c.

)

+ Lbd (2.50)

where the boundary terms are given by

Lbd =− 1

8

∫

d2θ D̄2(ΛV )− 1

8

∫

d2θ̄ D2(ΛV )

+
1

8

[
∫

d2θ D̄2(ΛΣ) +

∫

d2θ̄ D2(ΛΣ̄)

]

=
1

64
[D2, D̄2]

(

Λ(Σ̄− Σ)
)

| .

(2.51)
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In components, this Lagrangian is

L = −1

4
FmnFmn −

1

2 · 4!G
mnpqGmnpq + Lbd , (2.52)

with

Lbd =
1

3!
∂m (GmnpqCnpq) . (2.53)

Setting the gauge three-form on-shell we immediately get

Gmnpq =
ξ

2
εmnpq (2.54)

with ξ a real constant. Plugging this solution back into (2.52), we obtain the on-shell

Lagrangian (2.34). We conclude then that the role of the gauge three-form in the parent

theory (2.52) is to dynamically generate the Fayet–Iliopoulos parameter ξ as expectation

value of ∗G4. As for the previous case, this dynamically generated parameter is related to

the scale of supersymmetry breaking.

To sum up, we have shown how it is possible to reformulate generic Lagrangians in-

volving chiral and vector superfields by means of only one ingredient, that is a complex

linear superfield Σ. In the off-shell formulation of these Lagrangians, the non-propagating

degrees of freedom are encoded into gauge three-forms and, as a consequence, the parameters

contributing to the breaking of supersymmetry are generated dynamically as vacuum expec-

tation values. In the following we extend the discussion to the case of N = 2 supersymmetry.

3 N = 2 supersymmetry

Before examining how gauge three-forms can be embedded into rigid N = 2 supersymmetric

theories, we briefly review known facts about the construction of N = 2 Lagrangians within

the superspace approach. We are interested in particular in how to rephrase the expressions

in the language of N = 1 superspace.

3.1 N = 2 chiral and vector multiplets

The basic bricks which we shall need in the next section to build N = 2 Lagrangians are the

chiral and vector (or reduced chiral) multiplets. They will be defined in an N = 2 superspace

equipped, along with the space-time coordinates, with two sets of fermionic coordinates θα

and θ̃α associated to the two supersymmetry generators Qα and Q̃α. The algebra satisfied

by the N = 2 superspace derivatives without central charges is

{Dα, D̄α̇} = {D̃α,
¯̃
Dα̇} = −2iσm

αα̇∂m,

{Dα, Dβ} = {D̃α, D̃β} = {DαD̃β} = {Dα,
¯̃
Dβ̇} = 0,

(3.1)
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where D̃α generates the second supersymmetry.

The N = 2 chiral multiplet A can be represented by a superfield, which is chiral along

the two fermionic directions

D̄α̇A = 0 , ¯̃
Dα̇A = 0 . (3.2)

It has 16+16 off-shell degrees of freedom, which are encoded in three N = 1 chiral superfields

X, Φ and Wα. It can be expanded in the θ̃ coordinates as

A(y, θ, θ̃) = X(y, θ) +
√
2θ̃αWα(y, θ) + θ̃2

(

i

2
Φ(y, θ) +

1

4
D̄2X̄

)

, (3.3)

where y collects the chiral spacetime coordinates. The supersymmetry transformations of

the N = 1 components of A along the θ̃ coordinates are given by

δ̃X =
√
2ηαWα , (3.4)

δ̃W = i
√
2σmη̄∂mX +

√
2η

(

i

2
Φ +

1

4
D̄2X̄

)

, (3.5)

δ̃Φ = 2
√
2i

(

1

4
D̄2(η̄W̄ )− iη̄σ̄m∂mW

)

. (3.6)

We stress that here the chiral superfield Wα does not satisfy any Bianchi identities and it

cannot be explicitly written in terms of an N = 1 real potential. In other words, Wα does not

represent the usual field strength of an N = 1 vector multiplet. The auxiliary components

of A are defined as the projections

−1

4
D2A| = f ,

−1

4
D̃2A| = i

2
ϕ− f̄ ,

−1

4
DD̃A| = D√

2
.

(3.7)

It is possible to rephrase this construction in a manifestly SU(2)R-covariant manner. We

first collect the superspace coordinates θ and θ̃ into a SU(2)R doublet

θi =

(

θα

θ̃α

)

(3.8)

and we define the superspace derivatives Dij = Di αDj
α. The superspace expansion of A is

then

A = X +
√
2θiλ

i + θiθjY
ij + . . . , (3.9)
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where λi is the SU(2)R doublet containing the fermions, while Y
ij = −1

4
DijA| is a matrix

containing the auxiliary fields

Y =

(

f D√
2

D√
2

i
2
ϕ− f̄

)

, (3.10)

which defines an SU(2)R triplet ~Y as

− 2iY ≡ (~σ · ~Y )σ2 . (3.11)

More explicitly, ~Y reads

~Y =





2 Imf + ϕ

2

−2Ref + iϕ

2√
2D



 , (3.12)

whose entries are generically complex.

The N = 2 vector (or reduced chiral) superfield AD can be obtained from the chiral

multiplet (3.3) by imposing the constraint given in [57, 58], which results in the reduction

of its off-shell degrees of freedom to 8 + 8. This is equivalent to set Φ = 0 directly in the

superspace expansion (3.3) [49], giving

AD(y, θ, θ̃) = XD(y, θ) +
√
2θ̃αWDα(y, θ) +

1

4
θ̃2D̄2X̄D (3.13)

and by requiring also that the condition is preserved by the second supersymmetry, δ̃Φ = 0,

for consistency. From this requirement one gets the Bianchi identities

DαWDα = D̄α̇W̄
α̇
D , (3.14)

which imply thatWD can be expressed as the field strength of a gauge potential real superfield

VD

WDα = −1

4
D̄2DαVD . (3.15)

We also stress that, for a reduced multiplet, the auxiliary field triplet ~Y of (3.12) is real.

Adopting a manifestly SU(2)R invariant notation, in which we define the doublet of fermions

Ψ =

(

λ

ψ

)

(3.16)

and the supersymmetry parameters

η =

(

η1

η2

)

, (3.17)
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the supersymmetry transformations of the vector multiplet can be written as

δϕ =
√
2ηΨ , (3.18a)

δvm = i(ησm
Ψ̄+ η̄σ̄m

Ψ) , (3.18b)

δΨ = i
√
2σm

η̄∂mϕ+ σmn
ηFmn +

i√
2
(~σ · ~Y )η , (3.18c)

δ~Y =
√
2 η̄~σm ∂mΨ + h.c. . (3.18d)

3.2 Structure of the N = 2 Lagrangian

In this section we review the structure and the properties of N = 2 supersymmetric La-

grangians for an arbitrary number of vector multiplets.

For simplicity, let us start by considering the case of a single vector multiplet (3.13).

We define a holomorphic, but otherwise general, prepotential F (AD), in terms of which a

manifestly N = 2 Lagrangian can be built as the integral over the chiral N = 2 superspace

L =
i

2

∫

d2θd2θ̃F (AD) + c.c. . (3.19)

By using the expansion (3.13) and integrating over the fermionic coordinates θ̃, the

Lagrangian (3.19) can be recast in the more familiar N = 1 language as

L =

(

1

4

∫

d2θτ(X)W αWα + c.c.

)

+

∫

d4θK(X, X̄) , (3.20)

where

τ(X) = −iFXX , K(X, X̄) =
i

2

(

XF̄X̄ − X̄FX

)

(3.21)

and ∂X∂X̄K = ImFXX is the metric of the special Kähler scalar manifold. This Lagrangian

has been written in a so called electric frame, in which only electric vector fields are present.

