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ABSTRACT. 

Alzheimer’s disease (AD), the most frequent cause of dementia, is escalating as a 

global epidemic and so far, there is no cure nor treatment to alter its progression. 

The most important feature of the disease is neuronal death and loss of cognitive 

functions, caused probably from several pathological processes in the brain. The 

main neuropathological features of AD are widely described: amyloid beta (Aβ) 

plaques and neurofibrillary tangles of the aggregated protein tau, which contribute to 

the disease. Nevertheless, AD brains suffer from a variety of alterations in function, 

such as energy metabolism, inflammation, and synaptic activity. The latest decades 

have seen an explosion of genes and molecules that can be employed as targets 

aiming to improve brain physiology, which can result in preventive strategies for AD. 

Moreover, therapeutics using these targets can help AD brains to sustain function 

during the development of AD pathology. Here, we review broadly recent information 

for potential targets that can modify AD through diverse pharmacological and non-

pharmacological approaches including gene therapy. We propose that AD could be 

tackled using combination therapies including Aβ and tau, but also considering 

insulin and cholesterol metabolism, vascular function, synaptic plasticity, epigenetics, 

neurovascular junction and blood-brain barrier targets that have been studied 

recently. We also make a case for the role of gut microbiota in AD. Our hope is to 
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promote the continuing research of diverse targets affecting AD and promote diverse 

targeting as a near-future strategy.  

 

INTRODUCTION.  

AD is a steadily growing global epidemic. Estimates suggest more than 47 million 

people worldwide were affected in 2015 and a staggering 131 million is predicted 30 

years from now [1-4]. AD is a neurodegenerative disorder characterized mainly by 

the loss of memory functions and accompanied by other symptoms in a wide range 

of classes from mood, verbalization to motor problems. The most striking outcome 

from this type of dementia is the incremental disability for performing everyday life 

routines and increasing dependence from others for care. Aging is the main risk 

factor for developing AD [5, 6], and the risk of developing AD dementia becomes 

even higher as life expectancy increases and the world population becomes older [5, 

7]. Other reviews have dealt extensively with the economic burden this disease 

represent for countries [1, 4], estimating it at 0.65% of the world gross domestic 

product, a cipher rarely seen for a single disease [8]. Moreover, it is likely that the 

economic burden for AD is largely underestimated, since it is difficult to account for 

the expenditure from family members paying for nursing or stopping working to take 

care of their relatives [7, 9, 10]. Thus, solving the AD puzzle should be hand in hand 

with increasing the lifespan of humans, in order to reach for healthy aging, one of the 

main goals for the World Health Organization (WHO) and for many states worldwide 

[11, 12].  
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Currently, AD has no treatment available to modify its progression. Pioneering efforts 

from scientists and clinicians led to discovery and development of cholinesterase 

inhibitors for AD, capable of improving symptoms such as mood swings or 

dyskinesia, but these treatments do not halt AD progression nor improve memory 

performance in patients, as revised by Mangialasche et al. 2010 and by Schneider et 

al. 2010 [13, 14]. Antibody therapies have been developed from the main 

pathological hallmarks of AD, Amyloid beta (Aβ) and Tau proteins, to normalize their 

levels in the brain. These therapies are based on the amyloid cascade hypothesis, 

proposing that Aβ and Tau accumulation in the brain mediate synapse loss and 

neuronal death, leading to diminished memory function [15]. Nevertheless, many 

clinical trials aimed at reducing amyloid levels have not reached significant 

improvement in memory performance, or caused secondary, often-adverse effects 

and have dropped out [16]. Moreover, some failed clinical trials also led to the 

scientific community to explore additional hypotheses for AD pathogenesis [17-21].  

Therefore, it has become more important to generate novel strategies and targets 

that will effectively alter in any form the progression and the underlying causes of 

memory loss in AD. Novel evidence behind alternative mechanisms of the disease 

and improvements in technology from imaging to gene editing have opened new 

lines of research that could help to explain the origin and progression of AD [22-25]. 

In addition, the field is moving increasingly towards earlier and more accurate 

diagnostic of the pathology, where technology can help us to better classify and even 

redefine AD [26]. This review summarizes pioneering efforts in mechanisms of 

disease and novel drug targets for Alzheimer´s disease research. We would like to 

emphasize the importance of multidisciplinary research in finding new treatment 

avenues in what it is a complex disease with many challenges.  
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DIFFERENT TREATMENT APPROACHES BASED ON PATHOGENESIS: 

Synaptic Plasticity and AD 

Neuroplasticity is a complex response of neurons to endogenous and exogenous 

stimuli; it is a continuous process that embraces learning and memory processes. 

Neuroplasticity comprises morphological and functional interchanges, including 

differences in synaptogenesis, remodeling of synaptic, axon and dendritic structures, 

and generation of new neurons (neurogenesis). All brain tissues are associated to 

neuroplasticity but hippocampus, neocortical areas, and cholinergic basal forebrain 

neurons, which are involved in the regulation of higher brain functions, such as 

learning, memory and cognition, maintain an elevated degree of plasticity during all 

life stages. 

The adult central nervous system (CNS) has a limited, although effective, ability to 

restore synaptic circuitry and its impact on cognition remains controversial. 

Furthermore, mechanisms that regulate neuroplasticity seem to be involved in 

neurodegenerative diseases. It is of interest to note that brain regions with elevated 

neuronal plasticity develop more slowly during infancy and are the most vulnerable in 

the aging and in AD. A disproportion between synapse formation and elimination 

could be responsible for a defective plasticity during aging and disease. If defective 

mechanisms controlling developmental plasticity are reactivated in later life, they 

could contribute to inefficient plasticity processes [27]. 

Memory deficits in AD could be related to early events that come before 

neurodegeneration, such as synaptic loss and dysfunction. Synapse degeneration is 

believed to begin with dendritic spines and with decreased quantity of molecules that 

regulate spine signaling [28]. 
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Insoluble Aβ fibrils are taken into consideration as the main responsible for spine 

pathology. On the other hand, in both transgenic mouse models of AD and human 

AD brain, synapse defects and memory loss correlate weakly with the presence of 

Aβ plaques and could take place before the formation of plaques. Indeed, small 

neurotoxins comprised of soluble Aβ oligomers (Aβ-derived diffusible ligands, 

ADDLs), present in the brain and cerebrospinal fluid of AD patients, are ligands able 

to compromise synaptic plasticity, even at nanomolar concentrations, by binding to 

dendritic spines or by the interference of transcription factor activation, mediated by 

N-methyl-D-aspartic acid (NMDA) receptors [29-31] (See Fig. 1). 
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Figure 1. Dendritic spine and AD: mechanisms causing spine degeneration. Impaired 

synaptic plasticity is an early event in Alzheimer disease (AD). Synaptic plasticity is accompanied 

by morphological adaptations of dendritic spines, such as changes in the number and shape of 

spines (structural plasticity). A fundamental mechanism for modification of synaptic strength is 

insertion (activation) or removal (inactivation) of alpha-amino-3-hydroxy-5-methyl-4-isoxazole 

propionic acid receptors (AMPARs) at the postsynaptic membrane. Such adaptation occurs within 

minutes, yet may also extend over longer times. Aβ1–42 over-activates NMDAR/calmodulin 

(CaM)/calcineurin/glycogen synthase kinase-3β (GSK-3β). Calcineurin, a calcium-sensitive 

phosphatase, regulates synaptic plasticity and is required for AMPARs internalization and long-

term depression. Aβ oligomer-induced AMPARs endocytosis and spine loss is prevented by 

calcineurin inhibition. Therefore, inhibition of calcineurin could be a therapeutic strategy for 

combating early stage AD impairment.  

 

Bidirectional trafficking of proteins at postsynaptic level is a mechanism involved in 

synaptic plasticity. For example, synaptic activity and activation of AMPA/NMDA 

receptors control AMPA receptor sorting. Moreover, endocytosis and exocytosis are 

involved in long-term potentiation (LTP) and long-term depression (LTD) of 

hippocampal synapses. Induction of LTP and LTD are prevented by blocking 

exocytosis and endocytosis, respectively. Recycling endosomes located at the spine 

level regulates spine growth, suggesting that stimulation of endocytosis and dendritic 

spine could promote plasticity [32]. 

Kinases play a critical role in synapse formation and plasticity. For example, the 

mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (Erk) 

pathway mediates the synaptogenic action of neurotrophic factors. This intracellular 

pathway could contribute to long-term synaptic plasticity by coordinating the activity of 

transcription factors and their subsequent nuclear translocation. MAPKs are located 

and active in synaptic terminals, suggesting a role in subcellular compartments during 
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short- and long-term plasticity by phosphorylation of synaptic targets. Cyclin-

dependent kinase 5 shows many roles in spine formation, expression of proteins in 

postsynaptic neurons, as well as in the phosphorylation of numerous molecules 

important for synaptic plasticity [33]. 

The immunoglobulin and cadherin super families of cell adhesion molecules control 

cell migration, growth of axons and synapse formation. The neural cell adhesion 

molecule (NCAM), expressed on neuron and glia cell surface plasma membrane, 

regulate the consolidation of learning and memory processes. Enreptin, a peptide 

agonist of NCAM, enhances long-term memory and reduces neuronal death. 

Furthermore, the cell adhesion molecule N-cadherin regulates spine stability. 

Synaptic cell adhesion molecules interact with Aβ and also control its production by 

regulating the activity of enzymes involved in Aβ formation. Aβ-dependent reduction 

of synaptic adhesion alters function and integrity of synapses, indicating an important 

role of synaptic adhesion in the maintenance of neuronal integrity [34]. 

The family of neurotrophins regulate synapse formation and synaptic plasticity. Nerve 

growth factor (NGF), a member of the neurotrophin family, promotes the synaptic 

function of cholinergic basal forebrain neurons, which contribute to memory process. 

Considering the regenerative effect of NGF on cholinergic neurons, its targeted 

delivery has emerged as a potential therapy for AD. Recently, a small clinical trial 

inserting encapsulated NGF-producing cells in AD patients has shown safety and 

tolerability increasing cholinergic markers in CSF [35].   Long-term exposure of 

hippocampal neurons to brain-derived neurotrophic factor (BDNF, another 

neurotrophin with structural similarity to NGF) modulates synaptic transmission and 

plasticity and effects structural changes of dendrites, spines, and presynaptic 
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terminals. Moreover, BDNF exposure has effects on the synaptic proteome, by 

affecting protein synthesis or degradation [36]. 

Glial cells are involved in nervous system stability and synaptic plasticity. Glial 

processes ensheath synapses, support their development and functions, and secrete 

proteins (e.g. thrombospondins) that promote CNS synaptogenesis. Complement 

C1q and C3, upregulated in neurons exposed to astrocytes, participate in synapse 

elimination. Patients with frontotemporal dementia have low levels of progranulin (a 

protein antagonist of tumor necrosis factor-alpha (TNF-α)), which results in defects of 

lysosomal functions and excessive activation of complement, causing synaptic 

pruning by microglia and behavioral defects rescued by blocking complement 

activation [37]. 

17β-estradiol (E2) supports dendrite growth, spine and synapse formation in both 

developing and adult CNS. In hippocampus, E2 modulates synaptic plasticity slowly 

(genomically via classical nuclear receptors) and rapidly (non-genomically via 

extranuclear receptors) [38]. Nanomolar concentrations of E2 cause changes in 

hippocampal spine morphology. Activation of neuronal glutamate receptors, by 

glutamate released from astrocytes in response to PGE2, modulates dendritic spine 

density [39]. 

The role of inflammation in AD is well recognized. Elevated levels of TNF-α, a pro-

inflammatory cytokine responsible for the neuroinflammatory response, have been 

reported in brain and plasma of AD patients. TNF-α modifies synaptic transmission 

and strength. Synaptic scaling, which is a homeostatic mechanism that takes part in 

the synaptic dysfunction in AD, may be the mechanism involved in these events. As 

TNF-α modulates synaptic scaling, alteration of synapsis mediated by elevated 

levels of TNF-α could contribute to cognitive and behavioral impairments in AD [40]. 
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In summary, in the mammalian CNS, dendritic spines are essential for synaptic 

function and plasticity. AD and other CNS disorders have strong relation with 

aberrant dendritic spines. Synaptic plasticity and spine alteration can be influenced 

by many factors, including Aβ, impaired glucose and lipid metabolism, steroids, 

kinase pathways, cell adhesion molecules, neurotrophic factors, glial cells, and 

inflammation. A better knowledge of cellular and molecular molecules able to control 

the age- and/or cognitive abilities may lead to effective treatments for age-associated 

memory impairment and for other, more severe cognitive impairments, in particular 

AD. 

