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from ordinal polytomous data

Abstract

In practical applications of knowledge space theory, knowledge states can be conceived

as partially ordered clusters of individuals. Existing extensions of the theory to poly-

tomous data lack methods for building “polytomous” structures. To this aim, an

adaptation of the k-median clustering algorithm is proposed. It is an extension of k-

modes to ordinal data in which the Hamming distance is replaced by the Manhattan

distance, and the central tendency measure is the median, rather than the mode. The

algorithm is tested in a series of simulation studies and in an application to empirical

data. Results show that there are theoretical and practical reasons for preferring the

k-median to the k-modes algorithm, whenever the responses to the items are measured

on an ordinal scale. This is because the Manhattan distance is sensitive to the order

on the levels, while the Hamming distance is not. Overall, k-median seems to be a

promising data-driven procedure for building polytomous structures.

Keywords: knowledge space theory, polytomous KST, k-modes, k-median, clustering

algorithms
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1 Introduction

Knowledge space theory (KST; Doignon & Falmagne, 1985, 1999; Falmagne & Doignon,

2011) was developed in its Boolean fashion with the aim of achieving reliable, effective

and efficient adaptive knowledge assessment. In dichotomous KST the knowledge of an

individual is represented by her knowledge state, which is the subset K of the problems

in a given knowledge domain Q that the specific individual can solve. A knowledge

structure is formally defined as the pair (Q,K) where K is a collection of knowledge

states which contains at least ∅ and Q. In practical applications of KST, a knowledge

structure can be conceived as a collection of partially ordered clusters of individuals.

Each cluster in the structure is a knowledge state.

Since the very beginning of the development of the theory, one of the most challeng-

ing issues in KST has been the construction of the knowledge structure. This task is,

evidently, crucial in the application of the theory in practice. Therefore a considerable

amount of research explored this topic ending up with three different approaches.

The first one is the query to experts (Dowling, 1993; Kambouri, Koppen, Villano,

& Falmagne, 1994; Koppen, 1993; Koppen & Doignon, 1990; Müller, 1989; Schrepp &

Held, 1995). The basic idea behind it is that a structure can be defined on the basis

of the prerequisite relation that can be found among the items of the domain. Such

relation is supposed to be detectable by means of a systematic interrogation of experts.

The second method is the skill map construction (Albert & Lukas, 1999; de Chiusole

& Stefanutti, 2013; Doignon, 1994; Heller, Augustin, Hockemeyer, Stefanutti, & Albert,

2013; Lukas & Albert, 1993; Stefanutti & de Chiusole, 2017). In this approach, a set

of skills that are needed to solve the items of the domain is defined. Different items

require different subsets of skills. Once the skill assignment is carried out for each



k-median algorithm 3

item, the structure is built by including all the states that are coherent with the

skill assignment. This second method can also be found, with the name of Q-matrix

specification in the cognitive diagnostic models (CDM; Bolt, 2007; DiBello & Stout,

2007; Junker & Sijtsma, 2001; Tatsuoka, 1990). Similarities and differences between

KST and CDM are pointed out by Heller, Stefanutti, Anselmi, and Robusto (2015).

The third class of methods is data-driven construction of a knowledge structure

(de Chiusole, Stefanutti, & Spoto, 2017; Falmagne, Albert, Doble, Eppstein, & Hu,

2013; Robusto & Stefanutti, 2014; Sargin & Ünlü, 2009; Schrepp, 1999a, 1999b, 2003;

Spoto, Stefanutti, & Vidotto, 2016; Villano, 1991). This last group of methods has

recently received attention and it relies on the extraction of knowledge structures from

data. Data-driven approaches can be divided into two categories. Those belonging to

one category impose specific properties to the knowledge structure underlying the data

(e.g., closure under union). These methods can infer knowledge states that are not

observed in the data set (e.g., Sargin & Ünlü, 2009; Schrepp, 1999b, 2003; Spoto et

al., 2016). Methods in the other category do not impose any restriction. In Robusto

and Stefanutti (2014) and Schrepp (1999a), only observed response patterns can be

states of the constructed structure. On the other side, the k-states approach proposed

by de Chiusole et al. (2017) can construct a knowledge structure by neither imposing

restrictions on it, nor assuming that only observed patterns can be states. The k-states

procedure is an incremental extension of the k-modes algorithm (Chaturvedi, Green,

& Caroll, 2001; Huang & Ng, 1999) to knowledge structure extraction.

The core element shared by all the aforementioned methods is that they all refer to

the construction of a structure on items that have dichotomous answer format. This

answer format appears to be very well suited for assessing knowledge, but it might be

inadequate when KST is applied to different fields such as psychological assessment,
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attitude evaluations or medical diagnosis. These last applications have recently received

an increased attention and they represent one of the core applicative developments of

the theory (Bottesi, Spoto, Freeston, Sanavio, & Vidotto, 2015; Donadello et al., 2017;

Serra, Spoto, Ghisi, & Vidotto, 2015, 2017; Spoto, Bottesi, Sanavio, & Vidotto, 2013;

Spoto, Serra, Donadello, Granziol, & Vidotto, 2018; Spoto, Stefanutti, & Vidotto,

2010). Nonetheless, the possibility of a generalization of KST to the polytomous case

has been explored so far only from a theoretical perspective (Bartl & Belohlavek, 2011;

Schrepp, 1997; Stefanutti, Anselmi, de Chiusole, & Spoto, under review). The earliest

attempt to generalize KST to polytomous items was carried out by Schrepp (1997).

Unfortunately, his work had no sequel for almost twenty years and, mostly, it was never

applied to real data. One of the possible reasons is that, for applying the theory in

practice, some tools for building polytomous structures should be available.

No procedures are yet available based neither on the query to experts methodology,

nor on the skill map approach, nor on the data-driven approach. In this article, a data-

driven approach to the construction of a polytomous structure is proposed that is in line

with the procedure recently developed by de Chiusole et al. (2017). The procedure is

applicable to polytomous items, whose responses belong to an ordered set. Therefore,

compared to the dichotomous case, a higher amount of information is contained in

the data and this information can be used also in the construction of the structure.

More specifically, while in the classical KST the k-modes procedure represented the

only available solution for this kind of clustering, a polytomous structure (with levels

defined on an ordinal scale) could refer to more informative clustering statistics, such

as the median. The k-modes procedure can, with no harm, be applied to polytomous

data, after having extended the number of categories from 2 to n > 2. However it

cannot account for the presence of an eventual order on the response categories. Thus,
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the present research is aimed at verifying the applicability and testing the performance

of a k-median clustering method for extracting polytomous structures from data.

The article is organized as follows. In Section 2 the state of the art of the poly-

tomous extension of KST, of the different dissimilarity measures that can be used as

clustering statistics and of the k-modes algorithm is given. In Sections 3 an adap-

tation of the k-median clustering algorithm for extracting polytomous structures by

the data is described. In Section 4 the relationships between the k-median and the

k-modes algorithms are examined. In Sections 5 and 6 a simulation study and an em-

pirical application are presented, respectively. In both of them the aim was to compare

the performances of k-modes and k-median algorithms in extracting a structure from

polytomous data. Final remarks are given in Section 7.

2 Backgrounds

A brief description of the notions needed in the subsequent sections are given. In

particular, Section 2.1 introduces the basic concepts of polytomous KST. Section 2.2

describes some dissimilarity measures, that is the Hamming and the Manhattan dis-

tances. Finally, in Section 2.3 the k-modes algorithm for dichotomous data sets is

presented.

2.1 Polytomous structures

As mentioned in the introduction, a very first attempt to extend KST to polytomous

items was carried out by Schrepp (1997). In his proposal, for each item q ∈ Q he

introduced more than two response levels, taken from a linearly ordered set (L,6),

and indicating the “quality of the solution” for q. According to Schrepp, a knowledge
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state is a mapping K : Q → L, assigning to each item q ∈ Q an element in L. Only

cases where L is finite are considered in this article. The collection of all the mappings

K : Q→ L is denoted LQ, and a polytomous structure is any nonempty subset K ⊆ LQ.

The mappings in LQ are partially ordered by the pointwise order v such that, given

any two mappings K1, K2 ∈ LQ,

K1 v K2 iff K1(q) 6 K2(q) for all q ∈ Q.

In the subsequent sections, each mappingK ∈ LQ is represented as an n-tuple(x1, x2, . . . , xn),

where positions represent items in Q so that, for v ∈ L, K(q) = v if and only if xq = v.

