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Abstract. The infinite models in integer programming can be described
as the convex hull of some points or as the intersection of half-spaces
derived from valid functions. In this paper we study the relationships
between these two descriptions. Our results have implications for finite
dimensional corner polyhedra. One consequence is that nonnegative con-
tinuous functions suffice to describe finite dimensional corner polyhedra
with rational data. We also discover new facts about corner polyhedra
with non-rational data.

1 Introduction

Let b ∈ Rn \ Zn. The mixed-integer infinite group relaxation Mb is the set of
all pairs of functions (s, y) with s : Rn → R+ and y : Rn → Z+ having finite
support (that is, {r : s(r) > 0} and {p : y(p) > 0} are finite sets) satisfying

∑

r∈Rn

rs(r) +
∑

p∈Rn

py(p) ∈ b+ Zn. (1.1)

Mb is a subset of the infinite-dimensional vector space R(Rn) × R(Rn), where

R(Rn) denotes the set of finite support functions from Rn to R. (Similarly, R
(Rn)
+

will denote the set of finite support functions from Rn to R that are nonnegative.)
We will work with this vector space throughout the paper. A tuple (ψ, π, α),
where ψ, π : Rn → R and α ∈ R, is a valid tuple for Mb if

∑

r∈Rn

ψ(r)s(r) +
∑

p∈Rn

π(p)y(p) ≥ α for every (s, y) ∈Mb. (1.2)

Since for λ > 0 the inequalities (1.2) associated with (ψ, π, α) and (λψ, λπ, λα)
are equivalent, from now on we assume α ∈ {−1, 0, 1}.

The set of functions y : Rn → Z+ such that (0, y) ∈ Mb will be called the
pure integer infinite group relaxation Ib. In other words, Ib = {y : (0, y) ∈ Mb}.
By definition, Ib ⊆ R(Rn). However, when convenient we will see Ib as a subset

⋆ M. Conforti, M. Di Summa were supported by the grant “Progetto di Ateneo 2013”.



of Mb. A tuple (π, α), where π : Rn → R and α ∈ R, is called a valid tuple for
Ib if

∑

p∈Rn

π(p)y(p) ≥ α for every y ∈ Ib. (1.3)

Again, we will assume α ∈ {−1, 0, 1}.

Models Mb and Ib were defined by Gomory and Johnson in a series of pa-
pers [11–13, 16] as a template to generate valid inequalities, derived from (1.2)
and (1.3), for general integer programs. They have been the focus of extensive
research, as summarized, e.g., in [3, 4], [6, Chapter 6].

Our Results. One would expect that the intersection of all valid tuples for Mb

would be equal to conv(Mb), where conv(·) denotes the convex hull operator.
However, this is not true: this intersection is a strict superset of conv(Mb). One
of our main results (Theorem 2.14) shows that the intersection of all valid tuples
forMb is, in fact, the closure of conv(Mb) under a norm topology on R(Rn)×R(Rn)

that was first defined by Basu et al. [2]. We then give an explict characterization

that shows that this closure coincides with conv(Mb)+(R
(Rn)
+ ×R

(Rn)
+ ). A similar

phenomenon happens for Ib (Theorem 2.15).
A valid tuple (ψ, π, α) for Mb is minimal if there does not exist a pair of

functions (ψ′, π′) different from (ψ, π), with (ψ′, π′) ≤ (ψ, π), such that (ψ′, π′, α)
is a valid tuple for Mb. Our main tool is a characterization of the minimal
tuples (Theorem 2.4) that extends a result of Johnson (see, e.g., Theorem 6.34
in [6]), that was obtained under the assumption that π ≥ 0. The main novelty
of our result over Johnson’s is that minimality of a valid tuple (ψ, π, α) implies
nonnegativity of π (no need to assume it). Moreover, π has to be continuous (in
fact, it is Lipschitz continuous.)

Most of the prior literature on valid tuples (π, α) for Ib proceeds under the
restrictive assumption that π is nonnegative (in fact, Gomory and Johnson in-
cluded the assumption π ≥ 0 in their original definition of valid tuple for Ib).
This assumption has been criticized in more recent work on Ib, as there are valid
functions not satisfying π ≥ 0. In this paper, we prove that every valid tuple
for Ib has an equivalent representation (π, α) where π ≥ 0. More specifically, we
show that for every valid tuple (π, α), there exist θ : Rn → R and β ∈ R such that
both (θ, β), (−θ,−β) are valid tuples and the valid tuple (π′, α′) = (π+θ, α+β)
satisfies π′ ≥ 0 (Theorem 3.7). This settles an open question in [3, Open Ques-
tion 2.5]. Being able to restrict to nonnegative valid tuples without loss has the
added advantage that nonnegative valid tuples form a compact, convex set under
the natural product topology on functions. Thus, one approach to understand-
ing valid tuples is to understand the extreme points of this compact convex set,
which are termed extreme functions/tuples in the literature. While this approach
was standard for the area, our result about nonnegative valid tuples now gives
a rigorous justification for this.

A valid tuple (π, α) for Ib is liftable if there there exists ψ : Rn → R such
that (ψ, π, α) is a valid tuple forMb. Minimal valid tuples (π, α) that are liftable
are a strict subset of valid tuples, as we show that such π have to be nonnegative



and Lipschitz continuous (Proposition 2.6 and Remark 2.7). This has some con-
sequences for finite-dimensional corner polyhedra that have rational data, which
are sets of the form conv(Ib) ∩ {yr = 0, r ∈ Rn \ P}, where P ∪ {b} is a finite
subset of Qn. Theorem 4.3 shows that inequalities (1.3) associated with liftable
tuples, when restricted to the space {yr = 0, r ∈ Rn \ P}, suffice to provide a
complete inequality description for such corner polyhedra. Literature on valid
tuples contains constructions of families of extreme valid tuples (π, α) such that
π is discontinuous [8, 9, 14, 17, 19, 20] (or continuous but not Lipschitz contin-
uous [17]). Our result above shows that such functions may be disregarded, if
one is interested in valid inequalities or facets of rational corner polyhedra. Sim-
ilarly, valid tuples (π, α) where π 6≥ 0 are also superfluous for such polyhedra.
This is interesting, in our opinion, because it shows that such extreme tuples are
redundant within the set of valid tuples, as far as rational corner polyhedra are
concerned.

Crucial to the proof of the above result on rational corner polyhedra, is
our characterization of the equations defining the affine hull of conv(Ib), which
extends a result in [3]. This characterization is also essential in understanding
the recession cone of conv(Ib) ∩ {yr = 0, r ∈ Rn \ P}, where P is a finite subset
of Rn. We use this to prove that conv(Ib)∩{yr = 0, r ∈ Rn \P} is a polyhedron,
even if P ∪ {b} contains non-rational vectors (Theorem 4.2).

2 The structure of conv(Mb) and conv(Ib)

A valid tuple (ψ, π, α) for Mb is said to be minimal if there does not exist a
pair of functions (ψ′, π′) different from (ψ, π), with (ψ′, π′) ≤ (ψ, π), such that
(ψ′, π′, α) is a valid tuple for Mb. Similarly, we say that a valid tuple (π, α) for
Ib is minimal if there does not exist a function π′ different from π, with π′ ≤ π,
such that (π′, α) is a valid tuple for Ib.

Remark 2.1. An application of Zorn’s lemma (see, e.g., [5, Proposition A.1])
shows that, given a valid tuple (ψ, π, α) for Mb, there exists a minimal valid
tuple (ψ′, π′, α) for Mb with ψ′ ≤ ψ and π′ ≤ π. Similarly, given a valid tuple
(π, α) for Ib, there exists a minimal valid tuple (π′, α) for Ib with π′ ≤ π. We
will use this throughout the paper.

Given a tuple (ψ, π, α), we define

Hψ,π,α =

{

(s, y) ∈ R(Rn) × R(Rn) :
∑

r∈Rn

ψ(r)s(r) +
∑

p∈Rn

π(p)y(p) ≥ α

}

.

A valid tuple (ψ, π, α) for Mb is trivial if R
(Rn)
+ × R

(Rn)
+ ⊆ Hψ,π,α. This

happens if and only if ψ ≥ 0, π ≥ 0 and α ∈ {0,−1}. Similarly, a valid tuple
(π, α) for Ib is trivial if π ≥ 0 and α ∈ {0,−1}.