 

Epigenetics and AD 

Epigenetics involves heritable changes in gene function not caused by mutations in 

DNA sequence [41]. Such changes may relate to chromosomal ones that affect gene 

activity and expression, as well as heritable phenotypic changes that do not derive 

from genome modification. These effects on cellular and physiological phenotypic 

traits could be driven by external or environmental factors, or be part of a normal 

developmental program. Numerous CNS physiological functions (neural stem cell 

fate determination, neural plasticity, and learning and memory) have significant 

epigenetic components. This is the case also for neurodegenerative diseases. For 

example, in Alzheimer disease (AD), both genetic and non- genetic factors contribute 

to disease etiopathology. While over 250 gene mutations have been related to 

familial AD, less than 5% of AD cases are gene-related. 

At least three systems including DNA methylation, histone modification and non-

coding RNA (ncRNA)-associated gene silencing can initiate and sustain epigenetic 

change. More than likely non-genetic factors, probably triggered by environmental 
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factors, are causative factors of late-onset AD. Many CNS pathologies, including AD 

are associated with dysregulation of DNA methylation, histone modifications 

(deacetylation, phosphorylation, ubiquitylation and SUMOylation), and ncRNAs [42]. 

Histone phosphorylation, in particular, appears to be part of a complex interplay 

between other epigenetic markers, such as histone acetylation and methylation, and 

DNA methylation. 

Indeed, histone phosphorylation increases pro-inflammatory gene activation [43]. A 

number of proteins involved in AD pathology (amyloid precursor protein (APP), Tau, 

β-site amyloid precursor protein cleaving enzyme 1 (BACE1), glycogen synthase 

kinase-3β and c-Jun N- terminal kinase) are SUMO (Small Ubiquitin-like Modifier) 

targets [44]. Furthermore, AD patients have altered levels of SUMOylation and 

SUMO-related protein expression [45]. 

Among the classes of ncRNA, microRNAs (miRNAs) are highly expressed in CNS 

neurons, where they play a major role in neuron differentiation, synaptogenesis, and 

plasticity. MicroRNAs impact higher cognitive functions, as their functional 

impairment is involved in the etiology of neurological diseases, including AD [46]. A 

growing body of evidence points to alterations in the miRNA network as active 

contributors to AD disease processes [47]. Alterations in the miRNA network 

contribute to AD disease pathogenesis by: (i) regulating expression of APP and other 

enzymes involved in Aβ processing, in particular BACE1. (ii) Neurofibrillary tangles in 

AD brain are composed mainly of hyperphosphorylated Tau, whose state of 

phosphorylation represents a fine balance between kinases and phosphatases, 

processes that may be regulated by miRNAs; (iii) regulation of lipid metabolism [48]; 

and (iv) neuroinflammation [49]. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Understanding epigenetic dysregulation in AD could contribute to our view of the 

origin and progression of AD and, possibly, the development of efficacious 

therapeutics. However, one caveat with epigenetic studies is the issue of causality. 

Yet, given the failure of AD clinical trials to date, focus is now shifting to diagnose AD 

at as early a stage as possible, even before onset of cognitive decline. Despite the 

inherent difficulties, timely disease detection offers a multitude of benefits, not the 

least of which are opportunities for early intervention and better management of 

symptoms. miRNAs have emerged as potential candidates for reliable biomarkers of 

early-stage AD, being present in biofluids and displaying high stability in terms of 

storage/handling. Moreover, ncRNAs, miRNAs – and especially long ncRNAs - as 

therapeutic targets are only beginning to be considered. Even so, these transcripts 

represent potential targets for two reasons: (i) long ncRNA expression seems to be 

rather cell- and tissue-specific; (ii) the sequence-specific function of long ncRNA can 

be advantageous in designing specific therapies. 

 

Blood-Brain Barrier (BBB) targets 

BBB is a multicellular vascular structure that separates the central nervous system 

(CNS) from the peripheral blood circulation. The core anatomical element of the BBB 

is the cerebral blood vessel formed by endothelial cells (ECs). Mural cells 

represented by pericytes and astrocytes sit on the abluminal surface of the 

microvascular endothelial tube. Astrocytes interact with neurons and microglia. Both 

pericytes and astrocytes interact with ECs and maintain the sealing of 

interendothelial tight and adherent junctions, loss of leukocyte adhesion molecules 

and inhibition of transcytosis [50-53]. The vascular tube is surrounded by two 

basement membranes, the endothelial vascular basement membrane corresponded 
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to an extracellular matrix secreted by the ECs and pericytes, and the parenchymal 

basement membrane primarily secreted by astrocytic processes that extend toward 

the vasculature. The molecular components of these basement membranes also 

contribute to the complexity of the barrier [54]. 

Besides these complex cellular interactions which correspond to the neurovascular 

unit instead of BBB, endothelial cells express different types of transporters and 

receptors among which some are involved in the efflux and influx of the amyloid 

peptide [55, 56]. Beyond barrier function, influx and efflux are actively regulated at 

the blood-brain interface. Moreover, recent research has uncovered different 

transcription factors involved in phenotype change (zonation) along the vessels of 

the BBB [57]. The BBB maintains an environment that allows neurons to function 

properly by tightly controlling the passage of molecules and ions, instantaneously 

delivering nutrients and oxygen according to current neuronal needs, and by 

protecting the brain from toxins and pathogens. We now know that the cellular and 

molecular complexity of the BBB explains that the dysfunction of a cellular or 

molecular actor can disrupt its dynamics, although the precise process is unclear 

[58].  

Blood-Brain Barrier in AD 

Several impairments of the neurovascular unit have been described in Alzheimer's 

disease (AD), but the time-point at which they occur during disease pathogenesis 

remains unclear because they are too often seen in post-mortem brains. However, 

for the past 3 years, medical imaging has demonstrated the early BBB disruption in 

the hippocampus even before the onset of hippocampal atrophy [59]. In addition, 

many studies indicated cerebral microbleeds (micro hemorrhages) in AD [60, 61]. 

Compared with controls, BBB P-glycoprotein activity was significantly lower in the 
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parietotemporal, frontal, and posterior cingulate cortices and hippocampus of mild 

AD subjects by PET-scan [62]. Besides, many morphological and functional changes 

in brain vasculature in AD were observed: thinning of microvessels, referred to as 

atrophic or string vessels; twisted or tortuous vessels and fragmented vessels [63]; 

thickening and vacuolization of the vascular basement membrane with increase of 

collagen IV [64]; leakage and accumulation of circulating plasma proteins with direct 

neurotoxic properties and erythrocyte-derived hemoglobin in brain [56]. Additional 

changes include also pericyte loss [65], astromicrogliosis, many molecular changes 

directly impacting the clearance of the amyloid peptide (decrease of GLUT-1, LRP-1, 

P-gp and increase RAGE) [60], hypoperfusion and permeability failure [66]. 

Chemokines as critical targets for diagnosis or therapeutic strategies 

Among the peripheral molecular actors, we can target chemokines. Indeed, many 

articles have shown the involvement of chemokines in the pathophysiology of AD 

[67]. Of those that are deleterious, the pro-inflammatory chemokines 

CXCL10/CXCR3, CCL3, CCL4, CXCL8/CXCR8 and CX3CL1/CX3CR1 increase in 

AD, lead to inhibition of Aβ clearance, increased adhesion of PBMCs [68-73]. On the 

contrary, CCL5 is known as neuroprotective [74, 75]. Beside the too high or too low 

levels of somes chemokines including CCL2 are unfavorable in AD because the 

physiological activation of the CCL2/CCR2 signaling pathway is crucial to limit the 

progression of the disease in AD experimental models [76-78]. 

In the light of these elements of the literature, we studied the impact of PBMCs 

issued from AD patients on the chemokines' signature at the level of a healthy BBB, 

given that the current data on chemokine levels are derived from isolated biological 

samples (Plasma, serum, brain, cell culture ...) while BBB displays a great cellular 

and molecular complexity, finely orchestrated to preserve the brain. 
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In a human BBB model comprising two cell lines, an endothelial cell line 

(hCMEC/D3) and U87 cell line (human glioblastoma), PBMCs from patients (control, 

mild and moderate AD patients) were added in the luminal medium. It should be 

noted that all analyses were also performed on isolated cultures of each cell type 

and on a BBB model without PBMCs. A previous work on a group of patients with 

AD at a moderate stage has already been published and we also verified in this 

study with the 3 groups of patients the interest to go to an integrated model to take 

into account the cellular and molecular interactions in the neurovascular unit [79]. 

Results showed that PBMCs from moderate AD patients decreased CCL2 and CCL5 

levels in luminal and abluminal compartments (2-3 fold) and CXCL10 only in the 

abluminal compartment (3-4 fold) compared to PBMCs from mild AD patients. Levels 

of CCL2 and CCL5 also significantly decreased on PBMCs of moderate AD patients 

compared to PBMCs from mild AD patients. The CX3CL1 expression increased in 

luminal and abluminal compartments with PBMCs from mild AD patients compared 

to controls [80]. 

In a murine BBB model (French patent in August 2017 and PCT extension in August 

2018), the impact of mouse PBMCs from transgenic mice (APPswePS1dE9) or their 

control littermates in the signature of chemokines in BBB prepared from mouse 

brains was studied at 3, 6 and 12 months. In this model, a healthy abluminal 

compartment is used, and PBMCs and luminal compartments came from AD or wild-

type mice. Compared to results obtained in human BBB model, we also showed a 

decrease in CCL2 expression (about 6-fold) was shown in the abluminal medium by 

PBMCs issued from AD mice at 12 months compared to WT mice. Furthermore, 

results showed an increase in CX3CL1 in the abluminal compartment (2.3-fold) and 
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a decrease (4-5 fold) in cells used in luminal compartment in 12-month-old mice 

compared to 3-month-old mice [80]. 

In both BBB models, the PBMCs come from patients or mice with advanced disease 

(moderate and 12 months) and the abluminal compartment is healthy. Even if the 

luminal compartment is AD in the mouse model, we observed:  

- a significant decrease in CCL2 in abluminal compartment with AD PBMCS 

(moderate stage or 12 months) 

- an early increase in CX3CL1 (mild versus controls) in luminal and abluminal media 

and also an increase in abluminal compartment with mouse AD PBMCs (12 months 

versus 3 months). 

It is known that the variations of these two chemokines are deleterious in AD, and it 

has been demonstrated that they are induced by PBMCs from AD patients or mice 

with advanced AD. Thus, the results join other publications highlighting an origin of 

peripheral blood in AD. The modulation of the blood-brain interface by targeting 

CCL2 and CX3CL1 could be a new therapeutic pathway. 

 

Neurovascular junction damage and therapeutic targets: Insights from 

preclinical research on vascular dementia and microbleeds 

Vascular dementia and its most prominent subtype, subcortical atherosclerotic 

encephalopathy (M. Binswanger), represent the second most frequent and important 

form of dementia in the elderly after Alzheimer’s disease. It represents about 15% of 

all dementia cases, while another 15% of cases are mixed forms occurring together 

with Alzheimer’s disease. Vascular dementia has therefore rapidly gained attention 

as a growing medical and socioeconomic burden. Vascular dementia and in 
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particular M. Binswanger are characterized by progressive white matter lesions that 

are strongly related to cognitive decline and believed to be an important 

pathophysiological hallmark of almost half of all dementias in the elderly (and even 

beyond “pure” forms of vascular dementia; [81]. Symptoms of vascular dementia are 

also observed in cases of disseminated cerebral microbleeds. 

Despite its significant impact, relatively little is known about central pathogenic 

mechanisms, and no casual treatments are available so far. It is known, however, 

that hypertension plays an important role in vascular dementia and rigorously 

controlling blood pressure may slow down its progress. In turn, increased systolic BP 

progressively disrupts white matter integrity already in young adults and increases 

the risk for late-life dementia [82]. 

