
FRESH: Fréchet Similarity with Hashing
Matteo Ceccarello

IT University

Copenhagen, Denmark

mcec@itu.dk

Anne Driemel

University of Bonn

Bonn, Germany

driemel@cs.uni-bonn.de

Francesco Silvestri

University of Padova

Padova, Italy

silvestri@dei.unipd.it

1 INTRODUCTION
The target of this paper is similarity search for time series and

trajectories or, more generally, for curves: indeed, time series

and trajectories can be envisioned as polygonal curves with

vertices from IR
d
, for a suitable dimension d ≥ 1.

1
. Similarity

search of curves frequently arises in several applications,

like ridesharing recommendation [27], frequent routes [25],

players performance [21], and seismology [26]. In the paper,

we address the r -range search problem: given a dataset S of

n curves from a domain X and a threshold r > 0, construct

a data structure that, for any query curve q ∈ X, efficiently

returns all entries in S with distance at most r from q. Range
reporting is a primitive widely used for solving the similarity

join and k-nearest neighbor problems.

There is no common agreement on the best distance mea-

sure for curves, for it depends on the application domain,

quality of input data, and performance requirements. There

are several functions to measure the distance between two

curves, such as continuous Fréchet distance, Dynamic Time

Warping (DTW), Euclidean distance, and Hausdorff distance.

We focus on the continuous Fréchet distance, that was intro-
duced in computer science by Alt and Godau in the ’90s [3].

The continuous Fréchet distance and its discrete variant,

named discrete Fréchet distance [19], have been widely stud-

ied in theory (e.g. [1, 9, 22]) and used in different applications,

like handwriting recognition [28], protein structure align-

ment [31] and, in particular, trajectories of moving objects

(e.g., [24]). Recently, the Fréchet distance has been addressed

by the ACM SIGSPATIAL Cup 2017, drawing attention to

this measure from a practical domain.

The Fréchet distance
2
between two curves is tradition-

ally explained with this metaphor: a man is walking on a

curve and his dog on another curve; the man and dog follow

their curves from start to end and can vary their speeds,

but they cannot go backward; the minimum length of the

leash necessary to connect man and dog during the walk is

the continuous Fréchet distance. The Fréchet distance does

not require a one-to-one mapping between points of two

curves, and it is hence invariant under differences in speed:

this allows, for instance, to detect the trajectories of two cars

1
Usually, we have d = 1 for time series and d > 1 for trajectories.

2
If not differently stated, “Fréchet distance" refers to the continuous

definition.

following the same street but with different speeds due to

traffic conditions.

Range search is known to be computational demanding

in high dimensions under different distances, including the

Fréchet distance: from a worst-case point of view, there is in-

deed evidence that it is not possible to obtain a truly sublinear

algorithm unless with a breakthrough for the Satisfiability

problem [9, 16]. Locality Sensitive Hashing (LSH), introduced

in [23], is the most common technique for developing ap-

proximate and randomized algorithms for similarity search

problems. LSH is a hashing scheme where near points have

a higher collision probability than far points. Recently, [16]

has introduced a family of LSH schemes for curves under

the discrete Fréchet and Dynamic Time Warping distances.

1.1 Our results
The goal of this paper is to describe and experimentally

evaluate FRESH, an approximate and randomized approach

for r -range search under the continuous Fréchet distance.

FRESH builds on the theoretical ideas in [16] and extends

it by providing a solid and efficient framework for trading

precision and performance.

Algorithm design. The core component of FRESH is a fil-

ter based on the LSH scheme for the discrete Fréchet distance

in [16], which is boosted with multiply-shift hashing [15]

and tensoring [4, 14] for better performance. For a given in-

put set S with n curves and a query curve q, the filter selects
as candidate near neighbors all curves colliding with q under

at least one of L hash functions randomly selected from the

LSH scheme. This filters out a significant number of curves,

without even reading them. All candidates are associated

with a score, representing the fraction of collisions under the

L hash functions. If FRESH is seen as a classifier for detecting

near and far curves for a given query q, the score of a curve
p represents the probability that p and q are near.

The second component of FRESH is a candidate pruning

step for reducing false positives (i.e., far curves marked as

near). The pruning consists in verifying that the fraction

0 ≤ τ ≤ 1 of candidates with smaller scores have continuous

Fréchet distance from the query not larger than r . As veri-
fying the Fréchet distance is a costly operation, we propose

a procedure exploiting a cascade of curve simplifications

from [17] and verification heuristics from [6, 11]: each step

can successfully show that the distance is larger or not than

ar
X

iv
:1

80
9.

02
35

0v
3

 [
cs

.C
G

]
 5

 J
un

 2
01

9

Matteo Ceccarello, Anne Driemel, and Francesco Silvestri

r , or it can fail and do not provide an answer; the procedure

applies the aforementioned simplifications and heuristics

until one of them succeeds.

Performance/quality trade-off. FRESH trades the qual-

ity of the results with the overall performance by suitably

settings the aforementioned L and τ parameters.
3
: We mea-

sure the quality of the results in terms of: 1) recall, that is
the fraction of true positives reported by the algorithm over

all the positives in the ground truth; 2) precision, that is the
fraction of true positives over the predicted positives (i.e. the

sum of true positives and false positives). By increasing the

number L of hash functions used in FRESH, it is possible to

increase the recall of our algorithm by increasing the query

time (linear in L) and of the space requirements (equal to

L · n + I , where I is the input size). Once the recall has been
fixed, it is possible to improve the precision by increasing

the τ parameter at the cost of a higher query time. The recall

is not affected by this step and a perfect precision is reached

by setting τ = 1.

