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1 Introduction

A great deal of the recent literature on volatility modeling exploits realized volatility measures

as ex-post estimates of the return variation over a given horizon. Realized volatility series

are characterized by large variations, often in correspondence of news arrival, thus challenging

existing volatility models (see e.g. Caporin et al., 2014b). Such an evidence is further confirmed

by the empirical analysis presented in this paper; indeed, currently available models, mostly

designed to fit the dynamics of realized volatility sequences, fail in explaining the probability and

the occurrence of volatility bursts. The inclusion of jumps in the volatility process, in addition

to jumps in prices, is a step forward a more appropriate description of the volatility features.

Several works, adopting a continuous-time framework, focus on the interactions between jumps

in prices and volatility showing the importance of both components in fitting the observed

dynamics of returns, see e.g. Chernov et al. (2003), Duffie et al. (2000), Pan (2002), Eraker

(2004), Eraker et al. (2003), Jones (2003), Broadie et al. (2007), Todorov and Tauchen (2011),

Andersen et al. (2012b), Bandi and Renò (2012, 2013).

Alternatively to the continuous time framework, where a jump is a discontinuity in the

trajectory of price and/or volatility, a jump in discrete time takes the form of an extreme event,

for example a very large value of the daily volatility. So far, the analysis of jumps in a discrete-

time setting has focused on the role that jumps in prices have in predicting the future volatility.

For example, Andersen et al. (2007), Corsi et al. (2010) and Caporin et al. (2014a) extend

the Heterogeneous Autoregressive (HAR) model of Corsi (2009) to include past price jumps,

i.e. the HAR-RV-J model. Differently, Caporin et al. (2014b) explicitly model the probability

of volatility jumps in a HAR setup, leading to a significant increase in the model fit on the

right tail. However, the use of the HAR model calls for a linear and additive specification of

volatility jumps, that is more appropriate under a log-transformation of realized measure series,

see Caporin et al. (2014b). But in this case obtaining the forecasts distribution of the volatility

level can be problematic in non-Gaussian cases.

To overcome this problem, we propose the Asymmetric HAR-MEM-J (AHAR-MEM-J), an

extension of the multiplicative error model (MEM) by Engle (2002) and Engle and Gallo (2006).

The purpose of the model is to assign a probability to volatility boosts at each point in time. This

is possible by the inclusion of a latent process labeled volatility jump, that generates infrequent

large moves in the volatility. We can think of the AHAR-MEM-J as a three-factor model:

first, a long-run factor, modeled by the Asymmetric HAR (AHAR), which accounts for the

long-run dependence of volatility and improves the fit compared to less persistent GARCH-

type specifications; second, a short-run factor, which represents the transitory component of the

volatility process; and third, the volatility jump factor, which is responsible for the presence of

realizations in the right tail of volatility distribution. This is close to the dynamic two-factor

models of Ghysels et al. (2004) and Bauwens and Veredas (2004) for durations.

In order to obtain a closed-form expression for the conditional density, we assume that

both volatility innovations and jump sizes are Gamma-distributed with different degrees of

freedom. Despite the choice of a Gamma distribution may appear rather restrictive, the resulting

conditional density of volatility is instead very flexible. It is a countably infinite mixture of two

random variables: one distributed as a Gamma, when volatility jumps are absent, and the second
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distributed as a Kappa, henceforth K, when the number of volatility jumps is strictly positive.

The K is a product distribution, known in physics and radar applications, but never used in

econometrics, to the best of our knowledge. The K equals the product of two Gamma-distributed

random variables with different degrees of freedom. The main advantage of this distributional

choice is that the conditional moments of the dependent variable, the likelihood function and

the quantiles can be obtained in closed-form, thus avoiding to rely on simulation-based methods

to estimate the parameters. Moreover, in order to account for the empirical evidence of jump

clustering, the intensity parameter, governing the jump occurrence in the compound Poisson

process, can be made time-varying with an autoregressive specification, in the spirit of Hansen

(1994) and Maheu and McCurdy (2004).