In human vascular dementia patients, microbleeds and lacunar infarcts typically 

occur in the basal ganglia while white matter hyperintensities preferentially develop 

in the centrum semiovale. Anatomical factors might explain these differing 

predilection sites: arterioles entering the deep white matter from the superficial 

cortex are coated by a single leptomeningeal layer rendering them more susceptible 

to hypertension-related vascular damage [83, 84]. Microbleeds preferably appear in 

the basal ganglia. 

In this section, current findings will be outlined from preclinical research that may 

indicate such novel therapeutic targets for vascular dementia, which, at least in part, 

may also be relevant for Alzheimer’s disease. Potential therapeutic approaches will 

also briefly be presented. 
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Preclinical research in vascular dementia: state of the art 

Preclinical research in vascular dementia relies on a number of animal models, most 

of which separately mimic a selected aspect of human disease, predominantly 

lacunar infarcts, white matter damage, and vessel dysfunction. An important animal 

model are stroke-prone spontaneously hypertensive rats (SHR-SP). They feature 

most of the cardinal histopathological signs of cerebral small vessel disease (cSVD) 

[85] likely as a consequence of chronically increased arterial blood pressure that 

causes vascular dysfunction [86]. However, the SHR-SP model is biased towards 

the bleeding facet of cSVD [87] which might be due to genetically fixed alterations of 

the endothelial tight junctions [88] and a massively increased blood pressure by far 

exceeding that observed in human patients. Recent research on (SHR), which 

present high, but not extremely increased systolic blood pressure, revealed very 

similar behavioral and histological findings as seen in human vascular dementia 

patients [89] (Fig. 2).  Moreover, a number of disease-driving alterations such as 

focal BBB breakdown, macro- and microglial activation, and immune alterations may 

also provide promising targets for early-stage AD (Fig. 2).  
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Figure 2. Spontaneously hypertensive rats as a model of vascular dementia. Spontaneously 

hypertensive rats develop cognitive deficits in their middle age that continue to aggravate with age. 

The animals also show an increasing loss of brain tissue with age, particular in in deep cortical 

regions, subcortical areas, and the corpus callosum. The primary cause of this cognitive decline could 

be chronic hypertension and the animals exhibit a number of pathophysiological hallmarks of vascular 

dementia such as blood-brain-barrier damage, impaired microcirculation, glial response and chronic 

inflammation. Scheme drawing based on study of Kaiser et al., 2014 [89] 
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Behavioral changes in SHR, white matter and BBB breakdown 

Middle-aged SHR showed a reduced discrimination capability between known and 

unknown objects, indicating a decline of the non-spatial working memory, primarily 

related to frontal-subcortical circuits [90]. Spatial memory is initially not affected. 

However, spatial memory deficits being typical in human vascular dementia patients 

[91] may develop over time since time-dependent loss of cornu ammonis 1 pyramidal 

neurons occurs in SHR [92].  

Macro- and microglial activation 

A sustained macro- and microglial activation in deep cortical regions can be 

observed in SHR.  Although the number of Iba1-positive microglia in DCR is 

comparable results between SHR and normotensive Wistar Kyoto rats (WKY), single 

cell morphological analysis increased cellular volumes being indicative of microglial 

hypertrophy. Microglial activation is further indicated by increased CD11b expression 

[89]. 

Immunological mechanisms potentially contributing to vascular dementia 

There is increasing evidence that the immune system significantly contributes to the 

development and progression of vascular dementia. For instance, serum levels of 

soluble adhesion molecules were increased in patients with white matter lesions [93] 

and c-reactive protein (CRP) levels correlate with the existence and progression of 

white matter damage [91]. The association of inflammation and vascular dementia is 

not surprising since chronic inflammation also plays an important role in the 

pathophysiology of its primary risk factor hypertension [94, 95]. However, whether 

such inflammatory processes initiate vascular and tissue damage, promote its 
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propagation, or simply constitute a response to ongoing reorganization remains 

unclear. Similar relationships have been described for Alzheimer’s disease. 

Distribution of blood-borne leukocytes differs between SHR and WKY strains. In 

WKY, T cells were mostly localized within the meninges and the choroid plexus (CP), 

while the majority of T cells populated microvessels within the SHR brain 

parenchyma.  The different T cell distribution patterns may be explained, for 

instance, by an upregulation of VCAM-1 in brain endothelial cells, which occurs as a 

consequence of an activated renin-angiotensin system during arterial hypertension in 

hypertensive rats [96] and vascular dementia patients [97]. The increased presence 

of T cells adhering to the luminal side of cerebral microvessels might indicate slowed 

vascular transit time of leukocytes due to pseudopod formation [98] or may be part of 

a systemic adaptive immune response against vascular neoantigens. Importantly, T 

cells directly promote endothelial dysfunction. 

An interesting finding was the considerable decrease of T cells in the meningeal 

space and the choroid plexus of SHR. Meningeal T cells have a significant impact on 

learning behavior, memory function, and mood stabilization [99]. Moreover, higher 

amounts of natural killer (NK) cells were present in the SHR brain.  

Besides their direct participation in endothelial dysfunction (as an indicator of BBB 

disintegration), T and NK cells may play an important role in cerebral arteriogenesis 

[100] owing to perfusion deficits and shear stress. Increased angiogenesis helps to 

restore the neurovascular junction in areas where blood vessels become rare due to 

continuous vascular damage. This may indicate repair processes, along with an 

increase of DCX-positive neural progenitors in the SHR subventricular zone. 

Neurogenesis might indeed be initiated by white matter injury in vascular dementia 

[101].  
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Preclinical research on post-hemorrhage neuronal damage: novel insights 

Recent clinical evidence suggests that the occurrence of microbleeds leads to a 

greater cognitive decline in vascular dementia and AD [102-104]. In the Rotterdam 

Study, higher levels of plasma Aβ were associated with increasing lacunar and 

microbleed counts [105]. However, microbleeds are often functionally asymptomatic 

in patients [106, 107] and are therefore difficult to detect clinically, except using 

modern imaging technology. 

Furthermore, cognitive decline is particularly worsened when microbleeds occur in 

deep brain regions or simultaneously in lobar and deep structures [103]. Blood 

breakdown products may lead to axonal and white matter injury of fibers trespassing 

the lesion site resulting in delayed, distal cell death. There is evidence from larger 

brain hemorrhages in the basal ganglia that axonal degeneration occurs in the 

internal capsule due to its close proximity. For example, Wallerian degeneration is 

common in intracerebral hemorrhage (ICH) patients and occurs particularly in the 

corticospinal tract in deep ICH [108]. 

The underlying molecular mechanisms of how microbleeds promote cognitive 

decline and axonal degeneration/white matter damage remain incompletely 

understood.  Blood breakdown products released from the bleed can cause neuronal 

cell death engaging non-apoptotic forms of regulated cell death [109, 110]. In 

addition, it is known that degeneration of axons, in general, occurs actively, but 

autonomously from neuronal cell body death, and via different molecular 

mechanisms [111]. While neuronal cell bodies may die via the canonical caspase-3-

dependent apoptotic pathway, blockade of this pathway does not prevent axonal 

degeneration [112]. Axon degeneration depends on the proapoptotic family member 

bax and requires caspase-6 [113].  
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Gut microbiota and AD 

In AD subjects, higher levels of pro-inflammatory cytokines have been found, 

together with reactive microglial cells co-localizing with amyloid plaques. It has been 

proposed that high levels of inflammation are a consequence of Aβ signaling [114, 

115]. However, recently this hypothesis has been revised since the induction of the 

pro-inflammatory state can promote the amyloid cascade. It is in this context that we 

look at the role of the microbiota. 

The gut microbiota has been named our other brain for the functional connections 

between the two. The microbiota weighs as much as the brain itself (up to 1.5 kg 

[116]) and is made of bacteria, viruses, and fungi. The number of bacteria in the gut 

exceeds the number of somatic cells by 10-fold and the number of microbial genes 

(the microbiome) exceeds the number of human genes by 100-fold [116, 117]. 

The human gut has bacteria with pro-inflammatory and others with anti-inflammatory 

properties, in dynamic homeostatic balance. Different stressors can lead to 

dysbiosis, i.e. an imbalance between pro-and anti-inflammatory bacteria that has 

been invoked to explain observations in patients with rheumatoid arthritis, 

atherosclerosis, obesity and other diseases (Fig. 3) [118]. 

The Gut microbiota and the immune system in AD 

Differences in the gut microbiota composition have been described, suggesting a 

specific microbial signature typical of AD [119]. The question arises of the causality 

behind these intestinal changes and brain pathology. The immune system seems to 

play a crucial role in the gut-brain communication.  
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Higher levels of peripheral and central pro-inflammatory cytokines have been found 

in AD patients as compared to controls; reactive microglial cells co-localize with 

amyloid plaques, indicating that the pathology is accompanied by peripheral and 

neuroinflammation [114, 115]. Importantly, gut microbiota communicates with the 

immune system, e.g by inducing T regulatory cells to turn off inflammatory processes 

[120], but alterations in its composition have been seen to be related to inflammatory 

pathologies. A dysbiotic flora, indeed, produces metabolites or release molecules, 

such as lipopolysaccharides, that can induce a peripheral inflammatory response, 

which, in turn, could reach the brain. In case of gut microbial dysregulation, both the 

intestinal barrier and the blood-brain barriers become more leaky, leading to an 

augmented passage of these molecules, from the gut into the circulation [121, 122].  

In AD, inflammation has always been considered one of the downstream 

phenomena of amyloid deposition. However, recent findings showed that immune 

system activation and a pro-inflammatory state could promote amyloid deposition 

[114]. In this regard, preclinical studies indicated that Aβ exerts antimicrobial 

properties: temporal lobe homogenates from AD patients inhibit Candida albicans 

growth, in a dose-dependent manner, as compared to non-AD temporal lobe 

homogenates or to cerebellum homogenates from AD patients [123]. In a mouse and 

a nematode model of AD the presence of Aβ protected from Salmonella or 

C.albicans infection by creating a net that entrapped microbes and prevented their 

adhesion to the host  [124]. As the immune system regularly produces amyloid nets 

to entrap uninvited guests [125], Aβ could represent a first immune response against 

a microbial invader in the brain. Interestingly, fungi and the bacterial component 

lipopolysaccharide have been found in postmortem brains of AD patients, especially 
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in the area where Aβ plaques are present[123, 124] [126, 127], raising new 

hypothesis of AD pathogenesis. 

A theoretical framework integrating the current hypotheses in AD and microbiota-

mediated inflammation would look as follows: intestinal lumen is sensible to signals 

coming from microorganisms and directly from the diet. These signals activate 

inflammatory mediators in the gut mucosa and submucosal layers, which can 

generate adaptive responses through antimicrobial and active peptides. The 

generated peptides can be secreted into the lumen to help maintain homeostasis. 

Simultaneously, effector cells will secrete chemokines to the blood stream that are 

able to communicate to the central nervous system (CNS) by and/or through the 

BBB. In response to the gut signalling, inflammatory cells in the brain can activate 

the complement C1q, activate inflammatory receptors such as RAGE and modulate 

deposition of Aβ. Nevertheless, the presence of gut metabolites and microbiota-

induced inflammation in the brain of man require more research for confirmation and 

further characterization (Fig. 3). 

In conclusion, the microbiome is influenced by factors such as the environment, the 

diet but also the season of the year. All these parameters can be used to improve 

the power of these studies to find more specific signatures. Moreover, stable 

microbiota signatures have been identified that can be as unique to individuals as 

fingerprints [128]. 

Regarding therapeutic opportunities, it is possible in theory to modify the composition 

of the gut microbiota to prevent or improve cognitive symptoms in AD. The most 

common strategy to induce gut microbiota modification is the dietary 

supplementation of probiotics – living microorganisms that provide health benefits 

when ingested. In the only intervention trial reported so far, a probiotic containing 
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Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium bifidum and 

Lactobacillus fermentum has been tested in Iran on severely demented older 

patients in comparison to a placebo. The probiotic group showed an amelioration in 

cognitive functions from baseline (MMSE=8.7) after 12 weeks of supplementation 

(MMSE=10.6), whereas the placebo group showed a decreased in MMSE scores 

from 8.5 to 8.0 over 12 weeks. An impact was reported not only in MMSE scores but 

also in blood markers of insulin and lipid metabolism, suggesting that the probiotic 

formulation has several beneficial effects  [129].  