2.2 Dissimilarity measures

Both the k-modes and the k-median algorithms rely upon appropriate dissimilarity

measures for the data to which they apply. A metric that is often used to measure

dissimilarity between sets in the dichotomous KST is the so-called Hamming distance.

For any two subsets A,B ⊆ Q, it is defined as the cardinality of their symmetric

difference:

dH(A,B) = |A∆B| = |(A \B) ∪ (B \ A)|,

where A∆B is the symmetric distance between the two sets A and B. Of course,

the Hamming distance is also defined in the polytomous case: for any two mappings

X, Y ∈ LQ let

dH(X, Y ) =
∑
q∈Q

δH(X(q), Y (q)), (1)
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where, δH : L× L→ R is such that, for i, j ∈ L,

δH(i, j) =


1 if i 6= j

0 if i = j.

The Hamming distance is a measure of dissimilarity which is independent of how the

elements in the set L are ordered. If the order changes (thus changing also the order

on the elements in LQ), this does not affect the Hamming distance among the elements

in LQ.

A discrepancy measure that depends on the order on the elements in L is the

Manhattan distance. Given two mappings X, Y ∈ LQ, the Manhattan distance equals

the length of the shortest path connecting X to Y in the Hasse diagram of the partially

ordered set (LQ,v). The Manhattan distance between X and Y is obtained as

dM(X, Y ) =
∑
q∈Q

δM(X(q), Y (q)), (2)

where, δM : L× L→ R is such that, for i, j ∈ L,

δM(i, j) = |i↓∆j↓|,

and, for l ∈ L, l↓ = {i ∈ L : i 6 l} is the down set generated by l in the totally

ordered set L. From this definition it follows that the Manhattan distance depends on

the order on L.

It is worth noticing that, given a fixed set of classes, each represented by a state in

the structure K, the two distances may lead to different partitions of the same set of

observed patterns into the classes. This difference strictly depends on the ordered set
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L of levels. Such order is taken into account by the Manhattan distance to calculate

the absolute value of the difference between the elements of the vectors, while it is not

considered by the Hamming distance which aims at calculating the number of different

elements between two vectors, irrespectively of the value of their distance.

For example, consider two states K1, K2 ∈ K and two response patterns R1, R2 ∈ R,

such that K1 = (1, 1, 1, 2), K2 = (1, 2, 1, 0), R1 = (0, 2, 1, 0), R2 = (1, 2, 0, 3). Then we

have:

dH(R1, K2) = 1 < dH(R1, K1) = 3

and

dH(R2, K2) = 2 < dH(R2, K1) = 3.

The Hamming distance assigns both R1 and R2 to the class of K2, because this last is

at a minimum distance from both. On the other hand,

dM(R1, K2) = 1 < dM(R1, K1) = 4,

and

dM(R2, K2) = 4 > dM(R2, K1) = 3.

Hence the Manhattan distance assigns R1 to the class of K2 and R2 to the class of K1.

Comparing the two dissimilarity measures, the Manhattan distance classifies the two

response patterns into two separate classes, whereas the Hamming distance does not

discriminate between them (see Figure 1).

INCLUDE FIGURE 1 ABOUT HERE

The opposite situation is possible too, as illustrated in the following example. Let
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R1 = (0, 2, 1, 0), R2 = (0, 1, 0, 1), K1 = (1, 2, 1, 0), K2 = (0, 1, 0, 6). Then we have:

dH(R1, K1) = 1 < dH(R1, K2) = 3

and

dH(R2, K1) = 4 > dH(R2, K2) = 1.

Therefore, the Hamming distance assigns pattern R1 to the class of K1 and pattern R2

to the class of K2. On the other side

dM(R1, K1) = 1 < dM(R1, K2) = 8

and

dM(R2, K1) = 4 < dM(R2, K2) = 5.

Therefore, both R1 and R2 are assigned to the class of K1 by using a Manhattan

distance. In this case, the Hamming distance discriminates the two response patterns,

whereas the Manhattan distance does not (see Figure 2).

INCLUDE FIGURE 2 ABOUT HERE

These examples show that pattern classification strongly depends on the type of dis-

similarity measure that is used.

2.3 The k-modes algorithm for dichotomous data

The standard k-modes algorithm is an adaptation of the k-means (Hartigan & Wong,

1979) paradigm to the categorical data case. The k-modes algorithm is characterized
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by: (i) the use of a simple matching dissimilarity measure, (ii) the use of mode statistics

to center clusters according to the observed frequencies in the data set.

In this section, the adaptation of the k-modes algorithm developed by de Chiusole

et al. (2017) is described. This procedure was provided for extracting a knowledge

structure from a set of responses of N individuals to dichotomous items. Denote with

the pair (R, F ) the observed data set, where R = 2Q is the power set of Q and

F : R → R is a function assigning observed frequencies to response patterns, with

F (R) ≥ 0 for all R ∈ R, and
∑

R∈R F (R) = N .

Given a starting knowledge structure K1 on Q, this version of the k-modes algorithm

operates in m > 0 iterations. In each of them the algorithm accomplishes two tasks

(let i = 1, 2, . . . ,m indicate iteration number):

(KM1) given Ki, classify the N observed response patterns into |Ki| different clusters,

each of which is uniquely represented by a state K ∈ Ki;

(KM2) adjust each state K ∈ Ki in order to minimize the mean discrepancy between

K and the patterns in the class designated by K. At this point Ki+1 is the

collection of the adjusted states.

Step (KM1) is called “pattern classification”, whereas step (KM2) is called “centroid

adjustment”. Concerning (KM1), given a knowledge structure K on Q, the partition

function f : R × K → R assigns the N observed patterns to |K| classes and satisfies

the following two conditions:

(C1) f(R,K) ≥ 0 for all R ∈ R and K ∈ K,

(C2)
∑

K∈K f(R,K) = F (R) for all R ∈ R.



k-median algorithm 11

Therefore, given each K ∈ K and each R ∈ R, f assigns f(R,K) out of F (R) occur-

rences of response pattern R to the class represented by K. Moreover, the condition

C2 assures that every occurrence of R is assigned to some state K.

The main task of step (KM1) is to detect the partition function f that minimizes

the sum of the within-class dissimilarities

Df (R,K) =
∑
K∈K

∑
R∈R

f(R,K)dH(R,K). (3)

This is obtained by setting f(R,K) > 0 if and only if dH(R,K) = d̂H(R,K), where

d̂H(R,K) = min{dH(R,K ′) : K ′ ∈ K} (4)

is the minimum discrepancy between R and the states in K (de Chiusole et al., 2017).

We observe that the discrepancy is measured by using the Hamming distance.

Concerning step (KM2), that is the knowledge state adjustment, for i > 0, Ki is the

knowledge structure obtained at iteration i of the algorithm, and fi is any minimum

discrepancy partition function for Ki. A state Ki ∈ Ki is adjusted as follows. If the

class of Ki is empty or Ki ∈ {Q, ∅} then Ki+1 = Ki. Otherwise, a new state Ki+1 is

obtained as the element-wise mode in the class represented by Ki.

Let Ki+1 be the collection of all adjusted states, and let fi be any minimum dis-

crepancy partition function for Ki. It is proven that Dfi(R,Ki+1) is minimal in the

sense that there is no knowledge structure K′ on Q, with |K′| = |Ki+1| such that

Dfi(R,K′) < Dfi(R,Ki+1).

It has to be stressed how in both (KM1) and (KM2) the overall discrepancy

Df (R,K) is minimized. More specifically, at each iteration i > 0, in (KM1) the knowl-
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edge structure Ki is set fixed and the partition function fi−1 is replaced by a minimum

discrepancy partition function fi for Ki, thus obtaining Dfi(R,Ki) ≤ Dfi−1
(R,Ki).

Moreover, in (KM2) the partition function fi is set fixed and the knowledge structure

Ki is adjusted so that Dfi(R,Ki+1) ≤ Dfi(R,Ki). The algorithm terminates when this

difference is zero, or below some tolerance value.

This version of the k-modes approach is well suited for the case of unordered cat-

egorical data and it applies to dichotomous data. In this case, in fact, the mode is

the only admissible clustering statistics. In the next section the case in which the

measurement level of the item responses is ordinal is explored.

3 A k-medians algorithm for polytomous structures

The clustering algorithm described in this section is an adaptation of k-modes to ordinal

data in which the Hamming distance is replaced by a Manhattan distance, and the

central tendency measure is the median, rather than the mode. Like the k-modes

algorithm it consists of an iteration of two fundamental steps: the pattern classification

step, and the centroid adjustment step.