Practical and theoretical guarantees.We have carried

out an extensive experimental evaluation of the FRESH al-

gorithm over several datasets. To evaluate FRESH, we use

it as a primitive for solving a self-similarity join on each

dataset D: specifically, for every curve in D, we perform an

r -range search query over D. The experiments show that the

scores computed under a query q provide a good indicator

of the distance from q, and thus filtering points according

with scores is a sound approach. From a performance point

of view, we compare FRESH with the exact solutions that

won the ACM SIGSPATIAL 2017 challenge [6, 11, 18]. When

the recall is approximately 70-80% and the precision is ap-

proximately 50%, FRESH exhibits better running times with

speedups above 5x for some inputs. Although the precision

is low, the returned points are never too far from the query

(up to a constant factor from r) by the property of the LSH

scheme. With higher precision, the heuristics adopted in the

exact solutions, in particular the bounding box approach in

[18], are very effective with the 1-dimensional datasets (i.e.,

time series) considered in the experiments and highlight the

limitations of FRESH in this setting. FRESH is also supported

by the theoretical foundations of the LSH scheme in [16].

The FRESH algorithm is described in Section 3 and the

experimental results in Section 4. The code of FRESH is

available at https://github.com/Cecca/FRESH.We refer to the

full version [12] for a more detailed coverage of our results,

including the theoretical analysis bounding the collision

probability and further experiments.

3
In addition to parameters τ and L, the FRESH algorithm has other second

order parameters that are introduced in Section 3, which marginally affect

performance and quality. However, from an application point of view, the

trade-off is mainly captured by L and τ , and the remaining parameters can

be left to the default value in the implementation.

1.2 Related works
Similarity search for curves. Data structures for search-
ing among curves under the Fréchet distance have been

studied under different angles. One of the earlier theoretical

works is [22] that proposes a nearest neighbor data struc-

ture for Fréchet distance. In 2011, [7] revived the topic mo-

tivated by the availability of high-resolution trajectories of

soccer players in the emerging area of sports analytics. A

comprehensive study of the complexity of range searching

under the Fréchet distance appeared in [1], that also gives

lower bounds on the space-query-time trade-off of range

searching under the Fréchet distance. Recently, the annual

data competition within the ACM SIGSPATIAL conference

on geographic information science has drawn attention to

the timeliness of this problem [30]. The focus of the chal-

lenge was on exact solutions and hence none of the awarded

submissions [6, 11, 18] propose approximate solutions. An

LSH for the discrete Fréchet distance is described in [16].

A follow-up paper [20] provides better theoretical approxi-

mation bounds using a slightly different approach, but their

results do not apply to the setting that we focus on in this

paper. Sketches for the Hausdorff and discrete Fréchet dis-

tances are proposed in [5], which gives an LSH scheme with

similar properties of [16].

Verifying the Fréchet distance. In order to improve the

precision of the proposed LSH scheme, we suggest to fil-

ter the query results by verifying the distances for selected

curves. However, verifying the distance is a non-trivial and

expensive operation. It is known that the (discrete or con-

tinuous) Fréchet distance between two fixed curves cannot

be decided in strictly subquadratic time in the number of

vertices of the curves, unless the Strong Exponential Time

Hypothesis is false [8]. The fastest algorithms for computing

the continuous and discrete Fréchet distance are described

in [10] and [2]. Both algorithms take roughly quadratic time.

However, [17] shows that one can approximate the distance

in near-linear time under certain realistic assumptions on

the shape of the input curves. We use this algorithm to filter

the query results, in order to improve the precision of our

method.

2 PRELIMINARIES
Continuous and discrete Fréchet distances A time se-
ries (or trajectory) is a series (p1, t1), . . . , (pm , tm) of measure-

ments pi ∈ IRd of a signal taken at times ti , where 0 = t1 <
t2 < . . . < tm = 1 andm is finite. A time series denotes a

polygonal curve p of lengthm and defined by the sequence of

vertices p1, . . . ,pm . A polygonal curve p may be viewed as a

continuous functionp : [0,n] → IR
d
by linearly interpolating

p1, . . . ,pm in order of ti , i = 1, . . . ,m. Each segment between

pi andpi+1 is called edge pipi+1 = {xpi+(1−x)pi+1 |x ∈ [0, 1]}.

https://github.com/Cecca/FRESH

FRESH: Fréchet Similarity with Hashing

We let |p | denote the length of curve p, that is the number

of vertices in p. The space of all polygonal curves in IR
d
is

denoted by ∆d
. As all our curves are polygonal, we omit the

term “polygonal” for the sake of simplicity.

For two vertices in p,q ∈ IR
d
, we let dE (p,q) = ∥p −

q∥2 denote their Euclidean distance. Let Φn be the set of all

continuous and non-decreasing functions ϕ from [0, 1] into
[1,n]. The continuous Fréchet distance of two curves p and q,
denoted by dF (p,q), is defined as

dF (p,q) = inf

ϕ1∈Φ|p |
ϕ2∈Φ|q |

max

t ∈[0,1]

pϕ1(t) − qϕ2(t)

2
. (1)

Each pair (ϕ1,ϕ2) ∈ Φ |p | × Φ |q | is called continuous traver-
sal, and it can been seen as a schedule for simultaneously

traversing the two curves, starting on the first vertices of

both curves at time 0 and ending on the last vertices at time 1.

The problem of verifying that the Fréchet distance be-

tween two curves is less than or equal to a threshold r is

usually done with the so-called free space diagram [3], which

has quadratic cost in the worst case. However, it was shown

in [17] that if the algorithm operates on simplified copies of

the curves, then the complexity reduces to near-linear under

certain assumptions on the shape of the curves. The simplifi-

cation introduces an approximation error to the verification

algorithm, but as shown in [17], the error can be bounded if

the simplification parameters are wisely chosen. By exploit-

ing the bounded error, it is possible to use the simplification

for confirming or denying that two curves have distance at

most r .
Range search and LSH. Given a set S ⊆ X of n points

in a domain X, a distance function d : X × X → [0,+∞),
and a radius r > 0, the r -range search (also known as range

reporting) problem requires to construct a data structure

that, for any given query point q ∈ X, returns all points
p ∈ S such that d(q,p) ≤ r . We say that a point p is a r -near
or r -far point of q if d(p,q) ≤ r or d(p,q) > r , respectively;
if r is clear in the context, we will just say that p is a near or

far point of q.
Locality Sensitive Hashing (LSH) [23] is a common tool for

r -range search in high dimensions. For a given radius r > 0

and approximation factor c > 1, an LSH is an hash scheme

H where for a random selected map h ∈ H and two points

x and y, we have that Prh∈H[h(x) = h(y)] ≥ p1 if d(x ,y) ≤ r ,
and Prh[h(x) = h(y)] ≤ p2 if d(x ,y) > c · r . Probabilities p1
and p2 depend on the LSH scheme and the quality of an LSH

scheme is given by ρ = ρ(H) = log 1/p1
log 1/p2 (values of ρ closer

to 0 are better). Concatenation is a technique for building

an LSH scheme with a small collision probability p2 of far
points: by concatenating k ≥ 1 hash functions randomly

and uniformly selected fromH , we get an LSH scheme with

collision probability pk
1
for near points and pk

2
for far points.