Despite the above intriguing results, it is still challenging to identify a universal AD 

gut microbiota signature and also a therapeutic composition of microorganisms as a 

potential therapy. Therefore, further studies on novel mediators of gut microbiota-

induced inflammation in blood and CSF are the potential keys to develop therapeutic 

strategies. 
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Figure 3. Possible pathophysiologic role of microbiota in Alzheimer’s disease. BBB, blood–brain 

barrier; BMAA, b-Nmethylamino-L-alanine; HSV-1, herpes simplex virus type 1; LPS, 

lipopolysaccharide. From: Marizzoni et al., Microbiota and neurodegenerative diseases. Curr Opin 

Neurol 2017, 30:630-8. 
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Restoring Insulin Action & Glucose Metabolism in AD: Our Short-Term 

Perspectives 

Besides the known effects of amyloid-β (Aβ) and hyperphosphorylated Tau protein 

in the central nervous system (CNS) in AD, they may be also important at the 

periphery[130]. For instance, Aβ may compete with insulin and bind to its receptors 

at the periphery, impairing pancreatic β-cells and leading to insulin resistance and 

glucose dysmetabolism [131, 132]. This may in turn exacerbate Aβ deposition 

[133, 134], creating a vicious cycle of dysfunctional CNS insulin signaling, oxidative 

stress and neuroinflammation, culminating in cognitive deficits [135]. Despite 

controversial, this may also involve the hyperphosphorylated Tau-induced 

destabilization of microtubules in β-cells, blunting insulin secretion [136] and insulin-

mediated trafficking of glucose transporter-4 (GLUT4)-containing vesicles to the 

plasma membrane. Hence, glucose uptake into skeletal muscle and adipocytes is 

inhibited and type 2 diabetes (T2D) may arise [137-139]. 

Insulin and its downstream signaling cascades play a crucial role against CNS 

damage and disease. Besides the known regulation of brain glucose/bioenergetic 

homeostasis [140-142], insulin signaling protects against oxidative stress, 

(neuro)inflammation and dysfunctional intracellular quality control mechanisms [143-

146], rescuing synaptic/neuronal function [147, 148] and cognition[149]. This 

downregulation of bioenergetic metabolism in insulin-resistant brain may arise 

years before the onset of clinical symptoms (possibly during midlife), affecting Aβ or 

Tau homeostasis and rendering people (especially women) more prone to dementia 

and AD [150-154]. Thus, AD has been increasingly considered a metabolic disorder, 

also termed “type 3 diabetes” [155]. 
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Evidence for AD-related brain glucose hypometabolism includes the slowdown in 

cerebral blood flow due, e.g., to brain vascular atrophy [156]. This, together with the 

lower levels of GLUT-3 and -4 in AD brain, may attenuate the glucose uptake across 

the blood-brain barrier (BBB) and its use by CNS [157, 158]. AD also inhibits brain 

enzymes from glycolysis and Krebs cycle (e.g. lactate dehydrogenase (LDH), 

aconitase, glutamine synthetase, creatine kinase, pyruvate dehydrogenase (PDH) 

and alpha-ketoglutarate dehydrogenase (α-KGDH) [159, 160], depending on 

disease progression[161]. Besides the possible direct impact of PDH inhibition in 

lowering the levels of acetyl-coenzyme A, acetylcholine, cholesterol and 

neurosteroidal hormones (e.g. estrogen) upon AD [162], these metabolic changes 

further associate with mitochondrial alterations along disease progression [163]. In 

this perspective, Aβ is widely known to deregulate mitochondrial proteins, blunting 

mitochondrial cytochrome c oxidase (or complex IV) activity and oxygen respiration 

rate, either centrally and/or peripherally (e.g. in platelets) [164] [165-167]. This may be 

also due to a reduction in the neuronal expression of nuclear genes that code for 

mitochondrial electron transport chain subunits [168], or to a decrease in the number 

of neuronal mitochondria [154]. Importantly, the disruption between mitochondrial 

respiration and energy metabolism in AD was also associated with oxidative stress 

[155, 169], possibly due to activation of p38MAPK signaling and subsequent 

hippocampal glutamatergic synaptotoxicity/death, culminating in the AD cognitive 

deficits [169, 170]. Alternatively, disrupted mitochondrial dynamics (fission and 

fusion) and trafficking upon AD may hamper the development and maturation of 

synapses [163, 171, 172]. Moreover, the correlation between early deficits in 

synaptic mitochondria and synaptic loss in AD [161, 173] reinforce the notion that 

brain glucose (energy) hypometabolism may constitute an early event in disease 
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pathogenesis, starting decades before its diagnosis (probably during midlife) [174, 

175]. This may impair neuronal insulin signaling, creating a vicious cycle of Aβ- and 

hyperphosphorylated Tau-mediated injury [176, 177]. 

Although this is not the aim herein, there are extensive differences (even at the 

level of gene expression) between male and female brain (metabolism) upon 

aging and/or AD [152, 178] that may further condition the whole 

discovery/development of successful preventive and therapeutic strategies against 

the disease. 

Opportunities in Drug Development in AD 

The “charm” of repurposing efficient anti-T2D drugs to recover brain insulin 

signaling and glucose metabolism in AD. 

The failures described above point to the urgent need to unveil the precise etiology 

and pathophysiological mechanisms of AD, as these will be also crucial to discover 

more accurate diagnostic and efficient therapeutic tools [156, 179]. They also 

emphasize the need of supporting Phase III clinical trials on strong and 

accurate preclinical data and to tackle multiple therapeutic targets [156]. Moreover, 

the refocus on preventive strategies and/or drugs targeting the prodromal or very 

early stages of AD (before the onset of dementia) will hopefully maintain a longer 

quality of life [156]. 

Among such promising therapeutic (and preventive?) strategies in AD, one tempting 

target is the rescue of brain insulin signaling and glucose metabolism [156]. 

Accordingly, an increasing attention has been given to the potential benefits of 

repositioning efficient, commercialized anti-T2D drugs to treat AD [180] [181-183]. 

This hypothesis is supported by the molecular mechanisms shared by T2D and 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

AD [182, 183]. This is also tempting due to the potential targeting of 

preclinical/prodromal AD, mild cognitive impairment (MCI), or at-risk conditions 

(prevention), rather than just its later stages [156, 182, 183]. 

The temptation of using biguanides (metformin) against AD: a friend or foe? 

Metformin is the most efficient anti-T2D biguanide [182-184]. It is relatively 

inexpensive and with a low risk of hypoglycemia [182]. Metformin inhibits insulin-

mediated hepatic glucose production and promotes peripheral glucose disposal by 

activating liver and skeletal muscle AMPK signaling [182, 183]. Given its good 

tolerability, metformin can be used as mono- or multi-therapy at all stages of T2D 

[182]. Among its adverse effects are gastrointestinal distress, hepatic dysfunction, 

congestive heart failure, dehydration, and alcoholism [182, 183]. Therefore, 

metformin must be used with caution in elderly patients. 

Preclinical data suggest that metformin may be neuroprotective, probably by 

recovering brain insulin action and energy metabolism [182-184]. Metformin also 

increased markers for mitochondrial biogenesis and fusion (e.g. Mfn2 and OPA1), 

attenuated mitochondrial transition pore opening and oxidative stress, protecting 

against apoptosis and cognitive deficits [182-184]. It also modulated lipid and 

protein synthesis, fatty acid oxidation and promoted neurogenesis [182]. However, 

the rescue in hippocampal JNK signaling and synaptic markers achieved by 

metformin did not improve cognitive function in obese T2D mice [185] and even 

promoted hepatic mitochondrial dysfunction and cell death [186]. 

Concerning its role in aging and AD, metformin decreased the risk for dementia in 

aged individuals and improved cognition in AD patients [187] [188]. This may 

involve the attenuation in neuronal insulin resistance and AD-like neuropathology, 
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most likely via AMPK-related regulation of APP amyloidogenic processing; 

inhibition of mTOR and subsequent autophagic/lysosomal removal of Aβ; and/or 

the stimulation of PP2A activity and decreased Tau hyperphosphorylation [189, 

190]. Given such promising data, according to ClinicalTrials.gov, two Phase II 

clinical trials on the effects of metformin administration in middle-aged and aged 

obese patients with amnestic MCI (NCT00620191), or in MCI and early AD 

patients (NCT01965756) were recently completed and results are awaited soon. 

The potential of thiazolidinediones to tackle AD 

The main thiazolidinediones (TZDs) used in T2D are Rosiglitazone, Pioglitazone and 

Troglitazone [182]. Though TZDs are relatively expensive, they are very efficient in 

the long-term management of T2D [182, 183]. These drugs act as PPARγ agonists 

to promote the transcription of genes related to lipid and glucose metabolism [191, 

192]. More specifically, TZDs increase insulin-induced glucose uptake (most likely 

via GLUT-1 and -4) and decrease lipid accumulation by skeletal muscle, stimulate 

triglyceride storage in adipocytes, hepatic fatty acid oxidation and inhibit hepatic 

gluconeogenesis [183]. Among their adverse effects are a possible weight gain and 

increased risk of myocardial infarction [183]. 

Some neuroprotective effects were described for TZDs, including a decrease in 

stroke-related damage and neurological deficits in T2D mice [193]. Others 

suggested that TZDs-mediated reduction in brain oxidative stress and rescue in 

STAT3/Wnt signaling pathways may promote neuronal progenitor cells 

proliferation and differentiation upon T2D [194]. This, together with a protection 

against amyloidogenic processing of APP, Tau hyperphosphorylation, 

neuroinflammation and Aβ-induced neuronal insulin resistance may account for the 

recovery in memory and cognitive performance in patients and rodent models 
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[182, 183]. In line with this, in a randomized clinical trial, Rosiglitazone improved 

cognitive function in mild to moderate AD patients [195], whereas in a Phase III 

study the drug did not show beneficial effects in AD patients, and the long-term use 

of thiazolidinediones did not attenuate the risk for AD [196]. 

According to ClinicalTrials.gov, a Phase III clinical trial is currently analyzing the 

potential of Pioglitazone as a β-secretase inhibitor (TOMMORROW; NCT01931566) 

in people aged 65-83 years, at risk of MCI due to AD. A masked extension of this 

study (NCT02284906; phase III) is planned with 316 individuals with an MCI 

diagnosis due to AD that complete the TOMMORROW study. 

Is it still worthy to evaluate (intranasal) insulin for AD treatment? The pros and 

cons… 

Insulin has been increasingly used in T2D, not only for blood glucose management 

but also to prevent its chronic microvascular complications and death [197]. 

However, some controversy persists on its efficacy, which may be lost upon T2D 

progression. 

Physiologically, brain insulin signaling promotes synaptic remodeling and memory 

formation [198, 199]. We also found that restoring insulin and IGF-1 signaling 

recovered both peripheral and brain glucose metabolism, and motor function in 

vitro and in vivo in Huntington’s disease models [200-202]. Moreover, insulin 

decreased synaptic Aβ accumulation, oxidative damage and mitochondrial 

dysfunction [142, 203]. This was accompanied by a protection against Aβ-induced 

neuronal insulin resistance [204, 205]. However, associated with insulin 

administration is the high risk of recurrent hypoglycemia, which has been increasingly 

related to neuronal dysfunction/death and cognitive deficits [206, 207]. But since 
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restoring brain insulin signaling constitutes a promising approach against AD, an 

alternative could be the potential use of intranasal insulin herein. 

Intranasal insulin promoted brain insulin signaling in AD, without affecting blood 

insulin or glucose levels [208]. Clinical trials involving MCI or early AD patients 

showed that intranasal insulin improved brain glucose metabolism and stabilized 

or even rescued their memory and cognitive deficits [198, 209, 210]. According to 

ClinicalTrials.gov, results are awaited from two recently completed Phase II/III and II 

clinical trials on insulin (SNIFF; NCT01767909) and Glulisine (a rapid-action insulin 

analog that regulates glucose metabolism and counteracts Aβ) (NCT02503501), 

involving middle-aged and aged MCI or mild AD individuals. Possible limitations to 

the use of intranasal insulin for AD treatment could be the generalized increase in 

brain insulin levels and its possible adverse consequences on brain regions (like 

hypothalamus) that control, e.g., water and food intake [211]. 