Let L be a finite set of linearly ordered levels. The pattern classification step

consists of partitioning the whole set of observed patterns into the classes represented

by the centroids in K ⊆ LQ so that the intraclass dissimilarity is minimum. Given

an observed frequency distribution F : LQ → R, with F (R) ≥ 0 for all R ∈ LQ, a

partition of LQ is any function f : LQ ×K → R such that f(R,K) ≥ 0 for all R ∈ LQ

and all K ∈ K and ∑
K∈K

f(R,K) = F (R),
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for all R ∈ LQ. The goal is to find a partition f for which the sum of the intraclass

dissimilarities

Df (K) =
∑
K∈K

∑
R∈LQ

f(R,K)dM(R,K)

is minimum.

Pattern classification is based on a suitable minimum discrepancy partition func-

tion, which is defined as follows. The Manhattan-based minimum discrepancy between

an observed pattern R ∈ LQ and a whole structure K ⊆ LQ, is

d̂M(R,K) = min{dM(R,K) : K ∈ K}. (5)

A Manhattan-based minimum discrepancy partition function is any partition function

fM : LQ ×K → R satisfying, for all R ∈ LQ and K ∈ K,

fM(R,K) > 0 ⇐⇒ dM(R,K) = d̂M(R,K)

Thus fM(R,K) distributes the observed frequency of R among states in K that are at

a minimum discrepancy from it, when this discrepancy is measured by a Manhattan

distance.

The objective of the centroid adjustment step is to update the class centroids K ∈

K, so that the updated set K′ of centroids is such that the difference Df (K)−Df (K′) is

maximum among all possible choices of K′ having the same size as K. For every single

centroid K ∈ K the updating consists of replacing K with the “elementwise median”

K̂ ∈ LQ of the class represented by K. The elementwise median is defined as follows.

Denote with

CK = {R ∈ LQ : fM(R,K) > 0}
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the class represented by state K. Moreover, given any level l ∈ L, and any item q ∈ Q,

let

CKql = {R ∈ CK : R(q) = l}

the collection of all the patterns in CK assigning level l to item q. Finally, define

fM(CK) =
∑
R∈CK

fM(R,K),

and

fM(CKql ) =
∑
R∈CKql

fM(R,K).

We observe that fM(CK) is the size of (number of response patterns in) class CK ,

whereas fM(CKql ) is the total number of patterns in CK assigning level l to item q.

Then level l ∈ L is median at item q ∈ Q in the class CK if both the following

conditions hold true:
l∑

i=0

fM(CKqi ) ≥
1

2
fM(CK)

and
l−1∑
i=0

fM(CKqi ) <
1

2
fM(CK),

where l−1 is the lower neighbor of l in the linearly ordered set L. Then, the elementwise

median K̂ is obtained by taking the median at q in CK for all q ∈ Q.

An algorithm based on these two steps has been implemented in MATLAB and the

code can be found in the Supplementary Materials.
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4 Relationships between k-median and k-modes

Recalling that L is a finite linearly ordered set, let L+ = L \ {minL}. In this section,

it is shown that there exists a precise isometry between the “polytomous” metric space

(dM , L
Q) and the “dichotomous” metric space (dH , 2

Q×L+
). By way of such an isometry,

subsets of “polytomous patterns” in LQ can be represented by appropriate subsets of

dichotomous patterns in 2Q×L+
. In practice, any polytomous data set can be bijectively

converted into a dichotomous one, in which distances are preserved. The isometry is

then used to show that an application of the k-median algorithm to a polytomous data

set and an application of the k-modes algorithm to the dichotomous representation of

the same data set will essentially produce the same results.

4.1 Polytomous versus dichotomus representation

A dichotomous representation of a mapping K ∈ LQ is any injective function r : LQ →

2Q×L+
. The nominal and ordinal dichotomous representations are considered here.

The nominal dichotomous representation is a function nom such that, for K ∈ LQ,

nom(K) = {(q, l) ∈ Q× L+ : l = K(q)}.

The ordinal dichotomous representation is a function ord such that

ord(K) = {(q, l) ∈ Q× L+ : l 6 K(q)}.

Both functions are injective. Let nom(LQ) = {nom(K) : K ∈ LQ} denote the image

of LQ under nom, and ord(LQ) its image under ord. Then the two functions n :

LQ → nom(LQ) and o : LQ → ord(LQ) such that, for K ∈ LQ, n(K) = nom(K) and
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o(K) = ord(K) are bijections.

Theorem 1. The ordinal dichotomous representation ord is an order-homomorphism

of LQ into 2Q×L+
. In particular, the function o is an order-isomorphism.

Proof. It suffices to show that, for K1.K2 ∈ LQ the equivalence

K1 v K2 ⇐⇒ o(K1) ⊆ o(K2)

holds true. Necessity: suppose K1 v K2. Then K1(q) 6 K2(q) for all q ∈ Q. From

(q,K1(q)) ∈ o(K1), K1(q) 6 K2(q) and (q,K2(q)) ∈ o(K2) we infer (q,K1(q)) ∈ o(K2).

Thus o(K1) ⊆ o(K2). Sufficiency: suppose o(K1) ⊆ o(K2) and let (q, l) ∈ o(K1) be

such that l′ 6 l for all (q, l′) ∈ o(K1), so that K1(q) = l. Since o(K1) ⊆ o(K2) we have

(q, l) ∈ o(K2), entailing that K1(q) = l 6 K2(q). Since this holds for any arbitrary

q ∈ Q, we conclude that K1 v K2.

The nominal dichotomous representation is not a homomorphism in general. To

give an example, let K1 = (1, 2, 0) and K2 = (1, 3, 0). Then nom(K1) = {(1, 1), (2, 2)}

whereas n(K2) = {(1, 1), (2, 3)}. Thus we see that K1 v K2, but n(K1) 6⊆ n(K2).

We are here interested in dichotomous representations that preserve distances in

a well defined sense. A dichotomous representation r is an isometry (or distance

preserving) if there are two metrics µ1 on LQ and µ2 on 2Q×L+
such that

µ1(K1, K2) = µ2(r(K1), r(K2))

for all K1, K2 ∈ LQ. The function r is a global isometry if it is bijective.



k-median algorithm 17

Theorem 2. The ordinal dichotomous representation ord is an isometry of LQ into

2Q×L+
. Moreover, the function o is a global isometry. More precisely, for K1, K2 ∈ LQ

it holds that

dH(o(K1), o(K2)) = dM(K1, K2).

Proof. For K1, K2 ∈ LQ, let O1 = o(K1) and O2 = o(K2). For q ∈ Q define q∗ =

{q} × L+ = {(q, l) : l ∈ L+}. If h(K1(q)) ≤ h(K2(q)), then O1 ∩ q∗ ⊆ O2 ∩ q∗, with

|(O2 ∩ q∗) \ (O1 ∩ q∗)| = h(K2(q))− h(K1(q)) and |(O1 ∩ q∗) \ (O2 ∩ q∗)| = 0. Thus

|(O2 ∩ q∗) \ (O1 ∩ q∗)|+ |(O1 ∩ q∗) \ (O2 ∩ q∗)| = |h(K2(q))− h(K1(q))|.

It should be observed that the equality holds even in the case h(K1(q)) ≥ h(K2(q)).

Summing up for all p ∈ Q,

∑
p∈Q

(|(O2 ∩ p∗) \ (O1 ∩ p∗)|+ |(O1 ∩ p∗) \ (O2 ∩ p∗)|) =
∑
p∈Q

|h(K2(p))− h(K1(p))|

which gives

∑
p∈Q

|((O2 ∩ p∗) \ (O1 ∩ p∗)) ∪ ((O1 ∩ p∗) \ (O2 ∩ p∗))| = dM(K1, K2).

Observing that {O1 ∩ p∗ : p ∈ Q} is a partition of O1, {O2 ∩ p∗ : p ∈ Q} is a partition

of O2 we can write

∣∣∣∣∣⋃
p∈Q

((O2 ∩ p∗) \ (O1 ∩ p∗)) ∪
⋃
p∈Q

((O1 ∩ p∗) \ (O2 ∩ p∗))

∣∣∣∣∣ = dM(K1, K2)
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and then

|(O1 \O2) ∪ (O2 \O1)| = dM(K1, K2).

