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Abstract: We introduce the concepts of impulsive and of regular Sample and Euler stabiliz-
ability for impulsive control systems, where a cost is also considered. A condition guaranteeing
the existence of a discontinuous stabilizing feedback such that the corresponding (impulsive or
regular) sampling and Euler solutions have costs all bounded above by the same continuous,
state-dependent function, is presented. This condition, based on the existence of a special
Control Lyapunov Function, implies also that the infima of the cost over impulsive and over
regular inputs and solutions, coincide. The proofs are constructive and we exhibit explicit control
syntheses in feedback form.
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1. INTRODUCTION

Recently, in Lai and Motta (2018) we generalized the con-
cepts of sampling and Euler solutions for ordinary control
systems associated to discontinuous feedbacks presented
in Clarke et al. (1997), Clarke et al. (2000) by consid-
ering also associated costs. In particular, we introduced
the notions of Sample and Euler stabilizability to a closed
target set with W -regulated cost, which roughly means that
one requires the existence of a stabilizing feedback such
that the corresponding sampling and Euler solutions have
finite costs, all bounded above by the continuous, state-
dependent function W , eventually divided for some posi-
tive constant p0. We proved that the existence of a special
Control Lyapunov Function W , called Minimum Restraint
function, MRF, implies Sample and Euler stabilizability
to the target with W -regulated cost, so extending Motta
and Rampazzo (2013); Lai, Motta and Rampazzo (2016),
where the existence of a MRF W was only shown to yield
global asymptotic controllability with W -regulated cost.

The aim of the present paper is to extend the results of
Lai and Motta (2018) to the impulsive control system

ẋ(t) = f(x(t), v(t)) +
m∑
j=1

gj(x(t))uj(t), t ≥ 0,

x(0) = z ∈ IRn \ T =: T c,

(1)

with associated cost
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∫ Tx

0

[l0(x(t), v(t)) + l1(x(t)) |u(t)|] dt (l0, l1 ≥ 0), (2)

where the target T ⊆ IRn is a closed set with compact
boundary ∂T , Tx is the first exit-time of x from T c, and
the maps f : T c × V → IRn, g1, . . . , gm : T c → IRn,
l0 : T c × V → [0,+∞), l1 : T c → [0,+∞) are continuous.
The control v is measurable, with values in a compact set
V ⊆ IRq; u takes values in a closed, convex cone C ⊆ IRm.

Problem (1)-(2) over controls (v, u) with u ∈ L1
loc[0, Tx)

is an unbounded control problem with classical (possibly
multiple) trajectories x ∈ ACloc[0, Tx).

1 In this case, we
will call problem, controls, costs, and solutions, regular.
We also consider a generalization of (1)-(2), where u is no
more a function and the trajectory x is a discontinuous
map whose total variation is bounded on [0, T ] for every
T < Tx, but possibly unbounded on [0, Tx), in short x ∈
BVloc[0, Tx). Precisely, we will use a nowadays standard
notion of impulsive extension for problem (1)-(2), based
on the embedding of the graphs of absolutely continuous
maps in a larger set of space-time trajectories, as extended
to BVloc arcs in Motta and Sartori (2018) (see Section 2).

The first question is how to define Sample and Euler
stabilizability with regulated cost for (1)-(2). On the one
hand, a notion of asymptotic controllability or stabiliz-
ability of (1) to the target by means of impulsive inputs
does not guarantee controllability and stabilizability of (1)
to T over regular controls, since impulsive trajectories
may not be approximated by regular trajectories with
the same endpoint. Moreover, an infimum gap between

1 L1
loc[0, Tx), ACloc[0, Tx) are, respectively, the sets of Lebesgue

integrable and of absolutely continuous maps on any interval [0, T ] ⊆
[0, Tx).
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stabilizability with regulated cost for (1)-(2). On the one
hand, a notion of asymptotic controllability or stabiliz-
ability of (1) to the target by means of impulsive inputs
does not guarantee controllability and stabilizability of (1)
to T over regular controls, since impulsive trajectories
may not be approximated by regular trajectories with
the same endpoint. Moreover, an infimum gap between

1 L1
loc[0, Tx), ACloc[0, Tx) are, respectively, the sets of Lebesgue

integrable and of absolutely continuous maps on any interval [0, T ] ⊆
[0, Tx).
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the infimum of the cost (2) over regular and impulsive
inputs is expected. See Motta and Sartori (2014). On
the other hand, in many applications, as for instance
the control of mechanical systems by means of moving
constraints, Bressan and Rampazzo (2010), and the mid-
course guidance, Azimov and Bishop (2005), impulsive
inputs are idealizations and only regular controls u are
implementable. In these models the impulsive extension
is significant only if no infimum gap occurs and it is
mandatory to investigate the stabilizability with regulated
cost for the regular problem.

The above considerations lead us to introduce two notions
of Sample and Euler stabilizability with regulated cost
for (1)-(2), over impulsive and regular trajectory-control
pairs, respectively. We will refer to these concepts as
impulsive and regular Sample and Euler stabilizability with
regulated cost, respectively (see Sections 2, 3).

Furthermore, given the Hamiltonian

H(x, p0, p) := min
(w0,w,v)∈S(C)×V

{
〈p, f(x, v)w0+

m∑
j=1

gj(x)wj〉+ p0 [l0(x, v)w0 + l1(x)|w|]
}
,

(3)

where

S(C) :=
{
(w0, w) ∈ [0,+∞)× C : w0 + |w| = 1

}
, (4)

we define a p0-MRF for (1)-(2) as follows.

Definition 1.1. (p0-Minimum Restraint Function). LetW :
T c → [0,+∞) be a continuous function, locally semicon-
cave, positive definite, and proper on T c. We say that W
is a p0-Minimum Restraint Function, p0-MRF, for some
p0 ≥ 0 for (1)-(2) if there exists some continuous, strictly
increasing function γ : (0,+∞) → (0,+∞) verifying the
following decrease condition:

H(x, p0, p) ≤ −γ(W (x)) ∀x ∈ T c, ∀p ∈ D∗W (x), (5)

where D∗W (x) is the set of limiting gradients of W at x. 2

A p0-MRF is a Lyapunov function, since p0, l := l0w0 +
l1|w| ≥ 0. However, when p0 > 0 condition (5) cannot be
interpreted as, e.g., the usual Lyapunov condition for an
extended dynamics (x0, x) with ẋ0 = l, target [0,+∞)×T ,

and Lyapunov function W̃ (x0, x) = p0 x
0+W (x), since W̃

is not proper. See Motta and Rampazzo (2013) for details.