The increasing therapeutic potential of incretin drugs in AD 

-Dipeptidyl peptidase-IV inhibitors 

Sitagliptin, Saxagliptin, Linagliptin, Vildagliptin, Alogliptin, Tenegliptin, Dutogliptin, 

Gemigliptin are the main dipeptidyl peptidase-IV (DPP-IV) inhibitors used to treat 

T2D [182, 183, 212]. DPP-IV inhibitors are oral small molecules that blunt the 

degradation of native GLP-1 by the aminopeptidase DPP-IV, increasing its half-

time and circulating levels, together with the attenuation of glucagon effects [212-

214]. DPP-IV inhibitors are well tolerated and can be used either as mono- or 

multi-therapy [183, 212]. Apparently, these drugs do not affect gastric emptying, 

body weight or cardiovascular function and present a low risk of hypoglycemia 

[183, 212]. However, their efficacy may be lost upon T2D progression[215]. 
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Sitagliptin attenuated mouse hippocampal AD neuropathological hallmarks, 

improving also acetylcholine and adiponectin receptor levels in T2D rat brains [216, 

217]. Sitagliptin and Vildagliptin also decreased peripheral T2D and oxidative stress 

markers and rescued learning and memory deficits in insulin resistant and T2D rats 

[216, 218, 219]. Vildagliptin also decreased the levels of Aβ, hyperphosphorylated 

Tau and neuroinflammatory markers, and rescued memory deficits upon AD [220]. 

However, it is still debated whether DPP-IV inhibitors can cross the blood-brain 

barrier and exert direct effects in the brain or if their effects are mostly peripheral 

[183, 212]. Further research is needed before including DPP-IV inhibitors into clinical 

trials in AD. 

-GLP-1 receptor agonists 

Exendin-4, Liraglutide, and Lixisenatide are the most used GLP-1 receptor (GLP-1R) 

agonists in T2D [182, 183] [212, 221]. They act as incretin mimetics, promoting 

insulin secretion in a glucose-dependent manner to overcome insulin resistance 

[182, 212, 221]. Besides their minimum risk of hypoglycemia, GLP-1R agonists 

have also potent, long-lasting anti-obesogenic effects, possibly via a hypothalamic-

regulated decrease in appetite and food intake [212]. They also showed benefits 

in blood pressure, cholesterol and triglycerides levels, as well as in cardiac 

function upon T2D [212]. Though the mechanisms involved herein remain poorly 

known, they may rely on a decrement in markers for cardiovascular risk (as IL-6, 

TNFα), endothelial dysfunction, oxidative/endoplasmic reticulum (ER) stress and 

inflammatory pathways [212]. Interestingly, Liraglutide promoted GLUT4 

translocation in mouse skeletal muscle via cAMP signaling and may thus affect 

glucose uptake and metabolism [222]. 
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GLP-1R agonists are known to readily cross the blood-brain barrier and directly affect 

the brain, where they may act like neurotrophic factors [212, 221]. Mounting 

evidence point towards a neuroprotective role of GLP-1R agonists against in vitro 

and in vivo AD [221] [223, 224]. Specifically, these drugs attenuated Aβ, APP and 

hyperphosphorylated Tau levels, neuroinflammation, oxidative/ER stress and 

neuronal death in AD [212, 221, 223, 224]. These were mirrored by increased 

insulin degrading enzyme and insulin signaling, which may recover glucose 

metabolism, synaptic transmission/plasticity, neurogenesis and, ultimately, memory 

and cognitive performance [177, 212, 221, 223, 224]. Similar results were recently 

reported with Lixisenatide [225]. 

Results are awaited from the two recently completed clinical trials on Exendin-4 

(Phase II; NCT01255163; involving MCI or mild AD individuals, aged ≥60 years) 

and Liraglutide (Small randomized; NCT01469351; involving early-onset AD 

patients), as well as from a recently started large-scale, phase II clinical trial on 

Liraglutide in early AD patients, aged 50–85 years (ELAD, NCT01843075). 

 The novel and still unexplored anti-AD therapeutic potential of SGLT2 inhibitors 

The main SGLT2 inhibitors used to treat T2D are Empagliflozin and Dapagliflozin. 

Although they exert their glucose-lowering effects mainly through a novel, insulin-

independent mechanism (via increased renal glycosuria), one cannot exclude the 

increase in peripheral insulin sensitivity, GLP-1 levels and/or β-cell function [226-

231]. This may be accompanied by decreased leptin levels, endothelial 

dysfunction, oxidative stress, and inflammation markers, ultimately reducing blood 

pressure and body weight [232]. Thus, SGLT2 inhibitors may optimally reduce the 

long-term complications associated with T2D, with a low risk of hypoglycemia and 

hypotension [229, 233]. Although little is known on its neuroprotective role, 
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Empagliflozin may protect obese T2D mice against brain oxidative stress and DNA 

damage probably via the recovery in serum insulin levels and vascular function, 

ultimately rescuing their learning and memory function [234, 235]. Additionally, 

Dapagliflozin-mediated attenuation of retinal capillary hyperperfusion, arteriole wall 

thickening and microvascular remodeling in T2D were followed by a decrease in 

brain markers for oxidative stress, inflammation and apoptosis [234, 236] [237]. 

This was further accompanied by an improved insulin action, mitochondrial 

function, synaptic density/plasticity, neurogenesis and in learning and memory in 

T2D patients and animal models [234-237]. 

To our knowledge, there are no current clinical trials on the use of SGLT2 inhibitors 

to tackle AD. In conclusion, one can hypothesize that, either by ameliorating 

peripheral insulin action and glucose homeostasis and/or by crossing the blood-

brain barrier and exerting similar effects in the central nervous system, anti-T2D 

drugs from the different classes may represent promising therapeutic approaches to 

tackle AD (Fig. 4). 
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Figure 4. T2D drugs for treating AD. Strategies to improve insulin actions in AD brains could act by 

ameliorating peripheral insulin action or cross directly into the CNS to restore glucose homeostasis.  
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Restoring brain cholesterol metabolism by CYP46A1 gene therapy 

Increasing evidence demonstrate the role of brain cholesterol in the physiopathology 

of neurodegenerative disease particularly in Alzheimer’s disease and Huntington’s 

disease[238],[239]. Brain contains a particularly high portion of total body cholesterol, 

since our brain represents 2% of our body weight, but contains 25% of total 

cholesterol. Beside the important (70%) myelin fraction, brain cholesterol is a major 

constituent of neuronal membranes and plays crucial role in synaptic function and 

neuronal survival. 

Increasing arguments link brain cholesterol metabolism and AD. Tangles of Tau are 

observed In Niemann Pick-C, a genetic disease of cholesterol metabolism, 

confirming the direct connection between dysfunction of cholesterol in the brain and 

the tangles of Tau. The role of ApoE, the main cholesterol transporter in the brain, 

and of the ApoE4 allele has been long recognized as the main risk factor (after age) 

for Alzheimer’s disease6. More recently, GWAS analysis have identified several 

genes of lipid metabolism, like SORL, ABCA7 and CLU in association with AD[240]. 

Cholesterol increased concentration has been evidenced in the brain of AD patients. 

The role of statins (inhibitors of HMGCoA reductase key enzyme of cholesterol 

synthesis) is still debated. However, a recent retrospective study on 400 000 patient 

receiving long term treatments by statins evidenced a link between a decreased 

frequency of Alzheimer’s disease to chronic administration of statins, a link varying 

upon sex, ethnicity and molecules [241]. Yet, the discussion on statins and cognitive 

decline in AD remains open [242].  

Cholesterol is directly associated with plaques and tangles. In vitro and in vivo 

studies have shown that increased cholesterol content in membranes is associated 
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with increased A-beta production. Conversely, decreased cholesterol in the 

membranes favors the non-amyloidogenic pathway of APP processing [243]. 

Cholesterol cannot cross the Blood brain barrier (BBB) and brain cholesterol is 

produced in situ, mostly by astrocytes in adults. It is then transported to neurons by 

APOE, which are the major consumers of the generated cholesterol. To some 

extent, cholesterol is also produced by synthesis in neurons and this is an important 

part of the brain cholesterol homeostasis. Cholesterol is excreted from the brain 

mostly after transformation into 24-hydroxycholesterol (24-OH), that can freely cross 

the BBB and is metabolized in the liver. 24-OH is produced by CYP46A1, a 

cytochrome enzyme specifically expressed in the brain [244, 245]. CYP46A1 is a key 

enzyme of brain cholesterol metabolism. Not only CYP46A1 allows most cholesterol 

efflux from the brain, it also activates the whole pathway of cholesterol metabolism, 

the so-called mevalonate pathway (Fig. 5) and represents an important stress 

response factor to noxious stimuli like aging, toxic protein aggregates, disease 

conditions like AD [246, 247].  CYP46A1 was shown in response to stress, to induce 

the relocation of Trkb in plasma membranes, leading to its activation and to 

postsynaptic stress response signaling, a pathway that could be associated with 

improved cognition and synaptic plasticity [246].  
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Figure 5. The mevalonate pathway of cholesterol metabolism: roles in neuronal functions. 
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The decrease in CYP46A1 function in normal mouse hippocampus, using AAV- 

CYP46A1 shRNA delivery is associated with cholesterol accumulation in cell 

membranes and  strong neuronal toxicity leading to severe endoplasmic reticulum 

stress and neuronal death with hippocampal atrophy. Interestingly a reduction of only 

30 to 50% in CYP46 levels induces amyloid beta accumulation and 

hyperphosphorylation of Tau protein in the hippocampus, a phenotype resembling 

Alzheimer’s disease. CYP46A1 inhibition in AD mice with amyloid pathology  leads 

to accelerated toxicity with major amyloid accumulation, rapid neuronal death, and 

seizures, evidencing the toxic loop between cholesterol metabolism impairment and 

amyloid production[248, 249].  

On the contrary, CYP46 overexpression in AD models improves cognition and 

decreases pathology in the brain. Injection of an AAV vector coding for the enzyme 

CYP46A1 restores cholesterol metabolism, decreases amyloid beta accumulation 

and plaque formation in the different AD models [248, 250] (Fig. 6) . Importantly, this 

beneficial effect of AAV-CYP46A1 delivery is demonstrated not only in three different 

amyloid models but also in Tau22  mice 328 . Dendritic spine density are restored, 

together with electrophysiological parameters (LTC), contributing to the correction of 

memory deficits in these mice. In parallel, results from studies in Huntington mouse 

model demonstrated that overexpressing CYP46A1 restores deficient cholesterol 

metabolism, behavior deficits and neuropathological hallmaks confirming the link 

between brain cholesterol impairment  and neuronal function[251].  
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Figure 6. Gene therapy on CYP46A1. The first panel shows the site of injection with the viral vector 

carrying an overexpressing copy of CYP46A1 for gene therapy. Neuronal transfection of CYP46A1 

can be detected (green)  in neurons in the hippocampus (red) as shown by the upper pannels. After 

gene therapy treatment with CYP46A1, amyloid plaques in the hippocampus are reduced.  

 

A gene therapy approach based on AAV-CYP46A1 brain delivery is thus a 

potentially powerful strategy, acting both on the amyloid and the Tau hallmarks of the 

disease.  Feasibility and safety of the procedure were demonstrated in monkey brain 

(unpublished results). Improvement of AAV vectors able to efficiently target brain 

neurons after intrathecal or intravenous injection should help the development of 

such therapeutic approaches.  Increased 24-OH cholesterol in CSF could be 

evaluated  as a biomarker of mechanism to evidence the efficacy of the therapy. 

AAV vectors have been approved for human use and several clinical trials using 
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AAV vector delivery to the brain have been performed or are ongoing [252]. These 

vectors allow long-lasting expression with only one injection. 

A first application in human patients could be in severe familial forms of Alzheimer’s 

disease. Patients can be diagnosed and treated at very early stages of the disease, 

when a therapeutic benefit could be expected. 