But the left-hand side term of this last equation is the Hamming distance between

O1 = o(K1) and O2 = o(K2), hence dH(o(K1), o(K2)) = dM(K1, K2).

We observe that the nominal dichotomous representation n is not an isometry in

general. Considering again K1 = (1, 2, 0) and K2 = (1, 3, 0) we have dM(K1, K2) = 1,

whereas dH(n(K1), n(K2)) = dH({(1, 1), (2, 2)}, {(1, 1), (2, 3)}) = 2. We do not obtain

an isometry even when dM is replaced by dH for measuring distances in LQ. In fact

dH(K1, K2) = 1.

As long as the binary representation is o, the isometry is only obtained if the

Manhattan distance is mapped to the Hamming distance. A Hamming to Hamming

mapping would not work: dH(o(K1), o(K2)) 6= dH(K1, K2) in general. This observation

follows at once from Theorem 2 and from the fact that dH(K1, K2) 6= dM(K1, K2) in

general.

4.2 k-modes mimics k-median

For X ∈ ord(LQ) and O = ord(K), define the minimum discrepancy function

d̂H(X,O) = min{dH(X, Y ) : Y ∈ O}.

A Hamming-based minimum discrepancy partition is any function fH : ord(LQ) ×

ord(K)→ R satisfying:

(1) fH(X, Y ) > 0 iff dH(X, Y ) = d̂H(X,O) for all X ∈ ord(LQ) and Y ∈ O;
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(2)
∑

Y ∈ord(K) fH(X, Y ) = F (X) for all X ∈ ord(LQ),

where F (X) = F (o−1(X)) is the observed frequency of X.

Theorem 3. The function fH defined by fH(o(R), o(K)) = fM(R,K) for all R ∈ LQ

and all K ∈ K, is a Hamming-based minimum discrepancy partition.

Proof. The fact that d̂H(o(R), ord(K)) = d̂M(R,K) for all R ∈ LQ follows at once

from Theorem 2. Then, for X ∈ ord(LQ) and Y ∈ ord(K) we have fH(X, Y ) > 0

iff fM(o−1(X), o−1(Y )) > 0 iff dM(o−1(X), o−1(Y )) = d̂M(o−1(X),K) iff dH(X, Y ) =

d̂H(X, ord(K)). Hence fH is a (Hamming-based) minimum discrepancy partition.

The theoretical results obtained so far show that, in the pattern classification step,

a Manhattan distance based pattern classification and its ordinal dichotomous repre-

sentation are equivalent. In the remainder of the section we show that an equivalence

exists also in the centroid adjustment step. Let o(LQ) be the image of LQ in 2Q×L+

under the transformation o. Let moreover (O, G) be such that O is any nonempty

subset of o(LQ) and G : O → R+ is a frequency distribution. For q ∈ Q and l ∈ L+,

denote with

Oql = {X ∈ O : (q, l) ∈ X}

the collection of all subsets in O containing the pair (q, l). Then the pair (q, l) ∈ Q×L+

is modal in (O, G) if it belongs to the majority of the subsets in O, that is, when the

condition ∑
X∈Oql

G(X) ≥ 1

2

∑
Y ∈O

G(Y ).

is satisfied. Then we have the following

Theorem 4. Let C be any nonempty subset of LQ. Then the pair (q,m) ∈ Q× L+ is

modal in o(C) if and only if m is median at q in C.
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Proof. It follows from the definition of the function o that, for R ∈ LQ and (q, l) ∈

Q × L+, (q, l) ∈ o(R) ⇐⇒ l 6 R(q). Therefore, recalling that o is a bijection, and

letting O = o(C),

o−1(Oql) = {R ∈ o−1(O) : l 6 R(q)}.

Hence

o−1(Oql) = {R ∈ C : l 6 R(q)}.

Defining l↑ = {i ∈ L+ : l 6 i}, this can be written as

o−1(Oql) =
⋃
i∈l↑
Cqi.

Thus we can write:

∑
X∈Oql

F (o−1(X)) =
∑

R∈o−1(Oql)

F (R)

=
∑

R∈
⋃

i∈l↑ Cqi

F (R)

=
∑
i∈l↑

∑
R∈Cqi

F (R).

Thus, letting G = F ◦ o−1, the pair (q, l) is modal in (O, G) if and only if

∑
i∈l↑

∑
R∈Cqi

F (R) ≥ 1

2

∑
Y ∈o(C)

G(Y ) =
1

2

∑
Z∈C

F (Z).

Let m ∈ L+ be such that, for q ∈ Q,

∑
X∈Oqm

G(X) ≥ 1

2

∑
Y ∈O

G(Y ),
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that is, m is the maximum level in L+ at which (q,m) is modal in (O, G). Furthermore,

denote by m+ 1 the upper neighbor of m in the linearly ordered set L. Then

∑
X∈Oqm

G(X) ≥ 1

2

∑
Y ∈O

G(Y ) ⇐⇒
∑
i∈m↑

∑
R∈Cqi

F (R) ≥ 1

2

∑
R∈C

F (R)

⇐⇒
∑

i∈m↓\{m}

∑
R∈Cqi

F (R) <
1

2

∑
R∈C

F (R)

and

∑
X∈Oq,m+1

G(X) <
1

2

∑
Y ∈O

G(Y ) ⇐⇒
∑

i∈(m+1)↑

∑
R∈Cqi

F (R) <
1

2

∑
R∈C

F (R)

⇐⇒
∑
i∈m↓

∑
R∈Cqi

F (R) ≥ 1

2

∑
R∈C

F (R).

showing that (q,m) is modal in O iff m is median at q in o−1(O).

Suppose the polytomous data set (R, F ) is transformed into a dichotomous one

by means of the ordinal dichotomous representation o, obtaining the data set O =

o(R). Taken together, Theorems 3 and 4 imply that an application of the k-median

algorithm to (R, F ) is equivalent to an application of the k-modes algorithm to the

ordinal dichotomous representation (O, F ).

5 Simulation Study: Comparison between k-modes

and k-median algorithms

In this study, the performance of k-modes and k-median algorithms were compared

in extracting a structure from polytomous data. The aim was to investigate in which
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conditions (i.e., error in the data, sample size, etc.) they perform equally well and in

which others they perform differently. In particular, the interest was to find if there

are circumstances in which one algorithm performs better than the other.

5.1 Aims and hypotheses

Theorems 3 and 4 defined in Section 4.1 imply that an application of the k-median

algorithm to a polytomous data set (R, F ) is equivalent to an application of the k-

modes algorithm to the ordinal dichotomous representation (O, F ) of those data. Thus,

the first aim was to provide evidence for this theoretical result.

One of the core assumptions of the probabilistic framework of the dichotomous

KST, is that the response pattern of a subject and her knowledge state can differ in

some items. In particular, it is plausible to assume that some careless errors (i.e., the

item belongs to the state but not to the response pattern) and/or some lucky guesses

(i.e., the item belongs to the response pattern but not to the state) might arise.

In the polytomous framework of KST, such type of errors have to be redefined.

Given any item q and any two levels i, j ∈ L, let pqij = P (R(q) = j|K(q) = i) be the

conditional probability that in the pair 〈R,K〉, response pattern R assigns level j to

item q, given that state K assigns level i to q. Thus, for each item q and for each level

i ∈ L,
∑

j∈L pqij = 1. It is worth noticing that when R(q) = K(q) no item error is

observed, when R(q) > K(q) the observed response is an overrate of the true response,

whereas when R(q) < K(q) the observed response is an underrate of the true response.

Since the item response scale L is assumed to be ordinal, it is plausible that, as the

“distance” of the observed level from the true one increases, its probability decreases.

We call this assumption δ–monotonicity.



k-median algorithm 23

Let δ : L×L→ R be a metric on the set L of levels. A function f : L×L→ (0, 1)

is said to be δ–monotone if the implication

δ(i, j) ≤ δ(i, k) =⇒ f(i, j) ≥ f(i, k)

holds true for all i, j, k ∈ L. The form of δ–monotonicity much depends on the chosen

metric δ. When L is a finite set, the valid metric is the Hamming distance. If, further-

more, L is totally ordered then the Manhattan distance can also be applied. In the

sequel, a function f is δH–monotone if the distance is Hamming and it is δM–monotone

if the distance is Manhattan.

Given any metric δ, we say that the probabilities pqij, q ∈ Q, i, j ∈ L, respect

δ–monotonicity if the following implication holds for all q ∈ Q and all i, j, k ∈ L:

δ(i, j) ≤ δ(i, k) ⇐⇒ pqij ≥ pqik.