The AHAR-MEM-J parameters are estimated by maximum likelihood. We derive conditions

for stationarity under the presence of jumps following the approach of Bougerol and Picard (1992)

and Franq and Zakoian (2010). Unfortunately, given that the distribution of the innovations

has an infinite mixture structure, it is not possible to verify the conditions for consistency and

asymptotic normality of the maximum likelihood estimators, as in Engle and Gallo (2006) and

Hansen et al. (2012). However, a Monte Carlo simulation experiment highlights that maximum

likelihood estimates are unbiased and unimodal in finite samples.

In the empirical analysis is based on the high-frequency returns of 7 stock indexes and 16

NYSE stocks. We estimate the AHAR-MEM-J on the bipower variation series, which is an ex-

post volatility measure robust to price jumps. In this way, we disentangle the price jumps from

the volatility dynamics. A series of robustness checks confirms that the estimates of the AHAR-

MEM-J are not strongly affected by the choice of the ex-post volatility measure and by the

measurement error associated to it. The empirical application shows that the AHAR-MEM-J

with time-varying jump intensity allows for a great flexibility in accommodating the probability

of extremely large volatility realizations, dramatically improving the fit of the baseline MEM

and other more sophisticated models. Potential sources of jump innovations to volatility can be

important news, data releases, or unexpected events, which might induce market participants to

suddenly revise their portfolios, thus producing large variations in the volatility level. By analogy

to the Value-at-Risk (VaR), we introduce the Volatility-at-Risk (VolaR) which constitutes a

natural measure of risk when designing volatility trading strategies. The evaluation of the

VolaR strongly supports the MEM-J specification against models without jumps.

In summary, the contributions of the paper are at least three. Firstly, we generalize the

baseline MEM of Engle and Gallo (2006) by including a volatility jump term, which captures the

occasional boosts of volatility, and a pseudo long-memory component which is able to account for

the observed persistence. Secondly, the conditional density of the dependent variable is derived

in closed form. Thirdly, we provide empirical evidence on the relevance of jumps as a source of

variation in the realized volatility measures and on their contribution to a correct estimation of

the VolaR. On the contrary models without jumps are unable to fit the right tail of the volatility

density, especially in periods of markets turmoils.

The paper is organized as follows. Section 2 sets the notation of the baseline MEM. Section

3 describes the MEM-J and the finite mixture distribution that characterizes the conditional

density of the dependent variable. Conditional moments are also presented. Note that, in the
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rest of the paper, the term jump, will be always referred to volatility jumps, unless differently

specified. Section 4 discusses both model extensions with HAR dynamics and time-varying

parameters, and the model’s properties, such as conditions for covariance stationarity and max-

imum likelihood estimation. Section 5 describes the dataset and illustrates the empirical results

with stocks indexes and individual S&P 500 stocks under different model specifications. In Sec-

tion 6 the results of the VolaR analysis are reported and discussed. Finally, Section 7 concludes.

Proofs, selected derivations of relevant quantities and additional theoretical details are included

in Appendices A and B.

2 The baseline MEM

In this section, we briefly present the MEM in its simplest form, as introduced by Engle and

Gallo (2006), with the purpose of setting up the notation used throughout the rest of the paper.

Let RMt be an ex-post estimator of daily volatility at time t. We assume that RMt is a.s.

strictly positive and it follows a MEM, i.e.

RMt = μtεt (1)

with

μt = ω + αRMt−1 + βμt−1.

with ω > 0, α ≥ 0, β ≥ 0. The innovation εt is a random variable with scale-shape Gamma

density

εt|It−1
iid∼ Γ

(
1

ν
, ν

)
(2)

where 1
ν is the scale and ν is the shape of the Gamma density, both driven by the common

parameter ν, so that Et−1 [εt] = 1 and Vt−1 [εt] =
1
ν . Let ζ = [ω, α, β, ν]′ be the parameter

vector of the baseline MEM model.