 

Molecular mechanisms behind glucose and cholesterol metabolism for 

developing AD 

Several reports have looked at patients with altered cholesterol metabolism in the 

brain and their susceptibility to developing AD [253-257], and in the last two 

decades, BBB-permeable cholesterol metabolites (known collectively as oxysterols) 

have been identified as possible mediators of cholesterol effects in the brain [247, 

258-262]. The main oxysterol exchange between the brain and the circulation is 

between 24-hydroxycholesterol (24-OH), which is originated in the brain as 

discussed before, and 27-hydroxycholesterol (27-OH) which is generated by the 

activity of the enzyme CYP27A1 in the periphery [247, 259, 261, 262].  

Excessive 27-OH has been related to AD [263, 264] and to PD [265-267]. It’s also 

associated to breast cancer [268] and to a genetic disease called hereditary spastic 

paraplegia of the fifth type (SPG5) where a mutation causes a loss of function of 

CYP7B1, an enzyme that degrades 27-OH, so these patients have ten times more 

27-OH than normal individuals [269, 270]. Nevertheless, individuals without this 

mutation can also show elevated levels of 27-OH in the blood, which correlate to 27-

OH levels in the CSF [271].  In these patients, elevated 27-OH levels correlated 

negatively with glucose uptake in the hippocampus, posterior cingulate and 
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cerebellum as measured by 18F-FDG PET. The patients could be stratified in two 

groups: the first one would have more than 1 ng/ml 27OH in CSF and a global 

decrease in brain glucose uptake, while the second group with less than 1 ng/ml 27-

OH in CSF with decreased glucose uptake only in the hippocampus and posterior 

cingulate.  

Preclinical models have already provided information on the mechanisms of elevated 

27-OH influences glucose metabolism in the brain, contributing to cognitive decline 

in AD. High fat/ high cholesterol diet (HFD) in aged mice led to decreased ARC 

protein levels in the hippocampus as well as reduced NMDA receptor activity [272]. 

As mentioned previously, cholesterol does not cross the blood-brain barrier and 

these studies pointed to 27-OH as a mediator of the negative effects of high-fat diets 

in brain function markers. Moreover, HFD leads to cognitive impairment in mice and 

knocking out Cyp27A1, the enzyme converting cholesterol to 27-OH, protects mice 

against HFD-induced cognitive deficit [273].  

Alterations of the Renin-Angiotensin System in the brain in AD  

In an effort to identify the mechanisms by which high levels of 27-OH produce 

neuronal damage, we reported high levels of 27-OH increase the renin-angiotensin 

system activity in HFD fed mice (Fig. 8) [274]. These results were proven 

translatable when found that patients with MCI and AD also present increased 

angiotensin (AGT) and angiotensin-converting enzyme (ACE) in the brain [275]. 

Going back to the animal models to clarify the mechanisms of action of 27-OH in the 

brain, the Cyp27TG mice were used, a transgenic mouse model overexpressing 

CYP27A1 to produce 5 times more 27-OH systemically. These animals also shows 

cognitive impairment at 12 months old together with reduced glucose uptake in the 

brain [271, 276]. The mechanisms leading to reduced glucose uptake in these mice 
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is mediated by an over-activation of the RAS system, leading to an imbalance 

between the angiotensin isoforms AngIII and IV [271]. The balance between these 

forms is also modified by the catabolism of AngIV by aminopeptidases, which are 

modulated importantly by 27-OH, particularly aminopeptidase-A (AP-A) and 

aminopeptidase-N (AP-N). In CYP27TG brains, elevated 27-OH increases APN, 

which cleaves AngIV thus decreasing its levels. AngIV under physiological conditions 

downregulates the abundance of insulin-regulated aminopeptidase (IRAP) in the 

brain [277], but under high 27-OH levels, AP-N degrades AngIV allowing increased 

IRAP activity [271].  

Elevated 27-OH levels not only increase IRAP activity but also decrease the levels of 

the glucose transporter GLUT4, which is regulated negatively by AngIII. In CYP27TG 

brains, Ang III is elevated due to increased AP-A activity (converting AngII to AngIII), 

which in turn downregulates GLUT4 [271]. Together with increase IRAP activity, 

GLUT4 downregulation leads to reduced glucose uptake by neurons (Fig. 7). These 

mechanisms have been confirmed in vitro by knock-down experiments and they 

explain the alterations observed in patients with altered RAS markers in the CSF.  

Taken together, these results point CYP27A1 as a druggable target to prevent the 

effects of peripheral hypercholesterolemia in the blood, in opposition to statins or 

ACE inhibitors. A recent clinical trial with atorvastatin in SPG5 patients did not 

decrease 27-OH levels in patient´s CSF, while effectively decreasing them in the 

blood together with cholesterol, meaning that statins cannot effectively normalize 27-

OH in the brain in the short term [270]. CYP27A1 specific inhibitors, such as 

anastrozole, have been proposed as therapeutics for AD [278], however to our 

knowledge; no clinical trial is testing the effect of these compounds in AD risk or 

cognition.     
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Figure 7. Metabolic effects of elevated 27-OH in the brain. Elevated cholesterol in the periphery 

cannot cross the BBB. CYP27A1 converts peripheral cholesterol to 27-OH, which is able to cross the 

BBB into the brain and inside cells. In neurons, increased levels of 27-OH dysregulate the renin-

angiotensin system (RAS), by acting directly or indirectly over the glucose transporter GLUT4 and the 

insulin-regulated adaptor protein (IRAP). This leads to a decreased glucose uptake and reduces the 

metabolic activity of neurons, contributing to cognitive decline. Moreover, insulin aggregation also 

decreases glucose uptake. Insulin aggregation reduces dramatically its signaling and these effects 

are not fully understood. A link between RAS system and insulin aggregation also remains unknown, 

but it could involve IRAP signaling, Ang-IV derived peptides (produced by AP-N and AP-A activity), or 

through reduction of blood flow in brain vessels.     



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Insulin aggregation in AD  

The reduced glucose uptake mediated by high 27-OH levels might pose a link 

between cholesterol and glucose metabolism alterations as important players in the 

development of AD. We recently reported that insulin aggregates and accumulates in 

neurons with hyperphosphorylated Tau from humans [150]. The finding was not only 

exclusive of AD but also of other tauopathies, having insulin resistance as a common 

denominator for most cases. Moreover, neurons with aggregated insulin show 

decreased insulin receptor levels and neuroblastoma cells overexpressing Tau show 

decreased GLUT4 expression levels (Fig. 7). This is in line with other papers 

suggesting similar relationships between insulin resistance and Tau [279, 280]. 

While some reports exist linking high cholesterol with hyperphosphorylated Tau [265, 

281, 282], the mechanistic link between glucose and cholesterol metabolism 

underlining neurodegeneration needs further research. Yet it is highly possible that 

such a link exists and plays a major role not only in AD but also in other tauopathies 

and in PD.  

This underlines the importance of redirecting research efforts to classify AD patients 

according to specific biochemical pathway imbalances they might present in order to 

better design clinical trials for treating or modifying AD progression. Further research 

should focus on topics of insulin metabolism, cholesterol and lipid dynamics in the 

brain and their relationship with parallel pathologies such as diabetes that could lead 

to earlier hallmarks of AD manifestation, new targets for drug development and new 

therapeutic strategies to treat neurodegenerative diseases. 
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Amyloid beta in Alzheimer’s disease: an overview 

Aβ load in the brain correlates well with the degree of dementia, where it becomes 

more neurotoxic after polymerization [283, 284]. Most familial cases show increased 

Aβ isoforms with 42 to 43 amino acids in the CSF [285-288]. Persons with Down’s 

syndrome also present an over-production of Aβ and an early onset of AD [285]. 

Transgenic mice overexpressing Aβ are available for the investigation of the AD 

pathogenic mechanisms. Many of these models develop AD-like lesions and show 

impaired memory [289-292]. Nevertheless, overexpression of APP in mice has 

received criticism due to the difference from physiological levels observed in human 

brains [293, 294]. Because of this, novel models closer to human brain biochemistry 

aim to uncover mechanisms with more translational profiles [295-297].    

In the amyloid cascade model, Aβ42 aggregates in the presence of binding proteins 

such as ApoE, as well as with metal ions, leading to plaque formation [15, 240, 298]. 

Downstream, the cascade leads to Tau aggregation, inflammation, oxidative stress 

and ultimately neuronal death [299]. These pathways are rather clear at least for the 

familial cases. Now with the genome-wide association studies (GWAS), we have 

several new prospects coming up, but still, it is a scientific consensus that Aβ 

processing and Tau hyperphosphorylation are key components of AD pathology 

[300].  

Upstream, we have more new pathways that have been elucidated, mainly by the 

GWAS [240]. These are the glucose metabolism, the cholesterol metabolism, 

inflammation, intracellular membrane, and vesicle recycling and oxidative stress [4, 

240, 301, 302]. These pathways and targets will be useful in the future and could 

potentially lead to a combined therapeutic strategy. 
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Positron Emission Tomography (PET), Biomarkers and early diagnosis in AD 

Another important part is the biomarkers. Amyloid accumulation comes early in the 

disease, long before clinical diagnosis [303]. With PET, scanning it is possible to see 

the amyloid assemblies in the brain [304]. Today other markers are known, such as 

inflammatory markers in PET imaging coming up years before the diagnosis [305-

307]. Today with the help of biomarkers, we can put the diagnosis 10-15 years 

earlier in patients. Recently, a group from the National Institute on Aging and 

Alzheimer's Association (NIA-AA) have proposed a framework of preclinical AD 

based on biomarkers capable to determine the state of the pathology [308]. 

Many research efforts aim to find specific patterns between Aβ accumulation in the 

human brain and AD progression. Patients with MCI have shown that converting to 

AD implies PIB retention in the frontal cortex two to three years before the symptoms 

appear [309].  Additionally, stable PIB retention after 2 years in human brains can be 

used to pinpoint the stage before the onset of cognitive decline in AD [303]. Yet, 

resolution limits on PET scanning do not allow identifying small changes in Aβ 

accumulation in the preclinical stage that might be important for preventive or 

intervention strategies. Because of this, more studies are required to complement 

imaging data to accurately diagnose early stages of AD.    

Clinical trials and Immunotherapy in AD 

There are clinical trials ongoing with molecules affecting the Aβ metabolism by either 

decreasing their production, inhibiting their aggregation or increasing the clearance 

[13, 14]. Ongoing studies in the field of amyloid-related approaches are clearing out 

the Aβ monomers, forming dimers, pentamers, oligomers, fibrils, diffuse plaques and 
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senile plaques using antibody therapies. Some antibodies such as aducanumab, 

even reduce the senile plaques [310].  

Since 2013, many trials have been withdrawn due to lack of effects, most notably the 

anti-amyloid antibody solanezumab [311] and the BACE1 inhibitor verubecestat 

[312]. The negative outcome in these trials has led to an extensive revision of the 

amyloid cascade hypothesis [16, 17, 313, 314]. These clinical trials have provided 

data supporting previous hypotheses proposing dementia as a product of the cellular 

phase of AD [19], which comprise pathological processes involving targets in 

microglia, astrocytes, oligodendrocytes, and vasculature before clinical 

manifestations. Still, several aspects of the amyloid cascade hypothesis remain to be 

tested, such as the therapeutic relevance of clearing insoluble amyloid versus 

preventing its production and accumulation [17].  

There is great interest in the immunotherapy approach as a therapeutic option for 

AD, which comprises the active immunotherapy, also called vaccination [315], and 

the passive immunotherapy [316]. For active immunotherapy, the immune system is 

stimulated to produce antibodies against Aβ [317]. For passive immunotherapy, pre-

formed antibodies are humanized and injected into the individuals with advanced AD 

[318]. Passive immunization protocols require a repeated infusion of the stimulus for 

the remaining lifespan of the patients. The produced antibodies pass in minute 

fractions into the brain and bind to fibrils, oligomers and plaques preventing 

aggregation and/or improving clearance. A promising immunotherapy for AD 

therapeutics is AADvac1, a vaccine against pathological Tau, have recently 

published the results of phase I of the FUNDAMANT study (NCT02031198) [319, 

320]. The latest report showed slower atrophy in the hippocampus in patients with 

high titres of antibody response and less cognitive decline. 
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 Advantages Disadvantages Cost 

PASSIVE 
IMMUNOTHERAPIES 

   

 

Aducanumab[310] 

Solanezumab[311] 

BAN2401[321] 

 

Increased control 
of epitope binding 
affinity [322] 

Require 
continuous 
reinforcement of 
the immunization 
[323] 

High.  

