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Abstract. In this note we announce some of the results that will be presented in a forthcoming paper by the authors, and
which are concerned about the construction of a family of fundamental solutions for elliptic partial differential operators with
quaternion constant coefficients. The elements of such a family are functions which depend jointly real analytically on the
coefficients of the operators and on the spatial variable. A detailed description of such fundamental solutions has been deduced
in order to study regularity and stability properties in the frame of Schauder spaces for the corresponding layer potentials.

Keywords: Fundamental solutions, quaternion analysis, elliptic partial differential operators with quaternion constant coefficients, layer
potentials.
PACS: 02.30.Em, 02.30.Fn, 02.30.Jr, 02.60.Lj

INTRODUCTION

The study of fundamental solutions is a recurring theme
as it constitutes an important tool for the analysis of
boundary value problems of elliptic systems of differen-
tial equations by means of potential theory (cf. Fichera
[1], Miranda [2], Kupradze et al. [3]). More recently, a
potential theoretic approach has been adopted in order
to investigate perturbed boundary value problems and in
particular domain perturbations. We mention, as an ex-
ample, the works of Potthast [4, 5, 6], Costabel and Le
Louër [7, 8], and Lanza de Cristoforis and collabora-
tors [9, 10, 11, 12, 13, 14, 15]. In view of such appli-
cations, it is important to understand the dependence of
the layer potentials corresponding to a fundamental solu-
tion of a partial differential operator upon perturbations
of the support of integration and of data such as the co-
efficients of the operator and the density function. When
regarded in such a way, the study of fundamental solu-
tions provides useful tools in the analysis of perturbed
boundary value problems.

This note announces the construction of a particular
family of fundamental solutions for the quaternion con-
stant coefficients elliptic partial differential operators of
[16] and shows an extension of the results of [17] within
the non-commutative structure of quaternions. The ele-
ments of such a family are quaternion valued functions

which depend jointly real analytically on the (quater-
nion) coefficients of the operators and on the spatial vari-
able in Rn \{0}. A detailed description of such functions
has been exploited to study regularity and stability prop-
erties in the frame of Schauder spaces for the correspond-
ing layer potentials.

The principal goal that is central in our approach is
the treatment of perturbed elliptic boundary value prob-
lems by means of layer potentials. In this sense, the con-
struction announced here can be considered as a first step
toward the generalization of the potential theoretic ap-
proach of Lanza de Cristoforis et al. to the case of gen-
eral elliptic partial differential operators with quaternion
constant coefficients.

QUATERNION ANALYSIS

Quaternion analysis is a powerful tool for treating 3D
and 4D boundary value problems of elliptic partial dif-
ferential equations. The rich structure of this theory in-
volves the study of functions defined on subsets of Rn

and with values in the quaternions. A thorough treatment
of the subject is listed in the bibliography, e.g., Gür-
lebeck and Sprößig [18, 19], Kravchenko and Shapiro
[20], Kravchenko [21], Shapiro and Vasilevski [22, 23],
and Sudbery [24].



Let

H≡
{

z≡ z0 + z1i+ z2j+ z3k : zi ∈ R, i ∈ {0,1,2,3}
}

be the real quaternion algebra, where the imaginary units
i, j and k obey the following laws of multiplication: i2 =
j2 = k2 =−1; ij = k =−ji, jk = i =−kj, ki = j =−ik.

Then each element z = z0 + z1i + z2j + z3k of H can
be identified with the vector z = (z0,z1,z2,z3) of R4.

The norm |z| of z is defined by |z| ≡
√

z2
0 + z2

1 + z2
2 + z2

3 ,

and coincides with the corresponding Euclidean norm
as a real vector. The scalar and vector parts of z =
z0 + z1i + z2j + z3k ∈ H are defined by Sc(z) ≡ z0 and
Vec(z) ≡ z1i + z2j + z3k, respectively. A function with
values in H is called quaternion function or H-valued
function. Properties (like integrability, continuity or dif-
ferentiability) are defined componentwise.

NOTATION

The symbol Bn denotes the unit ball in Rn, namely
Bn ≡ {x ∈ Rn : |x| < 1}. If D is a subset of Rn, then
clD denotes its closure and ∂D denotes is boundary.