The standard data structure based on LSH for solving the

r -range search problem is the following [23]. Assume that,

after concatenation, we have p2 ≤ 1/n. Let ℓ1, . . . , ℓL be L
functions randomly and uniformly chosen fromH . The data

structure consists of L hash tablesH1, . . .HL : each hash table

Hi stores the input set S , partitioned by the hash function

ℓi . For each query q, we compute the set Sq = ∪Li=1Hi (ℓi (q)),
where Hi (ℓi (q)) denotes the set of points in S colliding with

q under the hash function ℓi . Then, we scan Sq and remove

all points with distance larger than r from q; the remaining

points are returned as r -near points of q. If L = Θ
(
p−1
1

)
=

Θ (nρ), then the above data structure returns in expectation

a constant fraction of all near points of q.

3 FRESH ALGORITHM
We let S denote our input set with n curves of maximum

lengthm, and letq be a query curve. For each queryq, FRESH
returns a set Oq of pairs (t , st) where t ∈ S is a curve and

0 ≤ st ≤ 1 is its score. Each score st denotes the likelihood
of t to be close to the query q: a large value of st implies a

high probability that t is a r -near curve of q; further, if two
curves t and t ′ have scores st ≤ st ′ , then it is more likely

that t ′ is closer to q than t . Curves with scores equal to 0 are

not reported since they are considered far from q.
The above approach can generate both false negatives

and false positives. As we will later see, false negatives (i.e.,

near curves that are not reported in Oq) can be reduced by

increasing the number of LSH functions (i.e., the parame-

ter L) used in the score computations. On the other hand,

false positives (i.e., far curves that are reported in Oq) can

be reduced by verifying the distance from q of a subset of

curves in Oq with small scores. Verifying that two curves

have continuous Fréchet distance at most r is however an
expensive operation, we thus propose a heuristic based on a

cascade of curve simplifications that efficiently rules out or

confirms the distance between the curves.

The section is organized as follows: Section 3.1 explains

how scores are computed; Section 3.2 describes how to re-

duce false positives; Section 3.3 shows how to verify if two

curves have continuous Fréchet distance at most r .

3.1 Score computations with LSH
At a high level, the score sp of a curve p ∈ S with query q is

given by the normalized number of collisions with q under

L ≥ 1 hash functions from the LSH scheme Gkδ described

below, where δ and k are suitable parameters.

LSH scheme Gkδ . Our starting point is the LSH scheme

ˆGδ in [16], which maps each curve into a smaller curve with

vertices from a random shifted grid

Gδ,t =
{
(x1, . . . ,xd) ∈ IRd | ∀ i ∈ [d] ∃ j ∈ IN : xi = j · δ + t

}

Matteo Ceccarello, Anne Driemel, and Francesco Silvestri

where δ > 0 is the side of the grid and t = (t1, . . . td) is
a random variable uniformly distributed in [0,δ)d . For a
curve p with vertices p1, . . . ,pm , the function дδ,t (p) returns
the curve obtained by: 1) replacing each vertex pi with its

closest grid vertex in Gδ,t ; 2) removing consecutive dupli-

cates in the new curve. The LSH family
ˆGδ is defined as

ˆGδ = {дδ,t ,∀t ∈ [0,δ)d }. We also define
ˆGkδ as the LSH fam-

ily obtained by concatenating k ≥ 1 copies of hash functions

uniformly and independently selected in
ˆGδ . We have that

Prдk ∈ ˆGkδ
[дk (q) = дk (p)] = Prд∈ ˆGδ [д(q) = д(p)]k : the lower

collision probability of far curves allows to decrease false

positives.

FRESH requires the computation of a large number of

hash values in
ˆGkδ : indeed, k · L ·n hash values are computed

at construction time and k · L hash values for each query.

We speed up the hash computation with the tensoring ap-

proach. Tensoring was initially proposed in [4] and then

further studied in [14]; to the best of our knowledge, it has

only been used in practice in [29]. The tensoring approach

generates L hash functions building on two collections of√
L hash functions, reducing the actual number of hash com-

putations by a

√
L factor. Specifically, let Λ1 = {д1, . . . ,дL′}

and Λ2 = {д′1, . . . ,д′L′} be two groups of L′ =
√
L random

hash functions from
ˆGk/2δ . Then, it is possible to construct

L′ ·L′ = L LSH hash functions fromGk
δ by concatenating the

pair (дi ,д′j) for all possible values of i and j in {1, . . . L′}. This
technique reduces the number of hash value computations

for the initial data structure construction from k · L · n to

k ·
√
L · n, and for the query procedure from k · L to k ·

√
L.

Finally, as storing and searching signatures is quite ineffi-

cient, we map all signatures on integers with the multiply-

shift hashing scheme H in [15]. We denote with Gkδ the

LSH hash family obtained by first using the tensoring ap-

proach to construct (a subset of)
ˆGkδ , and then by applying

the multiply-shift hashingH on the signature. We observe

that the signature of a curve does not need to be generated

and stored: while we scan a curve p to compute its signature,

the hash value h(д(p)) is built on the fly.

Data structure. The data structure of FRESH for effi-

ciently computing the scores leverages on the traditional

approach for solving range search with LSH. L ≥ 1 hash

functions д1, . . . ,дL are randomly chosen from the above

LSH family Gkδ , for suitable values of δ and k ; then for each

дi , a hash table Hi is created for storing the n input curves

partitioned by дi . For each query q, we compute the multiset

Tq = ∪Li=1Hi (дi (q)), whereHi (дi (q)) denotes the set of curves
colliding with q under дi . If t ∈ Tq and its multiplicity in Tq
is ŝt , then its score st is ŝt/L. Note that the hash tables do not

need to store the complete curves but just their identifiers:

thus, the space required by the data structure is I + Θ (Ln)
memory words, where I is the number of words to store S .