Due to the need to design, generate 
and humanize antibodies[324] 

Possible to stop 
therapy if 
secondary effects 
are found [325]   

Increased risk of 
edema/micro 
bleeds due to 
repeated infusion 
[326]  

 

Modification of 
antibodies is 
possible to 
improve efficacy 
[327] 

Longer time is 
required to reach 
effective antibody 
titer[321, 328] 

 

Better for 
targeting Tau 
oligomer 
isoforms[329]  

  

Does not require 
the host immune 
system. Elderly 
patients may 
benefit [330] 

  

ACTIVE 
IMMUNOTHERAPIES 

   

 

CAD106[331] 

AADvac1[319] 

 

 

Slightly different 
epitopes can be 
recognized for 
each individual, 
tailoring antibody 
response[318, 
332, 333] 

Reduced control 
over epitope 
choice and 
specificity [322] 

Lower than passive 
immunotherapies. 

The host produces own antibodies 
[331, 334-336] 

Fewer treatments 
needed to 
achieve 
therapeutic effect 
[337] 

Difficult to reverse 
immune response 
if secondary 
effects are 
found[323]  

 

Reduced risk for 
allergic reactions 
to foreign 
molecules [337]  

Elderly patients 
may have hypo-
responsiveness to 
immunization [338] 

 

A better 
candidate for 
early prophylactic 
approach 

  

Table 1. Advantages and disadvantages of passive and active immunotherapies for 

AD.  
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Many clinical trials aiming at controlling the amyloid cascade propose diverse 

strategies and targets, but so far, there is no consensus about a universal target or 

approach for any form of AD.  

Studies performed in Sweden, working with Novartis as the sponsor yielded an 

active immunotherapy against Aβ using the CAD106, a small six-residue Aβ 

fragment recognized by B-cells, administered together with an adjuvant of viral origin 

[336, 339]. In order to have a clinical effect, a specific concentration of the IGG A-

Beta titer is required. After three or four injections, produced a significant antibody 

titer; however, it was not sustained long enough to induce a therapeutic antibody 

response. A recent phase II study with CAD106 showed target engagement and 

tolerability, however, no improvement in MMSE scores was obtained, possibly 

because of the small size of the control cohort (14 patients) [331].  

Swiss researchers created aducanumab, an interesting antibody under BIOGEN 

development. Aducanumab is an antibody derived from healthy elderly subjects with 

no decline in cognition and from cognitively impaired elderly subjects with an 

unusually slow decline rate. From these subjects, memory B cells were isolated from 

lymphocyte libraries and their produced antibody screened for their ability to bind to 

Aβ, in a process known as reverse translational medicine [340]. In a very late phase I 

study with its highest doses, aducanumab could reduce Aβ levels by 90%, as shown 

by PET imaging [341]. Currently, aducanuab is in phase III clinical trials for early AD 

with the ENGAGE (NTC02484547) and EMERGE (NCT02484547) studies. 

Discussion from previous clinical trials has pointed out that the main challenges to 

overcome for aducanumab are to inhibit amyloid aggregation avoiding cerebral 

angiopathy, and achieve improvement in cognition [342, 343].  
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Recently, EISAI published positive results with the antibody from BIOARCTIC, used 

in the clinical trial phase IIb for BAN2401, a protofibril selective amyloid beta 

antibody [321, 328]. The results for BAN2401 came after a trial at 18 months in early 

Alzheimer´s disease in a cohort of 856 patients. The analysis of the results showed 

slowing in clinical decline, which was dose dependent, together with the reduction of 

amyloid beta [344].    

Chaperones and mitochondria: new and old options for AD therapeutics 

Another approach to AD treatment is to inhibit protein aggregation using chaperone 

proteins. Evidence shows the intraneuronal amyloid is also important enough to 

affect the parenchymatous amyloid inside the brain [295, 345]. Chaperones transport 

amyloid into the mitochondria, inducing neurotoxicity [346] and if we could inhibit that 

transport, it would be possible to preserve mitochondrial function and save the 

synapses in these nerve cells. On the other hand, chaperones can also help 

increase the solubility of Aβ. BRICHOS is a conserved domain in proteins with 

proposed chaperone activity and it has been related to amyloidosis and dementia in 

the British and Danish familial cases [347].  Expression of BRICHOS in the brain 

prevents toxicity in Drosophila Aβ models [348] and in APP mice [349]. In 

prematurely born children with a collapse of the lungs, BRICHOS is used as lung 

surfactant and applied in form of aerosol [350, 351]. We have difficulties in preclinical 

models, as the peptides forming the chaperones do not cross the blood-brain barrier. 

A promising solution to solve this problem is the focused ultrasound therapy, which 

employs controlled high-frequency ultrasound pulses to shortly disrupt the BBB and 

allow passage of bigger molecules into the brain [352]. Other approaches make use 

of native BBB transporters such as transferrin-1, which can actively pass molecules 

from the plasma into the brain [353, 354].  
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Considerable research in AD is focusing on synaptic function, where mitochondria 

might underlie one of the molecular pathways for neurodegeneration. Dimebon is a 

small molecule approved for human use as an antihistamine [355]. Reports of 

neuroprotective effects in models for AD led to a first randomized clinical trial that 

was successful even in terms of MMSE score improvement, daily life activity and 

global cognition [356]. However, the following phase 3 clinical trial (CONNECTION, 

NCT00675623) for dimebon terminated early due to lack of efficacy.  One of the 

mechanisms of action of dimebon is to inhibit mitochondrial pore opening, increasing 

the membrane potential of the mitochondria and improving ATP synthesis [357]. 

Since mitochondrial dysfunction is strongly associated with aging and AD, it is logical 

that small molecules restoring mitochondrial function will serve largely as part of 

future AD therapies.  

In summary, several different dementia disorders involve different protein 

aggregation profiles. Our latest data support the claim that oligomers are more toxic 

than fibrils for neurons. Although it is very possible that the amyloid beta-peptide is 

somehow involved in the different stages, we will need a combination therapy. Many 

trials are ongoing for lowering Aβ levels in either the production or the aggregation or 

increasing its clearance. Moreover, similar approaches will give rise to therapies for 

amyloid diseases in other organs such as the heart and kidney, as well as in the 

peripheral nervous system [358]. There is still a lot to do, but what the scientific 

community and society must do first is to re-stimulate public and private interests in 

going back to basic science if we are to have a pharmacological treatment strategy 

as early as possible.  
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Tauopathies  

In late stages of AD, we have an end-stage picture of the disease where amyloid 

deposits are formed, together with neurofibrillary degeneration, meaning extracellular 

Aβ and intracellular Tau. However, as mentioned before, early in the process, 

intracellular Aβ might be more toxic than the extracellular one. We also know that 

Tau can be secreted in the extracellular space. 

With our current knowledge, the amyloid cascade is likely to be more complicated 

than initially described. The linear cascade of events leading to the formation of Aβ 

oligomers, aggregation, and maybe propagation may not be so simple. Does Tau 

pathology fuel this amyloid cascade? Does the amyloid pathology facilitate Tau 

secretion and propagation? Finally, in the amyloid cascade hypothesis, inflammation 

arrives at the end. However, since there are already early extracellular proteins 

aggregating, inflammation is likely to be present at the beginning of AD as suggested 

by several studies. Our understanding of the sequence of events has been 

hampered by the fact that there are not truly faithful animal models of AD for 

research. Current models mimic either amyloid pathways or Tau pathways. Some 

studies have attempted to show a link between amyloid and Tau pathways [359]. 

This work shows the possible interaction of both systems. Also including the idea of 

prion-like propagation and seeding. Still, we do not know the real links between 

amyloid and Tau pathways. For example in several GWAS [360-363], there are a 

number of genes identified like PICALM, BIN1, PPK2B. These genes are involved in 

Tau-mediated  synaptic dysfunctions but also in APP metabolism and Aβ clearance, 

meaning that some of these genes are really at the border between amyloid and Tau 

pathologies, and thus research has to focus on them.   
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 Etiology Tau lesions Isoforms Refs 

Alzheimer’s disease 

Down syndrome 

Aß, aging, 
genetics… 

Neurofibrillary tangles 
(NFTs) & dystrophic 

neurites 

3R + 4R [364] 

Argyrophilic grain disease 

 

Aging Argyrophilic grains in 
limbic areas 

4R>>3R [365] 

Autism with self-injury 
behavior 

 

Chronic traumatic 
encephalopathies 

 

Dementia pugilistica 

 

Traumatic brain injury 

 

 

 

 

Repeated 
head trauma 

 

 

 

NFTs & dystrophic 
neurites 

Astrocytic tangles 

 

 

 

3R + 4R 

[366-368] 

 

Postencephalitic 
 parkinsonism 

 

Subacute sclerosing 
panencephalitis 

 

 

Virus 

 

NFTs & dystrophic 
neurites 

Astrocytic tangles 

3R + 4R 

 

? 

[369, 370] 

 

Progressive supranuclear 
palsy 

• French Caribbean islands 
• Northern France 
 

Amyotrophic lateral sclerosis/ 
parkinsonism dementia 
syndrome of Guam 

 

Unknown 

Food toxins 

Industrial 
waste 

 

Unknown 
environment 
(food, heavy 

metals…) 

 

 

NFTs & dystrophic 
neurites 

Tufted astrocytes 

 

4R >>3R 

 

 

 

3R + 4R 

[371-373] 

 

Corticobasal degeneration 

 

Unknown 

MAPT 
haplotypes 

NFTs & neurites 

Astrocytic plaques 

4R >>3R [374, 375] 

 

Pick’s disease 

 

Unknown Pick bodies 3R>>4R [374, 376, 
377] 

 

Niemann Pick disease type C Metabolism, 
genetics 

NFTs & neurites 

 

3R + 4R [378, 379] 

 

Myotonic dystrophy type 1 Indirect 
genetics: 

DMPK 
mutations 

(consequences 
on alternative 

 

NFTs & neurites 

 

 

0N3R 

[380, 381] 
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splicing) 

Frontotemporal lobar 
degeneration (FTDP-17) 

 

Direct 
genetics: 

MAPT 
mutations 

NFTs & dystrophic 
neurites 

Astrocytic tangles 

Pick bodies… (highly 
dependent of 

mutations) 

 

3R + 4R 

or 

4R>>3R 

[382] 

Progressive supranuclear 
palsy 

MAPT 
haplotypes 

miR-132 

NFTs & dystrophic 
neurites 

Tufted astrocytes 

 

4R>>3R 

[383, 384] 

Table 2. Diversity of tauopathies in humans and their main traits.  
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According to Braak stages, it is well considered that neurofibrillary tangle pathology 

starts within the hippocampal formation. Then it goes to the temporal area, then to 

polymodal association areas, unimodal association and finally the entire cerebral 

cortex [385]. Recently, researchers proposed a mechanism of prion-like propagation, 

meaning that these Tau aggregates behave like the prion proteins. In this way, Tau 

tangles induce normal proteins into conformational changes leading to aggregation. 

More research focused on this mechanism has shown incremental evidence 

supporting this hypothesis.  

It is logical to propose targeting Tau and Aβ together with other targets, since Tau is 

the main component of aggregates leading to neurodegeneration. Nevertheless, 

these features represent the end stage of the disease. Does it mean there are other 

players in the initial process? For Aβ, it is likely because a mutation in APP is 

sufficient to cause AD. For Tau, it is more complicated. The presence of a mutation 

in Tau implies neurofibrillary degeneration without amyloid beta. Therefore, it means 

that by itself, aggregated Tau is toxic but does not lead to amyloid aggregation. In 

fact, Tau protein does not only aggregate in AD but also in other neurodegenerative 

disorders.  

Tau biology is complex due to the presence of six Tau isoforms in the human brain. 