A function φ : Rn → R is subadditive if φ(r1) + φ(r2) ≥ φ(r1 + r2) for every
r1, r2 ∈ Rn, and is positively homogenous if φ(λr) = λφ(r) for every r ∈ Rn and
λ ≥ 0. If φ is subadditive and positive homogenous, then φ is called sublinear.



Proposition 2.2. Let (ψ, π, α) be a minimal valid tuple for Mb. Then ψ is
sublinear and π ≤ ψ.

Proof. Assume that ψ is not subadditive. Then ψ(r1 + r2) > ψ(r1) + ψ(r2) for
some r1, r2 ∈ Rn. Let ψ′ : Rn → R be defined as ψ′(r1+ r2) = ψ(r1)+ψ(r2) and
ψ′(r) = ψ(r) for every r 6= r1 + r2. Then (ψ′, π, α) is easily seen to be a valid
tuple, a contradiction to the minimality of (ψ, π, α).

Now assume that ψ is not positively homogenous. Then ψ(λr1) < λψ(r1) for

some r1 ∈ Rn and λ > 0. Let ψ′ : Rn → R be defined as ψ′(r1) = ψ(λr1)
λ

and
ψ′(r) = ψ(r) for every r 6= r1. Again, (ψ

′, π, α) is a valid tuple, a contradiction
to the minimality of (ψ, π, α). Thus ψ is sublinear.

Finally, assume that π(r1) > ψ(r1) for some r1 ∈ Rn. Let π′ : Rn → R be
defined as π′(r1) = ψ(r1) and π

′(r) = π(r) for every r 6= r1. The tuple (ψ, π′, α)
is valid, and this shows that π ≤ ψ. ⊓⊔

Lemma 2.3. Suppose π : Rn → R is subadditive and supε>0
π(εr)
ε

< ∞ for all

r ∈ Rn. Define ψ(r) = supε>0
π(εr)
ε

. Then ψ is sublinear and π ≤ ψ.

Proof. Since π is subadditive, ψ is readily checked to be subadditive as well.
The fact that π ≤ ψ follows by taking ε = 1. Finally, positive homogeneity of ψ
follows from the definition of ψ. ⊓⊔

Theorem 2.4. Let ψ : Rn → R, π : Rn → R be any functions, and α ∈
{−1, 0, 1}. Then (ψ, π, α) is a nontrivial minimal valid tuple for Mb if and only
if the following hold:

(a) π is subadditive;

(b) ψ(r) = supε>0
π(εr)
ε

= limε→0+
π(εr)
ε

= lim supε→0+
π(εr)
ε

for every r ∈ Rn;
(c) π is Lipschitz continuous with Lipschitz constant L := max‖r‖=1 ψ(r);
(d) π ≥ 0, π(z) = 0 for every z ∈ Zn, and α = 1;
(e) (symmetry condition) π satisfies π(r) + π(b − r) = 1 for all r ∈ Rn.

Proof. (⇐) Theorem 6.34 in [6] shows that if conditions (a)–(e) are satisfied, then
(ψ, π, α) is a minimal valid tuple for Mb. Since α = 1, the tuple is nontrivial.

(⇒) Suppose that (ψ, π, α) is a nontrivial minimal valid tuple for Mb.

(a) This proof is the same as the subadditivity proof in Proposition 2.2.
(b) We first establish the following claim.

Claim. ψ(r) ≥ supε>0
π(εr)
ε

= limε→0+
π(εr)
ε

= lim supε→0+
π(εr)
ε

.

Proof of Claim. Since (ψ, π, α) is minimal, from Proposition 2.2 ψ is sublinear

and π ≤ ψ. Hence for ε > 0 and r ∈ Rn we have that π(εr)
ε

≤ ψ(εr)
ε

= ψ(r).

Thus, supε>0
π(εr)
ε

≤ ψ(r) and this implies that supε>0
π(εr)
ε

is a finite real
number. By Theorem 7.11.1 in [15] and the subadditivity of π, this implies

that supε>0
π(εr)
ε

= limε→0+
π(εr)
ε

= lim supε→0+
π(εr)
ε

. ⋄



The above claim shows that the function ψ′(r) := limε→0+
π(εr)
ε

is well
defined, and ψ′ ≤ ψ. Furthermore, by Lemma 2.3, ψ′ is sublinear. We prove
below that (ψ′, π, α) is a valid tuple. Therefore, since (ψ, π, α) is minimal,
validity of (ψ′, π, α) will imply that ψ = ψ′.
Assume by contradiction that (ψ′, π, α) is not valid. Then there exists (s, y) ∈
Mb such that

∑

r∈Rn

ψ′(r)sr +
∑

p∈Rn

π(p)yp = α− δ

for some δ > 0. Define r̃ =
∑

r∈Rn rsr . Since ψ
′(r) = limε→0+

π(εr)
ε

, there
exists some β > 0 such that

π(εr̃)

ε
< ψ′(r̃) + δ for all 0 < ε < β.

Let D ∈ Z>0 be such that 1/D ≤ β and define ỹ to be

ỹr =

{

yr +D if r = r̃/D,

yr if r 6= r̃/D.

Note that
∑

r∈Rn

rỹr =
∑

r∈Rn

rsr +
∑

p∈Rn

pyp ∈ b+ Zn,

and so (0, ỹ) ∈Mb. Hence
∑

p∈Rn π(p)ỹp ≥ α. However,

∑

p∈Rn

π(p)ỹp =
π(r̃/D)

1/D
+

∑

p∈Rn

π(p)yp

< ψ′(r̃) + δ +
∑

p∈Rn

π(p)yp by definition of δ

≤
∑

r∈Rn

ψ′(r)sr + δ +
∑

p∈Rn

π(p)yp by sublinearity of ψ′

= α,

which is a contradiction.
(c) We now show that π is Lipschitz continuous with Lipschitz constant L :=

max‖r‖=1 ψ(r). By Proposition 2.2, ψ is sublinear; thus, it is continuous.
Therefore max‖r‖=1 ψ(r) is attained. Moreover, by subadditivity of π, we
obtain that π(x)−π(y) ≤ π(x−y) for all x, y ∈ Rn. Therefore, |π(x)−π(y)| ≤
max{π(x− y), π(y − x)}. Thus, for all x 6= y,

|π(x)− π(y)|

‖x− y‖
≤

max{π(x− y), π(y − x)}

‖x− y‖
≤

max{ψ(x− y), ψ(y − x)}

‖x− y‖
≤ L,

where the second inequality follows from Proposition 2.2.
(d) We prove this with a sequence of claims.



Claim. π(r) ≥ 0 for all r ∈ Rn.

Proof of Claim. Let p∗ ∈ Qn. Then there existsD ∈ Z>0 such thatDp∗ ∈ Zn.
Let (s, y) ∈Mb and, for some k ∈ Z+, define (s, ỹ) by setting ỹp∗ = yp∗ +kD
and ỹp = yp for p 6= p∗. Note that (s, ỹ) ∈Mb for every k ∈ Z+. This shows
that π(p∗) ≥ 0 for every p∗ ∈ Qn. Since π is Lipschitz continuous by part
(c) above, we must have π ≥ 0 everywhere. ⋄

Claim. π(z) = 0 for all z ∈ Zn.

Proof of Claim. Assume to the contrary that there is some z ∈ Zn such that
π(z) 6= 0. By the previous claim, π(z) > 0. Define π′ to be π′(z) = 0 and
π′(p) = π(p) for p 6= z. Then (ψ, π′, α) is easily seen to be a valid tuple. This
contradicts the minimality of (ψ, π, α). ⋄

We now show that α = 1. Since ψ, π ≥ 0 by parts (b) and (d), if α = 0 or
α = −1, then this would contradict the fact that the tuple is nontrivial.

(e) The proof is identical to part (d) of the proof of Theorem 6.22 in [6].

This concludes the proof of the theorem. ⊓⊔

Corollary 2.5. Let (π, α) be a nontrivial minimal valid tuple for Ib such that

supε>0
π(εr)
ε

< ∞ for every r ∈ Rn. Define ψ(r) = supε>0
π(εr)
ε

. Then (ψ, π, α)
satisfies conditions (a)–(e) of Theorem 2.4 and therefore is a nontrivial minimal
valid tuple for Mb.

Conversely, if (ψ, π, α) is a nontrivial minimal valid tuple for Mb, then (π, α)
is a nontrivial minimal valid tuple for Ib.