3.2 Filtering false positives
All curves with non-zero score are not too far from the query:

indeed, if the hash function uses a grid of side length δ , then
all colliding curves have maximum distance δ . However, as
in general δ > r (in our experiments δ = 4dr , where d is the

point dimension), we may report some curves with distance

in (r ,δ]. To improve the precision, a simple approach is to

set a threshold ∆ and verify all curves with scores less than

∆. However, the limitations of this approach are: 1) it is not

clear how to select the best ∆ as it might be query dependent;

2) ∆ does not directly allow to trade precision and running

time. The approach used in FRESH is to verify a fraction τ ,
with 0 ≤ τ ≤ 1, of the curves in Oq with smaller scores. The

parameter τ can be used for trading performance (with τ = 0

no curve in Oq is verified) with precision (with τ = 1, all

curves in Oq are verified which implies a 100% precision).

3.3 Verifying the Fréchet distance
Verifying that two curves p and q are within Fréchet distance

r is an expensive operation [8]: to speed up this operation, we
introduce the procedure Verify for checking if two curves p
and q have continuous Fréchet distance less than or equal to

r . Verify consists of two procedures, named VerifySimpl

and VerifyHeur, that exploit strategies from [6, 11, 17]:

each procedure can successfully show that dF (p,q) ≤ r or
dF (p,q) > r , or it can fail and do not provide an answer.

Procedure VerifyHeur exploits the heuristics Equal-time
alignment [11], Greedy algorithm [6] and Negative filter [6],
and it stops as soon as one of them succeeds. On the other

hand, procedure VerifySimpl is a decision procedure based

on the concept of simplification in [17]: p and q are mapped

on suitable smaller trajectories p ′ and q′ through a transfor-

mation based on a parameter ε ≥ 0 (ε = 0 gives the original

curves). Evaluating distance predicates on p ′ and q′ allows
to answer distance predicates on p and q, by suitable setting

the parameter ε .
Procedure VerifyHeur is the application of the following

heuristics, stopping as soon as one of them succeeds.

• Equal-time alignment [11]. This heuristic performs a

traversal of the two curves moving at the same speed

on both, providing an upper bound to the Fréchet dis-

tance. If we define Φx (t) = tx , this heuristic verifies

max

t ∈[0,1]
| |pΦ|p |(t) − qΦ|q |(t) | |2 ≤ r

which can be done in linear time.

FRESH: Fréchet Similarity with Hashing

• Greedy algorithm [6]. It provides an upper bound on

the continuous Fréchet distance by finding an align-

ment with a greedy approach. We construct the fol-

lowing traversal of p and q: 1) p1 and q1 are matched;

2) after matching vertices pi and qj , we match pi′ and
qj′ , for (i ′, j ′) ∈ {(i + 1, j), (i, j + 1), (i + 1, j + 1)} mini-

mizing ∥p ′i′ −qj′ ∥2. We ignore from these three options

the ones that would make i > |p | or j > |q |. If during
the whole traversal we stayed at distance ≤ r , we can
conclude that p and q are r -near.
• Negative filter [6]. This heuristic seeks to prove that,

for some vertices of p, there are no vertices of q within

distance r they can be aligned to, providing a certificate
that the two curves are at distance greater than r . For
each vertex pj of p, we define q

←
pj as the first vertex of

q that can be aligned with pj . For this to be possible,

such a vertex needs to be within distance r from pj ,
and needs to appear on q after vertex q←pj−1 , because of
the definition of Fréchet distance. Since the first vertex

of p has to be aligned with the first vertex of q, we
have that q←p1 = q1. Then, for j ∈ [2, |p |] the heuristic
proceeds in trying to define q←pj . If for some j this is not
possible, then p and q are farther than r . This heuristic
is not symmetric, therefore we can apply it two times

swapping arguments.

• Full verify. If all of the above heuristics fail to verify

the distance, we apply the exact algorithm in [3] based

on free space diagram.

To further speedup the verification of a pair of curves p
and q, we also adopt the decision procedure proposed in [17,

Lemma 3.6], which we deem here VerifySimpl. This scheme

is based on the concept of µ-simplification (also presented

in [17]), constructed as follows for a curve p and µ > 0.

First mark p1 and set it as the current vertex. Then, scan the

curve from the current vertex until we reach the first pj such
that | |pj − p1 | |2 > µ: we mark pj and set it as the current

vertex. The procedure is repeated until we reach the last

vertex, which is marked as well. The marked vertices make

up the simplified curve, which is denoted with simpl(p, µ)
and is computed in linear time. The decision scheme builds

simplifications of p and q, controlled by a parameter ε > 0.

Let r ′ = r/(1 + ε/3). Define µ− = rε/28 and µ+ = rε/(28 ·
(1 + ε/3)), and let

r− = r · (1 + ε/14) and r+ = r ·
(
3(1 + ε/14)

3 + ε

)
note that r+ < r−. First, we verify with VerifyHeur if

dF (simpl(p, µ−), simpl(q, µ−)) > r−

If this is the case, the procedure reports that dF (p,q) > r .
Otherwise, we further verify with VerifyHeur if

dF (simpl(p, µ+), simpl(q, µ+)) ≤ r+

If the answer is affirmative, we report dF (p,q) ≤ r . It may be

that neither of the two checks gives a positive answer. In this

case, the procedure reports that it cannot give an answer.

Procedure Verify is then the following:

(1) In the first stage, we only consider the first (p1 and q1)
and last vertices (p |p | andq |q |) ofp andq. If | |p1−q1 | |2 >
r or | |p |P | − q |Q | | |2 > r , then the two curves cannot be

r -near by the definition of continuous traversal. We

call this heuristic Endpoints.