Furthermore, we say that a population respects δ–monotonicity if this last is respected

by the probabilities pqij in that population.

The hypothesis of the simulation study is that, when the data set is extracted

from a population respecting δM–monotonicity, the k-median algorithm performs better

than k-modes. This is based on the fact that the median is a central tendency index

that minimizes the Manhattan distance, whereas the mode minimizes the Hamming

distance.
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5.2 Data set generation process and simulation design

Let Q be the set of items and (L,6) be a linearly ordered set, where L = {0, 1, · · · , l}

is the set of the response categories of the items q ∈ Q. Each response pattern R

of a data set was generated as follows. Let ⊥|Q| be the |Q|-elements vector of zeros,

and >|Q| = (l, l, · · · , l). A structure Kt and a probability distribution πKt on Kt were

assumed. The structure Kt was obtained by computing {⊥|Q|,>|Q|} ∪ P , where P

was generated at random, using a sampling without replacement on the collection

L|Q| \ {⊥|Q|,>|Q|}. It was assumed that πKt was the uniform distribution, so that each

state K ∈ Kt had the probability 1/|Kt| to be observed.

Thereafter, a certain number N of pairs 〈R,K〉 were generated. For each pair, the

state K was sampled with replacement from the collection Kt of states, by using πKt as

the multinomial distribution; whereas, the response pattern R was obtained through

the introduction of some amount of error in K. Given any item q and any two levels

i, j ∈ L, let pqij = P (R(q) = j|K(q) = i) be the conditional probability that in the

pair 〈R,K〉, response pattern R assigns level j to item q, given that state K assigns

level i to q.

The data were generated in two different scenarios. In the former, both δH– and

δM–monotonicity were respected by all probabilities pqij. In the latter, only δH–

monotonicity was respected. For each item q and each level i, the probabilities pqij were

generated by using the following procedure. First the probability pqii was randomly

sampled from a uniform distribution in the interval (a, b), 0 < a < b < 1. Then, a

(|L| − 1)-element vector x was generated by randomly sampling each of its elements

from the uniform distribution in the interval (0, 1). Then the (|L| − 1)-element vector
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of the probabilities pqij, for i 6= j was obtained by the linear transformation

(1− pqii)x∑|L|−1
t=1 xt

.

In this way, for each level i ∈ L,
∑

j∈L pqij = 1. Concerning the probabilities pqij,

i 6= j, in the former scenario, they were assigned to the different levels j in such a way

that as the distance δM(i, j) increases, the probability pqij decreases. Whereas, in the

latter scenario they were assigned to the different levels j in such a way that as the

distance δM(i, j) increases, the probability pqij increases. Hence, in the former scenario

the δH-monotonicity assumption held in the data, whereas, in the latter scenario the

δM -monotonicity held.

In both scenarios, a domain Q of 15 items and an item response scale L of four

levels were assumed. The data sets were generated by manipulating three different

variables:

• the number of states in the true structure: |Kt| ∈ {500, 1000};

• the probability pqii, that was at least {.95, .85, .75} for each item q ∈ Q and for

each level i ∈ L;

• the sample size N : 2, 000 or 5, 000.

In the whole, a number of 2 (structures) × 3 (pqii probabilities) × 2 (sample sizes) ×

2 (monotonicity) = 24 different conditions were considered. Table 1 summarizes the

simulation design.

INCLUDE TABLE 1 ABOUT HERE

For each condition, 100 different samples were generated.
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5.3 Performance Measures

The k-modes and k-median algorithms were applied to each of the 24 × 100 = 2, 400

samples, for recovering the true structures Kt. Furthermore, the k-modes algorithm was

applied to the ordinal dichotomous representation of each sample. In this way, for each

sample, three different structures were extracted: K1
e was extracted by k-modes applied

to polytomous data, K2
e was extracted by k-medians applied to polytomous data, and

K3
e was extracted by k-modes applied to the ordinal dichotomous representation of the

polytomous data (see Figure 6).

INCLUDE FIGURE 6 ABOUT HERE

Recalling that the algorithms improve an initial set I of states, this set was the same

for both algorithms and it was obtained for each of the 2, 400 simulated samples by

a random selection of a number of |Kt| response patterns. This choice was made for

allowing the algorithms to operate in the same situation.

The comparison between the performances of the two algorithms was accomplished

by using two different indexes. Both of them compare the true structure Kt with the

structure Ki
e, with i ∈ {1, 2, 3}, extracted from the data by a particular algorithm.

These indexes were:

1. The true positive rate (TPR), that is the proportion of true states K ∈ Kt

belonging to the extracted structure Ki
e. Formally:

TPR =
|Ki

e ∩ Kt|
|Kt|

; (6)

2. The Manhattan and the Hamming average discrepancies between the set of the
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states K ∈ Ki
e and the true structure Kt, that is:

d(Ki
e,Kt) =

1

|Ki
e|
∑
K∈Ki

e

d(K,Kt), (7)

where d(K,Kt) = minK′∈Ktδ(K,K
′) is the minimum of the distance between the

state K ∈ Ki
e and the true structure Kt. Such distance can be either Manhattan

(δ = δM) or Hamming (δ = δH).

In each condition of the study, average values (and the corresponding standard de-

viations) of both indexes were computed across the 100 simulated samples. Then,

the performance indexes obtained by using the two algorithms were compared to one

another.

5.4 Results

Table 2 displays the results for all the 24 conditions obtained by applying the k-

modes (top 12 rows of the table) and the k-median (the middle 12 rows of the table)

algorithms to the polytomous data, and by applying the k-modes algorithm to the

ordinal dichotomous transformation of the polytomous data (the bottom 12 rows of

the table).

[INSERT TABLE 2 ABOUT HERE]

Column 1 displays the number of the first 12 conditions in which the scenario was the

δM -monotonicity, whereas Column 5 displays the number of the second 12 conditions

in which the scenario was the δH-monotonicity. For each index of TPR, dM(Ki
e,Kt)

(denoted in the table as dM) and dH(Ki
e,Kt) (denoted in the table as dH), the average

values (standard deviations) computed across the 100 simulated samples are displayed,
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respectively, in Columns 2 to 4, for the δM -monotonicity scenario, and in Columns 6

to 8 for the δH-monotonicity scenario.

In order to facilitate comparisons between the performances of the two algorithms,

Figure 3 and Figure 4 have been produced from results displayed in Table 2. Figure 3

shows the variation of the TPR as the sample size, the cardinality of the true structure

and the amount of error increase. Each panel of the figure displays the amount of

error on the x-axis. Solid, dashed and dotted lines refer, respectively, to k-modes and

k-median algorithms applied to polytomous data and to k-modes applied to the ordinal

dichotomous transformation of the polytomous data. Each of the two groups of curves

represents the results obtained with the two cardinalities |Kt| = 500 or 1,000. Left

panels show the results obtained when δM -monotonicity holds in the data (that is,

Condition numbers 1 to 12 of Table 2), whereas right panels show the results when

δH-monotonicity holds in the data (that is, Condition numbers 13 to 24 of Table 2).

Upper panels are referred to conditions in which the sample size was 2, 000, instead

bottom panels are referred to conditions in which the sample size was 5, 000.

[INSERT FIGURE 3 ABOUT HERE]

From the figure, several interesting results can be pointed out. By comparing the per-

formance of the same algorithm in the two different scenarios δM -monotonicity (panels

on the left) and δH-monotonicity (panels on the right), it can be noted that the k-modes

algorithm (solid lines) performs equally well, obtaining same percentages of TPR in

most conditions. This is because the modality condition (that is the only require-

ment for the k-modes algorithm) is respected in both the δH- and δM -monotonicity

scenarios. Differently, the k-median algorithm (dotted lines) improves, as expected, its

performance in passing from a δH-monotonicity to a δM -monotonicity scenario, espe-
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cially when the amount of error in the data increases.

Concerning the k-modes algorithm applied to the ordinal dichotomous transforma-

tion of polytomous data (dashed lines), it obtains, as expected, performances that are

essentially equal to those obtained by the k-median algorithm (dotted lines) applied

to polytomous data. This is true regardless of the amount of error in the data, of the

sample size and of the scenario.