As a first result, in Theorem 2.1 we establish that the
existence of a p0-MRF W with p0 > 0 yields the im-
pulsive Sample and Euler stabilizability with W -regulated
cost of (1)-(2). Theorem 2.1 however, neither guarantees
that there exist regular trajectory-control pairs (x, u, v)
approaching asymptotically the target, nor implies that
the corresponding costs are bounded above by W (z)/p0.
The main result of the paper is obtained in Theorem 3.1,
where we prove that the existence of a p0-MRF W with
p0 > 0 implies the regular Sample and Euler stabilizability
with W -regulated cost of (1)-(2) too. In fact, as shown in
Proposition 3.1, the existence of a function W as above
also guarantees that there is no infimum gap between the
impulsive and the regular optimization problem.

The paper is organized as follows. In the last part of the
Introduction we fix some notations. In Section 2 we define
2 Since W is locally semiconcave, D∗W coincides with the limiting
subdifferential ∂LW . See e.g. Cannarsa and Sinestrari (2004).

the impulsive sample and Euler stabilizability with W -
regulated cost and prove Theorem 2.1. Section 3 is devoted
to the regular sample and Euler stabilizability with W -
regulated cost and to the proof of Theorem 3.1. It ends
with Proposition 3.1, where the no infimum gap condition
is stated. Section 4 is devoted to the conclusions.

1.1 Notation

For every r ≥ 0 and Ω ⊆ IRn, we set Br(Ω) := {x ∈ IRn |
d(x,Ω) ≤ r}, where d is the usual Euclidean distance.
d(x) := d(x, T ). For a, b ∈ IR, a ∨ b := max{a, b}, a ∧ b :=
min{a, b}. As customary, we use KL to denote the set of
all continuous functions β : [0,+∞)× [0,+∞) → [0,+∞)
such that: (1) β(0, t) = 0 and β(·, t) is strictly increasing
and unbounded for each t ≥ 0; (2) β(r, ·) is decreasing for
each r ≥ 0; (3) β(r, t) → 0 as t → +∞ for each r ≥ 0.
A partition (of [0,+∞)) is a sequence π = (tk) such that
t0 = 0, tk−1 < tk ∀k ≥ 1, and limk→+∞ tk = +∞.
The number diam(π) := supk≥1(tk − tk−1) is called the
diameter or the sampling time of the partition π.

2. IMPULSIVE STABILIZABILITY WITH
REGULATED COST

Let us briefly recall the impulsive extension of (1)-(2)
introduced in Motta and Sartori (2018), based on the
classical graph completion approach. See Rishel (1965);
Warga (1965); Bressan and Rampazzo (1988); Miller
(1994); Motta and Rampazzo (1995). We consider the
following control problem:


y′(s) = f(y(s), ψ(s))w0(s) +

m∑
j=1

gj(y(s))wj(s)

y(0) = z ∈ T c,

(6)

with associated cost∫ Sy

0

[l0(y(s), ψ(s))w0(s) + l1(y(s)) |w(s)|] ds (7)

for measurable controls (w0, w, ψ)(s) ∈ S(C) × V a.e.
s ∈ [0, Sy], where Sy ≤ +∞ verifies

y([0, Sy)) ⊆ T c, lim
s→S−

y

d(y(s)) = 0 if Sy < +∞. (8)

The apex “ ′ ” denotes differentiation with respect to the
new parameter s, in order to distinguish it from the
time variable, t. Notice that the extended problem is an
ordinary control problem, since the new controls (w0, w, ψ)
are bounded.

Next lemma, easy consequence of the chain rule, shows
that problem (6)-(7) restricted to the controls (w0, w, ψ)
with w0 > 0 a.e. is an equivalent formulation in the space
of graphs of the regular problem (1)-(2).

Lemma 2.1. (i) If (x, u, v) is a regular trajectory-control
pair for (1) with u ∈ L1

loc[0, Tx), then, setting
3

σ(t) :=

∫ t

0

(1 + |u(τ)|) dτ ∀t ∈ [0, Tx), Sy := lim
t→T−

x

σ(t),

ϕ0(s) := σ−1(s), y(s) = (x ◦ ϕ0)(s) ∀s ∈ [0, Sy),

(w0, w, ψ)(s) :=
(
ϕ′
0, (u ◦ ϕ0)ϕ

′
0, v ◦ ϕ0

)
(s)

3 Since every L1 equivalence class contains Borel measurable repre-
sentatives, when necessary we will tacitly assume that the controls
are Borel measurable.
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inputs is expected. See Motta and Sartori (2014). On
the other hand, in many applications, as for instance
the control of mechanical systems by means of moving
constraints, Bressan and Rampazzo (2010), and the mid-
course guidance, Azimov and Bishop (2005), impulsive
inputs are idealizations and only regular controls u are
implementable. In these models the impulsive extension
is significant only if no infimum gap occurs and it is
mandatory to investigate the stabilizability with regulated
cost for the regular problem.

The above considerations lead us to introduce two notions
of Sample and Euler stabilizability with regulated cost
for (1)-(2), over impulsive and regular trajectory-control
pairs, respectively. We will refer to these concepts as
impulsive and regular Sample and Euler stabilizability with
regulated cost, respectively (see Sections 2, 3).

Furthermore, given the Hamiltonian

H(x, p0, p) := min
(w0,w,v)∈S(C)×V

{
〈p, f(x, v)w0+
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gj(x)wj〉+ p0 [l0(x, v)w0 + l1(x)|w|]
}
,

(3)

where

S(C) :=
{
(w0, w) ∈ [0,+∞)× C : w0 + |w| = 1

}
, (4)

we define a p0-MRF for (1)-(2) as follows.

Definition 1.1. (p0-Minimum Restraint Function). LetW :
T c → [0,+∞) be a continuous function, locally semicon-
cave, positive definite, and proper on T c. We say that W
is a p0-Minimum Restraint Function, p0-MRF, for some
p0 ≥ 0 for (1)-(2) if there exists some continuous, strictly
increasing function γ : (0,+∞) → (0,+∞) verifying the
following decrease condition:

H(x, p0, p) ≤ −γ(W (x)) ∀x ∈ T c, ∀p ∈ D∗W (x), (5)

where D∗W (x) is the set of limiting gradients of W at x. 2

A p0-MRF is a Lyapunov function, since p0, l := l0w0 +
l1|w| ≥ 0. However, when p0 > 0 condition (5) cannot be
interpreted as, e.g., the usual Lyapunov condition for an
extended dynamics (x0, x) with ẋ0 = l, target [0,+∞)×T ,

and Lyapunov function W̃ (x0, x) = p0 x
0+W (x), since W̃

is not proper. See Motta and Rampazzo (2013) for details.