(2) In the second stage, we look at the bounding boxes

of the two curves. If the ℓ1 distance of corresponding
corners of the bounding boxes is larger than r , then the
two curves cannot be r -near [18]. We call this heuristic

BoundingBox.

(3) In the third stage, we use VerifySimpl with decreasing

values of ε (which will be fixed in the experimental

analysis), corresponding to simplifications becoming

less aggressive. For a given ε , if VerifySimpl can give

an answer, then we return it, otherwise we move to

the next ε .
(4) The fourth stage runs if none of the calls to Veri-

fySimpl could return an answer: in this case we return

the result of the invocation of VerifyHeur on the

original curve.

4 EXPERIMENTAL EVALUATION
In this section, we present our experimental evaluation of

FRESH. Section 4.1 describes the setup of our experiments,

including the benchmarks and the exact baseline algorithm

used as reference. Section 4.2 analyzes the performance and

quality of the LSH scheme in FRESH, without the partial veri-

fication to reduce false positives: in particular, we investigate

how the number of LSH repetitions (L) and of LSH concate-

nations (k) affect performance and quality (recall/precision).

Section 4.3 examines how the partial verification affects the

performance and precision under different values of the frac-

tion τ of verified candidate curves, and it analyses the effec-

tiveness of the various heuristics used in FRESH to prune

false positives.

4.1 Experimental setup
Hardware. We implement our algorithm in C++ with

OpenMP, using the gcc compiler version 4.9.2. We run the

experiments on a Debian GNU/Linux machine (kernel ver-

sion 3.16.0) equipped with 24GB of RAM, and an Intel I7

Nehalem processor (clock frequency 3.07GHz).

Matteo Ceccarello, Anne Driemel, and Francesco Silvestri

dataset range best time

Chlorine 0.34 (first) 24 ⋆

0.52 (fifth) 91 ⋆

ECG5000 0.62 (first) 29 ⋆

0.92 (fifth) 102 ⋆

FordA 1.07 (first) 299 ⋆

1.20 (fifth) 1190 ⋆

yoga 0.14 (first) 23 ⋆

0.33 (fifth) 87 ⋆

SanFrancisco 5213.21 (first) 413 ⋆

9205.43 (fifth) 417 ‡
StarLightCurves 0.13 (first) 548 ⋆

0.21 (fifth) 2949 ⋆

TDrive 0.17 (first) 3913 ⋆

0.23 (fifth) 20372 ⋆

TwoPatterns 0.56 (first) 76 ⋆

0.68 (fifth) 121 ⋆

wafer 0.14 (first) 70 ⋆

0.39 (fifth) 134 ⋆

Table 1: Baseline times (in seconds) for the two differ-
ent radii, which are defined, respectively, as the first
and fifth percentile of all pairwise distances. Results
markedwith ‡were obtained using the code by Baldus
et al. [6], the ones marked with⋆were obtained using
the code by Dutsch et al. [18].

Datasets. As benchmarks we use datasets from the UCR

collection [13], which is comprised of 85 datasets of trajecto-

ries in one dimension. For brevity, we report on the 7 largest

datasets of this collection. We also include in our benchmark

a dataset of road trips in San Francisco that was used in

the SIGSPATIAL 2017 challenge [30], along with the TDrive

dataset [32]. Both are datasets of trajectories in 2 dimensions.

For each dataset, we perform a self-similarity join using

a set of fixed Fréchet distance thresholds, by solving the

r -range search problem for each curve of the dataset. The

thresholds are set to the first and fifth percentiles of the

pairwise distances for any given dataset, so that the output

size is 1% and 5% of the number of possible pairs, respectively.

Given the large number of possible pairs, these percentiles

are computed on the pairwise distances of a sample of 1000

points of each dataset. Figure 1 gives the distribution of

pairwise distances in the datasets we are considering. Each

result is the average over at least 5 runs.

Baseline. To establish a baseline, we ran the code pro-

vided by the three winners of the SIGSPATIAL 2017 chal-

lenge [6, 11, 18], compiled with all optimizations enabled

and ran with the default parameters. Table 1 reports these

results.

4.2 Evaluating the LSH scheme
We analyze how the LSH scheme affects the performance

and quality of FRESH without the partial verification. In

other words, each pair colliding in at least one of the L repe-

titions (i.e., with a non-zero score) is reported as a positive

match, without further verification. We test this setup us-

ing hash values obtained as the concatenation of k = 1, 2, 4
hash functions and with L = 128, 256, 512, 1024 repetitions,
setting the grid size to δ = 4dr . Figure 2 reports, for each
dataset and combination of parameters, the performance in

the precision-recall space. The recall is the fraction of true

positives reported by the algorithm over all the positives in

the ground truth, whereas the precision is the fraction of

true positives over the predicted positives (i.e., the sum of

true positives and false positives). Both scores range from

0 to 1, with 1 being the best, hence in the plots of Figure 2

we have that the closer the top right corner, the better the

performance. Note that we use the precision instead of the

false positive rate due to the large number of negatives in

the ground truth, which makes very easy to attain a small

false positive rate.

In general, we have that increasing the number of rep-

etitions L improves the recall, lowering the precision, as

expected. Symmetrically, increasing k makes the LSH more

selective, hence it increases the precision, at the expense of

the recall. Note that on some datasets our LSH technique is

more effective than on others. In general, using sufficiently

many repetitions we can get good recall, while getting a

good precision is harder, and may be very costly in terms of

recall. We will address this problem in the next subsection.

On the SanFrancisco and TDrive datasets we get perfect

recall and low precision, almost irrespective of the configu-

ration of parameters. This is due to the distance distribution

of these datasets: by setting the query range to the first and

fifth percentiles of distances, the algorithm constructs grids

with a resolution so large that almost all curves collide with

the queries.