If RMt follows a MEM, with a Gamma disturbance, the conditional density, given It−1, is

Γ(μt, ν) in mean-shape form. Therefore, the conditional mean and variance are E [RMt|It−1] =

μt and V [RMt|It−1] = μ2
t ν

−1, respectively. The form of μt is sufficiently flexible to include

simple auto-regressive patterns, HAR terms as in Corsi (2009), asymmetry, or predetermined

variables. Examples of possible specifications for μt are given, among others, in Engle and Gallo

(2006) and Brownlees et al. (2012). Interestingly, the term μt induces the conditional variance

of the realized measure to be time-varying, thus making the MEM consistent with the so-called

volatility-of-volatility feature, studied in Corsi et al. (2008) among others. Recently, Gallo and

Otranto (2012) extend the MEM to include time-varying parameters in the expression of μt as

in the case of regime-switching MEM. The latter specification allows for changing parameters

but requires to impose a priori structures on the form of the transition and on the number of

underlying regimes. Differently, Haerdle et al. (2012) propose to adaptively estimate the MEM

parameters based on a window of varying length thus providing updated parameter estimates

at each point in time. The literature on multiplicative models of volatility already includes

several extensions of the distributional assumptions of the baseline MEM. For example, Lanne

(2006) proposes the mixture MEM to capture not only the long-memory dynamics of the realized
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volatility, but also its heavy tail marginal distribution as generated by the mixture of the two

Gamma densities for the volatility innovations. Similarly, the possibility of fat tails has been

considered by Lunde (1999) and Andres and Harvey (2012) that have adopted the generalized

Gamma distribution in the ACD-MEM framework. Alternatively, the parameter ν can be made

time-varying according to a GARCH-type law of motion, thus increasing the flexibility of the

model in describing the higher moments of RMt. As it will be shown in the empirical application,

none of these distributional choices is able to assign the correct probability to the occurrence of

the extremely high realizations that characterize the volatility dynamics. This further confirms

the need for a novel modeling setup explicitly designed to capture the occurrence of such events.

3 A Multiplicative Error Model with Jumps

The baseline MEM with a Gamma distributed error term is poorly designated to assign the

correct probability to the occurrence of large and abrupt movements, i.e. the jumps, that

characterize the volatility dynamics. The presence and the effects of volatility jumps have been

already documented in the literature either in a continuous time framework, as in Todorov and

Tauchen (2011), among others, or in discrete time, see Caporin et al. (2014b). We propose a

generalization of the MEM of Engle and Gallo (2006), which we call MEM-J. The new model

introduces a multiplicative volatility jump term in the standard MEM of Engle and Gallo (2006).

We also generalize the dynamic features of the MEM with the inclusion of HAR terms following

Corsi (2009), we defer the discussion of this to Section 4. Under the MEM-J specification, the

realized volatility measure RMt equals the product of three elements

RMt = μtZtεt (3)

where μt is a function measurable with respect to the information set at time t − 1, Zt is the

volatility jump component, and the innovation εt is a scale-shape Gamma, εt|It−1 ∼ Γ
(
1
ν , ν

)
.

Hereafter, to simplify the interpretation of the model outcome, the Gamma density of the

innovation term is expressed in the mean-shape representation, i.e. εt|It−1 ∼ Γ (1, ν), which is,

by construction, equivalent to the scale-shape representation. Hence, we require a number of

assumptions on Zt and εt to identify and separate the two sources of shocks. The jump term,

Zt, corresponds to

Zt =

⎧⎨⎩1 Nt = 0∑Nt
j=1 Yj,t Nt > 0

(4)

where Nt is a non-negative integer-valued random variable that represents the number of jumps

occurring at time t. When Nt = 0, i.e. jumps are absent, the MEM-J reduces to the MEM.

The random variable Nt determines the occurrence and the number of jumps; we model it as a

Poisson with intensity λ,

P (Nt = m|It−1) =
e−λλm

m!
, m = 0, 1, 2, ... (5)
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The second characterizing element of Zt defines the size of the jumps. We set it equal to the

sum of independent Gamma random variables, Yj,t ∼ Γ (1, ς) (in mean-shape form). Note that

the jump density does not depend on time and the parameter characterizing the jump evolution

is assumed to be time-invariant.

Assumption 1 In the MEM-J in (3)

i. εt is an i.i.d. process defined on positive support with E[εt] = 1.

ii. εt, Nt and the variables Yj,t, j = 1, 2, . . . , Nt, are assumed to be independent for any t.

By the properties of the Gamma density, it follows that

Zt|Nt = m > 0, It−1 ∼ Γ (m,mς) (6)

in mean-shape representation. It is interesting to note that the mean and variance of the jump

component depend on the number of jumps, i.e. E [Zt|Nt = m > 0, It−1] = m and V [Zt|Nt = m > 0, It−1] =
m
ς . So far, all parameters are assumed to be time invariant. In Section 4 we discuss the possi-

bility of time-varying parameters in the jump process, as a way to increase the capability of the

model to adapt to the changing market conditions.