Alternatively, with an SL(2,R) electro-magnetic duality transformation, it is possible to bring

it into a magnetic frame, in which the electric vectors are exchanged with their magnetic

dual. In fact, let us consider, rather than (3.19), the Lagrangian

L =
i

2

∫

d2θd2θ̃ [F (A)−ADA] + c.c. , (3.22)

where A is a chiral multiplet, while AD is the magnetic dual of a vector multiplet. By

integrating out A, the Lagrangian is expressed entirely in the magnetic frame while, by

integrating out AD, the constraint on A is imposed which reduces it to an N = 2 vector
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multiplet. In this sense, AD can be thought of as a Lagrange multiplier. This can be most

readily seen by rewriting (3.22) in the language of N = 1 superspace

L = − i

4

∫

d2θ (FXXW
αWα − 2W α

DWα)

− i

2

∫

d4θFXX̄ +
1

4

∫

d2θΦ (XD − FX) + c.c. .

(3.23)

The equations of motion of the N = 1 superfields XD and VD contained in AD give, respec-

tively, the Bianchi identities of Wα and the constraint which reduces A to a N = 2 vector

multiplet:

δVD : DαWα = D̄α̇W̄
α̇ , (3.24)

δXD : Φ = 0 . (3.25)

We note that we cannot vary with respect to WD, being it constrained by the Bianchi

identities, but it is indeed necessary to vary with respect to the real, unconstrained potential

VD. Hence, we immediately recognize that the integration of the constrained superfield AD

has the role to set the constraints on A, so that (3.23) is identified with (3.19).

As proposed in [44], however, a third possibility is to work in a frame which contains

both electric and magnetic vectors at the same time. In fact the Lagrangian (3.22) can be

supplemented with both electric and magnetic Fayet–Iliopoulos parameters. Introducing the

complex ~E and the real ~M parameters, we can add new couplings linear in ~Y and ~YD to

obtain

L =
i

2

∫

d2θd2θ̃ [F (A)−ADA] +
1

2

(

~E · ~Y + ~M · ~YD
)

+ c.c. . (3.26)

These correspond respectively to electric and magnetic abelian gaugings of the theory and,

but for those appearing possibly in the prepotential, they are the only parameters which

are compatible with N = 2 supersymmetry. In this sense, therefore, the case of extended

supersymmetry is more constrained with respect to the N = 1 situation, in which a large

class of parameters can enter the superpotential. In addition, in order to preserve the R-

symmetry, we assume that ~E and ~M transform as triplets under SU(2)R. We note that the

auxiliary fields ~YD transform as total derivatives under the supersymmetry transformation,

in contrast to ~Y , which transform as total derivative only once the superfield AD is integrated

out. The integration of XD gives indeed

δXD : Φ = 4(M2 + iM1) , (3.27)

which means that Φ is a constant superfield. For consistency, the condition δ̃Φ = 0 has to

be imposed again.
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The Lagrangian (3.26) can be easily generalized to the case of an arbitrary number of

self-interacting chiral multiplets AΛ, with Λ,Σ, . . . = 1, . . . , N , accompanied with an equal

number of vector multiplets ADΛ setting the constraints on AΛ:

L =
i

2

∫

d2θd2θ̃
[

F (A)−ADΛAΛ
]

+
1

2

(

~EΛ · ~Y Λ + ~MΛ · ~YDΛ

)

+ c.c. . (3.28)

After the Lagrange multiplier AD is integrated out, the equations of motion of the auxiliary

fields give
~Y Λ = −2N ΛΣ

(

Re ~EΣ + ReFΣΓ
~MΓ
)

+ 2i ~MΛ , (3.29)

where we have defined the metric of the special Kähler scalar manifold NΛΣ = ImFΛΣ,

together with its inverse N ΛΣ = (NΛΣ)
−1. Substituting this expression for the auxiliary

fields back into the Lagrangian, the following scalar potential is produced

V = N ΛΣ
(

Re ~EΛ + FΛΓ
~MΓ
)

·
(

Re ~EΣ + F̄Σ∆
~M∆
)

+ 2Im ~EΛ · ~MΛ . (3.30)

Notice that 9N real parameters are appearing in the scalar potential. However 3N of them,

namely those encoded in Im ~EΛ, are contributing solely as an additive constant to the La-

grangian and thus they can be disregarded, as long as we are focusing only on rigid super-

symmetric theories.

In the following sections, by using variant N = 1 multiplets containing gauge three-forms,

we will be able to rephrase the Lagrangians (3.26) and (3.28) in terms of peculiar N = 2

vector multiplets which dynamically generate the gauging parameters ~E and ~M .

4 Three-forms in N = 2 global supersymmetry

We extend now the procedure introduced in [40] and reviewed in Section 2 to N = 2

Lagrangians of the kind of (3.26). As in Section 2, the Lagrangian (3.26) will be traded

for an alternative one, which contains gauge three-forms and where the gauging parameters

appear only when these gauge three-forms are set on-shell. We here examine the case where

the N = 2 Lagrangian is built out of a single abelian vector multiplet. The generalization

to an arbitrary number N of vector superfields is reported in the Appendix (C).

4.1 The case of a single vector multiplet

Let us consider the case of a single vector multiplet A, whose N = 2 Lagrangian is (3.26),

endowed with Fayet–Iliopoulos parameters ~E and ~M . In order to recast this Lagrangian in

an N = 1 form, which is convenient for an analysis similar to that carried in Section 2, we

use the SU(2) R-symmetry of the theory and rotate the parameters such that

Re ~E =

(

0,−e, ξ

2
√
2

)

, ~M = (0,−m, 0) , (4.1)
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with e, m and ξ real constants. Indeed, the SU(2)R covariance of the Lagrangian (4.1)

ensures that there is no loss of generality in the choice (4.1). We have also discarded the

imaginary part of ~E, since we have already shown that it contributes only as an additive

constant to the theory.

The Lagrangian (3.26), after integrating out the constrained superfield AD, can be written

in N = 1 language as

L =

∫

d4θ K(X, X̄) +

(

1

4

∫

d2θ τ(X)W αWα + c.c.

)

+

+

(
∫

d2θW (X) + c.c.

)

+ ξ

∫

d4θ V ,

(4.2)

with the superpotential W (X) given by

W (X) = eX +mFX(X) . (4.3)

The bosonic components of (4.2) are

L
∣

∣

bos
=− ImFXX ∂mϕ∂

mϕ̄− 1

4
ImFXXF

mnFmn −
1

8
ReFXX εklmnF

klFmn+

+ ImFXXf f̄ +
1

2
ImFXXD

2 + (e+mFXX)f + (e+mF̄XX)f̄ +
ξ

2
D

(4.4)

and, integrating out the auxiliary fields f and D, we arrive at

L
∣

∣

bos
=− ImFXX ∂mϕ∂

mϕ̄− 1

4
ImFXXF

mnFmn −
1

8
ReFXX εklmnF

klFmn − V(ϕ, ϕ̄) , (4.5)

with the scalar potential

V(ϕ, ϕ̄) = 1

ImFXX

|e+mFXX |2 +
ξ2

8 ImFXX

. (4.6)

We would like to generate dynamically the gauging parameters e, m and ξ entering

the scalar potential and the superpotential. To this purpose, we shall perform a two steps

procedure. First, we will trade the vector multiplet AD in (3.26) for its variant version

SD(y, θ, θ̃) = SD(y, θ) +
√
2θ̃αWDα(y, θ) +

1

4
θ̃2D̄2S̄D , (4.7)

where WDα = −1
4
D̄2DαUD. Here, the ordinary chiral multiplet X and vector multiplet V

of (3.13) are replaced with (2.17) and (2.38) respectively. On the one hand, this will allow

for promoting the magnetic parameters ~M to be dynamical; on the other, it will allow for

establishing an off-shell correspondence between the N = 2 multiplets (3.3) and (4.7). Then,

after integrating out the variant SD multiplet, we will proceed to the second step. It consists

in an additional trading, which exchanges the remaining A multiplet with another variant

chiral multiplet of the kind of (4.7). The final Lagrangian, setting the residual three-forms

on-shell, will coincide with the on-shell Lagrangian (4.5).
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First step: generating the magnetic parameters

We start recalling that, in N = 1 language, (3.26) reads

L = − i

4

∫

d2θ (FXXW
αWα − 2W α

DWα)

− i

2

∫

d4θFXX̄ +
1

4

∫

d2θΦ (XD − FX) +
1

2

(

~E · ~Y + ~M · ~YD
)

+ c.c. .