Among the others, the wafer dataset deserves a particular

attention. For the query range equals to the first percentile

of the pairwise distances, Figure 2 shows that the recall is

just slightly above 0.5 at best. While a low precision can

be fixed for all datasets, as we shall see in the next subsec-

tion, the recall on wafer seems resistant to increases of L. To
understand why this happens, we can look at the behavior

of a single query, as reported in Figure 4. Along with the

one-dimensional query curve itself, we plot two curves that

collide with the query under the LSH scheme, one false posi-

tive and one true positive, and a curve that did not collide

but should have, i.e. a false negative. In terms of recall, the

false negatives are the relevant curves to look at: having zero

false negatives implies a perfect recall. Therefore, the poor

FRESH: Fréchet Similarity with Hashing

0 12.85

0

0.025

0.050

0.075

0.100

fra
ct

io
n

of
pa

irs

Chlorine

0 6.467

ECG5000

3.863

FordA

0 34615

SanFrancisco

0 3.205

StarLightCurves

0 135.4

0

0.025

0.050

0.075

0.100
TDrive

1.913

TwoPatterns

0 5.94

wafer

0 1.836
distance

yoga

Figure 1: Distribution of pairwise distances for all the datasets considered. The green line highlights the first
percentile, the red one highlights the fifth percentile.

0

0.25

0.50

0.75

1

pr
ec

is
io

n

Chlorine

L

128 256 512 1024

k

1 2 4

ECG5000 FordA StarLightCurves TwoPatterns wafer yoga SanFrancisco TDrive

first

0 0.5 1

0

0.25

0.50

0.75

1

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
recall

fifth

Figure 2: Performance in terms of precision and recall of FRESH on all the datasets considered. The color of a
point denotes the number of repetitions L, while the shape of a point represents the number of concatenations k .

performance on wafer is due to the fact that many curves

are classified as being far from the query when they are ac-

tually close, which happens if the misclassified curve and

the query do not collide in any of the L repetitions. Looking

at Figure 4 we can see why this happens. The query (green

curve), has a sudden jump downward around time 25, with

no vertices in the segment connecting the extremes of the

jump. The false negative curve (in red) has a similar jump

around time 18. However, in this case, there is one vertex

between the extremes of the jump. Under the LSH scheme

described in Section 3, two curves collide (and hence have a

non-zero score) only if they have the same signature, which

Matteo Ceccarello, Anne Driemel, and Francesco Silvestri

0 0.25 0.50 0.75 1

0

0.25

0.50

0.75

1

pr
ec

is
io

n

Fifth percentile

Chlorine

ECG5000

FordA

SanFrancisco

StarLightCurves

TDrive

TwoPatterns

wafer

yoga

0 0.25 0.50 0.75 1
pairs at distance ≤ 4dr

First percentile
Figure 3: Fraction of pairs
below 4dr versus precision,
for k = 2, and L = 1024. On
dataset where such a frac-
tion is high, the precision of
the LSH scheme tends to be
low.

Figure 4: Curve 0 of the wafer dataset as a query (green) for r = 0.14, k = 2 and L = 1024, in the context of relevant
curves with respect to the LSH scheme: false positives (orange), false negatives (red) and true positives (blue). The
spacing of the grid along the value axis is equals to 4r , which is the size of the grid used by the LSH scheme for
building signatures.

is computed by snapping vertices to a randomly shifted grid

of resolution 4dr , i.e. 4r for one-dimensional dataset such

as wafer. The grid of Figure 4 has a resolution 4r along the
value axis. It is clear that, no matter the random shift of the

grid, the point of the red curve in the middle of the jump will

never snap to the same grid line as any point of the green

curve in the analogous jump, because no such point exists.

A simple solution to this problem is to add more vertices

to the curves, by interpolation, in the jumps. This prepro-

cessing does not change the Fréchet distance between any

two curves.

4.3 Improving the precision by partial
verification

In this section we verify the trade-off between precision and

running time proposed in Section 3.2. From the previous ex-

periments we selected a configuration of parameters striking

a good balance of recall and precision on most datasets: k = 2

and L = 1024. For τ ∈ {0, 0.1, 0.2, 0.5, 1} we run the algo-

rithm evaluating the τm pairs with lowest non-zero scores,

wherem is the number of pairs with non-zero scores. When

τ = 0, the algorithm runs in the same configuration used

in the previous subsection, when τ = 1 the algorithm veri-

fies all the colliding pairs. We apply 3 simplifications in the

verification pipeline, using ε = 10, 1, 0.1, from coarsest to

finest.

First, we consider the distribution of scores before any

verification happens, to assert that verifying the lowest-score

pairs is actually sound (Figure 5). We have that the false

positive pairs (colored in orange) have lower scores than the

true positive colliding pairs (in blue), with some overlapping

of the two distributions. Therefore, verifying pairs starting

from the low-score ones seems like a sensible choice, sincewe

are likely to get rid of many false positives, which we expect

to improve the recall. Note that verifying some pairs does

not remove true positives (neither it can introduce them),

FRESH: Fréchet Similarity with Hashing

0

0.25

0.50

0.75

1

fra
ct

io
n

of
tp

/fp

Chlorine

type

fp

tp

ECG5000 FordA StarLightCurves

0 0.5 1

TwoPatterns

0 0.5 1

0

0.25

0.50

0.75

1
wafer

0 0.5 1

yoga

0 0.5 1

SanFrancisco

0 0.5 1
score

TDrive

Figure 5: The distribution of scores assigned to colliding pairs for k = 2 and L = 1024, with query radius equals to
the first percentile of distances, shows that the majority of false positive pairs (fp, in orange) have lower scores
than the true positive colliding pairs (tp, in blue), with some overlapping of the two distributions. The results for
other configurations of parameters are similar. Note that in this plot each orange (resp. blue) bar is scaled with
respect to the total number of false positives (resp. true positives) and not the total number of colliding pairs: this
is to appreciate the overall distribution.

therefore the recall remains unchanged, irrespective to the

fraction of pairs τ that we verify.

We now move to assess the influence of the fraction of

verified pairs τ on the precision and the runtime perfor-

mance (Figure 6). For measuring the latter, we focus on the

speedup, defined as the ratio between the time of the base-

line and LSH based algorithm. As we expect, increasing τ
increases the precision, with perfect precision when τ = 1,

when all the pairs are verified and the algorithm reports no

false positives. The speedup decreases with the increase of

τ : this is because we evaluate more and more pairs, which is

a costly operation. We observe that on two-dimensional tra-

jectories, the speedup that can be obtained is larger than on

one-dimensional datasets, even at higher precision values.