Proof. Since (π, α) is minimal, the same argument as in the proof of Proposition
2.2 shows that π is subadditive. Let ψ be defined as above. Following the proof of
Theorem 2.4 it can be checked that minimality and nontriviality of (π, α) suffice
to show that (ψ, π, α) satisfies (a)–(e), and therefore (ψ, π, α) is a nontrivial
minimal valid tuple for Mb.

For the converse, we use a theorem of Gomory and Johnson (see, e.g., [6,
Theorem 6.22]) stating that if (π, 1) is a nontrivial valid tuple with π ≥ 0, then
(π, 1) is minimal if and only if π is subadditive, π(z) = 0 for every z ∈ Zn, and
π satisfies the symmetry condition. Let (ψ, π, α) be a nontrivial minimal valid
tuple for Mb. By Theorem 2.4, π ≥ 0, α = 1, π is subadditive, π(z) = 0 for
every z ∈ Zn, and π satisfies the symmetry condition. Therefore, by the above
theorem, (π, α) is a nontrivial minimal valid tuple for Ib. ⊓⊔

A valid tuple (π, α) for Ib is called liftable if there exists a function ψ : Rn → R

such that (ψ, π, α) is a valid tuple for Mb.

Proposition 2.6. Let (π, α) be a nontrivial valid tuple for Ib. Then (π, α)
is liftable if and only if there exists a minimal valid tuple (π′, α) such that

π′ ≤ π and supε>0
π′(εr)
ε

< ∞ for every r ∈ Rn. In this case, defining ψ(r) =

supε>0
π′(εr)
ε

gives a valid tuple (ψ, π′, α) for Mb satisfying conditions (a)–(e) of
Theorem 2.4.



Proof. If (π, α) is nontrivial and liftable, then there exists ψ such that (ψ, π, α)
is a valid tuple for Mb. Let (ψ

′, π′, α) be a minimal valid tuple with ψ′ ≤ ψ and
π′ ≤ π. Since (π, α) is nontrivial, so is (ψ′, π′, α). By Theorem 2.4, α = 1, π′ ≥ 0,

and supε>0
π′(εr)
ε

<∞ for every r ∈ Rn. By Corollary 2.5, (π′, α) is minimal.
Conversely, let (π, α) be a nontrivial valid tuple for Ib, and let π′ ≤ π be

such that (π′, α) is minimal (and nontrivial) and ψ(r) := supε>0
π′(εr)
ε

is finite
for every r ∈ Rn. By Corollary 2.5, (ψ, π′, α) is a nontrivial minimal valid tuple
forMb, and therefore (π′, α) is liftable. Since π ≥ π′, (π, α) is liftable as well. ⊓⊔

Remark 2.7. Let (π, α) be a nontrivial minimal valid tuple for Ib that is liftable.

It follows from Proposition 2.6 (with π′ = π) that ψ(r) := supε>0
π(εr)
ε

is finite
for all r ∈ Rn, and (ψ, π, α) is a minimal valid tuple for Mb that satisfies con-
ditions (a)–(e) of Theorem 2.4. Therefore π is Lipschitz continuous and π ≥ 0.
There are nontrivial minimal valid tuples (π, α) for Ib for which π is not con-
tinuous, or π is continuous but not Lipschitz continuous, see the construction
in [17, Section 5]. There are also nontrivial minimal valid tuples (π, α) for Ib
with π 6≥ 0. None of these minimal tuples is liftable.

2.1 The closure of conv(Mb)

Lemma 2.8. The following sets coincide:

(a)
(

R
(Rn)
+ × R

(Rn)
+

)

∩
⋂

{Hψ,π,α : (ψ, π, α) valid tuple}

(b)
(

R
(Rn)
+ × R

(Rn)
+

)

∩
⋂

{Hψ,π,α : (ψ, π, α) nontrivial valid tuple}

(c)
(

R
(Rn)
+ × R

(Rn)
+

)

∩
⋂

{Hψ,π,α : (ψ, π, α) minimal nontrivial valid tuple}

(d)
(

R
(Rn)
+ ×R

(Rn)
+

)

∩
⋂

{Hψ,π,α : (ψ, π, α) minimal nontrivial valid tuple, ψ, π ≥
0, α = 1}

Proof. The equivalence of (a) and (b) follows from the definition of nontrivial
valid tuple. The sets (b) and (c) coincide by Remark 2.1. Finally, Theorem 2.4
shows that (c) is equal to (d). ⊓⊔

From now on, we denote by Qb the set(s) of Lemma 2.8.

While conv(Mb) ⊆ Qb, this containment is strict, as shown in Remark 4.5.
However, Theorem 2.14 below proves that, under an appropriate topology, the
closure of conv(Mb) is exactly Qb. In order to show this result, we need the
following lemma, that may be of independent interest.

Lemma 2.9. If C ⊆ Rn+ is closed, then so is conv(C) + Rn+.

Proof. Let (xi)i∈N be a sequence of points in conv(C) + Rn+ that converges to
some x̄ ∈ Rn. We need to show that x̄ ∈ conv(C) + Rn+.

By Carathéodory theorem, for every i ∈ N we can write

xi =
∑n+1
t=1 λ

t
ix
t
i + ri, (2.1)



where xti ∈ C for all t, λti ≥ 0 for all t,
∑

t λ
t
i = 1, and ri ∈ Rn+.

Since C is a closed set, by repeatedly taking subsequences of the original
sequence (xi)i∈N, we can assume that for every t = 1, . . . , n + 1 the following
conditions hold:

(a) either the sequence (xti)i∈N is unbounded or it converges to some x̄t ∈ C;

(b) the sequence (λti)i∈N converges to some number λ̄t ∈ [0, 1].

Note that
∑n
t=1 λ̄t = 1.

Let T1 ⊆ {1, . . . , n+ 1} be the set of indices such that the sequence (xti)i∈N

converges to x̄t, and let T2 = {1, . . . , n+ 1} \ T1. For i ∈ N we rewrite (2.1) as

xi −
∑

t∈T1
λtix

t
i =

∑

t∈T2
λtix

t
i + ri. (2.2)

Since the left-hand side of (2.2) converges to

r̄ := x̄−
∑

t∈T1
λ̄tx̄t, (2.3)

the right-hand side must also converge to r̄. Note that r̄ ∈ Rn+, as the right-hand
side of (2.2) is a nonnegative vector for all i ∈ N. Furthermore, λ̄t = 0 for every
t ∈ T2, otherwise the right-hand side of (2.2) would not converge. This implies
that

∑

t∈T1
λ̄t = 1 and thus equation (2.3) proves that x̄ ∈ conv(C) + Rn+. ⊓⊔

Define the following norm on R(Rn)×R(Rn), which was first introduced in [2]:

|(s, y)|∗ := |s(0)|+
∑

r∈Rn

‖r‖|s(r)| + |y(0)|+
∑

p∈Rn

‖p‖|y(p)|.

For any two functions ψ : Rn → R, π : Rn → R, we define a linear functional
Fψ,π on the space R(Rn) × R(Rn) as follows:

Fψ,π(s, y) =
∑

r∈Rn

ψ(r)s(r) +
∑

p∈Rn

π(p)y(p). (2.4)

Lemma 2.10. Under the |(·, ·)|∗ norm, the linear functional Fψ,π is continuous
if (ψ, π, 1) is a nontrivial minimal valid tuple for Mb.

Proof. Since (ψ, π, 1) is a nontrivial minimal valid tuple for Mb, conditions (a)–
(e) of Theorem 2.4 are satisfied. In order to show that Fψ,π is continuous, it is
equivalent to show that Fψ,π is bounded, i.e., there exists a numberM such that
|Fψ,π(s, y)| ≤M for all (s, y) satisfying |(s, y)|∗ = 1 (see Conway [7]).

We claim that M can be chosen to be max‖r‖=1 ψ(r). (The maximum exists
because by condition (a) in Theorem 2.4, ψ is sublinear and therefore continuous
on Rn.) Consider (s, y) such that |(s, y)|∗ = 1. Using π ≤ ψ (Proposition 2.2)



and ψ ≥ 0 (Theorem 2.4), we have

|Fψ,π(s, y)| =
∣

∣

∣

∑

r∈Rn ψ(r)s(r) +
∑

p∈Rn π(p)y(p)
∣

∣

∣

≤
∑

r∈Rn ψ(r)|s(r)| +
∑

p∈Rn ψ(p)|y(p)|

=
∑

r∈Rn ψ
(

r
‖r‖

)

‖r‖|s(r)| +
∑

p∈Rn ψ
(

p
‖p‖

)

‖p‖|y(p)|

≤M
(

∑

r∈Rn ‖r‖|s(r)| +
∑

p∈Rn ‖p‖|y(p)|
)

≤M
(

|s(0)|+
∑

r∈Rn ‖r‖|s(r)| + |y(0)|+
∑

p∈Rn ‖p‖|y(p)|
)

=M. ⊓⊔

Lemma 2.11. Under the |(·, ·)|∗ norm, the linear functional Fψ,π is continuous
if ψ and π have finite support.