(4.8)

In order to reinterpret the magnetic gauging parameters as originating from vacuum expec-

tation values of gauge three-forms, we first promote the coupling ~M · ~YD to a full dynamical

entity. Hence we rewrite (4.8) as

L =

{

− i

4

∫

d2θ (FXXW
αWα − 2W α

DWα)

− i

2

∫

d4θFXX̄ +
1

4

∫

d2θΦ (XD − FX) +
1

2
~E · ~Y + c.c.

}

+

{∫

d2θ

(

ΛD
1 XD +

1

4
D̄2(Σ1DΛ̄

D
1 )

)

+ c.c.

}

+

{

1

8

∫

d2θ D̄2[ΛD
2 (Σ2D − VD)] + c.c.

}

,

(4.9)

As explained in Section 2.1 (see (2.8)), the third line provides the gauge three-form inside

the N = 1 chiral superfield in AD, while the fourth, as in (2.2) (see (2.35)), provides it for

the vector superfield. In particular, ΛD
1 and ΛD

2 are respectively a chiral and a real superfield

which play the role of Lagrange multipliers, while ΣD
1 and ΣD

2 are complex linear multiplets

containing the gauge three-forms. As a consistency check, from the equations of motion of

Σ1D and Σ2D we get

ΛD
1 = −M2 − iM1 , ΛD

2 = 2
√
2M3 , (4.10)

with ~M arbitrary real integration constants, recovering (4.8).

On the contrary, in order to obtain an N = 2 Lagrangian which contains gauge three-

forms in place of the auxiliary fields ~YD, we have to integrate out the chiral superfield XD

and vector superfield VD, as well as the Lagrange multipliers ΛD
1 and ΛD

2 . The variations

with respect to the Lagrange multipliers ΛD
1 and ΛD

2 give the relations

δΛD
1 : XD = −1

4
D̄2Σ̄1D ≡ SD , (4.11)

δΛD
2 : VD =

Σ2D + Σ̄2D

2
≡ UD , (4.12)

which trade, respectively, the ordinary N = 1 chiral multiplet XD and vector multiplet W α
D

for a double and a vector three-form multiplet. Indeed, the variations with respect to the
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ordinary N = 1 superfields XD and VD give

δXD : ΛD
1 = −1

4
Φ , (4.13)

δVD : ΛD
2 = −Im(DαWα) . (4.14)

Plugging (4.11-4.14) in (4.9), we get

L =

{

− i

4

∫

d2θ (FXXW
αWα − 2W α

DWα)

− i

2

∫

d4θFXX̄ +
1

4

∫

d2θΦ (SD − FX) +
1

2
~E · ~Y + c.c.

}

+ L(D)
bd

(4.15)

with

L(D)
bd =− 1

4

(
∫

d2θD̄2 −
∫

d2θ̄D2

)[(

−1

4
Φ

)

Σ̄1D

]

+
1

16

(
∫

d2θD̄2 −
∫

d2θ̄D2

)

[−Im(DαWα)Σ2D] + c.c. .

(4.16)

Before moving on and integrating out the superfields SD and UD, let us notice that the

Lagrangian (4.15) can be recast in a manifest N = 2 form as

L =
i

2

∫

d2θd2θ̃ [F (A)− SDA] +
1

2
~E · ~Y + c.c. + L(D)

bd . (4.17)

As desired, we have promoted the usual reduced chiral Lagrange multiplier AD appearing in

(3.26) to SD, which is a multiplet of the variant type as in (4.7). It contains a chiral double

three-form multiplet SD and a real vector three-form mulitplet UD, whose non propagating

degrees of freedom are given by

−1

4
D2SD| = −i∗F̄D

4 = − i

3!
εmnpq∂mB̄D

npq ,

−1

4
D̃2SD| = −i∗FD

4 = − i

3!
εmnpq∂mBD

npq ,

−1

4
DD̃SD| = − 1√

2
∗GD

4 = − 1

3!
√
2
εmnpq∂mC

D
npq ,

(4.18)

with BD
mnp and CD

mnp the components of a complex and a real gauge three-form respectively.

Resuming the previous discussion, in order to retrieve a Lagrangian formulated solely in

terms of the multiplet A, the Lagrange multiplier SD has to be integrated out. Owing to

the presence of the gauge three-forms, in comparison with (3.24,3.25), the variations with

respect to SD and UD differ only in their auxiliary components. In fact, integrating out CD
mnp

and BD
npq, we get

ImD =
√
2M3 Φ = 4(M2 + iM1) (4.19)
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consistently with (4.10), (4.13) and (4.14). In other words, the choice of a variant Lagrange

multiplier (4.7) results in a dynamical generation of the magnetic Fayet–Iliopoulos parame-

ters ~M which appear in (3.26). In order to make contact with (4.2) we choose ~M = (0,−m, 0)
and, as a consequence, the Lagrangian (4.15) becomes

L = − i

4

∫

d2θFXXW
αWα − i

2

∫

d4θFXX̄ +m

∫

d2θFX +
1

2
~E · ~Y + c.c.. (4.20)

This Lagrangian, in comparison with (4.9) and recalling the component structure of the

chiral multiplet (3.3), suggests that integrating out SD results in constraining A as

A(y, θ, θ̃) = X(y, θ) +
√
2θ̃αWα(y, θ) + θ̃2

(

−2im+
1

4
D̄2X̄

)

. (4.21)

Due to the presence of gauge-three forms, therefore, a parameter related to a magnetic Fayet–

Iliopoulos gauging has been inserted dynamically into the expression (3.13) of the N = 2

vector superfield. This parameter will play an important role when studying the mechanism

of supersymmetry breaking, as shown in the next section.

Second Step: generating the electric parameters

We have just presented a recipe in order to dynamically produce the magnetic gauging

parameters, but for the moment nothing has be done on the electric gauging parameters ~E.

If we insist on considering the multiplet A an ordinary one as in (3.3), then the only choice

is to add the electric gauging by hand from the start, as in (3.26). However, if we relax this

request there is still another option: we may assume that A could be a variant multiplet

of the kind of (4.7), which endows gauge three-forms in its non-propagating components,

and allow for the dynamical generation of the electric gauging parameters as well. This

represents the second step of the procedure we are proposing. We promote then (4.20) to

L =

∫

d4θK(X, X̄) +

(

1

4

∫

d2θ τ(X)W αWα + c.c.

)

+

+

{
∫

d2θΛ1X +
1

4

∫

d2θ D̄2
(

Σ1Λ̄1

)

+m

∫

d2θFX + c.c.

}

+

+

{

1

8

∫

d2θ D̄2[Λ2(Σ2 − V )] + c.c.

}

,

(4.22)

The second line provides the exchange between the chiral multiplet X and its three-form

counterpart: Λ1 is a chiral Lagrange multiplier and Σ1 a complex linear multiplet. The

third line trades the vector multiplet W α for a vector three-form multiplet: here Λ2 is a

real Lagrange multiplier and Σ2 a complex linear multiplet. The Lagrangian (4.22) truly
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reproduces (4.2). This can be most readily seen from the integration of the complex linear

superfields Σ1 and Σ2, which sets

Λ1 = e , Λ2 = ξ , (4.23)

with e and ξ arbitrary real constants. Plugging (4.23) in (4.22), we reobtain (4.2), ensuring

the equivalence of the two descriptions. In order to re-express instead (4.22) in terms of

the three-form multiplets, we have to integrate out both the Lagrange multipliers Λ1, Λ2

and the ordinary N = 1 superfields X and V . The variations with respect to the Lagrange

multipliers Λ1 and Λ2 give

δΛ1 : X = −1

4
D̄2Σ̄1 ≡ S , (4.24)

δΛ2 : V =
Σ2 + Σ̄2

2
≡ U , (4.25)

which trade the N = 1 multiplets for their three-form counterparts, while the variations

with respect to X and V produce

δX : Λ1 =
1

4
D̄2KX −mFXX +

i

4
FXXXW

αWα , (4.26)

δV : Λ2 = ImFXXD
αWα +

1

2

[

(Dατ)Wα − (D̄α̇τ̄ )W̄
α̇
]

. (4.27)

Inserting (4.24–4.27) in (4.22) we get

L =

∫

d4θK(S, S̄) +

(

1

4

∫

d2θτ(S)W αWα +m

∫

d2θFS + c.c.