As a first result, in Theorem 2.1 we establish that the
existence of a p0-MRF W with p0 > 0 yields the im-
pulsive Sample and Euler stabilizability with W -regulated
cost of (1)-(2). Theorem 2.1 however, neither guarantees
that there exist regular trajectory-control pairs (x, u, v)
approaching asymptotically the target, nor implies that
the corresponding costs are bounded above by W (z)/p0.
The main result of the paper is obtained in Theorem 3.1,
where we prove that the existence of a p0-MRF W with
p0 > 0 implies the regular Sample and Euler stabilizability
with W -regulated cost of (1)-(2) too. In fact, as shown in
Proposition 3.1, the existence of a function W as above
also guarantees that there is no infimum gap between the
impulsive and the regular optimization problem.

The paper is organized as follows. In the last part of the
Introduction we fix some notations. In Section 2 we define
2 Since W is locally semiconcave, D∗W coincides with the limiting
subdifferential ∂LW . See e.g. Cannarsa and Sinestrari (2004).

the impulsive sample and Euler stabilizability with W -
regulated cost and prove Theorem 2.1. Section 3 is devoted
to the regular sample and Euler stabilizability with W -
regulated cost and to the proof of Theorem 3.1. It ends
with Proposition 3.1, where the no infimum gap condition
is stated. Section 4 is devoted to the conclusions.

1.1 Notation

For every r ≥ 0 and Ω ⊆ IRn, we set Br(Ω) := {x ∈ IRn |
d(x,Ω) ≤ r}, where d is the usual Euclidean distance.
d(x) := d(x, T ). For a, b ∈ IR, a ∨ b := max{a, b}, a ∧ b :=
min{a, b}. As customary, we use KL to denote the set of
all continuous functions β : [0,+∞)× [0,+∞) → [0,+∞)
such that: (1) β(0, t) = 0 and β(·, t) is strictly increasing
and unbounded for each t ≥ 0; (2) β(r, ·) is decreasing for
each r ≥ 0; (3) β(r, t) → 0 as t → +∞ for each r ≥ 0.
A partition (of [0,+∞)) is a sequence π = (tk) such that
t0 = 0, tk−1 < tk ∀k ≥ 1, and limk→+∞ tk = +∞.
The number diam(π) := supk≥1(tk − tk−1) is called the
diameter or the sampling time of the partition π.

2. IMPULSIVE STABILIZABILITY WITH
REGULATED COST

Let us briefly recall the impulsive extension of (1)-(2)
introduced in Motta and Sartori (2018), based on the
classical graph completion approach. See Rishel (1965);
Warga (1965); Bressan and Rampazzo (1988); Miller
(1994); Motta and Rampazzo (1995). We consider the
following control problem:


y′(s) = f(y(s), ψ(s))w0(s) +

m∑
j=1

gj(y(s))wj(s)

y(0) = z ∈ T c,

(6)

with associated cost∫ Sy

0

[l0(y(s), ψ(s))w0(s) + l1(y(s)) |w(s)|] ds (7)

for measurable controls (w0, w, ψ)(s) ∈ S(C) × V a.e.
s ∈ [0, Sy], where Sy ≤ +∞ verifies

y([0, Sy)) ⊆ T c, lim
s→S−

y

d(y(s)) = 0 if Sy < +∞. (8)

The apex “ ′ ” denotes differentiation with respect to the
new parameter s, in order to distinguish it from the
time variable, t. Notice that the extended problem is an
ordinary control problem, since the new controls (w0, w, ψ)
are bounded.

Next lemma, easy consequence of the chain rule, shows
that problem (6)-(7) restricted to the controls (w0, w, ψ)
with w0 > 0 a.e. is an equivalent formulation in the space
of graphs of the regular problem (1)-(2).

Lemma 2.1. (i) If (x, u, v) is a regular trajectory-control
pair for (1) with u ∈ L1

loc[0, Tx), then, setting
3

σ(t) :=

∫ t

0

(1 + |u(τ)|) dτ ∀t ∈ [0, Tx), Sy := lim
t→T−

x

σ(t),

ϕ0(s) := σ−1(s), y(s) = (x ◦ ϕ0)(s) ∀s ∈ [0, Sy),

(w0, w, ψ)(s) :=
(
ϕ′
0, (u ◦ ϕ0)ϕ

′
0, v ◦ ϕ0

)
(s)

3 Since every L1 equivalence class contains Borel measurable repre-
sentatives, when necessary we will tacitly assume that the controls
are Borel measurable.

2019 IFAC NOLCOS
Vienna, Austria, Sept. 4-6, 2019

507



354	 Monica Motta  et al. / IFAC PapersOnLine 52-16 (2019) 352–357

for a.e. s ∈ [0, Sy), the process (y, w0, w, ψ) is a trajectory-
control pair for (6) with w0 > 0 a.e. on [0, Sy).

(ii) Vice-versa, if (y, w0, w, ψ) is a trajectory-control pair
for (6) with w0 > 0 a.e. on [0, Sy), then, setting

ϕ0(s) :=

∫ s

0

w0(r) dr ∀s ∈ [0, Sy), Tx := lim
s→S−

y

ϕ0(s),

σ(t) := ϕ−1
0 (t), x(t) := (y ◦ σ)(t), ∀t ∈ [0, Tx),

(u, v)(t) :=
(
(w ◦ σ) σ̇, ψ ◦ σ

)
(t) a.e. t ∈ [0, Tx),

(x, u, v) is a regular trajectory-control pair for (1).

In both cases, the extended and the original cost coincide.

The impulsive extension consists in allowing subintervals
I ⊆ [0, Sy) where w0 ≡ 0. Then the state y evolves
on I in zero t-time, driven by

∑m
j=1 gj(y(s))wj(s). The

space-time curves (ϕ0, y) can be seen as limit (in the
space of graphs) of graphs of regular trajectories. It is
then quite natural that sufficient stabilizability conditions
for impulsive systems concern, more or less explicitly, the
extended problem.

Remark 2.1. System (6) gives rise to a notion of gener-
alized solution x ∈ BVloc[0, Tx) to (1) associated to any
control (u, v) with v measurable and u vector measure
determined by its distribution U ∈ BVloc[0, Tx), by setting
x := y ◦ σ, where (y, w0, w, ψ) is a trajectory-control pair

for (6) verifying U(t) = U(0) +
∫ σ(t)

0
w ds, v(t) = ψ ◦

σ(t) a.e., and σ(t) is a pointwise, increasing selection of
ϕ−1
0 ({t}) in [0, Tx). See Motta and Sartori (2018) for more

details.