They are generated by alternative splicing from a unique gene MAPT located on 

chromosome 17. In the human brain, these six isoforms are in equal ratio of isoforms 

having three (3R) and four microtubule-binding domains (4R). Nevertheless, this 

ratio is modified among tauopathies showing different aggregation profiles (Table 2). 

In addition, these proteins go through post-translational modification such as 

glycosylation, phosphorylation, oxidation, acetylation, and truncation. These 
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posttranslational modifications and truncation may facilitate Tau aggregation even if 

the mechanisms are still unclear. 

 

 

 

 

 

Figure 8. Key targets and therapeutic strategies for Tau treatments. Schematic representation of 

strategies for preventing Tau aggregation and spreading. Modulation of Tau metabolism can occur by 

regulating transcription, phosphorylation and degradation (e.g. through autophagy in pre and post-

synaptic neurons). Blockade of Tau trans-synaptic transfer through immunotherapy is also a strategy 

under test in the clinic.   
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Thus, Tau is not only found in Alzheimer’s disease, it is also found in progressive 

supranuclear palsy (PSP), corticobasal degeneration (CBD), argyrophilic grain 

disease and some patients presenting with frontotemporal lobar degeneration. 

However, Tau aggregates display different regional and laminar distributions, 

different morphologies and different molecular characteristics. In fact, among these 

disorders, aetiologies are also different. Head trauma is a risk factor since Tau 

pathology is also found in traumatic brain injury like dementia pugilistica. It has also 

been reported in autistic children with self-injury behaviour. Therefore, Tau 

aggregation is not only related to aging but to other factors that might differ from 

those belonging to AD.  Another etiology may be infectious agents like virus. 

Measles and Spanish flu viruses have been described to lead to cerebral Tau 

aggregation in subacute sclerosing panencephalitis and postencephalitic 

parkinsonism respectively. Therefore, infections may also trigger Tau aggregation. 

Other metabolism dysfunctions, as encountered in Niemann-Pick’s disease type C 

(hereditary disorders with lysosomal lipidosis) and PSP (caused either by industrial 

waste or by mitochondrial toxins), also show Tau aggregation. Finally, Tau 

alternative splicing is also altered through genetic mechanisms either direct or 

indirect. For instance, some mutations have been on MAPT that lead to mis-splicing 

of exon 10 and overexpression of four-microtubule binding domain Tau isoforms. 

Tau aggregation can also show up indirectly, for instance in myotonic dystrophy 

type 1, a neuromuscular disorder. In this disease, the mRNA of this protein DMBK 

have CUG expansion triplets, causing sequestration of splicing factors that can 

change alternative splicing of many genes (APP, MAPT, Chloride channel, insulin 

receptor, troponin T, etc.). For MAPT, Tau splicing leads to the formation of the 

shortest Tau isoform which is found aggregated in some patients presenting with 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

myotonic dystrophy. In the same way, some mutations on the Tau gene, MAPT, 

change the alternative splicing of Tau. For example, in AD, the six isoforms of Tau 

co-aggregate, in contrast to pathologies like PSP, in which only the 4R-Tau isoforms 

aggregate, and Pick’s disease, where the aggregates are only comprised of 3R-Tau. 

Adding additional complexity, autosomal dominant mutations in MAPT have been 

reported to promote Tau aggregation and lead to fronto-temporal lobar degeneration.  

In AD, there is a large therapeutic time window for Tau treatments since 

neurofibrillary tangles last for decades. This is evident in neurons with pre-tangles 

that are still integrated into neuronal networks and still functional at early stages of 

AD [386]. Preclinical studies are possible because of the large number of animal 

models available [387-389]. Currently, PET ligands, peripheral biomarkers, and 

different therapeutic strategies are available for Tau therapeutic intervention. In 

addition, prevention and environmental factors may have an effect on Tau pathology 

and interventions can be used in combination with other treatments (Fig. 8). 

There are many hypotheses of Tau aggregation. As for APP, Tau has chromosome 

micro-duplications and deletions important for tauopathies. In addition, specific 

haplotypes increase the amount of Tau, alternative splicing, conformation, post-

translational modification and change in degradation. All these hypotheses open up 

new therapeutic strategies. New therapies implicate for example to decrease post-

translational modifications like phosphorylation. Enhancing Tau dephosphorylation 

with sodium selenite is another possibility. Other approaches are the modulation of 

Tau glycosylation, modulation of Tau aggregation (methylene blue derivatives failed 

in phase III), stabilization of microtubules and enhancement of Tau proteolysis. 

Immunotherapy is another very plausible approach. Modulation of alternative splicing 

may be an approach through gene therapy.  
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Finally, it is important to mention that Tau is not only a microtubule-associated 

protein, and its role in cells is not completely understood. Tau is bound to the plasma 

membrane [390], it is involved in transduction signaling, especially in brain insulin 

resistance [279]. It is also present in the nucleus, where it binds DNA, RNA, and is 

able to change the organization of the chromatin [391], thus influencing gene 

expression. It is also involved in synaptic plasticity through interaction with SH3 

domains [392] and mediation of NMDA receptor phosphorylation [393]. 

The links between Aβ and Tau are still not fully defined. This is one of the main 

problems for Alzheimer’s disease. For instance, for immunotherapy against Tau, 

decreasing its amount will improve the symptoms in the mouse models but does not 

cure the pathology. Thus, the real problem is that we do not have the right model for 

AD. Takomi Saido in Japan developed APP single copy knock-in mice, which 

contains the human APP gene without artefacts related to overexpression [295]. 

New Tau knock-in models are currently in development. 

The presence of Amyloid beta and Tau cannot predict cognitive decline, possibly 

because of the cognitive reserve. This point out the fact that we have too many 

therapeutic strategies without knowing the functions of Tau. In order to better target 

Tau in AD, research needs to focus on understanding brain homeostasis, microbial 

infections, hormones, about glucose uptake, microglia, insulin, leptin, ghrelin, and 

other mechanisms not really explored in the field yet. Even for immunotherapy, the 

mechanisms leading the antibodies to clearing, or to block extracellular amyloid 

propagation are not understood, simply because we do not know how Tau is 

transferred from one neuron to another.  
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DISCUSSION AND PERSPECTIVES  

Currently, in the clinic, the diagnosis of AD is based on symptomatology and, to 

some extent, on biomarkers. Memory tests help the neurologist or geriatrician to first 

identify dementia and then screen for Aβ via CSF tests, using PET imaging or both. 

The symptom-based classification leads to the staging of AD, as we know it, with 

MCI in the early phases and AD with its different stages later on [394]. Yet, from a 

neurobiological perspective, AD leads to neuronal death, synapse loss and decrease 

of cognitive function for reasons still unknown, and progresses in a continuum. 

Therefore, it is difficult to divide into defined stages. For these reasons, the NIA-AA 

has released a research framework suggesting a biological definition of AD based 

largely on biomarkers from living patients combined with cognitive tests [308]. These 

guidelines represent an effort to help a more accurate characterization of the etiology 

of AD and help intervention studies targeting specific pathways involved in AD. 

Nevertheless, a clear stratification of AD requires much more research into the newly 

discovered mechanisms of disease progression.  

In this work, we have revised the new risk factors that involve different pathways 

influencing AD development. However, screenings for all of these pathways are 

challenging for the clinic, sometimes requiring advanced techniques such as mass 

spectroscopy or special tracers [271]. Many of these methods require considerable 

technical knowledge or are too expensive for basic diagnostic laboratories. Still, the 

importance of novel biomarker detection lies in the possibility for intervention [101, 

395, 396], rather than a prediction of AD progression and thus, represent valuable 

lines of research. These new genes and molecules hold the potential to allow us 

categorization of AD subtypes based on the clinical history of the patient [397, 398], 
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improving, in turn, the predictions about the evolution of the disease and eventually, 

choosing a more personalized therapeutic strategy.  

Clinical trials for NGF gene delivery in the hippocampus require complex procedures 

involving invasive injections in specific nuclei in the brain. It is possible that small 

deviations in the injection site can render the therapy ineffective in terms of 

improving cognition in subjects [399], although NGF cell therapy remains promising 

and under clinical research [35]. The unknown origin of the disease, mixed with 

complex genetic and environmental factors contributing to pathogenesis, have 

challenged clinical trials worldwide [400]. It follows that investment in AD research 

from the private sectors decrease and is virtually inexistent for promising 

mechanisms such as vesicular trafficking or autophagy [401].  

Still, there are some hopes for drugs tested in previous trials that have failed in 

phase II stages. The FDA grants accelerated approval of drugs that comply with 

guidelines classified as a determinant for a disease. With the aforementioned NIA-

AA new definitions on AD based on biomarkers, these drugs could still get FDA 

approval should they show changes in any of the important biomarkers in CSF at 

early stages. Indeed, the preclinical stage is the go-to stage for testing some of these 

agents for improving the predictors of AD progression in any way [400, 402]. Gene 

editing and control of gene expression in the brain are technologies in very early 

stages for clinical application [403], however they are good future approaches in 

modifying mechanisms such as synaptic plasticity and epigenetics, as discussed 

earlier in this work. We have revised many approaches directed towards restoring 

insulin balance in the brain, or restore microbiota communities to anti-inflammatory 

states. Moreover, combination of the therapeutic approaches revised here and 

others remain largely unexplored and have great potential to alter AD progression.   
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The establishment of new biomarkers also corresponds to the discovery of new 

disease pathways related to increased risk of developing AD. Now several studies 

aim to evaluate the effect of statins in AD from a mechanistic focus, evaluating new 

biomarker molecules such as neprilysin [404, 405]. It is now evident that the field of 

AD research is starting to integrate knowledge from diverse disciplines. For example, 

micro RNAs have shown important roles regulating pathways during AD [47, 48, 

406]. Also, recent works have discovered miR exosomes mediating neuron-astrocyte 

communication [407] and network-specific glial functions [408], whose role in 

neurodegeneration remains completely unexplored. New ventures in research from 

systems biology and omics approaches aims to uncover master regulators of 

disease-specific genes as novel targets for AD therapeutics [409, 410]. In this way, 

these targets will also help to uncover previously unknown pathways of disease and 

can connect previously unrelated cascades underlying neurodegeneration, similar to 

what happened between inflammation, diabetes and obesity [411]. It is worth to 

mention there is a novel non-pharmacological approach aiming to re-establish 

gamma oscillations in brains with AD. In order to do so, 40 Hz stimulation pulses are 

applied using sound or light signals. So far, the therapy has been successful at 

restoring memory function in AD mouse models and a clinical trial is planned with 

human subjects. Nevertheless, whether the therapeutic effect is long lasting in 

humans remain to be studied, as well as the basic mechanisms behind the healing 

effect [412]. 

The direct consequence of these discoveries is that future therapies are likely to 

involve multiple targets and/or multiple strategies to exert an effect on AD-induced 

neurodegeneration. Similar strategies have become the norm for other conditions 

such as AIDS, cancer or even infectious diseases, producing health schemes that 
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are virtually equal to a cure in many cases [413, 414] [415, 416]. AD therapeutics 

faces great challenges in terms of drug delivery, toxicity, and maintenance of 

cognition in patients [4, 17]. These topics will lead the future of AD basic research in 

the long term.  

In the short term, the most important strategies to improve the chances for treating 

AD are the targeting of factors increasing the risk of developing AD. We must 

underline that many risk factors for AD are modifiable [417]. In this work, we have 

described clinical trials and strategies involving already approved drugs to alter 

specific pathways in the brain at early stages of AD. Some of these studies have 

reported improvement in cognition of patients and have a solid molecular and 

biochemical background behind them. This evidence call for larger studies, more 

thorough stratification of cohorts, and in-depth research into the mechanisms behind 

the risk factors involved. Some of these pathways can tremendously increase the 

possibilities for treatment. For example, vascular dynamics in the brain are 

susceptible to regulation from an “out of the BBB” approach [418] and could 

consequently improve parallel dysfunctions such as insulin/glucose availability or 

amyloid clearing.  

As pointed out by leading experts in AD, researchers should learn from the previous 

experiences in therapeutics and keep developing basic knowledge about this 

disease.  

 

Only then, we will crystalize the possibility for treating AD in our lifetime.  
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