)

+ Lbd, (4.28)

with the boundary terms

Lbd =− 1

4

(
∫

d2θD̄2 −
∫

d2θ̄D2

)[(

1

4
D̄2KS −mFSS +

i

4
FSSSW

αWα

)

Σ̄1

]

+
1

16

(
∫

d2θD̄2 −
∫

d2θ̄D2

)[(

ImFSSD
αWα +

1

2
W αDατ +

1

2
W̄α̇D̄

α̇τ̄

)

Σ2

]

+ c.c. .

(4.29)

The bosonic components of (4.28) are

L
∣

∣

bos
=− ImFSS ∂ms ∂

ms̄− 1

4
ImFSSF

mnFmn −
1

8
ReFSS εklmnF

klFmn

+ ImFSS
∗F4

∗F̄4 +
1

2
ImFSS(

∗G4)
2 +

(

−imFSS
∗F̄4 + c.c.

)

+ Lbd

(4.30)
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with

Lbd =

{

1

3!
∂k
[

Blmn

(

ImFSSF̄
klmn − im εklmnF̄SS

)]

+ c.c.

}

+
1

3!
∂k
(

ImFSS ClmnG
klmn

)

.

(4.31)

By setting the gauge three-forms on shell as

Fklmn = − i

ImFSS

(e +mFSS)εklmn , (4.32)

Gklmn = − ξ

2 ImFSS

εklmn , (4.33)

the same potential as (4.6) is recovered.

We notice finally that the Lagrangian (4.28) can also be recast in N = 2 superspace as

L =
i

2

∫

d2θd2θ̃F (S) + c.c. + Lbd . (4.34)

provided that we introduce the N = 2 multiplet defined as

S(y, θ, θ̃) = S(y, θ) +
√
2θ̃αWα(y, θ) + θ̃2

(

−2im+
1

4
D̄2S̄

)

. (4.35)

where S is that introduced (4.24) and Wα = −1
4
D̄2DαU , with U as in (4.25). This multiplet

provides a direct off-shell correspondence with the chiral multiplets (3.3) or (4.21).

Summary of the results

In this section we have presented a two steps procedure which allows for a dynamical gen-

erations of the parameters entering the superpotential and the scalar potential of generic

N = 2 globally supersymmetric models. The first step leads to a dynamical generation of

the magnetic gauging parameters. Once they are generated by integrating out the corre-

sponding gauge three-forms, we can proceed to a second step. This amounts to promote

also the electric gauging parameters to expectation values of four-form field strengths. The

final result is the off-shell Lagrangian (4.34). In other words, the inclusion of parameters in

the original Lagrangian has been traded for a boundary condition problem. Indeed the two

steps can be performed at the same time, by conveniently combining (4.9) and (4.22), but

we preferred to keep them separate for the plainness of the discussion. In the next section we

are going to apply the formalism developed so far to analyse the mechanism of spontaneous

partial breaking of supersymmetry.
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4.2 An alternative procedure

In the previous subsection we proposed a two steps procedure in order to dynamically gen-

erate parameters in generic N = 2 supersymmetric theories. In particular, the magnetic

Fayet–Iliopoulos parameter m is generated first, while its electric counterparts are intro-

duced in a second step. Even though the steps can be performed at the same time, in the

sense that they do not clash, they generate different parts of the superpotential and of the

scalar potential. One can however wonder if it would be possible to generated dynamically

these quantities solely in one passage, following a logic closely related to that of [40]. It turns

out indeed that the procedure of [40] can be applied directly to the N = 2 case and the

entire superpotential can be generated dynamically in a single step, but only for a particular

class of models. In the present subsection we depict this alternative procedure for a system

with a generic number of vector superfields, the minimal case of one single superfield being

somehow trivial, as it is going to be clear in a while. The reader interested in the analysis

of the partial breaking of supersymmetry can skip this subsection at first.

We start from the Lagrangian

L =

∫

d4θ K(X, X̄) +

(

1

4

∫

d2θτΛΣ(X)WΛαWΣ
α + c.c

)

+

{
∫

d2θΛ1ΣX
Σ − 1

4

∫

d2θ D̄2
[

Σ1Λ N ΛΣ(Λ1Σ − Λ̄1Σ)
]

+ c.c.

}

+

{

1

8

∫

d2θ D̄2[Λ2Γ(Σ
Γ
2 − V Γ)] + c.c.

}

,

(4.36)

where the second line comes from trading the superpotential term in (4.2) for an expression

introducing gauge three-forms dynamically: Λ1Σ are chiral superfields which play the role of

Lagrange multipliers and Σ1Λ are complex linear multiplets. The third line, instead, is the

dynamical promotion of the Fayet–Iliopoulos term: ΣΓ
2 are complex linear multiplets while

Λ2Γ are real Lagrange multipliers superfields.

The equations of motion for Σ1Λ,

Dα[N ΛΣ(Λ1Σ − Λ̄1Σ)] = 0, (4.37)

impose indeed that Λ1Σ = eσ + mΓFΣΓ. On the other hand, integrating out the complex

linear superfield Σ2, we immediately get that Λ2Σ are just real constants ξΣ. Plugging these

back into the Lagrangian (4.36), we must obtain again (4.2). It is however immediate to

realize that, for this to happen, we have to require the prepotential F (A) to be a degree–two

homogeneous function of its argument, in order that FΛΣX
Σ = FΛ and the superpotential

(4.3) is recovered. This restriction is avoided in the two steps procedure we presented before.2

2We notice that, in the case of a single vector superfield, the homogeneity fixes F (A) = i

2
A2. Its second

derivative is then constant and part of the following discussion becomes trivial.
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Despite this fact, we can still produce a Lagrangian which contains gauge three-forms

in place of the auxiliary fields ~Y Λ. To this purpose, we have to integrate out the chiral

superfields XΛ and the vector superfields V Λ, as well as the Lagrange multipliers Λ1Σ and

Λ2Σ. The variation with respect to the Lagrange multipliers Λ1Σ re-expresses the chiral

superfields XΛ as double three-form multiplets as

XΛ =
1

4
D̄2
[

(NΛΓ(Σ1Γ − Σ̄1Γ)
]

≡ SΛ . (4.38)

Notice that this relationship is non-linear in SΛ and it might not be possible in general

to solve it and obtain an explicit expression for these superfields, but we can nevertheless

understand their main properties. We can calculate first of all the lowest components

SΛ| = N ΛΓ

(

−1

4
D̄2Σ̄1 Γ

∣

∣

)

+ fermions ≡ sΛ + fermions . (4.39)

We notice then that (4.38) is left invariant by the gauge transformations

Σ1 Γ → Σ1Γ + L̃Γ + F̄Γ∆L
∆, (4.40)

where L̃Λ and LΛ are real linear superfields. In order to be compatible with this gauge

transformation, the gauge three-forms in SΛ have to appear in

− 1

4
D2SΛ| = −iN ΛΣ ∗F4Σ + fermions , (4.41)

within the specific combination of four-forms

FΛ klmn ≡ F̃Λ klmn + F̄ΛΣF
Σ
klmn . (4.42)

In other words, in order to preserve the associated gauge invariance, which is necessary for

the matching of the degrees of freedom, the complex gauge-three forms in SΛ are divided

into two real parts, ∗FΛ
4 and ∗F̃4Λ which appear in the Lagrangian combined inside ∗F4Λ.