2.1 Impulsive-Sample stabilizability with regulated cost

Definition 2.1. Given a feedback

x �→ K(x) := (ŵ0, ŵ, ψ̂)(x) ∈ S(C)× V ∀x ∈ T c,

a partition π = (sk), and a point z ∈ T c, a π-sampling
trajectory for (6) is a map y defined by recursively solving

y′(s) = f(y(s), ψ̂(y(sk−1)))ŵ0(y(sk−1))+
m∑
j=1

gj(y(s))ŵj(y(sk−1)), s ∈ [sk−1, sk]

(y(s) ∈ T c), from the initial time sk−1 up to time

σk := sk−1∨ sup{σ ∈ [sk−1, sk] : y is defined on [sk−1, σ)},
where y(s0) = y(0) = z. In this case, the trajectory y is
defined on the right-open interval from time zero up to
time s− := inf{σk : σk < sk}. Accordingly, for every
k ≥ 1 and for all s ∈ [sk−1, sk) ∩ [0, s−), we set

(w0, w, ψ)(s) := (ŵ0, ŵ, ψ̂)(y(sk−1)). (9)

The pair (y, w0, w, ψ) will be called a π-sampling trajectory-
control pair of (6) (corresponding to the feedback K). The
associated sampling cost, for any s ∈ [0, s−) is given by

y0(s) :=

∫ s

0

[l0(y(r), ψ(r))w0(r) + l1(y(r)) |w(r)|] dr.

If s− = Sy < +∞, we extend continuously (y0, y) to
[0,+∞), by setting (y0, y)(s) := lim

s→S−
y

(y0, y)(s) ∀s ≥ Sy.

Observe that when Sy < +∞ the above limit exists since
extended dynamics and Lagrangian are bounded in any
bounded neighborhood of the compact set ∂T .

Definition 2.2. A feedback K is said to impulsive-Sample
stabilize the original system (1) to T if there is a function
β ∈ KL satisfying the following: for each pair 0 < r < R
there exists δ = δ(r,R) > 0, such that, for every partition
π with diam(π) ≤ δ and for any z ∈ T c with d(z) ≤ R,
any π-sampling trajectory-control pair (y, w0, w, ψ) of the
extended system (6) is defined in [0,+∞) and verifies:

d(y(s)) ≤ max{β(R, s), r} ∀s ∈ [0,+∞). (10)

If moreover there exist p0 > 0 and a continuous map W :
T c → [0,+∞) whose restriction to T c is positive definite
and proper, such that the sampling cost y0 associated to
any (y, w0, w, ψ) as above verifies

y0(S̄
r
y) ≤

W (z)

p0
, (11)

where S̄r
y := inf{s > 0 : d(y(σ)) ≤ r ∀σ ≥ s}, we say that

K impulsive-Sample stabilizes (1) to T with W -regulated
cost.

Observe that, when d(z) ≤ r, S̄r
y may be zero. In this case

(11) imposes no conditions on the cost.

2.2 Impulsive-Euler stabilizability with regulated cost

Definition 2.3. Let (πi) be a sequence of partitions such
that δi := diam(πi) → 0 as i → ∞. For every i, let
(yi, w0i , wi, vi) be a πi-sampling trajectory-control pair of
(6) and let y0i be the corresponding cost. If there exists a
map (Y0,Y) : [0,+∞) → IR× IRn, verifying

(y0i , yi) → (Y0,Y) locally uniformly in [0,+∞)

we call Y an Euler trajectory of (6) and Y0 the associated
Euler cost.

Definition 2.4. A feedback K : T c → S(C) × V is said to
impulsive-Euler stabilize the original system (1) to T if
there exists a function β ∈ KL such that for each z ∈ T c,
every Euler solution Y of (6) verifies

d(Y(s)) ≤ β(d(z), s) ∀s ∈ [0,+∞). (12)

If moreover there exist some p0 > 0 and a continuous
map W : T c → [0,+∞) whose restriction to T c is
positive definite and proper, such that every Euler cost
Y0 associated to Y, verifies

lim
s→S−

Y

Y0(s) ≤
W (z)

p0
∀z ∈ T c (13)

(SY as in (8)), then we say that K impulsive-Euler
stabilizes (1) to T with W -regulated cost.

The above concepts of sampling and Euler solutions rely
on the ’sample-and-hold technique’, as Clarke et al. (1997).
In particular, on any sampling interval we keep the control
constant, but the nonlinear dynamics is the original one.
A different approach, based on ’one-step Euler approxi-
mations’, i.e., on the use of constant vector fields on each
interval, is investigated in Wolenski and Žabić (2007) and
Fraga and Pereira (2008).

2.3 Main result

Theorem 2.1. Let W be a p0-MRF, p0 ≥ 0, for (1)-
(2). Then there exists a locally bounded feedback K :
T c → S(C)×V that impulsive-Sample and Euler stabilizes
system (1) to T ; with W -regulated cost if p0 > 0.
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Proof. Given a p0-MRF W with p0 ≥ 0, for any x ∈ T c

let us fix a selection p(x) ∈ D∗W (x) and let K(x) =

(ŵ0, ŵ, ψ̂)(x) ∈ S(C)× V be a feedback verifying

〈p(x), f(x, ψ̂(x))ŵ0(x) +

m∑
j=1

gj(x) ŵj(x)〉+

p0 [l0(x, ψ̂(x))ŵ0(x) + l1(x)|ŵ(x)|] < −γ(W (x)),

(14)

whose existence is guaranteed by the definition of p0-MRF.
The thesis follows now by (Lai and Motta , 2018, Thm.
1.1), since the (ordinary) extended problem (6)-(7) meets
the assumptions of Lai and Motta (2018).

3. REGULAR STABILIZABILITY WITH
REGULATED COST

The notions of sampling and Euler solutions and costs for
(1)-(2) over the class of regular controls are quite delicate,
since blow-up and chattering phenomena may occur. In
particular, sequences of regular sampling trajectories with
sampling times going to zero, may all approach the target
in finite time with larger and larger velocities and no
uniform limits –usually defined as Euler solutions– may
exist. For this reason, in Def. 3.3 below we introduce a
new notion of weak Euler solution and of weak Euler cost.