Proof. Let R,P ⊆ Rn be the supports of ψ, π respectively. Define

N = max

{

max
r∈R\{0}

1

‖r‖
, max
p∈P\{0}

1

‖p‖

}

, L = max

{

max
r∈R

|ψ(r)|, max
p∈P

|π(p)|

}

,

and M = N · L. One now checks that

|Fψ,π(s, y)| =
∣

∣

∣

∑

r∈R ψ(r)s(r) +
∑

p∈P π(p)y(p)
∣

∣

∣

≤ L
(

∑

r∈R |s(r)| +
∑

p∈P |y(p)|
)

≤ LN
(

|s(0)|+
∑

r∈R\{0} ‖r‖|s(r)|+ |y(0)|+
∑

p∈P\{0} ‖p‖|y(p)|
)

=M |(s, y)|∗.

This shows that Fψ,π is a bounded linear functional, and hence continuous. ⊓⊔

Define cl(·) as the closure operator with respect to the topology induced by
|(·, ·)|∗.

Lemma 2.12. Under the topology induced by |(·, ·)|∗, the set Qb is closed.

Proof. Since R
(Rn)
+ ×R

(Rn)
+ is defined by a family of halfspaces with finite support,

by Lemma 2.11, this set is closed. Furthermore, Lemma 2.10 implies that the set
Hψ,π,1 is closed whenever (ψ, π, 1) is a minimal valid tuple for Mb. The thesis
now follows as Qb can be defined as set (d) in Lemma 2.8. ⊓⊔

For any subsets R,P ⊆ Rn, define

VR,P =
{

(s, y) ∈ R(Rn) × R(Rn) : s(r) = 0 ∀r 6∈ R, y(p) = 0 ∀p 6∈ P
}

.

When convenient, we will see VR,P as a subset of RR × RP by dropping the
variables set to 0.

Lemma 2.13. For any R,P ⊆ Rn, VR,P is a closed subspace of R(Rn) ×R(Rn).



Proof. For every r ∈ Rn, define the subspace Xr = {(s, y) : s(r) = 0}. Similarly,
for p ∈ Rn define Yp = {(s, y) : y(p) = 0}. For any fixed r̄ ∈ Rn, by defining
ψ(r̄) = 1 and ψ(r) = 0 for all r 6= r̄, and defining π = 0, we observe that Xr̄ is
the kernel of Fψ,π and thus, by Lemma 2.11, Xr̄ is closed. Similarly, each Yp is
closed. The result now follows form the fact that VR,P =

⋂

r 6∈RXr∩
⋂

p6∈P Yp. ⊓⊔

Theorem 2.14. Qb = cl(conv(Mb)) = conv(Mb) + (R
(Rn)
+ × R

(Rn)
+ ).

Proof. We first show that Qb ⊇ cl(conv(Mb)). Since, under the topology induced
by |(·, ·)|∗, Qb is a closed convex set by Lemma 2.12, it suffices to show that

Qb ⊇Mb. This follows from the fact thatMb ⊆ R
(Rn)
+ ×R

(Rn)
+ and every inequality

that defines Qb is valid for Mb.

We next show thatQb ⊆ cl(conv(Mb)). Consider a point (s, y) 6∈ cl(conv(Mb)).
By the Hahn-Banach theorem, there exists a continuous linear functional that
separates (s, y) from cl(conv(Mb)). In other words, there exist two functions
ψ, π : Rn → R and a real number α such that Fψ,π(s, y) < α and cl(conv(Mb)) ⊆
Hψ,π,α, implying that (ψ, π, α) is a valid tuple for Mb. Thus (s, y) /∈ Qb.

We now show that conv(Mb) + (R
(Rn)
+ × R

(Rn)
+ ) ⊆ Qb. Consider any point

(s1, y1)+ (s2, y2), where (s1, y1) ∈ conv(Mb) and s2 ≥ 0, y2 ≥ 0. Since Qb can be

written as the set (d) in Lemma 2.8 and conv(Mb) ⊆ R
(Rn)
+ ×R

(Rn)
+ , we just need

to verify that (s1, y1) + (s2, y2) ∈ Hψ,π,1 for all ψ, π ≥ 0. This follows because
(s1, y1) ∈ Hψ,π,1 and (s2, y2) and ψ, π are all nonnegative.

We finally show that conv(Mb) + (R
(Rn)
+ × R

(Rn)
+ ) ⊇ Qb. Consider (s

∗, y∗) 6∈

conv(Mb) + (R
(Rn)
+ × R

(Rn)
+ ). We prove that (s∗, y∗) 6∈ Qb. This is obvious when

(s∗, y∗) /∈ R
(Rn)
+ × R

(Rn)
+ . Therefore we assume s∗ ≥ 0, y∗ ≥ 0. Let R ⊆ Rn be

a finite set containing the support of s∗ and satisfying cone(R) = Rn, and let
P ⊆ Rn be a finite set containing the support of y∗. Then (s∗, y∗) 6∈ conv(Mb ∩
VR,P )+(RR+×RP+). (We use the same notation (s∗, y∗) to indicate the restriction
of (s∗, y∗) to RR × RP .) Since Mb ∩ VR,P is the inverse image of the closed set
b + Zn under the linear transformation given by the matrix (R,P ), Mb ∩ VR,P
is closed in the usual finite dimensional topology of VR,P . Therefore, by Lemma
2.9, conv(Mb∩VR,P )+(RR+×RP+) is closed as well. This implies that there exists a
valid inequality in RR×RP separating (s∗, y∗) from conv(Mb∩VR,P )+(RR+×RP+).
Since the recession cone of conv(Mb ∩ VR,P ) + (RR+ × RP+) contains (RR+ × RP+)
and because s∗, y∗ ≥ 0, this valid inequality is of the form

∑

r∈R h(r)s(r) +
∑

p∈P d(p)y(p) ≥ 1 where h(r) ≥ 0 for r ∈ R and d(p) ≥ 0 for p ∈ P .
Now define the functions

ψ(r) = inf
{
∑

r′∈R h(r
′)s(r′) : r =

∑

r′∈R r
′s(r′), s : R → R+

}

,

π(r) = inf
{
∑

r′∈R h(r
′)s(r′) +

∑

p′∈P d(p
′)y(p′) :

r =
∑

r′∈R r
′s(r′) +

∑

p′∈P p
′y(p′), s : R → R+, y : P → Z+

}

.



Since cone(R) = Rn, ψ and π are well-defined functions. As the sum only involves
nonnegative terms, ψ, π ≥ 0. It can be checked that (ψ, π, 1) is a valid tuple for
Mb, and since (s∗, y∗) /∈ Hψ,π,1, we have (s∗, y∗) 6∈ Qb. ⊓⊔

2.2 The closure of conv(Ib)

In the following, we see R(Rn) as a topological vector subspace of the space
R(Rn) × R(Rn) endowed with the topology induced by the norm |(·, ·)|∗. With a
slight abuse of notation, for any y ∈ R(Rn), |y|∗ =

∑

p∈Rn ‖p‖|y(p)|+ |y(0)|. Also,

given π : Rn → R and α ∈ R, we let Hπ,α =
{

y ∈ R(Rn) :
∑

p∈Rn π(p)y(p) ≥ α
}

.

We define Gb = {y ∈ R(Rn) : (0, y) ∈ Qb}. Since Qb can be written as the set
(d) in Lemma 2.8, by Corollary 2.5 we have that

Gb = R
(Rn)
+ ∩

⋂

{Hπ,α : (π, α) minimal nontrivial liftable tuple}. (2.5)

Similar to the mixed-integer case, conv(Ib) ( Gb (this will be shown in
Remark 3.5).

Theorem 2.15. Gb = cl(conv(Ib)) = conv(Ib) + R
(Rn)
+ .