This is more involved with respect to the analogous case in the previous subsection, but it

is essential in order to reconstruct the correct on-shell form of the Lagrangian.

The variation with respect to the real Lagrange multipliers Λ2Σ, instead exchanges the

usual vector multiplets V Λ with their variant versions (4.25), as in the previous discussion.

The variations with respect to the chiral superfields XΛ and the vector superfields V Λ give

respectively

Λ1Σ =
1

4
D̄2KΣ − 1

4
τΣΓ∆W

ΓαW∆
α

− 1

8
D̄2
[

(Σ1Π − Σ̄1Π)(Λ1Γ − Λ̄1Γ)NΠΛN∆ΓτΣΛ∆

]

,

Λ2Σ = Re τΣΓD
αW Γ

α +
1

2

(

DατΣΓW
Γ
α + D̄α̇τ̄ΣΓW̄

Γα̇
)

.

(4.43)
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Substituting (4.38), (4.25) and (4.43) into (4.36) we obtain a new Lagrangian fully re-

expressed in terms of the three-form multiplets

L =

∫

d4θ K(X, X̄) +

(

1

4

∫

d2θτΛΣ(X)WΛαWΣ
α + c.c

)

+ Lbd, (4.44)

with

Lbd =− 1

4

(
∫

d2θD̄2 −
∫

d2θ̄D2

)

[

Λ1ΣN ΣΓΣ̄1Γ

]

+
1

16

(
∫

d2θD̄2 −
∫

d2θ̄D2

)

(

Λ2ΓΣ
Γ
2

)

+ c.c. .

(4.45)

Its bosonic components are

L
∣

∣

bos
=−NΛΣ ∂ms

Λ ∂ms̄Σ − 1

4
NΛΣF

ΛmnFΣ
mn −

1

8
ReFΛΣ εklmnF

Λ klFΣmn

+N ΛΣ∗F4Λ
∗F̄4Σ +

1

2
NΛΣ

∗GΛ
4
∗GΣ

4 + Lbd

(4.46)

with

Lbd =

{

− 1

3!
∂k

[

εklmnN ΛΣ
(

ÃΛ lmn + F̄ΛΣΓA
Γ
lmn

)

∗F̄4Σ

]

+ c.c.

}

− 1

3!
∂k
(

εklmnNΛΣB
Λ
lmn

∗GΣ
4

)

.

(4.47)

We notice that in (4.44) no gauging parameter appears. Indeed, the entire superpotential

is dynamically generated once the gauge three-forms are set on-shell. In fact, from (4.46),

the equations of motion for the real gauge three-forms AΛ
3 and Ã3Λ give

Re
(

N ΛΣ∗F̄4Σ

)

= −mΛ , Re
(

N ΣΓF̄ΛΣ
∗F̄4Γ

)

= eΛ , (4.48)

with eΛ and mΛ arbitrary real constants. These equations can be recast as

∗F4Λ = −i(eΛ + F̄ΛΣm
Σ) . (4.49)

The equation of motion for the three-forms BΛ
3 gives

∗GΛ
4 =

1

2
N ΛΣξΣ (4.50)

with ξΣ arbitrary real constants. Plugging (4.49) and (4.50) in (4.46) we obtain directly the

same potential as (3.30), for the particular choice (4.1).
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5 Dynamical Partial Supersymmetry Breaking

In this section we examine how the partial breaking of supersymmetry is realized in terms

of the gauge three-forms. We discuss to original model of [44] using our formalism and

then we construct an effective theory capturing its low energy description, along the lines

of [46, 51, 54]. Through the entire discussion, all the parameters are going to be generated

dynamically.

5.1 Dynamical Antoniadis–Partouche–Taylor model

We consider the Lagrangian (4.34) which, as we have shown, reproduces the scalar potential

(4.6). This is the same scalar potential of [44], therefore we can argue that (4.34) is a different

off-shell completion of the same on-shell model. In [44] it is discussed how the scalar potential

(4.6) admits vacua in which the N = 2 supersymmetry is partially spontaneously broken and

a massless goldstino is present in the spectrum, together with a massive scalar and a massive

fermion. We refer therefore the reader to [44,51] for additional details concerning the nature

of the vacua of (4.6), while in the present subsection we concentrate on the analysis of the

supersymmetry transformations of the fermions, in our formalism, in order to identify the

goldstino. With respect to [44], we are going to give conditions on the gauge three-forms

which are valid off-shell and which match the result of [44], when going on-shell.

To tell what amount of supersymmetry is preserved, it is necessary to examine how the

supersymmetry variations of the fermions behave. We then focus on

δΨ =
i√
2
(~σ · ~Y )η + . . . . (5.1)

and we remind that a goldstino transforms with a shift under the broken supersymmetry.

It is clear that, for generic values of ~Y , the whole N = 2 supersymmetry is non-linearly

realized and the vacuum is not supersymmetric. In order for the vacuum to preserve N = 1

supersymmetry, it is therefore necessary that a linear combination of the fermions ψ and λ

transforms homogeneously, namely without a shift in any of the two supersymmetry param-

eters. This can happen if and only if the matrix

~σ · ~Y =

(

Y 3 Y 1 − iY 2

Y 1 + iY 2 −Y 3

)

(5.2)

has at least one zero eigenvalue. A necessary condition is that its determinant

det (~σ · ~Y ) = −~Y · ~Y (5.3)

vanishes. As pointed out in [44], when the magnetic Fayet–Iliopoulos parameter is turned

off in (3.26), then ~Y is real and the quantity (5.3) is always positive, but for the trivial
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case in which ~Y = 0 and supersymmetry is totally preserved. When the magnetic gauging

are inserted, however, ~Y acquires a non-vanishing imaginary part and the matrix ~σ · ~Y can

be degenerate. In this case, the vacuum can preserve N = 1 supersymmetry. This is how

the partial breaking N = 2 → N = 1 was originally conceived in [44], but here we adopt

a slightly different perspective, in which the mechanism is sourced by a certain choice of

boundary conditions, compatible with the equations of motions.

Considering (4.34), the auxiliary fields ~Y obtained form the variant multiplets (4.35)

depend on the gauge three-forms as

~Y = −2







Re ∗F4 +m

−Im ∗F4 + im
1√
2
∗G4






. (5.4)

Therefore, it is possible to realise that the matrix

~σ · ~Y = −2

(

1√
2
∗G4

∗F4 + 2m
∗F̄4 − 1√

2
∗G4

)

(5.5)

is degenerate when
1

2
(∗G4)

2 = −|∗F4|2 − 2m ∗F̄4 . (5.6)

This equation can be solved by

Im ∗F4 = 0 and
1

2
(∗G4)

2 = −2mRe ∗F4 − |∗F4|2 , (5.7)

which is are off-shell conditions on the gauge three-forms for the partial breaking to occur.

When going on-shell by using (4.32) and (4.33), ~Y becomes

~Y =
2

ImFSS







0

e +mF̄SS

− ξ

2
√
2






(5.8)

and, in order for (5.7) to be satisfied, we need

e

m
= −ReFSS , − ξ

2
√
2m

= ImFSS (5.9)

so that (5.8) gives

~Y = 2m





0

−i
1



 , (5.10)
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which matches the result in [44]. For this choice of ~Y , the matrix (5.2) is degenerate. The

on-shell supersymmetry transformations are indeed

δψ = im(−η1 + η2) + . . . , δλ = im(η1 − η2) + . . . (5.11)

and we recognize that the combination ψ + λ transforms linearly

δ(ψ + λ) = 0 + . . . , (5.12)

while the combination ψ − λ transforms non-linearly

δ(ψ − λ) = −2im(η1 − η2) + . . . , (5.13)

signaling the presence of a goldstino and the spontaneous breaking of one of the two su-

persymmetries. In our formalism, therefore, the partial breaking of supersymmetry is a

consequence of the boundary conditions (4.32) and (4.33). A different choice of the bound-

ary conditions would generically lead to a different amount of broken supersymmetry.