3.1 Regular-Sample stabilizability with regulated cost

Definition 3.1. Given a locally bounded feedback

x �→ K(x) := (û, v̂)(x) ∈ C × V ∀x ∈ T c,

a partition π = (tk), and a point z ∈ T c, a π-sampling
trajectory for (1) is a map x defined by recursively solving

ẋ(t) = f(x(t), v̂(x(tk−1)))+
m∑
j=1

gj(x(t))ûj(x(tk−1)), t ∈ [tk−1, tk]

(x(t) ∈ T c), from the initial time tk−1 up to time

τk := tk−1 ∨ sup{τ ∈ [tk−1, tk] : x is defined on [tk−1, τ)},
where x(t0) = x(0) = z. In this case, the trajectory x is
defined on the right-open interval from time zero up to
time t− := inf{τk : τk < tk}. Accordingly, for every k ≥ 1
and for all t ∈ [tk−1, tk) ∩ [0, t−), we set

(u, v)(t) := (û, v̂)(x(tk−1)).

The process (x, u, v) will be called a π-sampling trajectory-
control pair of (1) (corresponding to the feedback K). The
associated sampling cost, for any t ∈ [0, t−) is given by

x0(t) :=

∫ t

0

[l0(x(r), v(r)) + l1(x(r)) |u(r)|] dr.

If t− = Tx < +∞, we extend x to [0,+∞) by setting
x(t) := z̄ ∀t ≥ Tx, where z̄ is a point of the set

ω(x) := {lim
k

x(tk) : (tk) is increasing and lim
k

tk = Tx}

(ω(x) 
= ∅ since ∂T in compact). If lim
t→T−

x

x0(t) < +∞, we

also extend x0 by setting x0(t) := lim
t→T−

x

x0(t) ∀t ≥ Tx.

Definition 3.2. A locally bounded feedback K : T c → C ×
V is said to regular-Sample stabilize system (1) to T if
there is a function β ∈ KL satisfying the following: for
each pair 0 < r < R there exists δ = δ(r,R) > 0, such
that, for every partition π with diam(π) ≤ δ and for any

z ∈ T c with d(z) ≤ R, any π-sampling trajectory-control
pair (x, u, v) of (1) is defined in [0,+∞) and verifies:

d(x(t)) ≤ max{β(R, t), r} ∀t ∈ [0,+∞). (15)

If moreover there exist p0 > 0 and a continuous map W :
T c → [0,+∞) whose restriction to T c is positive definite
and proper, such that the sampling cost x0 associated to
any (x, u, v) as above verifies

x0(T̄
r
x ) ≤

W (z)

p0
(16)

where T̄ r
x := inf{t > 0 : d(x(τ)) ≤ r ∀τ ≥ t}, we say

that K regular-Sample stabilizes (1) to T with W -regulated
cost.

3.2 Regular-Euler stabilizability with regulated cost

Definition 3.3. Let (πi) be a sequence of partitions such
that δi :=diam(πi) → 0 as i → ∞. For every i, let
(xi, ui, vi) be a πi-sampling trajectory-control pair of (1)
and let x0i be the associated cost. When there exists a map
(X0,X) : [0,+∞) → IR× IRn, verifying, for some sequence
(ri) ⊂ (0,d(z)) converging to 0:

lim
i

[ ∫ t

0

|(x̃0i , x̃i)(τ)− (X0,X)(τ)| dτ+

|(x̃0i , x̃i)(t)− (X0,X)(t)|
]
= 0 ∀t ≥ 0,

(17)

where, for each i, Ti := inf{t > 0 : d(xi(τ)) ≤ ri ∀τ ≥ t},
and (x̃0i , x̃i)(t) := (x0i , xi)(t ∧ Ti) ∀t ≥ 0, we call X a
weak Euler trajectory of (1) and X0 an associated weak
Euler cost.

Remark 3.1. Given (X0,X) as in Def. 3.3, set

TX := inf{τ ∈ (0,+∞] : X([0, τ)) ⊆ T c,
lim

t→τ−
d(X(t)) = 0} ≤ +∞. (18)

It is not difficult to show that the restriction of (X0,X) to
the interval [0, TX) does not depend on the sequence (ri).

A weak Euler solution X is in general discontinuous
and it may happen that either limt→+∞ d(X(t)) 
= 0
or TX < +∞ and d(X(T + ε)) = 0 for every ε > 0
but limt→T−

x
d(X(t)) 
= 0, despite the sequence (xi, ui, vi)

defining X verifies limt→+∞ d(xi(t)) = 0 for every i.

Definition 3.4. A locally bounded feedback K : T c → C ×
V is said to regular-Euler stabilize system (1) to T if there
exists a function β ∈ KL such that for each z ∈ T c, every
weak Euler solution X of (1) verifies

d(X(t)) ≤ β(d(z), t) ∀t ∈ [0,+∞). (19)

If moreover there exist some p0 > 0 and a continuous map
W : T c → [0,+∞) whose restriction to T c is positive
definite and proper, such that every weak Euler cost X0

associated to X, verifies

lim
t→T−

X

X0(t) ≤
W (z)

p0
∀z ∈ T c (20)

(TX as in (18)), then we say that K regular-Euler stabilizes
(1) to T with W -regulated cost.

3.3 Main result

Theorem 3.1. Let W be a p0-MRF, p0 ≥ 0 for (1)-(2).
Then there exists a locally bounded feedback K : T c →
C×V that regular-Sample and Euler stabilizes system (1)
to T ; with W -regulated cost if p0 > 0.
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Proof. Given a p0-MRF W with p0 ≥ 0, for any x ∈ T c

let us fix a selection p(x) ∈ D∗W (x) and let K(x) =

(ŵ0, ŵ, ψ̂)(x) ∈ S(C)× V be a feedback verifying

〈p(x), f(x, ψ̂(x))ŵ0(x) +

m∑
j=1

gj(x) ŵj(x)〉+

p0 [l0(x, ψ̂(x))ŵ0(x) + l1(x)|ŵ(x)|] < −γ(W (x)),

(14)

whose existence is guaranteed by the definition of p0-MRF.
The thesis follows now by (Lai and Motta , 2018, Thm.
1.1), since the (ordinary) extended problem (6)-(7) meets
the assumptions of Lai and Motta (2018).

3. REGULAR STABILIZABILITY WITH
REGULATED COST

The notions of sampling and Euler solutions and costs for
(1)-(2) over the class of regular controls are quite delicate,
since blow-up and chattering phenomena may occur. In
particular, sequences of regular sampling trajectories with
sampling times going to zero, may all approach the target
in finite time with larger and larger velocities and no
uniform limits –usually defined as Euler solutions– may
exist. For this reason, in Def. 3.3 below we introduce a
new notion of weak Euler solution and of weak Euler cost.