It follows from equation (3) that the MEM-J can be written as

RMt = μtηt (7)

where the innovation term ηt = Ztεt is the product of two shocks, one depending on jumps. In

the next paragraphs we will study the properties of the conditional density of ηt and of RMt

which clearly depend on the distributional assumptions made on Zt and εt.

3.1 The conditional density of ηt

The conditional density of ηt depends on Nt through Zt. When Nt = 0, we have that ηt|Nt =

0, It−1 is simply equal to εt|It−1, since Zt = 1. In this case, the conditional density of ηt, in

mean-shape form, coincides with that of εt, i.e. Γ (1, ν). Differently, when Nt = m > 0, the

conditional density of ηt given Zt and It−1 is Gamma in mean-shape form

ηt|(Zt, Nt = m > 0, It−1) ∼ Γ (Zt, ν) . (8)

In order to derive the conditional density of ηt given Nt = m > 0 and It−1, we have to evaluate

the following integral:∫ ∞

0
f(ηt|Nt = m > 0, Zt, It−1; ν, ς)f(zt|Nt = m > 0, It−1; ν, ς)dz, (9)

where both conditional densities in the integral are Gamma. In the following proposition we

present the conditional density of ηt given Nt = m > 0, It−1, i.e. the closed-form solution to the

integral in (9).
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Proposition 1 Under Assumption 1, consider ηt = Ztεt where Zt defined in (4) has the con-

ditional density in (6) and εt|It−1 ∼ Γ (1, ν). Assuming that Zt and εt are independent at all

leads and lags, it follows that

f(ηt|Nt = m > 0, It−1; ν, ς) =
2

ηt

(
ηtςν

)mς+ν
2

1

Γ(mς)Γ(ν)
Kmς−ν

(
2
√
ηtςν

)
, (10)

where Ka (·) is the modified Bessel function of the second kind. Thus the innovation term ηt,

conditional on Nt = m > 0 and It−1, has a K distribution, see Redding (1999), denoted as

ηt|Nt = m > 0, It−1 ∼ K
(
m,mς, ν

)
.

The first two moments of ηt, conditional on Nt = m > 0 and It−1, are

E [ηt|Nt = m > 0, It−1] = m

V [ηt|Nt = m > 0, It−1] = m2mς + ν + 1

mςν
= m2

(
1

ν
+

1

mς
+

1

mνς

)
.

Proof in Appendix 1.

The K density depends on three parameters which have specific meanings in the MEM-J. The

first parameter is the mean of the K density, and it is equal to the number of jumps, m. The

second parameter depends on the shape of the jump component Zt, while the third is the shape

parameter of the innovation term εt. Interestingly, the conditional variance of ηt is an increasing

function of the number of jumps arrivals, m. Hence, periods with a larger number of jumps

arrivals are characterized by a higher volatility-of-volatility. The Appendix A reports additional

details on the K distribution.

The density of the innovation term, ηt, conditional only on the information set, It−1, is a

countably infinite mixture

f(ηt|It−1; ν, ς, λ) = P (Nt = 0|It−1) Γ (1, ν) +
∞∑

m=1

P (Nt = m|It−1)×K (m,mς, ν) , (11)

where

P (Nt = 0|It−1) = e−λ.

The mixing variable is the Poisson process Nt, which in turn depends on the parameter λ. As

λ increases, more weight is given to the K distributions in the infinite sum, while when λ = 0

the density of ηt is Γ (1, ν) and the MEM-J reduces to the MEM.

3.2 The conditional density of RMt

The conditional density of RMt, given Nt = m > 0 and It−1, follows from the conditional

distribution of ηt in equation (10). The following proposition presents the density of RMt and

the subsequent corollary introduces its conditional moments.

Proposition 2 Consider model (7) where ηt = Ztεt with Zt defined in equation (4) and εt|It−1 ∼
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Γ (1, ν). Assuming that Zt and εt are independent at all leads and lags, it follows that

f(RMt|Nt = m > 0, It−1; ζ, ς) =
2

RMt

(RMt

μt
ςν
)mς+ν

2 1

Γ(mς)Γ(ν)
Kmς−ν

(
2

√
RMt

μt
ςν

)
, (12)

Thus the realized measure RMt, conditional on Nt = m > 0 and It−1, has a K distribution,

denoted as

RMt|Nt = m > 0, It−1 ∼ K
(
mμt,mς, ν

)
.