By comparing the k-modes (solid lines) and the k-median (dotted lines) algorithms,

it is clear that, when the δH-monotonicity holds in the data, k-modes performs better

than k-median. The opposite is observed in the δM -monotonicity scenario, where the k-

median algorithm performs better, in almost all the conditions. The difference between

the two is negligible with sample size N = 2, 000, but it is considerable with sample

size N = 5, 000, especially when the amount of error in the data increases.

Figure 4 is obtained by fixing the sample size to 2, 000 and it displays the results on

the average discrepancies dM(Ki
e,Kt) and dH(Ki

e,Kt), where i ∈ {1, 2, 3}, between the

structures Ki
e extracted by the algorithms and the true structures Kt. In the figure,

upper panels refer to the Manhattan discrepancy, bottom panels refer to the Hamming

average discrepancy, left panels refer to the δM -monotonicity scenario and right panels

refers to δH-monotonicity scenario. In each panel, the discrepancy is plotted as a

function of the amount of error in the data. The reference of the curve types is the

same of Figure 3.

INCLUDE FIGURE 4 ABOUT HERE

From the results obtained by the discrepancy measures, other interesting comments

arise. By looking at the Manhattan average discrepancy (upper panels), the results on

the performance of the algorithms are coherent with those obtained for the TPR index.
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Indeed, when the δM -monotonicity holds in the data, the k-median algorithms (dotted

lines) obtains a better performance than the one of k-modes (solid lines), extracting

structures that have a smaller distance to the true one. This is particularly true when

the amount of error is high. This trend is reversed in the δH-monotonicity scenario, in

which k-modes (solid lines) performs better than k-median (dotted lines). Moreover,

the k-modes algorithm applied to the ordinal transformation of the polytomous data

(dashed lines) obtains, as expected, very similar results as those obtained by k-median.

By looking at the Hamming average discrepancy (bottom panels), it can be noted

that k-modes algorithm obtains very similar results in the two scenarios. Instead, the

other two obtain systematically lower distances, in passing from the δH-monotonicity

to δM -monotonicity. Again, when the data are δM -monotone, the k-median algorithms

and that of k-modes applied to the ordinal dichotomous transformation of polytomous

data improve their performances.

By fixing the monotonicity “type”, the Manhattan and the Hamming discrepancies

for the k-modes algorithm applied to the ordinal dichotomous transformation of the

polytomous data are equal one another. Moreover, the Hamming discrepancy for the k-

modes algorithm applied to the ordinal dichotomous transformation of the polytomous

data is very close to the Manhattan discrepancy obtained for the k-median algorithm.

The former result only confirms that when data are dichotomous the Manhattan and

the Hamming distance are exactly the same. The latter results confirms what stated

by Theorems 3 and 4.

There seems to be a disagreement between the upper- and the lower-left panels

concerning the performances of the two algorithms. In the upper panel the performance

of k-median is slightly better than that of k-modes. Whereas, in the lower panel very

similar performances are obtained. The only difference between the two panels is the
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metric used for assessing performances, that is, Manhattan in the upper panel and

Hamming in the lower panel. The disagreement suggests that one of the two has to

be wrong. The Hamming distance is not affected by the order on the levels, in the

sense that any permutation of this order would result in the same Hamming average

discrepancy. This is not the case for the Manhattan discrepancy. While the order in

the δH-monotonicity is arbitrary, in the δM -monotonicity there is only one order. Thus,

the correct metric is the Manhattan distance.

5.5 Conclusion

Concerning the aims and the hypothesis formulated at the beginning of this section,

both of them are reached. In particular, by applying the k-modes algorithm to the ordi-

nal dichotomous transformation of polytomous data, similar results to those obtained

by applying the k-median algorithm to the polytomous data are obtained by using

both the TPR and the discrepancy measures. Furthermore, simulation results showed

that when the δM -monotonicity holds in the data, the k-median algorithm seems to

overperform the k-modes algorithm, confirming our hypothesis. Summarizing, it seems

that the scenario in which the δM -monotonicity condition is respected by the data is

the more natural one for applying the k-median algorithm.

6 Empirical Application

The main aim was to apply both the k-modes and the k-median algorithms for extract-

ing a polytomous structure from a pre-existing data set. It has to be highlighted that

the two algorithms can only be applied if the cardinality of the structure (number of

clusters) is known. In an empirical application this is usually not the case. Therefore,
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a set of increasing cardinalities were evaluated and a “best” one was selected according

to distance measures. Moreover, a cross-validation procedure has been used in order

to avoid issues of overfit of the extracted structures. The details of all these aspects

are described below.

6.1 The questionnaire and the data

The application was carried out starting from a set of answers to the Italian version

of the reduced form of the State Trait Anxiety Inventory form Y (STAI-Y; Pedrabissi

& Santinello, 1989). It is a psychological self-report questionnaire investigating the

“state” anxiety and it consists of 10 items rated on a 4-point Likert scale, ranging

from “not at all” (coded as 0) to “very much” (coded as 3), so that L = {0, 1, 2, 3}.

Six items of the test have a positive wording (i.e., the higher the level, the higher the

state anxiety), whereas the others have a negative wording (i.e., the higher the level,

the lower the state anxiety). The responses to the latter items were re-scored prior to

analyses.

The sample was composed of N = 3, 673 participants that signed the informed

consent and were asked to answer to all the items of the questionnaire. No time limit

was imposed.

6.2 Methods

Following cross-validation techniques, the sample was randomly partitioned into two

complementary sets: a training set T , composed of about the two thirds of the par-

ticipants and used for extracting the structure; a validation set V , composed by the

remaining participants and used for testing the extracted structure.
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One hundred different bipartitions {Vj, Tj}, j ∈ {1, . . . , 100} of the original data

set were generated and for each of them twenty different conditions were considered.

What varied across the twenty conditions was the cardinality of the initial set Ij of

states on which the algorithms started, which varied in the interval {50, 100, . . . , 1000}

with a step of 50. The two algorithms k-modes and k-median where applied to each

training set Tj.

In each of the 100 bipartitions and in each of the twenty conditions, the two poly-

tomous structures Kk-modes and Kk-median were extracted from the data through the two

algorithms. A total number of 100 (bipartitions) × 20 (conditions) × 2 (algorithms)

= 4, 000 different structures were obtained.

The performances of the algorithms and, thus, the corresponding extracted struc-

tures can be compared by using the two statistics D(R,K) and D(K,R). They allow

to compute the “distance” between the validation set Vi and the extracted structures.

A description of how the two distances D(R,K) and D(K,R) can be computed follows.

For each R ∈ R, the minimum Hamming discrepancy d̂H(R,K) and the minimum

Manhattan discrepancy d̂M(R,K) were computed as in Equations (4) and (5), respec-

tively. Performing this computation for all patterns in R, a frequency distribution of

the minimum discrepancies is obtained. This distribution is referred to as the Hamming

discrepancy distribution (or, respectively, as the Manhattan discrepancy distribution)

for the data set R and the polytomous structure K.

Finally, a discrepancy index from R to K is obtained by computing the mean of

this discrepancy distribution. For i ∈ {M,H},

Di(R,K) =
1

N

∑
R∈R

d̂i(R,K)F (R). (8)
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The Di(R,K) discrepancy equals zero whenever R ⊆ K. For the Hamming distance,

the theoretical maximum of this index is b|Q|/2c. For the Manhattan distance the

theoretical maximum distance for each item q ∈ Q between R(q) and K(q) is b(|L| −

1)/2c. The theoretical maximum value of the discrepancy Di(R,K) is obtained when

the structure is {⊥|Q|,>|Q|}, and its value depends on both the number of levels l ∈ L

and the number of items q ∈ Q according to the following general formula:

Di(R,K)max =

⌊
|Q|
2

⌋(⌊
|L| − 1

2

⌋
+

⌈
|L| − 1

2

⌉)
+

(
|Q| − 2

⌊
|Q|
2

⌋)⌊
|L| − 1

2

⌋
.

It has to be noted that in general b(|L| − 1)/2c + d(|L| − 1)/2e = |L| − 1. Therefore,

the formula could be rewritten as

Di(R,K)max =

⌊
|Q|
2

⌋
(|L| − 1) +

(
|Q| − 2

⌊
|Q|
2

⌋)⌊
|L| − 1

2

⌋
. (9)

Let |Q| be an even number and |L| be an odd number. Then the state at maximum

distance from {⊥|Q|,>|Q|} has all the items at distance (|L|− 1)/2 from any of the two

extreme states. Thus

Di(R,K)max = |Q| |L| − 1

2
.