3.1 Regular-Sample stabilizability with regulated cost

Definition 3.1. Given a locally bounded feedback

x �→ K(x) := (û, v̂)(x) ∈ C × V ∀x ∈ T c,

a partition π = (tk), and a point z ∈ T c, a π-sampling
trajectory for (1) is a map x defined by recursively solving

ẋ(t) = f(x(t), v̂(x(tk−1)))+
m∑
j=1

gj(x(t))ûj(x(tk−1)), t ∈ [tk−1, tk]

(x(t) ∈ T c), from the initial time tk−1 up to time

τk := tk−1 ∨ sup{τ ∈ [tk−1, tk] : x is defined on [tk−1, τ)},
where x(t0) = x(0) = z. In this case, the trajectory x is
defined on the right-open interval from time zero up to
time t− := inf{τk : τk < tk}. Accordingly, for every k ≥ 1
and for all t ∈ [tk−1, tk) ∩ [0, t−), we set

(u, v)(t) := (û, v̂)(x(tk−1)).

The process (x, u, v) will be called a π-sampling trajectory-
control pair of (1) (corresponding to the feedback K). The
associated sampling cost, for any t ∈ [0, t−) is given by

x0(t) :=

∫ t

0

[l0(x(r), v(r)) + l1(x(r)) |u(r)|] dr.

If t− = Tx < +∞, we extend x to [0,+∞) by setting
x(t) := z̄ ∀t ≥ Tx, where z̄ is a point of the set

ω(x) := {lim
k

x(tk) : (tk) is increasing and lim
k

tk = Tx}

(ω(x) 
= ∅ since ∂T in compact). If lim
t→T−

x

x0(t) < +∞, we

also extend x0 by setting x0(t) := lim
t→T−

x

x0(t) ∀t ≥ Tx.

Definition 3.2. A locally bounded feedback K : T c → C ×
V is said to regular-Sample stabilize system (1) to T if
there is a function β ∈ KL satisfying the following: for
each pair 0 < r < R there exists δ = δ(r,R) > 0, such
that, for every partition π with diam(π) ≤ δ and for any

z ∈ T c with d(z) ≤ R, any π-sampling trajectory-control
pair (x, u, v) of (1) is defined in [0,+∞) and verifies:

d(x(t)) ≤ max{β(R, t), r} ∀t ∈ [0,+∞). (15)

If moreover there exist p0 > 0 and a continuous map W :
T c → [0,+∞) whose restriction to T c is positive definite
and proper, such that the sampling cost x0 associated to
any (x, u, v) as above verifies

x0(T̄
r
x ) ≤

W (z)

p0
(16)

where T̄ r
x := inf{t > 0 : d(x(τ)) ≤ r ∀τ ≥ t}, we say

that K regular-Sample stabilizes (1) to T with W -regulated
cost.

3.2 Regular-Euler stabilizability with regulated cost

Definition 3.3. Let (πi) be a sequence of partitions such
that δi :=diam(πi) → 0 as i → ∞. For every i, let
(xi, ui, vi) be a πi-sampling trajectory-control pair of (1)
and let x0i be the associated cost. When there exists a map
(X0,X) : [0,+∞) → IR× IRn, verifying, for some sequence
(ri) ⊂ (0,d(z)) converging to 0:

lim
i

[ ∫ t

0

|(x̃0i , x̃i)(τ)− (X0,X)(τ)| dτ+

|(x̃0i , x̃i)(t)− (X0,X)(t)|
]
= 0 ∀t ≥ 0,

(17)

where, for each i, Ti := inf{t > 0 : d(xi(τ)) ≤ ri ∀τ ≥ t},
and (x̃0i , x̃i)(t) := (x0i , xi)(t ∧ Ti) ∀t ≥ 0, we call X a
weak Euler trajectory of (1) and X0 an associated weak
Euler cost.

Remark 3.1. Given (X0,X) as in Def. 3.3, set

TX := inf{τ ∈ (0,+∞] : X([0, τ)) ⊆ T c,
lim

t→τ−
d(X(t)) = 0} ≤ +∞. (18)

It is not difficult to show that the restriction of (X0,X) to
the interval [0, TX) does not depend on the sequence (ri).

A weak Euler solution X is in general discontinuous
and it may happen that either limt→+∞ d(X(t)) 
= 0
or TX < +∞ and d(X(T + ε)) = 0 for every ε > 0
but limt→T−

x
d(X(t)) 
= 0, despite the sequence (xi, ui, vi)

defining X verifies limt→+∞ d(xi(t)) = 0 for every i.

Definition 3.4. A locally bounded feedback K : T c → C ×
V is said to regular-Euler stabilize system (1) to T if there
exists a function β ∈ KL such that for each z ∈ T c, every
weak Euler solution X of (1) verifies

d(X(t)) ≤ β(d(z), t) ∀t ∈ [0,+∞). (19)

If moreover there exist some p0 > 0 and a continuous map
W : T c → [0,+∞) whose restriction to T c is positive
definite and proper, such that every weak Euler cost X0

associated to X, verifies

lim
t→T−

X

X0(t) ≤
W (z)

p0
∀z ∈ T c (20)

(TX as in (18)), then we say that K regular-Euler stabilizes
(1) to T with W -regulated cost.

3.3 Main result

Theorem 3.1. Let W be a p0-MRF, p0 ≥ 0 for (1)-(2).
Then there exists a locally bounded feedback K : T c →
C×V that regular-Sample and Euler stabilizes system (1)
to T ; with W -regulated cost if p0 > 0.
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Proof. LetW be a p0-MRF with p0 ≥ 0 and fix a selection
p(x) ∈ D∗W (x) for every x ∈ T c.

Step 1. (Feedback) Arguing similarly to the proof of (Lai
and Motta , 2018, Prop. 3.1), one can derive that there is
a continuous function N : (0,+∞) → (0,+∞) such that
for every x ∈ T c there exists a feedback

K(x) = (ŵ0, ŵ, ψ̂)(x) ∈ S(C)× V, ŵ0(x) ≥ N(W (x)),

verifying (14). Define the (locally bounded) feedback

K(x) := (û, v̂)(x) =
( ŵ(x)

ŵ0(x)
, ψ̂(x)

)
∀x ∈ T c.