5.2 The low energy effective description

In this subsection we use the formalism we have developed in order to construct an effective

description for the previous model with partially broken supersymmetry, along the lines

of [46,51,54,59]. We will give evidence that the boundary terms that we have been including

so far in all the Lagrangians are not solely an artifact of the formalism, but they contain

important physical information.

The starting point is the Lagrangian (4.28), or equivalently (4.34). For convenience,

however, this time we choose the boundary conditions so as the solutions to the equations

of motion (4.32) and (4.33) now read

Fklmn = − i

ImFSS

(

e + i
ξ

2
√
2
+mFSS

)

εklmn , (5.14)

Gklmn = 0 . (5.15)

The Lagrangian associated to these new boundary conditions and the one studied in the pre-

vious sections are related by a SU(2)R transformation and therefore their physical properties

are not changed.3 The scalar potential is given by

V =
1

ImFSS

∣

∣

∣

∣

e+ i
ξ

2
√
2
+mFSS

∣

∣

∣

∣

2

(5.16)

3In terms of the standard formalism for treating N = 2 Lagrangians, with respect to the previous SU(2)

gauge choice, the Fayet–Iliopoulos parameter ξ has become now the imaginary part of the electric gauging

parameter e.
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and differs from (4.6) only for an irrelevant additive constant. In particular the conditions

(5.7) and (5.9) for the existence of a vacuum with partial breaking of supersymmetry are

again satisfied, but the triplet of auxiliary fields ~Y is now rotated to

~Y =
2

ImFSS







ξ

2
√
2

e+mF̄SS

0






, (5.17)

which, setting the three-forms on-shell, becomes

~Y = 2m





−1

−i
0



 . (5.18)

The spectrum in this vacuum is the same as before: it contains a massless goldstino, a

massive scalar and a massive fermion, whose masses are proportional to FSSS.

It is possible then to construct an effective theory for this setup by restricting the analysis

to an energy regime well below the scale given by the masses of the massive fields, or

equivalently by taking the formal limit FSSS → ∞. To this purpose, we first expand the

Lagrangian (4.28) around the vacuum. In particular we assume that the choices

F
(0)
SS = − e

m
− i

ξ

2
√
2m

, (5.19a)

F
(0)
klmn = − i

ImF
(0)
SS

(

e+ i
ξ

2
√
2
+mFSS

)

εklmn , (5.19b)

G
(0)
klmn = 0 (5.19c)

hold for a particular background value S0 of the superfield S, set S = S0 + S̃ and expand

around S0. Expanding then (4.28), along with the boundary terms (4.29), using (5.19), we

arrive at the following effective Lagrangian

L =

{

F
(0)
SS

∫

d2θ

(

i

8
S̃D̄2 ¯̃S − i

4
W αWα +mS̃

)

+

(

e+ i
ξ

2
√
2

)
∫

d2θ S̃ + c.c.

}

+ Lbd + . . . ,

(5.20)

with

Lbd =
1

4

(
∫

d2θD̄2 −
∫

d2θ̄D2

)[

ImF
(0)
SS

(

1

4
D2S̃

)

Σ̃1

]

+ c.c. , (5.21)

where the dots stand for higher order terms in the fluctuations. We notice that the coupling

linear in S̃ with the complex electric parameter e + i ξ

2
√
2

is generated from the boundary

terms (4.29), after we set

Λ1 = Λ
(0)
1 + Λ̃1 =

(

e + i
ξ

2
√
2

)

+ Λ̃1 . (5.22)
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The presence of this coupling is crucial for the existence of the effective theory and it is

indeed a pure boundary term contribution.

We take now the limit of infinite mass. By setting to zero the divergent part of the

equations of motion of the fluctuations, the following constraint is produced

i

8
SD̄2S̄ − i

4
W αWα +mS = 0 (5.23)

where from now on we omit the tilde on the fields. This constraint can be recast into the

form

S =
W αWα

−4im+ 1
2
D̄2S̄

, (5.24)

which can be solved iteratively [46, 54]. The solution is

S =
i

4m

{

W 2 − D̄2

[

W 2W̄ 2

(4m)2 + A+
√

(4m)4 + 2(4m)2A +B2

]}

, (5.25)

where we have defined

A =
D2W 2 + D̄2W̄ 2

2
, B =

D2W 2 − D̄2W̄ 2

2
. (5.26)

It is known [51, 54, 59, 60] that, in the language of N = 2 superspace, the constraint (5.23)

is a consequence of a nilpotent constraint imposed on top of the original vector superfield,

namely S2 = 0. This constraint is removing the entire N = 1 chiral superfield S from S and

expresses it as a function of the remaining N = 1 vector superfield Wα.

By implementing the constraint into (5.20), the low energy effective action reduces

L =

(

ie

4m
− ξ

8
√
2m

)
∫

d2θ

{

W 2 − D̄2

[

W 2W̄ 2

(4m)2 + A +
√

(4m)4 + 2(4m)2A+B2

]}

+ c.c. .
(5.27)

We stress that, from our perspective, this action is entirely contained in the boundary terms

(4.29), which captures therefore the effective description of the model in the infrared regime.

As a consequence, when considering four-dimensional Lagrangian with gauge three-forms, it

is important to include the appropriate boundary terms, since they can contain non-trivial

physical information. The on-shell bosonic components of (5.27) can be recast into the form

of a Born–Infeld action

L = −mξ√
2

(

1−
√

− det (ηmn + Fmn)
)

+
me

4
ǫmnpqFmnFpq, (5.28)

where we have rescaled Fmn →
√
2mFmn in order to have canonically normalized kinetic

terms. We stress that all the parameters appearing in this Lagrangian have been generated
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dynamically, as vacuum expectation values of gauge three-forms. In particular, the product

mξ may be related to the tension of the D3 brane described by (5.28), for which we have

provided a dynamical origin. We notice finally that, by choosing a boundary condition

in which m = 0, the partial breaking of supersymmetry does not occur and this effective

description does not hold.

6 Conclusion

In this work we have studied N = 2 global supersymmetric models in which the parameters

entering the superpotential and the scalar potential have a dynamical origin. A systematic

procedure has been given in order to trade standard N = 2 multiplets for variant versions, in

which gauge-three forms appear as non-propagating degrees of freedom. When going on-shell,

parameters are generated in the theory as integration constants for the gauge three-forms.

In other words, the choice of parameters in the original Lagrangian is traded for the problem

of specifying certain boundary conditions for the gauge three-forms, compatibly with their

equations of motion.

Our results may be relevant, first of all, for understanding the origin of parameters in

effective theories which come from string theory. It is known in fact that string theory

does not have any free parameter, but the string length and therefore eventual additional

parameters appearing in models originating from string theory have to be interpreted as

expectation values of certain fields. In this context, four dimensional theories preserving

N = 2 supersymmetry may appear for example when compactifying string theory on Calabi–

Yau three folds.

The results presented in this work can be of interest also for the study of supersymmetric

theories from a pure four-dimensional point of view, in particular for understanding the

relation between off-shell and on-shell formulations of extended supersymmetry, which has

not been completely clarified at present. We have presented in fact novel off-shell multiplets

and Lagrangians which reproduce correctly known on-shell setups.

As possible further directions, it would be important to extend the analysis to local

supersymmetry and explore the coupling of the gauge three-forms to membranes already in

four dimensions as in [38]. We leave these developments for future work.
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A Conventions

The components of a three-form A3 are defined as

A3 =
1

3!
Akmndx

k ∧ dxm ∧ dxn , (A.1)

whose field strength is defined as

F4 ≡ dA3 , F4 =
1

4!
Fklmndx

k ∧ dxl ∧ dxm ∧ dxn (A.2)

with components

Fklmn = 4 ∂[kAlmn] . (A.3)

The Hodge-dual of a four-form field strength F4 is

∗F4 =
1

4!
εklmnFklmn =

1

3!
εklmn∂[kAlmn] (A.4)

and in our conventions

εklmnε
pqrs = −4!δp[kδ

q
l δ

r
mδ

s
n] . (A.5)

B Component structure of N = 1 superfields

Here we collect the component structures of the N = 1 multiplets considered throughout

this work.