In this case, the second addend of Equation (9) is 0, since whenever |Q| is even we have

that |Q| = (2b(|Q|)/2c). Along these lines, if both |Q| and |L| are even numbers, then

the state at a maximum distance would have half of its states at a distance (|L| − 1)/2

from ⊥|Q| and half of the items at the same distance from >|Q|. The resulting formula

is

Di(R,K)max =
|Q|
2

(⌊
|L| − 1

2

⌋
+

⌈
|L| − 1

2

⌉)
,
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that is again

Di(R,K)max = |Q| |L| − 1

2
.

Moreover, if both |L| and |Q| are odd numbers, the state at maximum distance from

{⊥|Q|,>|Q|} has a number (|Q| − 1) of items that are at distance (|L| − 1)/2 from

any of the extreme states. Moreover, since the number of items is odd we have that

|Q| − (2b(|Q|)/2c) = 1. Thus, there must be a further item necessarily at a distance

(|L| − 1)/2 from any of the two extreme states. Thus,

Di(R,K)max = (|Q| − 1)
|L| − 1

2
+
|L| − 1

2
.

Finally, when |L| is even and |Q| is odd we have that

Di(R,K)max =

⌊
|Q|
2

⌋(⌊
|L| − 1

2

⌋
+

⌈
|L| − 1

2

⌉)
+

⌊
|L| − 1

2

⌋
,

which is Equation (9).

The statistic Di(K,R), comparing the extracted structure K with the set R of

response patterns, is obtained by:

Di(K,R) =
1

|K|
∑
K∈K

d̂i(K,R), (10)

where d̂i(K,R) = min{di(K,R) : R ∈ R, F (R) > 0}.

For each of the 4, 000 extracted polytomous structures the statistics Di(K,R) and

Di(R,K) have been computed by using both the Manhattan and the Hamming dis-

crepancy indexes.

With the aim of selecting the “best structure”, a discrepancy index based on the
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two discrepancies Di(R,K) and Di(K,R) was computed as follows (in the sequel we

drop the index i for notational convenience). Let K be the collection of all the knowl-

edge structures obtained by one of the k-modes and k-median algorithms. For each

knowledge structure K ∈ K define the discrepancy

V (K,R) = max{D(R,K), D(K,R)}.

Furthermore, given any z ≥ 0, define the set

Hz = {K ∈ K : V (K,R) ≤ z}.

This set contains all knowledge structures K ∈ K for which both distances D(R,K)

and D(K,R) are less or equal to a given z. We seek at finding the smallest value zmin

for which the set Hzmin
is nonempty:

zmin = min{z ∈ R : Hz 6= ∅}.

The structures contained in Hzmin
are regarded as “best” in the sense that for any

other structure not in Hzmin
at least one of the two distances D(R,K) or D(K,R) is

higher than zmin.

Proposition 1. The smallest value zmin such that Hzmin
is nonempty is the smallest

value of V (K,R) across all K ∈ K, that is

zmin = min
K∈K

V (K,R)

= min
K∈K

max{D(R,K), D(K,R)}.
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Proof. Let vmin = minK∈K V (K,R) and suppose zmin > vmin. Then there must be

K ∈ K with V (K,R) = vmin and hence Hvmin
6= ∅, which contradicts the definition of

zmin. Hence zmin ≤ vmin. Suppose now vmin > zmin. Then there is K ∈ Hzmin
⊆ K

with V (K,R) < vmin, which contradicts the definition of vmin. Hence vmin ≤ zmin.

Thus vmin = zmin.

Proposition 1 provides a practical way of obtaining zmin. It is just the minimum of

the discrepancy V (K,R). The knowledge structures K ∈ K for which V (K,R) = zmin

are regarded as “best”. According to a parsimony principle, if more than a single

knowledge structure satisfy this condition, the one with the smallest cardinality is

selected.

The procedure described so far was applied by using both Kk-modes and Kk-median

and both the Manhattan and the Hamming distance, obtaining thus four different

“best” structures.

6.3 Results

Figure 5 shows the results obtained by the two algorithms for the zmin index. The left

panel of the figure displays the results obtained by using the Manhattan discrepancy

index, whereas right panel shows those obtained by using the Hamming discrepancy

index. Solid and dotted lines refer to the performances of k-modes and k-median

algorithms applied to the (original) polytomous data, respectively. Dashed line refers

to the performance of k-modes applied to the ordinal dichotomous transformation of

the data. The cardinality of the initial set of states I are on the x-axis.

[INSERT FIGURE 5 ABOUT HERE]
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The results obtained on the two discrepancy indexes are quite similar, with the excep-

tion of the results obtained with k-modes applied to the dichotomous transformation

of the data (i.e., for the Manhattan distance its performance is quite similar to those of

k-median, for the Hamming distance its performance is the worst). This is an expected

result since the Manhattan and the Hamming distances, computed on the dichotomous

data are the same.

Comparing the results of the algorithms when they are applied to the original data,

the one extracting the structure with the smallest value of zmin is k-median, whereas

k-modes obtained a worse performance. Nevertheless, both the algorithms extracted

a structure having the same cardinality, that is 150. Finally, it should be highlighted

that the value obtained for the zmin is remarkably low (i.e., less than 1.5) for both the

algorithms.

Interpreting these results in view of what found in the simulations, it seems that

the δM -monotonicity holds in the data. This means that there is evidence about the

assumption of a linear order among the response categories of the item response scale

L of the test (i.e., 4-point Likert scale, from “not at all” to “very much”).

7 Final remarks

In the present research, an adaptation of the k-median clustering algorithm for extract-

ing (knowledge) structures from polytomous data has been proposed. It is an extension

of k-modes to ordinal data in which the Hamming distance is replaced by the Manhat-

tan distance, and the central tendency measure is the median, rather than the mode.

Like the k-modes algorithm, it consists of an iteration of two steps. The former is

the pattern classification step and it consists of partitioning the whole set of observed
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patterns into the classes represented by centroids that minimize the intraclass dissimi-

larity. In case of ordinal polytomous data the suitable minimum discrepancy function

is based on the Manhattan distance. The latter is the centroid adjustment step, that

consists in updating the centroids in order to minimize the Manhattan discrepancy

from the data. The best centroid is the “elementwise” median of the class.

The algorithm has been implemented in MATLAB and it was used for running

simulations. The performances of k-median and k-modes algorithms were compared

with respect to their capabilities of reconstructing structures from polytomous data. In

comparing their performances, two different scenarios were considered. In the former,

the data were simulated assuming that the “true” level was the most likely. In the

latter, it was moreover assumed that, the probability of a response decreases as it

moves away from the true level. Results showed that in the latter scenario the k-

median algorithm performed better than k-modes, confirming our hypothesis.

The k-modes and the k-median algorithms were applied also to a real polytomous

data-set in which the responses to the items were given on an ordinal scale. Both the

algorithms extracted a structure of the same size, but the one extracted by k-median

was the closest to the data.

Overall, there are both theoretical and practical reasons for preferring the k-median

to the k-modes algorithm whenever the responses to the items are measured on an

ordinal scale. The central role is played by the distance, since between the Hamming

and the Manhattan distances, only the latter is sensitive to the order on the levels.

Moreover, it seems that a way for testing the ordinal nature of an item response

scale could consist in applying both k-modes and k-median to the data and checking

whether k-median extracts the best structure. Future research should investigate this

possibility.
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To conclude, k-medians seems to be a promising data-driven procedure for building

polytomous structures, providing polytomous KST with one of the tools necessary for

its application to a wider range of fields.
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K1 = (1, 1, 1, 2) K2 = (1, 2, 1, 0)

R1 = (0, 2, 1, 0)R2 = (1, 2, 0, 3)

1
2

13

Figure 1: Comparison between the two dissimilarity measures Hamming (dashed lines)
and Manhattan (solid lines) distances in classifying response patterns R1 and R2 into
the two classes of states K1 and K2. The Manhattan distance classifies them into two
separate classes, whereas the Hamming distance does not discriminate between them.
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K1 = (1, 2, 1, 0) K2 = (0, 1, 0, 6)

R1 = (0, 2, 1, 0) R2 = (0, 1, 0, 1)

1 11
4

Figure 2: Comparison between the two dissimilarity measures Hamming (dashed lines)
and Manhattan (solid lines) distances in classifying the response patterns R1 and R2 in
to the two classes of states K1 and K2. The Manhattan distance does not discriminate
between the two response patterns, whereas the Hamming distance classifies them into
two different classes.
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Table 1: Sample design used in the simulation study leading to 24 different conditions.
Columns 1, 2 and 3 report, respectively, the values of the sample size N , the true
structure’s cardinality |Kt| and the maximum error Err used for generating the data.
Columns 4 and 6 display a number identifying each of the 24 conditions, and columns
5 and 7 display the type of monotonicity considered, between the δH- and the δM -
monotonicity.