Proof. By Theorem 2.14, Qb = conv(Mb)+ (R
(Rn)
+ ×R

(Rn)
+ ). Since the inequality

s ≥ 0 is valid forMb, by taking the intersection with the subspace {(s, y) : s = 0}

we obtain the equality Gb = conv(Ib) + R
(Rn)
+ . Furthermore, since Gb coincides

with the intersection of the closed set Qb with the closed subspace defined by
s = 0 (this subspace is closed by Lemma 2.13), Gb is a closed set. Therefore,

conv(Ib) + R
(Rn)
+ is a closed set, and we have cl(conv(Ib)) ⊆ conv(Ib) + R

(Rn)
+ .

It remains to show that conv(Ib) + R
(Rn)
+ ⊆ cl(conv(Ib)). To prove this, it

suffices to show that for every ȳ ∈ Ib and r ∈ Rn, the point ȳ + ŷr, where
ŷr(r) = 1 and ŷr(p) = 0 for p 6= r, is the limit of a sequence of points in conv(Ib)
with respect to our topology. So fix ȳ ∈ Ib and r ∈ Rn. For every integer k ≥ 1,
there exist qk ∈ Zn and a real number λk ≥ 1 such that ‖qk − λkr‖ < 1

k
.

Define yk by setting yk(r) = yk
(

qk−λkr
λk

)

= 1, and yk(p) = 0 for p 6= r. Since
∑

p∈Rn p · (λkyk(p)) = qk ∈ Zn, every point of the form ȳ + λkyk is in Ib. Since

λk ≥ 1 for every k ≥ 1, we have ȳ + yk = λk−1
λk

ȳ + 1
λk

(ȳ + λkyk) ∈ conv(Ib).

Furthermore, ‖yk − ŷr‖∗ =
∥

∥

qk−λkr
λk

∥

∥ < 1
k
. Therefore, the sequence of points

ȳ + yk converges to ȳ + ŷr as k → ∞. ⊓⊔

3 Hamel bases, affine hulls and nonnegative
representation of valid tuples

In finite dimensional spaces, the affine hull of any subset C can be equivalently
described as the set of affine combinations of points in C or the intersection of
all hyperplanes containing C. Lemma 3.1 (which is probably well known) shows
that the same holds in infinite dimension.



Before stating and proving the lemma, we give a precise definition of hyper-
plane in infinite dimensional vector spaces. Given a vector space V over a field F,
a subset H ⊆ V is said to be a hyperplane in V if there exist a linear functional
F : V → F and a scalar δ ∈ F such that H = {v ∈ V : F (v) = δ}.

Lemma 3.1. Let V be a vector space over a field F. For every C ⊆ V , the set of
affine combinations of points in C is equal to the intersection of all hyperplanes
containing C.

Proof. By possibly translating C, we assume w.l.o.g. that L := aff(C) is a lin-
ear subspace. If x ∈ C then x belongs to every hyperplane containing C, and
therefore L is contained in the intersection of all hyperplanes containing C.

For the reverse inclusion, let x̄ be a point not in L. By the axiom of choice,
there exists a basis B of V containing x̄ such that B∩L is a basis of L. Let F be
the linear functional that takes value 1 on x̄ and 0 on every element in B \ {x̄}.
Then L ⊆ {x : F (x) = 0}, but F (x̄) = 1. ⊓⊔

The next proposition shows that there is no hyperplane containing Mb.

Proposition 3.2. aff(Mb) = R(Rn) × R(Rn).

Proof. Assume by contradiction that aff(Mb) ( R(Rn) × R(Rn). By Lemma 3.1,
there exists an equation

∑

r∈Rn γ(r)s(r) +
∑

p∈Rn θ(p)y(p) = α satisfied by all

points in Mb, where (γ, θ, α) 6= (0, 0, 0). As R(Rn) × R(Rn) is not contained in
any hyperplane, either the valid tuple (γ, θ, α) or the valid tuple (−γ,−θ,−α)
is nontrivial. W.l.o.g., we assume that (γ, θ, α) is nontrivial. Let (γ′, θ′, α) be
a minimal valid tuple with γ′ ≤ γ and θ′ ≤ θ. Note that (γ′, θ′) 6= (0, 0),
as (γ′, θ′, α) is nontrivial. Since (γ′, θ′, α) is minimal and nontrivial, Theorem
2.4 implies that γ′ and θ′ are continuous nonnegative functions. Therefore, as
(γ′, θ′) 6= (0, 0), there exists r̄ ∈ Qn such that γ′(r̄) > 0 or θ′(r̄) > 0. Assume
γ′(r̄) > 0 (the other case is similar) and let (s̄, ȳ) ∈ Mb. Then there exists an
integer k > 0 such that the point (s′, ȳ) defined by s′r̄ = s̄r̄ + k and s′r = 0 for
r 6= r̄ is in Mb. Therefore

∑

r∈Rn γ(r)s′(r) +
∑

p∈Rn θ(p)ȳ(p) ≥
∑

r∈Rn γ′(r)s′(r) +
∑

p∈Rn θ′(p)ȳ(p) > α,

contradicting the assumption that
∑

r∈Rn γ(r)s(r) +
∑

p∈Rn θ(p)y(p) = α for all
(s, y) ∈Mb. ⊓⊔

The characterization of aff(Ib) is more involved and requires some preliminary
notions.

3.1 Hamel bases and the solutions to Cauchy functional equation

A function θ : Rn → R is additive if it satisfies the following Cauchy functional
equation in Rn:

θ(u+ v) = θ(u) + θ(v) for all u, v ∈ Rn. (3.1)



Note that if θ is an additive function, then

θ(qx) = qθ(x) for every x ∈ Rn and q ∈ Q. (3.2)

Equation (3.1) has been extensively studied, see e.g. [1]. We summarize here
the main results that we will employ.

Given any c ∈ Rn, the linear function θ(x) = cTx is obviously a solution to
the equation. However, these are not the only solutions. Below we describe all
solutions to the equation.

A Hamel basis for Rn is a basis of the vector space of Rn over the field Q.
In other words a Hamel basis is a subset B ⊆ Rn such that, for every x ∈ Rn,
there exists a unique choice of a finite subset {β1, . . . , βt} ⊆ B (where t depends
on x) and nonzero rational numbers λ1, . . . , λt such that

x =
∑t

i=1 λiβi. (3.3)

The existence of B is guaranteed under the axiom of choice.
For every β ∈ B, let c(β) be a real number. Define θ as follows: for every

x ∈ Rn, if (3.3) is the unique decomposition of x, set

θ(x) =
∑t

i=1 λic(βi). (3.4)

It is easy to check that a function of this type is additive. The following theorem
proves that all additive functions are of this form.

Theorem 3.3. Let B a Hamel basis of Rn. Then every additive function is of
the form (3.4) for some choice of real numbers c(β), β ∈ B.

3.2 The affine hull of Ib

The following result is an immediate extension of a result of Basu, Hildebrand
and Köppe (see [3, Propositions 2.2–2.3]).

Proposition 3.4. The affine hull of Ib is described by the equations

∑

p∈Rn θ(p)y(p) = θ(b) (3.5)

for all additive functions θ : Rn → R such that θ(p) = 0 for every p ∈ Qn.

Proof. By Lemma 3.1, the affine hull of Ib is the intersection of all hyperplanes
in R(Rn) containing Ib.

We first show that any equation of the form (3.5) gives a hyperplane that
contains Ib. If y ∈ Ib, then there exists k ∈ Z such that

∑

p∈Rn pyp = b+ k. This
implies that

∑

p∈Rn θ(p)y(p) = θ
(

∑

p∈Rn py(p)
)

= θ(b+ k) = θ(b),

where the first equation comes from the additivity of θ and the integrality of
y(p), and the last equation from θ(k) = 0. This shows that every equation of the
form (3.5) is valid for Ib.



Next, we show that any hyperplane in R(Rn) containing Ib has the form (3.5).
Let

∑

p∈Rn θ(p)y(p) = α be a hyperplane containing Ib. We show that θ is an ad-
ditive function. Given p ∈ Rn, let ep denote the function such that ep(p) = 1 and
ep(p

′) = 0 for p′ 6= p. Given p1, p2 ∈ Rn, define y1 = ep1+p2 + eb−p1−p2 and y2 =
ep1 + ep2 + eb−p1−p2 . Since y1, y2 ∈ Ib, α =

∑

p∈Rn θ(p)y1(p) =
∑

p∈Rn θ(p)y2(p).
This shows that θ(p1 + p2) = θ(p1) + θ(p2). Therefore θ is additive.