The chiral multiplet X is defined by

D̄α̇X = 0 (B.1)

and its component expansion is

X = ϕ+
√
2θψ + θ2f + iθσmθ̄∂mϕ− i√

2
θ2∂mψσ

mθ̄ +
1

4
θ2θ̄2✷ϕ, (B.2)

where ϕ and f are complex scalar fields, while ψ is a Weyl spinor. The independent compo-

nents of Φ can be defined by the projections

Φ| = ϕ ,

DαΦ| =
√
2ψα ,

−1

4
D2Φ| = f ,

(B.3)

where the vertical line means that the quantity is evaluated at θ = θ̄ = 0.
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The real scalar multiplet V is defined by V = V̄ and it has the following component

structure

V =u+ iθχ− iθ̄χ̄+ iθ2ϕ̄− iθ̄2ϕ− θσmθ̄vm

+ iθ2θ̄

(

λ̄+
i

2
σ̄m∂mχ

)

− iθ̄2θ

(

λ+
i

2
σm∂mχ̄

)

+
1

2
θ2θ̄2

(

D− 1

2
✷u

)

,
(B.4)

where u and D are real scalar fields, ϕ is a complex scalar field, vm is a real vector field and

χ and λ are Weyl spinors. The independent components of V can be defined by projections

V | = u ,

DαV | = iχα ,

1

4
σ̄α̇α
m [Dα, D̄α̇]V | = vm ,

i

4
D2V | = ϕ̄ ,

−1

4
D̄2DαV | = −iλα ,

1

16
D2D̄2V | = 1

2
(D− i∂mvm) .

(B.5)

The real linear multiplet L is a real multiplet which, in addition, satisfies the condition

D2L = 0 , D̄2L = 0 . (B.6)

Its component expansion is

L =l + iθη − iθ̄η̄ − 1

2
θσmθ̄ε

mnpq∂nΛpq

+
1

2
θ2θ̄σ̄m∂mη −

1

2
θ̄2θσm∂mη̄ −

1

4
θ2θ̄2✷l ,

(B.7)

where l is a real scalar, Λmn is a rank 2 antisimmetric tensor and η is a Weyl spinor.

The independent components of L can be defined by projections

L| = l ,

DαL| = iηα ,

1

2
σ̄mα̇ ,α

[

Dα, D̄α̇

]

L| = εmnpq∂nΛpq .

(B.8)

The complex linear multiplet Σ satisfies the condition

D̄2Σ = 0 . (B.9)
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Its component expansion is

Σ =σ +
√
2θψ +

√
2θ̄ρ̄− θσmθ̄Bm + θ2s̄+

√
2θ2θ̄ζ̄

− i√
2
θ̄2θσm∂mρ̄+ θ2θ̄2

(

i

2
∂mBm − 1

4
✷σ

)

.
, (B.10)

where σ and s̄ are complex scalars, ρ, ψ and ξ are Weyl spinors and Bm is a complex vector

which is Hodge dual to the three-form

Bm =
1

3!
εmnpqBnpq. (B.11)

The components of Σ can be defined by the projections

Σ| = σ ,

DαΣ| =
√
2ψα ,

D̄α̇Σ| =
√
2ρ̄α̇ ,

1

4
σ̄mα̇α

[

Dα, D̄α̇

]

Σ| = Bm ,

−1

4
D2Σ| = s̄ ,

D̄α̇D
2Σ| = −4

√
2ζ̄α̇ + 2

√
2i ∂mψ

ασm
αα̇ ,

1

16
D̄2D2Σ| = i∂mBm .

(B.12)

C Case with N vector multiplets

The procedure outlined in Section 4.1 can be generalized to the case involving an arbitrary

number N of vector multiplets. We recall that the N = 2 Lagrangian equipped with both

electric and magnetic gauging parameters is

L =
i

2

∫

d2θd2θ̃
[

F (A)−ADΛAΛ
]

+
1

2

(

~EΛ · ~Y Λ + ~MΛ · ~YDΛ

)

+ c.c. , (3.28)

which, in N = 1 language, translates into

L = − i

4

∫

d2θ
(

FΛΣW
ΛαWΣ

α − 2W α
DΛW

Λ
α

)

− i

2

∫

d4θFΛX̄
Λ +

1

4

∫

d2θΦΛ (XDΛ − FΛ) +
1

2

(

~EΛ · ~Y Λ + ~MΛ · ~YDΛ

)

+ c.c. .

(C.1)

We use the SU(2) R-symmetry of the theory to rotate the parameters such that

Re ~EΛ =

(

0,−eΛ,
ξΛ

2
√
2

)

, ~MΛ = (0,−mΛ, 0) , (C.2)
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with eΛ, mΛ and ξΛ real constants. In this way the Lagrangian can be expressed in the

N = 1 Language as

L =

∫

d4θ K(X, X̄) +

(

1

4

∫

d2θ τΛΣ(X)WΛαWΣ
α + c.c.

)

+

(
∫

d2θW (X) + c.c.

)

+ ξΛ

∫

d4θ V Λ ,

(C.3)

with

τΛΣ(X) = −iFΛΣ, K =
i

2

(

XΛF̄Λ − X̄ΛFΛ

)

, (C.4)

and the superpotential W (X) is given by

W (X) = eΛX
Λ +mΛFΛ(X) . (C.5)

The bosonic components are

L
∣

∣

bos
=−NΛΣ ∂mϕ

Λ ∂mϕ̄Σ − 1

4
NΛΣF

ΛmnFΣ
mn −

1

8
ReFΛΣ εklmnF

Λ klFΣmn

+NΛΣf
Λf̄Σ +

1

2
NΛΣD

ΛDΣ

+ (eΛ + FΛΣm
Σ)fΛ + (eΛ + F̄ΛΣm

Σ)f̄Λ +
1

2
ξΛD

Σ .

(C.6)

Integrating out the auxiliary fields fΛ and DΛ we arrive at

L
∣

∣

bos
=−NΛΣ ∂mϕ

Λ ∂mϕ̄Σ − 1

4
NΛΣF

ΛmnFΣ
mn

− 1

8
ReFΛΣ εklmnF

Λ klFΣmn − V(ϕ, ϕ̄) ,
(C.7)

with the scalar potential

V(ϕ, ϕ̄) = NΛΣm
ΛmΣ +N ΛΣ(eΛ +mΓReFΓΛ)(eΣ +m∆ReFΣ∆) +

1

8
N ΛΣξΛξΣ , (C.8)

which coincides with (3.30) for the particular choice (C.2).

The first step of the procedure consists in promoting the magnetic gauging parameters
~MΛ to be dynamical. This may be achieved by trading the Lagrange multiplier vector

multiplets ADΛ for the variant three-form multiplets (4.7). At N = 1 level, we promote

then the term ~MΛ · ~YDΛ in (C.1) to a full dynamical entity as

L =

{

− i

4

∫

d2θ
(

FΛΣW
ΛαWΣ

α − 2W α
DΛW

Λ
α

)

−

− i

2

∫

d4θFΛX̄
Λ +

1

4

∫

d2θΦΛ (XDΛ − FΛ) +
1

2
~EΛ · ~Y Λ + c.c.

}

+

+

{∫

d2θ

(

ΛDΠ
1 XDΠ +

1

4
D̄2(Σ1DΠΛ̄

DΠ
1 )

)

+ c.c.

}

+

{

1

8

∫

d2θ D̄2[ΛDΠ
2 (Σ2DΠ − VDΠ)] + c.c.

}

.