N |Kt| Err Cond. Monotonicity Cond. Monotonicity
2,000 500 .05 1 δM 13 δH
2,000 500 .15 2 δM 14 δH
2,000 500 .25 3 δM 15 δH
2,000 1000 .05 4 δM 16 δH
2,000 1000 .15 5 δM 17 δH
2,000 1000 .25 6 δM 18 δH
5,000 500 .05 7 δM 19 δH
5,000 500 .15 8 δM 20 δH
5,000 500 .25 9 δM 21 δH
5,000 1000 .05 10 δM 22 δH
5,000 1000 .15 11 δM 23 δH
5,000 1000 .25 12 δM 24 δH
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Figure 3: Variation of the TPR as the sample size (row panels of the figure) and the
amount of error (x-axis) increase. Solid, dashed and dotted lines refer, respectively, to
k-modes and k-median algorithms applied to polytomous data and to k-modes applied
to the ordinal dichotomous transformation of the polytomous data. The two groups of
curves represent the results obtained with a different cardinality of the true structure
|Kt|. Left panels show the results obtained when the δM -monotonicity holds in the
data, whereas right panels show the results obtained when the δH-monotonicity holds
in the data.
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Figure 4: Variation of the average discrepancies dM(Ki
e,Kt) (upper panels) and

dH(Ki
e,Kt) (bottom panels) as the amount error (x-axis) increases. The sample size

was fixed to 2, 000. Left panels refer to the δM -monotonicity scenario, whereas right
panels refers to δH-monotonicity scenario. Solid, dashed and dotted lines refer, re-
spectively, to k-modes and k-median algorithms applied to polytomous data and to
k-modes applied to the ordinal dichotomous transformation of the polytomous data.
The two groups of curves represent the results obtained with a different cardinality of
the true structure |Kt|.
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Figure 5: Results of the empirical application obtained by the k-modes and the k-
median algorithms for the zmin index. Left panel of the figure displays the results
obtained by using the Manhattan discrepancy index, whereas the right panel shows
those obtained by using the Hamming discrepancy index. Solid and dashed lines re-
fer to the performances of k-modes and k-median algorithms applied to polytomous
data, respectively. The dashed line refers to k-modes applied to the ordinal dichoto-
mous transformation of polytomous data (called “k-modes dicho” in the legend). The
cardinalities of the initial set Ij are on the x-axis.
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Dichotomous data setPolytomous data set

k-modesk-median

K1
eK2

e K3
e

odt

Figure 6: Design used in the simulation study (Section 5) for applying k-modes and
k-median algorithms to the poltytomous data and for applying the k-modes algorithm
to the ordinal dichotomous transformation (odt) of them. The three structures K1

e , K2
e

and K3
e have been extracted.
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Table 2: Results of the 24 conditions of the simulation study obtained by applying the
k-modes (first 12 rows of the table) and the k-median (second 12 rows of the table)
algorithms to the polytomous data, and by applying the k-modes algorithm to the
ordinal dichotomous transformation of the polytomous data (last 12 rows of the table).
See text for the details.

δM -monotonicty δH-monotonicty
C TPR dM dH C TPR dM dH
1 .68 (.02) 1.88 (.11) 1.33 (.07) 13 .68 (.02) 1.97 (.10) 1.33 (.07)
2 .49 (.02) 2.32 (.11) 1.71 (.08) 14 .48 (.02) 2.68 (.11) 1.73 (.07)
3 .30 (.02) 2.92 (.11) 2.22 (.08) 15 .29 (.02) 3.63 (.11) 2.28 (.07)
4 .52 (.01) 2.30 (.07) 1.69 (.05) 16 .52 (.02) 2.53 (.07) 1.71 (.05)
5 .23 (.01) 3.15 (.07) 2.41 (.05) 17 .23 (.02) 3.77 (.09) 2.42 (.07)
6 .11 (.01) 3.77 (.07) 2.93 (.05) 18 .11 (.01) 4.68 (.09) 2.96 (.06)
7 .80 (.01) 1.43 (.10) .98 (.07) 19 .80 (.01) 1.42 (.09) .96 (.06)
8 .77 (.02) 1.42 (.11) 1.00 (.07) 20 .77 (.02) 1.44 (.10) .98 (.07)
9 .63 (.02) 1.74 (.12) 1.28 (.08) 21 .61 (.02) 2.06 (.13) 1.36 (.09)

10 .72 (.01) 1.59 (.07) 1.12 (.05) 22 .72 (.01) 1.64 (.06) 1.12 (.04)
11 .55 (.01) 2.00 (.07) 1.47 (.05) 23 .55 (.02) 2.25 (.08) 1.49 (.05)
12 .34 (.01) 2.68 (.07) 2.05 (.05) 24 .33 (.02) 3.31 (.09) 2.13 (.06)
1 .66 (.02) 1.81 (.10) 1.38 (.07) 13 .66 (.02) 1.87 (.10) 1.35 (.07)
2 .49 (.02) 2.18 (.10) 1.72 (.07) 14 .41 (.02) 2.88 (.11) 1.96 (.08)
3 .33 (.02) 2.62 (.09) 2.13 (.07) 15 .20 (.02) 4.11 (.11) 2.76 (.08)
4 .52 (.01) 2.22 (.07) 1.68 (.05) 16 .52 (.01) 2.43 (.06) 1.69 (.04)
5 .24 (.01) 3.05 (.07) 2.41 (.05) 17 .21 (.01) 3.86 (.07) 2.56 (.05)
6 .12 (.01) 3.62 (.06) 2.91 (.04) 18 .09 (.01) 4.81 (.07) 3.16 (.04)
7 .76 (.02) 1.47 (.10) 1.13 (.08) 19 .79 (.01) 1.28 (.08) .96 (.06)
8 .76 (.02) 1.31 (.10) 1.02 (.07) 20 .74 (.02) 1.43 (.08) 1.03 (.06)
9 .69 (.02) 1.35 (.09) 1.08 (.07) 21 .48 (.02) 2.56 (.12) 1.77 (.08)

10 .70 (.01) 1.54 (.05) 1.18 (.04) 22 .71 (.01) 1.52 (.06) 1.12 (.04)
11 .57 (.01) 1.77 (.06) 1.41 (.05) 23 .47 (.01) 2.47 (.07) 1.72 (.05)
12 .41 (.01) 2.19 (.07) 1.79 (.05) 24 .22 (.01) 3.81 (.08) 2.62 (.05)
1 .66 (.02) 1.79 (.10) 1.79 (.10) 13 .67 (.02) 1.83 (.10) 1.83 (.10)
2 .50 (.02) 2.12 (.10) 2.12 (.10) 14 .43 (.02) 2.77 (.11) 2.77 (.11)
3 .34 (.02) 2.53 (.09) 2.53 (.09) 15 .22 (.02) 3.99 (.12) 3.99 (.12)
4 .52 (.01) 2.20 (.07) 2.20 (.07) 16 .52 (.01) 2.41 (.06) 2.41 (.06)
5 .24 (.01) 3.00 (.07) 3.00 (.07) 17 .21 (.01) 3.79 (.07) 3.79 (.07)
6 .13 (.01) 3.56 (.06) 3.56 (.06) 18 .09 (.01) 4.77 (.07) 4.77 (.07)
7 .76 (.02) 1.46 (.10) 1.46 (.10) 19 .80 (.02) 1.26 (.09) 1.26 (.09)
8 .76 (.02) 1.29 (.09) 1.29 (.09) 20 .75 (.02) 1.38 (.08) 1.38 (.08)
9 .70 (.02) 1.33 (.09) 1.33 (.09) 21 .49 (.02) 2.49 (.12) 2.49 (.12)

10 .71 (.01) 1.53 (.06) 1.53 (.06) 22 .72 (.01) 1.48 (.06) 1.48 (.06)
11 .58 (.01) 1.74 (.06) 1.74 (.06) 23 .49 (.02) 2.37 (.07) 2.37 (.07)
12 .42 (.01) 2.11 (.07) 2.11 (.07) 24 .23 (.01) 3.73 (.08) 3.73 (.08)