Let Ω be an open subset of Rn. Let f be an H-valued
function on Ω. For any x in Ω, ∂x j f(x) denotes the partial
derivative of f at x with respect to x j for all j ∈ {1, . . . ,n},
and ∂xf(x) ≡ (∂x1 f(x), . . . ,∂xn f(x))T , where T stands
for transpose, and ∂ α

x f(x) ≡ ∂
α1
x1 . . .∂ αn

xn f(x) for any
multi-index α ≡ (α1, . . . ,αn) ∈ Nn. If m ∈ N, we
denote the space of the m times continuously dif-
ferentiable quaternion functions on Ω by Cm(Ω,H),
and by Cm(clΩ,H) ⊆ Cm(Ω,H) the subspace of
those functions f whose derivatives ∂ α

x f of order
|α| ≡ α1 + · · ·+ αn ≤ m can be extended to continuous
functions on clΩ. As usual, the definitions of Cm(Ω,H)
and Cm(clΩ,H) are understood componentwise. In
case Ω is bounded, then Cm(clΩ,H) endowed with the
norm ‖f‖Cm(clΩ,H) ≡ ∑|α|≤m supclΩ |∂ α

x f| is well known
to be a Banach space. If λ ∈]0,1[, then C0,λ (clΩ,H)
denotes the space of the functions from clΩ to H which
are uniformly Hölder continuous with exponent λ . If
f ∈C0,λ (clΩ,H), then its Hölder constant |f : Ω|λ is de-
fined as sup

{
|f(x)− f(y)||x− y|−λ : x,y ∈ clΩ,x 6= y

}
.

We denote by Cm,λ (clΩ,H) the subspace of Cm(clΩ,H)
of the quaternion functions with m-th order deriva-
tives in C0,λ (clΩ,H). If Ω is bounded, then
the space Cm,λ (clΩ,H) equipped with the norm
‖f‖Cm,λ (clΩ,H) = ‖f‖Cm(clΩ,H) + ∑|α|=m |∂ α

x f : Ω|λ , is
well known to be a Banach space. We retain a similar
notation for Cm,λ (clΩ,Rn) and Cm,λ (clΩ,C). Also,
we say that Ω is a set of class Cm,λ if its closure is a
manifold with boundary embedded in Rn of class Cm,λ .
If Ω is an open bounded subset of Rn of class Cm,λ

and l ∈ {0, . . . ,m} then we define the sets Cl,λ (∂Ω,H),
Cl,λ (∂Ω,Rn), and Cl,λ (∂Ω,C) by exploiting the local
parametrizations of ∂Ω. For standard properties of
functions in Schauder spaces, we refer the reader to
Gilbarg and Trudinger [25]. For standard definitions of
real analytic functions between real Banach spaces we
refer, e.g., to Deimling [26, p. 150] (see also Prodi and
Ambrosetti [27]).

A FAMILY OF FUNDAMENTAL
SOLUTIONS FOR QUATERNION

COEFFICIENT OPERATORS

In this section, we state our main Theorem 1 concerning
the construction of a family of fundamental solutions
of elliptic partial differential operators with quaternion
constant coefficients. The elements of such a family are
expressed by means of jointly analytic functions of the
coefficients of the operators and of the spatial variable.
Moreover, in Theorem 1 we give a detailed description
of such a family in order to deduce regularity and jump
properties of the corresponding layer potentials (cf. [28],
[17]).

Before doing so, we need to introduce some nota-
tion. If m,n ∈ N, m ≥ 1, n ≥ 2, then N(m,n) denotes
the set of all multi-indexes α ≡ (α1, . . . ,αn) ∈ Nn with
|α| ≡ α1 + · · ·+ αn ≤ m. Similarly, H(m,n) denotes the
set of quaternion functions a ≡ (aα)α∈N(m,n) defined in
N(m,n). We identify H(m,n) with a finite dimensional
vector space on H and we endow H(m,n) with the norm

|a| ≡
√

∑α∈N(m,n) |aα |2. Then we set

EH(m,n) ≡
{

a ∈ H(m,n) :

∑
α∈N(m,n) , |α|=m

aα ξ
α 6= 0 ∀ξ ∈ ∂Bn

}
.

The set EH(m,n) is open in H(m,n). Finally, we set

L[a]≡ ∑
α∈N(2k,n)

aα ∂
α
x , ∀a ∈ H(m,n) .

If a ∈ H(m,n), then L[a] is a partial differential operator
of order ≤m with quaternion constant coefficients. If we
further assume that a ∈ EH(m,n), then L[a] is a quater-
nion elliptic operator of order m.

We are now in the position to state the following
Theorem 1. For a proof, we refer to [16]. Here we just say
that it is based on the corresponding result of [17] for real
partial differential operators, which in turn exploits the
construction of a fundamental solution for a real partial
differential operator with analytic coefficients provided
by John in [29, Chapter III].