The first two moments of RMt, conditional on Nt = m > 0 and It−1, are

E [RMt|Nt = m > 0, It−1] = μtm,

V [RMt|Nt = m > 0, It−1] = μ2
tm

2mς + ν + 1

mςν
.

As a result, both the conditional mean and variance of RMt are not only time-varying and

driven by μt, as in the MEM, but also dependent on the realized number of jumps, m. On the

other hand, when jumps are absent, i.e. m = 0, the conditional density f(RMt|Nt = 0, It−1; ζ, ς)

is that of the MEM. Integrating out the realized number of jumps, the density of RMt conditional

on the information set It−1 is a countably infinite mixture

f(RMt|It−1; θ) = P (Nt = 0|It−1) Γ (μt, ν) +
∞∑

m=1

P (Nt = m|It−1)×K (mμt,mς, ν) , (13)

where θ = [ζ ′, ς, λ]′ is the vector of parameters of the MEM-J model. The conditional distribution

of RMt depends both on μt as well as on the jump intensity, λ. The expected value of Zt can

then be used to derive the expected value of the realized measure RMt.
1 Integrating out the

dependence on Nt, it is possible to obtain the expected value and the variance of RMt with

respect to the information set It−1 only, see Section 4.2.

4 A persistent MEM-J with time-varying parameters

The volatility of financial returns are characterized by several dynamic and distributional fea-

tures: high persistence, leverage effects, clusters of jumps and heteroskedastic effects in volatility.

In this section, we show how the MEM-J presented in Section 3 can account for all these features.

4.1 Specification of μt

The importance of a correct specification of μt becomes clear when looking at the dynamics

of the model residuals. Since volatility is characterized by a slow and hyperbolic decay of the

autocorrelation function, it follows that a simple ARMA(1,1) specification, as implied by the

MEM, is not enough to describe such a rich dynamic behaviour. As a consequence, the MEM

residuals display significant autocorrelation. A successful and parsimonious approach to account

for the (pseudo) long-memory property of the volatility series has been proposed by Corsi (2009)

with the HAR model. The HAR is a long autoregressive model, subject to linear constraints,

1See Appendix B.3 for details on the derivation of the moments of Zt.
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designed to capture the persistence of the logarithm of realized volatility. We consider two

alternative specifications for μt:

• Asymmetric HAR-MEM (AHAR-MEM):

μt =ω + βμt−1 + α1RMt−1 + α2RMt−1:t−5 + α3RMt−1:t−21 + γRM−
t−1 (14)

where RMt−1:t−5 = 1
5

∑5
j=1RMt−j and RMt−1:t−21 = 1

21

∑21
j=1RMt−j and all parameters

are non-negative, and RM−
t ≡ RMt · I{rt < 0}. This specification allows for the leverage

effect, i.e. an asymmetric response of volatility to the sign of the returns (see Engle and

Gallo, 2006). We can also consider a HAR structure on RM−
t−1, but preliminary estimates

do not lead to any significant improvement. It is obiviously possible to test whether the

inclusion of the weekly and monthly volatility terms provide a significant improvement in

fitting the volatility dynamics.

• Asymmetric MEM (A-MEM):

μt = ω + αRMt−1 + βμt−1 + γRM−
t−1 (15)

where all parameters are non negative. This model is nested in AHAR-MEM with the

restriction α2 = α3 = 0. Further, the MEM is obtained simply setting γ = 0.

The inclusion of HAR dynamics into the specification of μt represents an alternative to the

more sophisticated ways to model the long-range dependence in the MEM framework, as those

in Lanne (2006) and Gallo and Otranto (2012). The main advantage of the HAR specification is

that, despite it imposes ad hoc restrictions on the autocorrelation structure, it is able to account

for the long memory behavior of the series with a limited number of free parameters and it has

been proven to be successful in the log-linear context by Andersen et al. (2007), Bollerslev et al.