(C.9)
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The third line provides the trading between the N = 1 chiral multiplets XDΠ and a double

three-form multiplet, while the fourth line the one between the N = 1 vector multiplets

W α
DΠ and their three-form counterparts. Integrating the complex linear superfields Σ1DΠ

and Σ2DΠ gives

ΛDΠ
1 = −M2Π − iM1Π , ΛDΠ

2 = 2
√
2M3Π , (C.10)

with ~MΠ arbitrary real constants, establishing the equivalence between (C.9) and (C.1). On

the other hand, the variations with respect to the Lagrange multipliers ΛDΠ
1 and ΛDΠ

2 give

the relations

δΛDΠ
1 : XDΠ = −1

4
D̄2Σ̄1DΠ ≡ SDΠ , (C.11)

δΛDΠ
2 : VDΠ =

Σ2DΠ + Σ̄2DΠ

2
≡ UDΠ , (C.12)

and those with respect to the ordinary N = 1 superfields XDΠ and VDΠ result in

δXDΠ : ΛDΠ
1 = −1

4
ΦΠ , (C.13)

δVDΠ : ΛDΠ
2 = −Im(DαWΠ

α ) . (C.14)

Plugging (C.11-C.14) in (C.9), we get

L =

{

− i

4

∫

d2θ
(

FΛΣW
ΛαWΣ

α − 2W α
DΛW

Λ
α

)

−

− i

2

∫

d4θFΛX̄
Λ +

1

4

∫

d2θΦΛ (SDΛ − FΛ) +
1

2
~EΛ · ~Y Λ + c.c.

}

+ L(D)
bd

(C.15)

with

L(D)
bd =− 1

4

(
∫

d2θD̄2 −
∫

d2θ̄D2

)[(

−1

4
ΦΛ

)

Σ̄1D Λ

]

+
1

16

(
∫

d2θD̄2 −
∫

d2θ̄D2

)

[

−Im(DαWΛ
α )Σ2D Λ

]

+ c.c. .

(C.16)

This Lagrangian can also be rewritten in N = 2 superspace as

L =
i

2

∫

d2θd2θ̃
[

F (A)− SDΛAΛ
]

+
1

2
~EΛ · ~Y Λ + c.c. + L(D)

bd . (C.17)

where the N = 2 Lagrange multiplier SDΛ is

SDΛ(y, θ, θ̃) = SDΛ(y, θ) +
√
2θ̃αWDΛα(y, θ) +

1

4
θ̃2D̄2S̄DΛ . (C.18)

where WDΛα = −1
4
D̄2DαUDΛ, with SDΛ and UDΛ defined respectively in (C.11) and (C.12).
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In order to re-express the Lagrangian (C.17) only in terms of the chiral multiplets AΛ, the

variant Lagrange multipliers SDΛ have to be integrating out. This amounts in integrating

out the complex linear superfields Σ1D Λ and Σ2DΛ which, as in (C.13) and (C.14), results in

setting

ImDΠ =
√
2M3Π ΦΠ = 4(M2Π + iM1Π) (C.19)

If we choose ~MΠ = (0,−mΠ, 0), the Lagrangian (C.15) reads

L = − i

4

∫

d2θFΛΣW
ΛαWΣ

α − i

2

∫

d4θFΛX̄
Λ +mΛ

∫

d2θFΛ +
1

2
~EΛ · ~Y Λ + c.c.. (C.20)

In comparison with (C.9) and recalling the component structure of the chiral multiplet (3.3),

this suggests that integrating out SDΛ constraints AΛ to be the reduced chiral multiplet

AΛ(y, θ, θ̃) = XΛ(y, θ) +
√
2θ̃αWΛ

α (y, θ) + θ̃2
(

−2imΛ +
1

4
D̄2X̄Λ

)

. (C.21)

The second step is to generate dynamically also the electric gauging parameters ~E, by

promoting the reduced chiral multiplets AΛ to three-form multiplets as well. We convert

then (C.20) to

L =

∫

d4θ K(X, X̄) +

(

1

4

∫

d2θ τΛΣ(X)WΛαWΣ
α + c.c.

)

+

+

{
∫

d2θΛ1ΠX
Π +

1

4

∫

d2θ D̄2
(

Σ1ΠΛ̄
Π
1

)

+mΠ

∫

d2θFΠ + c.c.

}

+

+

{

1

8

∫

d2θ D̄2[Λ2Π(Σ
Π
2 − V Π)] + c.c.

}

.

(C.22)

As a check of consistency between the Lagrangians (C.22) and (4.2), we may integrate out

the complex linear superfields Σ1 and Σ2, obtaining

Λ1Λ = eΛ , Λ2Λ = ξΛ , (C.23)

with eΛ and ξΛ arbitrary real constants. Inserting (C.23) in (C.22), we in fact re-obtain

(C.3). Let us now recast the Lagrangian (C.22) only in terms of the three-form multiplets.

The variations with respect of the Lagrange multipliers Λ1Π and Λ2Π give

δΛ1Π : XΠ = −1

4
D̄2Σ̄Π

1 ≡ SΠ , (C.24)

δΛ2Π : V Π =
ΣΠ

2 + Σ̄Π
2

2
≡ UΠ , (C.25)
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which trade the N = 1 multiplets for their three-form counterparts. The variations with

respect to XΠ and V Π give explicit expressions for the Lagrange multipliers Λ1Π and Λ2Π:

δXΠ : Λ1Π =
1

4
D̄2KΠ − 1

4
τΣΛΠW

ΣαWΛ
α −mΣFΣΠ , (C.26)

δV Π : Λ2Π = NΠΣD
αWΣ

α +
1

2

[

(DατΠΣ)W
Σ
α − (D̄α̇τΠΣ)W̄

α̇Σ
]

. (C.27)

Inserting (C.24–C.27) in (C.22) we get

L =

∫

d4θK(S, S̄) +

(

1

4

∫

d2θτΛΣ(S)W
ΛαWΣ

α + c.c.

)

+ Lbd, (C.28)

with

Lbd =− 1

4

(
∫

d2θD̄2 −
∫

d2θ̄D2

)

[

Λ1ΠΣ̄
Π
1

]

+
1

16

(
∫

d2θD̄2 −
∫

d2θ̄D2

)

(

Λ2ΠΣ
Π
2

)

+ c.c. .

(C.29)

with Λ1Π and Λ2Π specified by (C.26) and (C.27). The bosonic components of the Lagrangian

(C.28) are

L
∣

∣

bos
=−NΛΣ ∂mϕ

Λ ∂mϕ̄Σ − 1

4
NΛΣF

ΛmnFΣ
mn −

1

8
ReFΛΣ εklmnF

Λ klFΣmn

+NΛΣ
∗FΛ

4
∗F̄Σ

4 +
1

2
NΛΣ

∗GΛ
4
∗GΣ

4 +
(

−imΛFΛΣ
∗F̄Σ

4 + c.c.
)

+ Lbd

(C.30)

with

Lbd =

{

1

3!
∂k
[

BΛ
lmn

(

NΛΣF̄
Σ klmn − imΣ εklmnF̄ΛΣ

)]

+ c.c.

}

+
1

3!
∂k
(

NΛΣC
Λ
lmnG

Σ klmn
)

.

(C.31)

Setting the gauge three-forms on shell as

FΛ
klmn = −iN ΛΣ(eΣ +mΠFΠΣ)εklmn , (C.32)

GΛ
klmn = −1

2
N ΛΣ ξΣ εklmn , (C.33)

the same potential as (C.8) is recovered.

The Lagrangian (C.28) can also be fully re-expressed in N = 2 language as

L =
i

2

∫

d2θd2θ̃F (S) + c.c. + Lbd . (C.34)

provided that we introduce the N = 2 chiral multiplets defined as

SΛ(y, θ, θ̃) = SΛ(y, θ) +
√
2θ̃αWΛ

α (y, θ) + θ̃2
(

−2imΛ +
1

4
D̄2S̄Λ

)

. (C.35)

with SΛ as in (C.24) and WΛ
α = −1

4
D̄2DαU

Λ, where UΛ is defined in (C.25).
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