Step 2. (Regular-Sample stabilizability) Fix r, R such that
0 < r < R. Let us set
µ̂(r) := sup {µ > 0 : {z̃ : W (z̃) ≤ µ} ⊆ Br(T )} ,
σ(R) := inf {σ > 0 : {z̃ : W (z̃) ≤ σ} ⊇ BR(T )} , (21)

so that, if r < d(z̃) ≤ R, then z̃ ∈ W−1((µ̂(r), σ(R)]).
The values µ̂(r), σ(R) are finite since W is proper and
verify 0 < µ̂(r) < σ(R). By Theorem 2.1 the feedback
K impulsive-Sample stabilizes (1), with W -regulated cost
if p0 > 0. Hence there exist a function β ∈ KL in-
dependent of r, R and some δ(r,R) > 0 such that for
every partition π̃ = (sk) with diam(π̃) ≤ δ(r,R), any π̃-
sampling trajectory-control pair (y, w0, w, ψ) for (6) with
0 < d(z) ≤ R has y defined in [0,+∞) and verifies (10).
Moreover, when p0 > 0 the corresponding cost y0 satisfies
(11). Shrinking δ(r,R) if necessary, in view of (Lai and
Motta , 2018, Prop. 3.4) we can assume that

µ̂(r)/4 ≤ W (y(s)) ≤ W (z) ∀s ∈ [0, Ŝr
y ],

W (y(s)) ≤ µ̂(r) ∀s ≥ Ŝr
y , and S̄r

y ≤ Ŝr
y ,

(22)

where Ŝr
y := inf{s ≥ 0 : W (y(s)) ≤ µ̂(r)/4}. Finally, set

δ̃(r,R) :=
δ(r,R) N̂(r,R)

1 + N̂(r,R)
, (23)

where N̂(r,R) := minµ∈[µ̂(r)/4,2σ(R)] N(µ). For every par-

tition π = (tk) with diam(π) ≤ δ̃(r,R) and every z ∈
T c verifying d(z) ≤ R, let us consider a π-sampling
trajectory-control pair (x, u, v) of (1) associated to the
feedback K and the corresponding sampling cost x0. Let
[0, t̃) be the maximal definition interval of x and set

t̂ := sup{t ∈ [0, t̃) : µ̂(r)/4 ≤ W (x(t)) ≤ 2σ(R)}. (24)

Since W (x(0)) = W (z) ≤ σ(R) and W is positive definite
and proper on T c, one has 0 < t̂ < t̃. Let us introduce
the time-change ϕ0 : [0, Ŝ] → [0, t̂] given by the inverse
function of

σ(t) :=

∫ t

0

(1 + |u(τ)|) dτ ∀t ∈ [0, t̂], Ŝ := σ(t̂).

By Lemma 2.1, the map

(y, w0, w, ψ)(s) :=
(
x ◦ ϕ0, ϕ

′
0, (u ◦ ϕ0)ϕ

′
0

)
(s), s ∈ [0, Ŝ]

is the restriction to [0, Ŝ] of a π̃-sampling trajectory-
control pair of the extended system (6), verifying

µ̂(r)/4 ≤ W (y(s)) ≤ 2σ(R) ∀s ∈ [0, Ŝ]

in view of (24). Thus, setting n̄1 := sup{k ∈ IN : tk ≤ t̂},
sk := σ(tk) ∀k = 0, . . . , n̄1, and sk = sk−1 + δ(r,R) for all
k > n̄1, by the definition of the feedback K it follows that,
for every k,

sk − sk−1 ≤
(
1 +

1

N̂(r,R)

)
δ̃(r,R) = δ(r,R). (25)

Hence diam(π̃) ≤ δ(r,R) and by the above preliminary
discussion, any π̃-sampling extension of (y, w0, w, ψ) to
[0,+∞) satisfies (10), (22), and also (11) when p0 > 0. As

a consequence, T̂ r
x := inf{t ≥ 0 : W (x(t)) ≤ µ̂(r)/4} =

ϕ0(Ŝ
r
y) ∈ (0, t̂] and, for all t ∈ [0, T̂ r

x ], we get

d(x(t)) ≤ β(d(z), σ(t)) ≤ β(d(z), t),

µ̂(r)/4 ≤ W (x(t)) ≤ W (z),

if p0 > 0, x0(t) ≤
W (z)

p0
,

(26)

where the last inequality in the first expression holds true
since σ(t) ≥ t and the map t 
→ β(d(z), t) is decreasing. To
conclude, it is clearly sufficient to show that d(x(t)) ≤ r for

all t ≥ T̂ r
x . This can be done by contradiction, observing

that, as soon as there are t̂1, t̂2, T̂
r
x < t̂1 < t̂2 < t̃, such

that W (x(t̂1)) = W (z) < W (x(t̂2)) ≤ 2σ(R), using again
the time change ϕ0 on [t̂1, t̂2] and the above arguments,
one can find a π̃-sampling trajectory-control pair of the
extended system in (6) with initial point x(t̂1), that does
not verify (22) (the details are left to the reader).

Let us point out that the proof of Step 2 cannot be
deduced by Thm. 2.1 simply applying the time-change ϕ0

on [0,+∞). Indeed, approaching the target, (25) is no more
valid and diam(π̃) might even diverge to +∞.

Step 3. (Regular-Euler stabilizability) The map r 
→
δ̃(r,R), defined by (23) admits a a continuous, strictly
increasing inverse δ 
→ r(δ), with r(0) = 0 for all δ ≤
δ̃(R,R). See (Lai and Motta , 2018, Lemma 3.8). Hence

Step 2 implies that, given R > 0, δ ≤ δ̃(R,R) and π
with diam(π) = δ, any π-sampling trajectory-control pair
(x, u, v) of (1) associated to the feedback K and with cost
x0, is defined on [0,+∞) and verifies (15), (16) (the latter,
if p0 > 0), for r = r(δ). Let (X0,X) be a weak Euler cost-
solution pair, defined as limit of a sequence (xi, ui, vi) of
regular πi-sampling trajectory-control pairs for (1) and of
the associated costs x0i , with δi := diam(πi) → 0 and
ri := r(δi). Then, for every i,

d(xi(t)) ≤ max{β(d(z), t), r(δi)} ∀t ≥ 0 (27)

and, if p0 > 0, the associated cost x0i satisfies

x0i(t) ≤
W (z)

p0
∀t ∈ [0, T̄ r(δi)

xi
]. (28)

As i → ∞, r(δi) → 0 and X verifies (19) by (27).
In particular, limt→+∞ d(X(t)) = 0 and TX ≤ +∞.
Moreover, TX > 0. Indeed, fixed ε ∈ (0,d(z)), the

feedback K is bounded on the compact set BR(T ) \Bε(T ).

Consequently, there is some M̂ > 0 such that, for each i,
|ẋi(t)| ≤ M̂ a.e. t ∈ [0, T ε

i ], where T ε
i := inf{t > 0 :

d(xi(t)) ≤ ε}. This implies that d(z) ≤ |xi(0)− xi(T
ε
i )|+

d(xi(T
ε
i )) ≤ M̂T ε

i + ε, so that

T ε
i ≥ Tε :=

d(z)− ε

M̂
> 0.