Finally, we analyze the contribution to the decision process

of the LSH and the various heuristics employed (Figure 7).

We concentrate on a single run, for each dataset, with k = 2,

L = 1024 and the radius set to the first percentile of distances,

evaluating all pairs with nonzero score. The parts shaded

in gray denote pairs for which the algorithm was not able

to reach a decision and needed to move to the next stage.

Then, parts in shades of green (resp. red) denote pairs for

which a positive (resp. negative) decision was reached using

one of the heuristics. The pairs excluded by the LSH scheme

are shaded in blue rather than red, to remark that even if

they are rejected as negatives they may contain some false

negatives: the larger the blue bar, the more effective the

filtering power of the LSH scheme. Some datasets are more

amenable to be processed with the LSH strategy, and this is

in line with the precision results reported in Figure 2. Of the

pairs surviving this first filtering, several can be discarded by

looking at the endpoints, as shown by the endpoint-filtering
column in the plot. The simplifications have varying degrees

of effectiveness, depending on the dataset: on some datasets

coarser simplifications are effective, whereas on some others

we have to use finer simplifications (i.e., with a smaller ε).

5 CONCLUSION
As future work, it would be interesting to develop a general

approach that merges the techniques in FRESH with the

ones used in the exact solutions of the ACM SIGSPATIAL

competition; more generally, a challenge is understanding

which input features make a solution more efficient than

others. The filtering approach used in FRESH can be enriched

by using techniques for classifier assessment that consider

the different costs that false positives and false negatives can

Matteo Ceccarello, Anne Driemel, and Francesco Silvestri

0

0.25

0.50

0.75

1

pr
ec

is
io

n

Chlorine

percentile

first

fifth

ECG5000 FordA StarLightCurves

0 0.2 0.5 1

TwoPatterns

0 0.2 0.5 1

0

0.25

0.50

0.75

1
wafer

0 0.2 0.5 1

yoga

0 0.2 0.5 1

SanFrancisco

0 0.2 0.5 1
τ

TDrive

0.1

1

10

100

sp
ee

du
p

Chlorine

percentile

first

fifth

ECG5000 FordA StarLightCurves

0 0.2 0.5 1

TwoPatterns

0 0.2 0.5 1

0.1

1

10

100

wafer

0 0.2 0.5 1

yoga

0 0.2 0.5 1

SanFrancisco

0 0.2 0.5 1
τ

TDrive

Figure 6: Precision and speedup per pair given for varying τ , for k = 2, L = 1024. The black line on the speedup
plots marks speedup 1, i.e. the performance of the best baseline algorithm.

have on the final application. Finally, we observe that the

LSH scheme for the discrete Fréchet distance in [16] also

holds under the DTW distance: an interesting direction is to

extend and analyze FRESH to report near curves under the

DTW distance and other distance measures.

Acknowledgments. The authors would like to thank M.

Aumüller, K. Bringmann, F. Dütsch, R. Pagh and J. Vahren-

hold for useful comments, and the developers of the UCR

collection. This work has been partially supported by: ERC

project “Scalable Similarity Search”, NWOVeni project 10019853,

SID 2018 and 2017 projects of the University of Padova.

FRESH: Fréchet Similarity with Hashing

original-curves
simpl ε = 0.1

simpl ε = 1

simpl ε = 10

bounding-box
endpoint-filtering

LSH

ph
as

e

Chlorine

decider

LSH-negative equaltime-positive greedy-positive full-positive endpoints-negative box-negative filter-negative full-negative none

ECG5000

original-curves
simpl ε = 0.1

simpl ε = 1

simpl ε = 10

bounding-box
endpoint-filtering

LSH

FordA StarLightCurves

original-curves
simpl ε = 0.1

simpl ε = 1

simpl ε = 10

bounding-box
endpoint-filtering

LSH

TwoPatterns wafer

original-curves
simpl ε = 0.1

simpl ε = 1

simpl ε = 10

bounding-box
endpoint-filtering

LSH

yoga

0 0.25 0.50 0.75 1

SanFrancisco

0 0.25 0.50 0.75 1
fraction of pairs

original-curves
simpl ε = 0.1

simpl ε = 1

simpl ε = 10

bounding-box
endpoint-filtering

LSH

TDrive

Figure 7: Breakdown of the effect of the various heuristics used to decide whether a pair is a positive match or
not. The hue of the colors increases with the cost of the heuristic, so full-negative is more expensive to compute
than endpoints-negative.

REFERENCES
[1] PeymanAfshani and AnneDriemel. On the complexity of range search-

ing among curves. In Proc. 29th Symposium on Discrete Algorithms
(SODA), pages 898–917, 2018.

[2] P. Agarwal, R. Avraham, H. Kaplan, and M. Sharir. Computing the

discrete Fréchet distance in subquadratic time. SIAM Journal on Com-
puting, 43(2):429–449, 2014.

[3] Helmut Alt and Michael Godau. Computing the Fréchet distance

between two polygonal curves. Int. J. Comput. Geometry Appl., 5:75–
91, 03 1995.

[4] Alexandr Andoni and Piotr Indyk. Efficient Algorithms for Substring

Near Neighbor Problem. In Proc. 17th SIAM Symposium on Discrete
Algorithm (SODA), pages 1203–1212, 2006.

[5] Maria Astefanoaei, Paul Cesaretti, Panagiota Katsikouli, Mayank

Goswami, and Rik Sarkar. Multi-resolution sketches and locality sen-

sitive hashing for fast trajectory processing. In Proc. Int. Conference

on Advances in Geographic Information Systems (SIGSPATIAL), 2018.
[6] Julian Baldus and Karl Bringmann. A fast implementation of near

neighbors queries for Fréchet distance (GIS Cup). In Proc. 25th Int. Con-
ference on Advances in Geographic Information Systems (SIGSPATIAL),
pages 99:1–99:4, 2017.

[7] Mark de Berg, Atlas F. Cook IV, and Joachim Gudmundsson. Fast

Fréchet queries. Computational Geometry —Theory and Applications,
46(6):747 – 755, 2013.