Theorem 1 Let k,n ∈ N, k ≥ 1, n≥ 2. Then there exists
a real analytic function S from EH(k,n)×(Rn\{0}) to H
such that S(a, ·) is a fundamental solution of the operator
L[a] for all fixed a∈ EH(k,n). Moreover, there exist a real
analytic function A from EH(k,n)× ∂Bn×R to H, and
real analytic functions B and C from EH(k,n)×Rn to H
such that

S(a,x) = |x|k−nA
(

a,
x
|x|

, |x|
)

+ log |x|B(a,x)+C(a,x)

∀(a,x) ∈ EH(k,n)×Rn \{0} .

The functions B and C are identically 0 if n is odd
and there exist a sequence {f j} j∈N of real analytic
functions from EH(k,n) × ∂Bn to H, and a family
{bα}|α|≥sup{k−n,0} of real analytic functions from
EH(k,n) to H, such that

f j(a,−θ) = (−1) j+kf j(a,θ)
∀(a,θ) ∈ EH(k,n)×∂Bn ,

and

A(a,θ ,r) =
∞

∑
j=0

f j(a,θ)r j (1)

∀ (a,θ ,r) ∈ EH(k,n)×∂Bn×R ,

B(a,x) = ∑
|α|≥sup{k−n,0}

bα(a)xα (2)

∀(a,x) ∈ EH(k,n)×Rn,

where the series in equalities (1) and (2) converge abso-
lutely and uniformly in all compact subsets of EH(k,n)×
∂Bn×R and of EH(k,n)×Rn, respectively.

THE CORRESPONDING SINGLE
LAYER POTENTIAL

This section is devoted to the presentation of some regu-
larity properties for the single layer potential correspond-
ing to the fundamental solution S(a, ·) of Theorem 1.

We introduce some notation. Let m,n,k ∈ N, n ≥ 2,
m,k ≥ 1. Let λ ∈]0,1[. Let Ω be an open bounded
subset of Rn of class Cm,λ . Let a ∈ EH(k,n). Let µ ∈
Cm−1,λ (∂Ω,H). Let β ∈ Nn and |β | ≤ k− 1. We intro-
duce the function vβ [a,µ] from Rn to H by setting

vβ [a,µ](x)≡
∫

∂Ω

∂
β
x S(a,x− y)µ(y)dσy ∀x ∈ Rn .

Here, the integral is understood in the sense of singular
integrals if x ∈ ∂Ω and |β | = k− 1, and dσ denotes the
area element. If β = (0, . . . ,0), we find convenient to set

v[a,µ]≡ v(0,...,0)[a,µ] .

As a consequence,

vβ [a,µ](x) =∂
β
x v[a,µ](x)

∀x ∈ Rn \∂Ω ,β ∈ Nn , |β | ≤ k−1 .

In the following Theorem 2, we state some regularity
properties for the single layer potentials v[a,µ] and for
the functions vβ [a,µ]. For a proof we refer to [16]. Here
we say that the validity of the theorem follows by the
results in [17], by the construction of S(a, ·), and by
standard theorems of differentiation under the integral
sign.

Theorem 2 Let m,n,k∈N, n≥ 2, m,k≥ 1. Let λ ∈]0,1[,
and β ∈ Nn. Let Ω be a bounded open subset of Rn of
class Cm,λ . Let a ∈ EH(k,n). Let µ ∈ Cm−1,λ (∂Ω,H).
Then the following statements hold:

(i) if k ≥ 2 and |β | ≤ k − 2, then vβ [a,µ] ∈
Ck−2−|β |(Rn,H) and we have ∂

β
x v[a,µ](x) =

vβ [a,µ](x) for all x ∈ Rn;
(ii) if |β | = k− 1, then the restriction vβ [a,µ]|Ω has a

unique continuous extension to a function v+
β
[a,µ]

on clΩ and the map which takes µ to v+
β
[a,µ]

is linear and continuous from Cm−1,λ (∂Ω,H) to
Cm−1,λ (clΩ,H);

(iii) if |β |= k−1, then the restriction vβ [a,µ]|Rn\clΩ has
a unique continuous extension to a function v−

β
[a,µ]

on Rn \Ω and if R > 0 and clΩ⊆ RBn, then the map
which take µ to v−

β
[a,µ]|cl(RBn)\Ω is linear and con-

tinuous from Cm−1,λ (∂Ω,H) to Cm−1,λ (cl(RBn) \
Ω,H);

(iv) if |β |= k−1, then

v±
β
[a,µ](x) =∓ νΩ(x)β µ(x)

2∑α∈N(k,n),|α|=k aα(νΩ(x))α

+vβ [a,µ](x) ∀x ∈ ∂Ω ,

where νΩ denotes the outward unit normal to the
boundary of Ω.