Since (θ, α) and (−θ,−α) are valid tuples, and valid tuples are nonnegative
on the rationals, it follows that θ(p) = 0 for every p ∈ Qn. Finally, since eb ∈ Ib,
we have that α = θ(b). ⊓⊔

Remark 3.5. Since, by the above proposition, conv(Ib) is contained in some hy-

perplane, conv(Ib) ( conv(Ib) + R
(Rn)
+ = Gb, where the equality follows from

Theorem 2.15.

In the following, e1, . . . , en denote the vectors of the standard basis of Rn.

Proposition 3.6. Let P be a finite subset of Rn. Then aff(Ib)∩VP is a rational
affine subspace of RP , i.e., there exist a natural number m ≤ |P |, a rational
matrix Θ ∈ Qm×|P | and a vector d ∈ Rm such that aff(Ib) ∩ VP = {s ∈ RP :
Θs = d}. Moreover, aff(Ib) ∩ VP = VP if and only if P ⊆ Qn.

Proof. Let I = {p1, . . . , pk} be a maximal subset of vectors in P such that
I ∪ {e1, . . . , en} is linearly independent over Q, and let B a Hamel basis of Rn

containing I ∪ {e1, . . . , en}. Note that I = ∅ if and only if P ⊆ Qn.
For every i = 1, . . . , k, let θi be the additive function defined by θi(pi) = 1 and

θi(p) = 0 for every p ∈ B \ {pi}. Note that every θi is an additive function that
takes value 0 on the rationals, since {e1, . . . , en} ⊆ B. Moreover, θi(p) ∈ Q for
all p ∈ P . Therefore, by Proposition 3.4,

∑

p∈P θi(p)s(p) = θi(b) is an equation
satisfied by aff(Ib) ∩ VP with rational coefficients on the left hand side. Thus,
again by Proposition 3.4, it suffices to show that for every additive function θ
that takes value 0 on the rationals, there exist λ1, . . . , λk ∈ R such that θ(p) =
∑k

i=1 λiθi(p) for every p ∈ P .
Let θ be an additive function that takes value 0 on the rationals, and define

λi = θ(pi) for i = 1, . . . , k. For every p ∈ P , there exist q̄ ∈ Qn and q1, . . . , qk ∈ Q

such that p = q̄ +
∑k

i=1 qipi. Then, since θi is additive and θi(q̄) = 0, we have

θi(p) = θi(
∑k

j=1 qjpj) =
∑k

j=1 qjθi(pj) = qi for every i = 1, . . . , k. It follows
that

θ(p) = θ
(

∑k

i=1 qipi

)

=
∑k

i=1 qiθ(pi) =
∑k

i=1 θi(p)λi.

We finally observe that in the above arguments, if I 6= ∅, then we get at least
one non-trivial equation corresponding to θi, i ∈ I. Therefore, aff(Ib)∩VP = VP
if and only if I 6= ∅, which is equivalent to P ⊆ Qn. ⊓⊔

3.3 Sufficiency of nonnegative functions to describe conv(Ib)

As mentioned in the introduction, to the best of our knowledge the study of valid
tuples for Ib in prior literature is restricted to nonnegative valid tuples, with the



exception of [4]. The standard justification behind this assumption is the fact
that valid tuples are nonnegative on the rational vectors. Since in practice we
are interested in finite dimensional faces of conv(Ib) that correspond to ratio-
nal vectors, such an assumption seems reasonable. However, no mathematical
evidence exists in the literature that a complete inequality description of these
faces can be obtained from the nonnegative valid tuples only.3 We prove below
that any valid tuple is equivalent to a nonnegative valid tuple, modulo the affine
hull. This gives the first proof of the above assertion and puts the nonnegativ-
ity assumption on a sound mathematical foundation. Later we will show that
even a smaller class of nonnegative valid tuples suffices to describe the finite
dimensional faces of conv(Ib) that correspond to rational vectors, in particular
the nontrivial minimal liftable tuples suffice.

Theorem 3.7. For every valid tuple (π, α) for Ib, there exists a unique additive
function θ : Rn → R such that θ(p) = 0 for ever p ∈ Qn and the valid tuple
(π′, α′) = (π + θ, α+ θ(b)) satisfies π′ ≥ 0.

This answers Open Question 2.5 in [3].
Note that if B is a Hamel basis of Rn such that ei ∈ B for all i ∈ [n] and θ is

an additive function as in (3.4), the requirement that θ(p) = 0 for every p ∈ Qn

is equivalent to c(ei) = 0 for i ∈ [n]. Therefore, in order to prove the theorem,
we show that given a valid tuple (π, α), there exists a unique additive function
θ such that θ(ei) = 0 for all i ∈ [n] and π + θ is a nonnegative function.

We remark that it is sufficient to show the result for a minimal tuple (π, α).
This is because if (π, α) is a valid tuple, then there is a minimal valid tuple
(π′, α) with π′ ≤ π. Now, note that (π′ + θ, α + θ(b)) is still a minimal tuple,
and if π′ + θ is nonnegative then so is π + θ. Thus in the following we assume
that (π, α) is minimal.

Lemma 3.8. If (π, α) is a minimal valid tuple, then π is subadditive, π(z) = 0
for every z ∈ Zn, and π is periodic modulo Zn.

Proof. Subadditivity can be shown as usual (the proof does not require the
nonnegativity of π). On the contrary, the usual proof that π(z) = 0 for every
z ∈ Zn requires the nonnegativity of π. However, one immediately observes that
π must be nonnegative on the rationals (and thus on the integers), and this is
enough to apply the usual proof. Periodicity now follows as usual. ⊓⊔

Some useful results from [21] We will need some results of Yıldız and Cornuéjols
[21], which need to be slightly generalized, as only valid/minimal tuples with
α = 1 are considered in [21].

Let (π, 1) be a minimal tuple. By Lemma 12 in [21] (with f = −b and
S = Zn), π satisfies the generalized symmetry condition (equation (4) in [21]),

3 Such results are obtainable in the case n = 1 by more elementary means such as
interpolation. We are unaware of a way to establish these results for general n ≥ 2
without using the technology developed in this paper.



which, by periodicity of π modulo Zn, reads as follows:

π(p) = sup
k∈Z>0

{

1− π(b − kr)

k

}

for all p ∈ Rn. (3.6)

Then, by Proposition 17 in [21] (with f = −b, S = Zn, X = {0}), the supremum
in (3.6) is attained if and only if π(r) + π(b− r) = 1. Proposition 18 in [21] then
implies the following: if p ∈ Rn is such that π(p) + π(b − p) > 1, then

lim sup
k∈Z>0,k→∞

π(kp)

k
= lim sup
k∈Z>0,k→∞

−π(−kp)

k
.

One straightforwardly (and patiently) verifies that when (π, α) is a minimal
tuple with α not restricted to be 1, the above result generalizes as follows:

Proposition 3.9. Let (π, α) be a minimal valid tuple. If p ∈ Rn is such that
π(p) + π(b − p) > α, then

lim sup
k∈Z>0,k→∞

π(kp)

k
= lim sup
k∈Z>0,k→∞

−π(−kp)

k
.

Construction of θ Let B be a Hamel basis of Rn containing the unit vectors
e1, . . . , en. For every β ∈ B define

c(β) = inf
k∈Z>0

π(kβ)

k
. (3.7)

We will show that this is the correct choice for the constant c(β).

Lemma 3.10. The value of c(β) is finite and

c(β) = inf
k∈Z>0

π(kβ)

k
= sup
k∈Z>0

−π(−kβ)

k
.

Proof. We prove a sequence of claims.

Claim. The inequality “inf ≥ sup” holds and both terms are finite.

Proof of Claim. Let h, k be positive integers. Then, by subadditivity, hπ(kβ) +

kπ(−hβ) ≥ π(0) = 0, thus π(kβ)
k

≥ −π(−hβ)
h

. Since this holds for all positive
integers h, k, the claim is proven. ⋄

We now assume by contradiction that

inf
k∈Z>0

π(kβ)

k
− sup
k∈Z>0

−π(−kβ)

k
≥ ε

for some ε > 0. In other words,

inf
k∈Z>0

π(kβ)

k
+ inf
k∈Z>0

π(−kβ)

k
≥ ε. (3.8)



Claim. The following equation holds:

inf
k∈Z>0

π(kβ)

k
+ inf
k∈Z>0

π(−kβ)

k
= inf
k∈Z>0

π(kβ) + π(−kβ)

k
. (3.9)

Proof of Claim. Since the inequality “≤” is obvious, we prove the reverse in-
equality. To do so, it is sufficient to show that given positive integers h, k, there
exists a positive integer ℓ such that

π(hβ)

h
+
π(−kβ)

k
≥
π(ℓβ) + π(−ℓβ)

ℓ
. (3.10)

Choose ℓ = hk. Then, by subadditivity,

kπ(hβ) + hπ(−kβ) ≥ π(ℓβ) + π(−ℓβ).