Passing to the limit as i → +∞, TX ≥ Tε > 0. The proof
of the regular-Euler stabilizability of (1) is concluded. If
p0 > 0, it remains to show that (20) holds true. To
this aim, passing eventually to a subsequence, we define

T̄ := limi T̄
r(δi)
xi . Again, T̄ ≥ Tε > 0 and for any t ∈ [0, T̄ )

one has T̄
r(δi)
xi > t for all i large enough, so that, by (28):
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X0(t) ≤ W (z)

p0
∀t ∈ [0, T̄ ). (29)

If T̄ = +∞, this implies (20). If instead T̄ < +∞, taking
eventually a further subsequence, we can assume that

either T̄
r(δi)
xi ≤ T̄ or T̄

r(δi)
xi > T̄ for all i. When T̄

r(δi)
xi ≤ T̄ ,

by the definition of T̄
r(δi)
xi it follows that d(xi(T̄ )) ≤ r(δi).

Thus d(X(T̄ )) ≤ |X(T̄ )−xi(T̄ )|+d(xi(T̄ )) → 0. Therefore

TX ≤ T̄ and (20) follows from 29. If instead T̄ < T̄
r(δi)
xi , for

any ε1 > 0 one has T̄
r(δi)
xi < T̄ +ε1 for every i large enough

and arguing as above we get that d(X(T̄ + ε1)) ≤ |X(T̄ +
ε1)− xi(T̄ + ε1)|+d(xi(T̄ + ε1)) → 0. Hence we still have
TX ≤ T̄ by the arbitrariness of ε1 > 0 and (20) is verified,
as in the previous case. This concludes the proof.

3.4 No infimum gap condition

Let I(z) and I(z) denote the infimum of the regular
control problem (1)–(2) and of the extended problem (6)–
(7), respectively. By Lemma 2.1, I(z) coincides with the
infimum of the extended problem over the subclass of
(y, w0, w, ψ) with w0 > 0 a.e.. Therefore, I ≤ I. The
latter inequality may be strict and we say that there is no
infimum gap when I ≡ I. Sufficient conditions to avoid the
occurrence of this gap are widely studied (see e.g. Zaslavski
(2006); Aronna, Motta and Rampazzo (2015); Guerra and
Sarychev (2015); Motta Rampazzo and Vinter (2018)).
’No gap conditions’ are clearly desirable, in particular
when numerical schemes are employed to solve specific
problems. By the proof of Thm. 3.1 it easily follows
that, given a p0-MRF W with p0 > 0, there exists some
regular trajectory-control pair (x, u, v) approaching the
target with associated cost not greater than W/p0, so that
I ≤ W/p0. By these considerations, the next result follows
directly by (Motta and Sartori , 2014, Thms. 3.6, 5.5).

Proposition 3.1. Let W be a p0-MRF for (1)-(2) with
p0 > 0. Then I(z) = I(z) ≤ W (z)/p0 for all z ∈ T c.

4. CONCLUSIONS

In this paper, we design under mild regularity hypotheses
a discontinuous feedback control that Sample and Euler
stabilizes a nonlinear impulsive control system to a set,
together with bounding a given cost. This is achieved
by means of a special Control Lyapunov Function, that
extends to the impulsive control framework the notion
of p0-MRF introduced in Motta and Rampazzo (2013).
These results are part of an ongoing, wider investigation
on the relation between Global Asymptotic Stabilizability,
Global Asymptotic Controllability with W -regulated cost
and MRFs. See Motta and Rampazzo (2013); Lai, Motta
and Rampazzo (2016); Lai and Motta (2018).
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X0(t) ≤ W (z)

p0
∀t ∈ [0, T̄ ). (29)

If T̄ = +∞, this implies (20). If instead T̄ < +∞, taking
eventually a further subsequence, we can assume that

either T̄
r(δi)
xi ≤ T̄ or T̄

r(δi)
xi > T̄ for all i. When T̄

r(δi)
xi ≤ T̄ ,

by the definition of T̄
r(δi)
xi it follows that d(xi(T̄ )) ≤ r(δi).

Thus d(X(T̄ )) ≤ |X(T̄ )−xi(T̄ )|+d(xi(T̄ )) → 0. Therefore

TX ≤ T̄ and (20) follows from 29. If instead T̄ < T̄
r(δi)
xi , for

any ε1 > 0 one has T̄
r(δi)
xi < T̄ +ε1 for every i large enough

and arguing as above we get that d(X(T̄ + ε1)) ≤ |X(T̄ +
ε1)− xi(T̄ + ε1)|+d(xi(T̄ + ε1)) → 0. Hence we still have
TX ≤ T̄ by the arbitrariness of ε1 > 0 and (20) is verified,
as in the previous case. This concludes the proof.

3.4 No infimum gap condition

Let I(z) and I(z) denote the infimum of the regular
control problem (1)–(2) and of the extended problem (6)–
(7), respectively. By Lemma 2.1, I(z) coincides with the
infimum of the extended problem over the subclass of
(y, w0, w, ψ) with w0 > 0 a.e.. Therefore, I ≤ I. The
latter inequality may be strict and we say that there is no
infimum gap when I ≡ I. Sufficient conditions to avoid the
occurrence of this gap are widely studied (see e.g. Zaslavski
(2006); Aronna, Motta and Rampazzo (2015); Guerra and
Sarychev (2015); Motta Rampazzo and Vinter (2018)).
’No gap conditions’ are clearly desirable, in particular
when numerical schemes are employed to solve specific
problems. By the proof of Thm. 3.1 it easily follows
that, given a p0-MRF W with p0 > 0, there exists some
regular trajectory-control pair (x, u, v) approaching the
target with associated cost not greater than W/p0, so that
I ≤ W/p0. By these considerations, the next result follows
directly by (Motta and Sartori , 2014, Thms. 3.6, 5.5).

Proposition 3.1. Let W be a p0-MRF for (1)-(2) with
p0 > 0. Then I(z) = I(z) ≤ W (z)/p0 for all z ∈ T c.

4. CONCLUSIONS

In this paper, we design under mild regularity hypotheses
a discontinuous feedback control that Sample and Euler
stabilizes a nonlinear impulsive control system to a set,
together with bounding a given cost. This is achieved
by means of a special Control Lyapunov Function, that
extends to the impulsive control framework the notion
of p0-MRF introduced in Motta and Rampazzo (2013).
These results are part of an ongoing, wider investigation
on the relation between Global Asymptotic Stabilizability,
Global Asymptotic Controllability with W -regulated cost
and MRFs. See Motta and Rampazzo (2013); Lai, Motta
and Rampazzo (2016); Lai and Motta (2018).
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