AN APPLICATION TO COMPLEX
ELLIPTIC PARTIAL DIFFERENTIAL

OPERATORS OF ORDER TWO

In this section, we consider the single layer potential
corresponding to the fundamental solution of Theorem
1 in the case of complex partial differential operators
of order two. We state a real analyticity result for the
dependence of such a layer potential upon perturbation
of the support of integration, of the density, and of the



coefficients of the corresponding operator, which can
be proved by exploiting the results by M. Lanza de
Cristoforis and the first named author in [13].

We introduce some notation. Let Ω be a bounded open
connected subset of Rn of class Cm,λ , for some integer
m ≥ 1 and λ ∈]0,1[, such that Rn \ clΩ is connected.
We consider Ω as a “base domain”. We denote by A∂Ω

the set of functions of class C1(∂Ω,Rn) which are in-
jective and whose differential is injective at all points
x ∈ ∂Ω. The set A∂Ω is open in C1(∂Ω,Rn) (cf. Lanza
de Cristoforis and Rossi [30, Cor. 4.24, Prop. 4.29],
[11, Lem. 2.5]). Moreover, if φ ∈ A∂Ω, by the Jordan-
Leray Separation Theorem one verifies that Rn \φ(∂Ω)
has exactly two open connected components and we de-
note by I[φ ] the bounded connected component. Fur-
thermore, φ(∂Ω) ≡ ∂ I[φ ]. If we further assume that
φ ∈ A∂Ω ∩Cm,λ (∂Ω,Rn) then I[φ ] is an open bounded
subset of Rn of class Cm,λ (cf. Lanza de Cristoforis and
Rossi [12, §2]). In the sequel, φ(∂Ω) plays the role of
the support of integration of our layer potentials.

We identify C with the subalgebra of H consisting
of the quaternions z = z0 + iz1, with z0,z1 ∈ R. Then
for each k,n ∈ N, k ≥ 1, n ≥ 2, we set C(k,n) ≡ {a =
(aα)α∈N(k,n) ∈ H(k,n) : aα ∈ C ∀α ∈ N(k,n)} and

ẼC(k,n)≡
{

a = (aα)α∈N(k,n) ∈C(k,n) :

Sc
(

∑
|α|=k

aα ξ
α

)
> 0 ∀ξ ∈ ∂Bn

}
.

One verifies that C(k,n) is a finite dimensional complex
vector space and ẼC(k,n) is an open subset of C(k,n).
Also, ẼC(k,n) is non-empty if and only if k is even and
L[a] is an elliptic partial differential operator of order k
with complex constant coefficients for all a ∈ ẼC(k,n).

If µ is a function from ∂Ω to C and φ ∈ A∂Ω ∩
Cm,λ (∂Ω,Rn), one can consider the function µ ◦ φ (−1)

defined on φ(∂Ω). As a consequence, it makes sense to
define the single layer potential

v[a,φ ,µ](x)≡
∫

φ(∂Ω)
S(a,x− y)µ ◦φ

(−1)(y)dσy

∀x ∈ Rn ,

and the function

V [a,φ ,µ](ξ )≡ v[a,φ ,µ]◦φ(ξ ) ∀ξ ∈ ∂Ω

for all (a,φ ,µ) ∈ ẼC(2,n)× (A∂Ω ∩Cm,λ (∂Ω,Rn))×
Cm−1,λ (∂Ω,C).

We now confine ourselves to the case k = 2. Then we
have the following Theorem 3 (see [16]).

Theorem 3 Let m,n∈N, m≥ 1, n≥ 2. Let λ ∈]0,1[, and
Ω be a bounded open subset of Rn of class Cm,λ such that

both Ω and Rn\clΩ are connected. Then the map V [·, ·, ·]
from ẼC(2,n)×(A∂Ω∩Cm,λ (∂Ω,Rn))×Cm−1,λ (∂Ω,C)
to Cm,λ (∂Ω,C) is real analytic.

We note that Theorem 3 is an immediate consequence
of [13, Thm. 5.6]. Moreover, analogous results can be
proved for the double layer potential and for other in-
tegral operators related to the single layer potential (see
[16]).
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