After dividing by ℓ = hk, we obtain (3.10) and the claim is proven. ⋄

By the previous claim, assumption (3.8) is equivalent to

π(kβ) + π(−kβ) ≥ εk for all positive integers k.

Claim. There exists a nonzero k ∈ Z such that π(kβ) + π(b − kβ) > α.

Proof of Claim. By subadditivity, for every integer k we have

π(b − kβ) ≥ π(−kβ)− π(−b), π(b + kβ) ≥ π(kβ) − π(−b).

It follows that

π(kβ)+π(−kβ)+π(b−kβ)+π(b+kβ) ≥ 2(π(kβ)+π(−kβ)−π(−b)) ≥ 2(εk−π(−b)).

The right-hand side is greater than 2α if k > α+π(−b)
ε

. For this choice of k, we
conclude that either π(kβ)+π(b−kβ) > α or π(−kβ)+π(b+kβ) > α (or both),
and the claim is proven. ⋄

Without loss of generality, we assume that π(k̄β) + π(b − k̄β) > α for some
integer k̄ > 0. (If k̄ < 0, one can replace β with −β in the Hamel basis.)

Define p = k̄β. Since π(p) + π(b − p) > α, by Proposition 3.9

lim sup
k∈Z>0,k→∞

π(kp)

k
= lim sup
k∈Z>0,k→∞

−π(−kp)

k
.

To conclude the proof of the lemma, it is sufficient to show the following:

Claim. The following equations hold:

lim sup
k∈Z>0,k→∞

π(kp)

k
= k̄· inf

k∈Z>0

π(kβ)

k
, lim sup

k∈Z>0,k→∞

−π(−kp)

k
= k̄· inf

k∈Z>0

−π(−kβ)

k



Proof of Claim. We only prove the first equation, as the other one is analogous.
Note that since the lim sup is always at least as large as the inf,

lim sup
k∈Z>0,k→∞

π(kp)

k
≥ inf

k∈Z>0

π(kp)

k
= k̄ · inf

k∈Z>0

π(kk̄β)

kk̄
≥ k̄ · inf

h∈Z>0

π(hβ)

h

and thus the inequality “≥” is verified.
In order show that the inequality “≤” holds, we prove that for every ε > 0

and every integer k > 0 there exists an integer h > 0 such that

π(ℓp)

ℓ
≤
k̄π(kβ)

k
+ ε for all ℓ ≥ h.

Choose

h =

⌈

max
m∈{0,...,k−1}

{

k̄π(mβ)

ε

}⌉

.

Given any ℓ ≥ h, write ℓ = tk +m, where t ∈ Z and m ∈ {0, . . . , k − 1}. Then

π(ℓp)

ℓ
=
π(ℓk̄β)

ℓ
≤
k̄π(ℓβ)

ℓ
=
k̄π((tk +m)β)

ℓ
≤
k̄(π(tkβ) + π(mβ))

ℓ

≤
k̄π(tkβ)

tk
+
k̄π(mβ)

ℓ
≤
k̄π(kβ)

k
+
k̄π(mβ)

ℓ
. (3.11)

The conclusion follows as k̄π(mβ)
ℓ

≤ ε, since ℓ ≥ h. ⋄

This concludes the proof of the lemma. ⊓⊔

Now let θ be defined as in (3.4), where the constants c(β) for β ∈ B are
chosen as in (3.7). In the next two lemmas we prove that θ(ei) = 0 for all i ∈ [n]
and π − θ is nonnegative.

Lemma 3.11. θ(ei) = 0 for all i ∈ [n].

Proof. Fix i ∈ [n]. Since ei ∈ B, it is sufficient to check that c(ei) = 0. By Lemma

3.10, c(ei) = infk∈Z>0

π(kei)
k

. Since π(kei) = 0 for all k ∈ Z, we immediately see
that c(ei) = 0. ⊓⊔

Lemma 3.12. If θ is defined as in (3.4), with the constants c(β) given in (3.7),
then the function π − θ is nonnegative.

Proof. Let x ∈ Rn. Then there exist β1, . . . , βt ∈ B and nonzero rational num-
bers λ1, . . . , λt such that x =

∑t
i=1 λiβi, and we have θ(x) =

∑t
i=1 λic(βi). We

prove that π(x) − θ(x) ≥ 0.
For every i ∈ {1, . . . , t}, we can write λi =

pi
qi
, where every pi is a nonzero

integer and every qi is a positive integer. Define Q = q1 · · · qt. Take arbitrary
positive integers k1, . . . , kt (these numbers will be fixed later) and define K =



k1 · · · kt. Since
Q
qi

and K
ki

are positive integers for every i, by subadditivity we
have

QKπ(x) +

t
∑

i=1

QK

qiki
π(−kipiβi) ≥ π

(

QKx−
t

∑

i=1

QKλiβi

)

= π(0) = 0.

This implies that

π(x) ≥
t

∑

i=1

λi
−π(−kipiβi)

kipi
. (3.12)

Now fix ε > 0. If i is an index such that pi > 0, by Lemma 3.10 we can

choose ki such that −π(−kiβi)
ki

≥ c(βi)− ε. Then by subadditivity

−π(−kipiβi)

kipi
≥

−π(−kiβi)

ki
≥ c(βi)− ε.

If i is an index such that pi < 0, by Lemma 3.10 we can choose ki such that
π(kiβi)
ki

≤ c(βi) + ε. Then by subadditivity

−π(−kipiβi)

kipi
≤
π(kiβi)

ki
≤ c(βi) + ε.

Then, rembering that λi > 0 if and only if pi > 0, equation (3.12) gives π(x) ≥
∑t

i=1 λic(βi)− tε. Since this holds for every ε > 0, we have π(x) ≥
∑t

i=1 λic(βi)
and thus π(x) − θ(x) ≥ 0. ⊓⊔

This concludes the proof of the existence of θ. One easily verifies that in the
above proof the choice of θ is unique, thus the proof of Theorem 3.7 is complete.

4 Recession cones and canonical faces

A canonical face of conv(Mb) is a face of the form F = conv(Mb) ∩ VR,P for
some R,P ⊆ Rn. If R and P are finite, F is a finite canonical face of conv(Mb).
The same definitions can be given for conv(Ib). The corner polyhedra defined by
Gomory and Johnson [11–13] are precisely the finite canonical faces of conv(Ib).

The notion of recession cone of a closed convex set is standard (see, e.g., [18]).
We extend it to general convex sets in general vector spaces (possibly infinite-
dimensional) in the following way. Let V be a vector space and let C ⊆ V be a
convex set. For any x ∈ C, define

C∞(x) = {r ∈ V : x+ λr ∈ C for all λ ≥ 0}.4

We define the recession cone of C as rec(C) =
⋂

x∈C C∞(x). Theorem 2.14 yields
the following result.

4 Using the Hahn-Banach separation theorem, it can be shown that if V is a topological
vector space and C is a closed convex subset, then C∞(x) = C∞(x′) for all x, x′

∈ C.



Corollary 4.1. Let F = conv(Mb)∩VR,P be a canonical face of conv(Mb). Then
F is a face of cl(conv(Mb)) if and only if F + (RR+ × RP+) = F , i.e., rec(F ) is
the nonnegative orthant.

Proof. By Theorem 2.14,

cl(conv(Mb)) ∩ VR,P =
(

conv(Mb) + (R
(Rn)
+ × R

(Rn)
+ )

)

∩ VR,P
= (conv(Mb) ∩ VR,P ) + (RR+ × RP+)
= F + (RR+ × RP+)

The results follows from the observation that F is a face of cl(conv(Mb)) if and
only if F = cl(conv(Mb) ∩ VR,P . ⊓⊔

Define L to be the linear space parallel to the affine hull of conv(Ib); Proposi-
tion 3.4 shows that L is the set of all y ∈ R(Rn) that satisfy

∑

p∈Rn θ(p)y(p) = 0
for all additive functions θ : Rn → R such that θ(p) = 0 for all p ∈ Qn. For any
P ⊆ Rn, define the face CP = conv(Ib) ∩ VP of conv(Ib).