[8] Karl Bringmann. Why walking the dog takes time: Fréchet distance

has no strongly subquadratic algorithms unless SETH fails. In Proc.
55th Symposium on Foundations of Computer Science (FOCS), pages
661–670, 2014.

[9] Karl Bringmann andWolfgang Mulzer. Approximability of the discrete

Fréchet distance. J. Comput. Geometry, 7(2):46–76, 2016.

Matteo Ceccarello, Anne Driemel, and Francesco Silvestri

[10] Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang

Mulzer. Four Soviets walk the dog-with an application to Alt’s conjec-

ture. In Proc. 25th Symposium on Discrete Algorithms (SODA), pages
1399–1413, 2014.

[11] Kevin Buchin, Yago Diez, Tom van Diggelen, and Wouter Meulemans.

Efficient trajectory queries under the Fréchet distance (GIS Cup). In

Proc. 25th Int. Conference on Advances in Geographic Information Sys-
tems (SIGSPATIAL), pages 101:1–101:4, 2017.

[12] Matteo Ceccarello, Anne Driemel, and Francesco Silvestri. FRESH:

Fréchet similarity with hashing. arXiv abs/1809.02350, 2019.

[13] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony

Bagnall, Abdullah Mueen, and Gustavo Batista. The UCR time se-

ries classification archive, July 2015. www.cs.ucr.edu/~eamonn/time_

series_data/.

[14] Tobias Christiani. Fast locality-sensitive hashing frameworks for ap-

proximate near neighbor search. arXiv:1708.07586, 2017.

[15] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti

Penttonen. A reliable randomized algorithm for the closest-pair prob-

lem. J. Algorithms, 25(1):19–51, October 1997.
[16] A. Driemel and F. Silvestri. Locality-sensitive hashing of curves. In

Proc. 33rd Int. Symposium on Computational Geometry (SoCG), 2017.
[17] Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the

Fréchet Distance for Realistic Curves in Near Linear Time. Discrete
Comput Geom, 48(1):94–127, 2012.

[18] Fabian Dütsch and Jan Vahrenhold. A filter-and-refinement- algorithm

for range queries based on the Fréchet distance (GIS Cup). In Proc.
25th Int. Conference on Advances in Geographic Information Systems
(SIGSPATIAL), pages 100:1–100:4, 2017.

[19] Thomas Eiter and Heikki Mannila. Computing discrete Fréchet dis-

tance. Technical Report CD-TR 91/16, TU Vienna, 1994.

[20] Ioannis Z. Emiris and Ioannis Psarros. Products of Euclidean metrics

and applications to proximity questions among curves. In Proc. 34th Int.
Symposium on Computational Geometry (SoCG), volume 99 of LIPIcs,
pages 37:1–37:13, 2018.

[21] Joachim Gudmundsson and Michael Horton. Spatio-temporal analysis

of team sports. ACM Comput. Surv., 50(2), 2017.
[22] Piotr Indyk. Approximate nearest neighbor algorithms for Fréchet

distance via productmetrics. In Proc. 18th Symposium on Computational

Geometry (SoCG), pages 102–106, 2002.
[23] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors:

Towards removing the curse of dimensionality. In Proc. 30th Symposium
on the Theory of Computing (STOC), pages 604–613, 1998.

[24] Maximilian Konzack, Thomas McKetterick, Tim Ophelders, Maike

Buchin, Luca Giuggioli, Jed Long, Trisalyn Nelson, Michel A. Westen-

berg, and Kevin Buchin. Visual analytics of delays and interaction in

movement data. Int. J. Geographical Information Science, 31(2):320–345,
2017.

[25] Wuman Luo, Haoyu Tan, Lei Chen, and Lionel M. Ni. Finding time

period-based most frequent path in big trajectory data. In Proc. Int.
Conference on Management of Data (SIGMOD), 2013.

[26] Kexin Rong, Clara E. Yoon, Karianne J. Bergen, Hashem Elezabi, Peter

Bailis, Philip Levis, and Gregory C. Beroza. Locality-sensitive hashing

for earthquake detection: A case study of scaling data-driven science.

Proc. VLDB Endow., 11(11):1674–1687, 2018.
[27] Shuo Shang, Ruogu Ding, Kai Zheng, Christian S. Jensen, Panos Kal-

nis, and Xiaofang Zhou. Personalized trajectory matching in spatial

networks. The VLDB Journal, 23(3):449–468, 2014.
[28] E. Sriraghavendra, K. K., and C. Bhattacharyya. Fréchet Distance Based

Approach for Searching Online Handwritten Documents. In Proc. 9th
Int. Conference on Document Analysis and Recognition (ICDAR 2007),
volume 1, 2007.

[29] Narayanan Sundaram, Aizana Turmukhametova, Nadathur Satish,

Todd Mostak, Piotr Indyk, Samuel Madden, and Pradeep Dubey.

Streaming similarity search over one billion tweets using parallel

locality-sensitive hashing. Proc. VLDB Endow., 6(14):1930–1941, 2013.
[30] Martin Werner and Dev Oliver. ACM SIGSPATIAL GIS Cup 2017:

range queries under Fréchet distance. SIGSPATIAL Special, 10(1):24–27,
2018. http://sigspatial2017.sigspatial.org/giscup2017/home.

[31] T. Wylie and B. Zhu. Protein Chain Pair Simplification under the

Discrete Fréchet Distance. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 10(6):1372–1383, 2013.

[32] Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie,

Guangzhong Sun, and Yan Huang. T-drive: driving directions based on

taxi trajectories. In Proc. 18th Int. Conference on Advances in Geographic
Information Systems (SIGSPATIAL), pages 99–108. ACM, 2010.

www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/
http://sigspatial2017.sigspatial.org/giscup2017/home

	1 Introduction
	1.1 Our results
	1.2 Related works

	2 Preliminaries
	3 FRESH algorithm
	3.1 Score computations with LSH
	3.2 Filtering false positives
	3.3 Verifying the Fréchet distance

	4 Experimental evaluation
	4.1 Experimental setup
	4.2 Evaluating the LSH scheme
	4.3 Improving the precision by partial verification

	5 Conclusion
	References