Theorem 4.2. For every finite subset P ⊆ Rn, the following are all true:

(a) the face CP = conv(Ib) ∩ VP is a rational polyhedron in RP ;
(b) every extreme ray of CP is spanned by some r ∈ ZP+ such that

∑

p∈P pr(p) ∈
Zn;

(c) rec(CP ) = L ∩ R
(Rn)
+ ∩ VP = (L ∩ VP ) ∩RP+.

Proof. By dropping variables set to zero, Ib∩VP is the set of vectors y ∈ ZP+ such
that

∑

p∈P py(p) ∈ b+Zn. We say that a feasible point y ∈ Ib ∩VP is minimal if

there is no feasible point y′ 6= y such that y′ ≤ y. Every vector d ∈ ZP+ such that
∑

p∈P pd(p) ∈ Zn is called a ray. A ray d is minimal if there is no ray d′ 6= d
such that d′ ≤ d.

We claim that every feasible point y is the sum of a minimal feasible point and
a nonnegative integer combination of minimal rays. To see this, as long as there
is a ray d such that d ≤ y, replace y with y− d. Note that this operation can be
repeated only a finite number of times. Denote by ȳ the feasible point obtained
at the end of this procedure. Then y is the sum of ȳ and a nonnegative integer
combination of rays. We observe that ȳ is minimal: if not, there would exist a
feasible point y′ 6= ȳ such that y′ ≤ ȳ; but then the vector d := ȳ − y′ would be
a ray satisfying d ≤ ȳ, contradicting the fact that the procedure has terminated.
Therefore y is the sum of a minimal feasible point ȳ and a nonnegative integer
combination of rays. Since every ray is a nonnegative integer combination of
minimal rays (argue as above), we conclude that y is the sum of a minimal
feasible point and a nonnegative integer combination of minimal rays.

By Gordon–Dickson lemma (see, e.g., [10]), the set of minimal feasible points
and the set of minimal rays are both finite. Let Y be the set of points that
are the sum of a minimal feasible point and a nonnegative integer combination
of minimal rays. Thus, there exist finite sets E ⊆ ZP+ and R ⊆ ZP+ such that
Y = E+integ . cone(R), where integ . cone(R) denotes the set of all nonnegative



integer combinations of vectors in R. So conv(Y ) = conv(E + integ . cone(R)) =
conv(E) + conv(integ . cone(R)) = conv(E) + cone(R), where cone(R) denotes
the conical hull of R. Hence, conv(Y ) is a rational polyhedron, by the Minkowski-
Weyl Theorem [6, Theorem 3.13]. The above observation proves that Ib∩VP ⊆ Y .
On the other hand, by using the fact that if y is a feasible point and d is a ray then
y+ d is a feasible point, one readily verifies that Y ⊆ Ib ∩VP . Then Ib ∩VP = Y
and therefore conv(Ib) ∩ VP = conv(Ib ∩ VP ) = conv(Y ). Hence, conv(Ib) ∩ VP
is a rational polyhedron.

The above analysis proves (a) and (b) simultaneously. We now prove (c).

We first show that rec(CP ) ⊆ L ∩ R
(Rn)
+ ∩ VP . Consider any d̄ ∈ rec(CP ).

By part (ii), d̄ is a nonnegative combination of vectors d ∈ ZP+ such that
∑

p∈P pr(p) ∈ Zn. Observe that each such d ∈ L. Thus, d̄ ∈ L since L is a

linear space. Therefore, rec(CP ) ⊆ L ∩ R
(Rn)
+ ∩ VP .

We now want to establish that L∩R
(Rn)
+ ∩VP ⊆ rec(CP ). First, consider any

d ∈ L ∩ R
(Rn)
+ ∩ VP such that d ∈ QP , i.e., d has only rational coordinates. Let

λ > 0 be such that d̄ = λd ∈ ZP+. We claim that
∑

p∈P pd̄(p) ∈ Qn. Otherwise,

there exists5 an additive function θ : Rn → R such that 0 6= θ(
∑

p∈P pd̄(p)) =
∑

p∈P θ(p)d̄(p) = λ
∑

p∈P θ(p)d(p), which violates the hypothesis that d ∈ L.

Since
∑

p∈P pd̄(p) ∈ Qn, this implies that there exists a positive scaling d̃ of d

such that
∑

p∈P pd̃(p) ∈ Zn. It is easy to verify that d̃ ∈ rec(CP ) and therefore

d ∈ rec(CP ). This shows that all rational vectors in L∩R
(Rn)
+ ∩VP are in rec(CP ).

Since, by Proposition 3.6, L∩VP is a rational subspace, L∩R
(Rn)
+ ∩VP ⊆ rec(CP ).

⊓⊔

Theorem 4.3. Let P ⊆ Rn be finite. Then the following are equivalent:

(a) P ⊆ Qn;
(b) rec(CP ) = RP+;
(c) the dimension of CP is |P |;
(d) CP = Gb ∩ VP .

Proof. (a) is equivalent to (b) by Proposition 3.6 and Theorem 4.2. (b) is equiv-
alent to (c) by Proposition 3.6. The equivalence of (a) and (d) follows from the
equivalence of (a) and (b), Corollary 4.1 and Theorem 2.15. ⊓⊔

By (2.5), condition (d) in the above theorem states that the finite dimen-
sional corner polyhedron CP has a complete inequality description given by the
restriction of liftable valid tuples.

Example 4.4. There are finite dimensional faces of conv(Mb) that are not closed.
Let n = 1, b ∈ Q, ω ∈ R \ Q, R = {−1}, P = {b, ω}. Consider the point (s̄, ȳ)

5 Such an additive function can be constructed by first constructing a Hamel basis of
Rn over Q containing

∑
p∈P

pd̄(p), e1, . . . , en, and setting θ to be 1 on
∑

p∈P
pd̄(p)

and 0 everywhere else on this basis.



defined by s̄(−1) = 0 and ȳ(b) = ȳ(ω) = 1. Note that (s̄, ȳ) /∈ conv(Mb) ∩ VR,P ,
as the only point inMb satisfying s(−1) = 0 and y(b) ≤ 1 has y(b) = 1, y(ω) = 0.

We now show that (s̄, ȳ) ∈ cl(conv(Mb) ∩ VR,P ) by constructing for every
ε > 0 a point in conv(Mb) ∩ VR,P whose Euclidean distance from (s̄, ȳ) is at
most ε. So fix ε > 0. Let ŷ(ω) be a positive integer such that the fractional part
of ωŷ(ω) is at most ε. Let ŝ(−1) be equal to this fractional part, and ŷ(b) = 1.
Then (ŝ, ŷ) ∈Mb ∩ VR,P . By taking a suitable convex combination of (ŝ, ŷ) and
the point of Mb ∩ VR,P defined by y(b) = 1, s(−1) = y(ω) = 0, we find a point
in conv(Mb) ∩ VR,P whose distance from (s̄, ȳ) is at most ε.

Remark 4.5. Since Qb = cl(conv(Mb)) by Theorem 2.14, for every R,P ⊆ Rn

the set Qb∩VR,P is closed by Lemma 2.13. The previous example gives sets R,P
such that conv(Mb)∩VR,P is not closed. Thus conv(Mb) is a strict subset of Qb.

Corollary 4.6. conv(Ib)∞(x) = L∩R
(Rn)
+ for every x ∈ conv(Ib). Consequently,

rec(conv(Ib)) = L ∩ R
(Rn)
+ .

Proof. Given any x ∈ conv(Ib), we show that conv(Ib)∞(x) = L ∩ R
(Rn)
+ .

(⊆) Consider any vector y ∈ conv(Ib)∞(x). Let P denote the union of the
support of x, y. This implies that y ∈ rec(CP ) and by Theorem 4.2, y ∈ L ∩

R
(Rn)
+ ∩ VP ⊆ L ∩ R

(Rn)
+ .

(⊇) Consider any y ∈ L ∩ R
(Rn)
+ . Let P denote the union of the support of

x, y. Then y ∈ L ∩ R
(Rn)
+ ∩ VP . By Theorem 4.2 (c), we obtain that y ∈ CP∞(x).

This implies that y ∈ conv(Ib)∞(x). ⊓⊔
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