(2009) and Ma et al. (2014). Recently, Audrino and Knaus (2014) has shown evidence, based on

a LASSO regressions, that the HAR structure with daily, weekly and monthly factors may be

subject to structural breaks during financial crises, but this issue is not addressed in the present

paper.

4.2 Time-varying jump intensity

The specification of the AHAR-MEM-J is inherently limited given that the Poisson process gov-

erning the jumps arrival and the Gamma density characterizing the jump size are all driven by

time invariant parameters. To increase the model flexibility we introduce time variation in the

jump intensity parameter, λ, and define the AHAR-MEM-J-λt model. Instead, we maintain a

time invariant jump size since preliminary evaluations of the proposed model show that letting

this parameter to vary across time does not improve upon time-invariant specifications, but it

only increases the computational burden associated with the model estimation. Nevertheless, if

needed (and supported by the data), even the jump size can be made time-varying. We first spec-

ify the dynamic evolution of the parameter λt, for which we suggest the Auto Regressive Jump

Intensity (ARJI) specification of Chan and Maheu (2002), Maheu and McCurdy (2004), within

the GARCH-Jump context for stock returns, and Caporin et al. (2014b) for volatility jumps.
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We show here that it is possible to adapt a similar modeling strategy in a MEM framework for

the RMt series. In particular, the jump intensity is assumed to follow:

λt = φ1 + φ2λt−1 + φ3ξt−1, (16)

where

ξt = E [Nt|It]− λt =
∞∑

m=0

mP (Nt = m|It)− λt. (17)

The restrictions φ1 > 0 and φ2 > φ3 > 0 are sufficient to guarantee the positiveness of λt as in

Chan and Maheu (2002). Note that the innovation term depends on the conditional probabilities

of observing m jumps given the information set at time t, and those are determined following

the hypothesis of having a Poisson process governing the number of jumps, see (5). However,

as the conditioning set is different, those probabilities must be appropriately evaluated. We

will discuss this issue in Section 4.4 when dealing with model estimation. From a distributional

point of view, letting the mixing parameter λ to be dynamic implies that the conditional density

of RMt in (13) has a time-varying weight associated with the K densities. This provides an

extremely flexible specification of the density of RMt, which can be exploited to infer a precise

probability of occurrence of tail events, see Section 6.2 In a time-varying setup, the conditional

moments of ηt and RMt are given in the following proposition.

Proposition 3 Consider model (7) where ηt = Ztεt with Zt defined in equation (4) and εt|It−1 ∼
Γ (1, ν), with λt evolving as in (16). Assuming that Zt and εt are independent at all leads and

lags, it follows that the first two moments of RMt and ηt conditional on It−1 are

E [ηt|It−1] =
(
e−λt + λt

)
, (18)

E [RMt|It−1] = μt

(
e−λt + λt

)
, (19)

V [ηt|It−1] =

[
λt

ς
+ λ2

t

]
(1 + ν−1) + (e−λt + λt)

[
1 + ν−1 − e−λt − λt

]
, (20)

V [RMt|It−1] = μ2
t

{[
λt

ς
+ e−λt + (λt + λ2

t )

]
(1 + ν−1)− (e−λt + λt)

2

}
. (21)

Proof in Appendix 3.

The conditional expected value and variance of RMt depend on the time-varying mean compo-

nent as well as on the time-varying jump intensity, through the marginal moments of the jump

term, Zt. Compared to the baseline MEM, the conditional expectation of RMt is inflated by a

time-varying factor
(
e−λt + λt

)
, which is never smaller than one by construction and acts as a

boosting factor. Also the conditional variance of RMt evolves over time as a function of both

μt and λt, allowing for a larger degree of flexibility than the MEM to model the volatility-of-

volatility features studied in Corsi et al. (2008) among others.

2Creal et al. (2013) derives the Generalized Autoregressive Score (GAS) representation for both the time-
varying intensity Poisson process and the dynamic mixtures of models. We believe that an extension of the
MEM-J model within the GAS framework is a natural advancement but this is left to future investigation.

10



4.3 Stationarity

We first provide the stationarity condition for the simple case of time-invariant jump intensity

with μt specified as

μt = ω +

q∑
i=1

αiRMt−i +

p∑
i=1

βiμt−i. (22)

Theorem 1 Let RMt follow a strictly positive covariance stationary MEM-J in (3) with μt

defined in (22) with ω > 0. Under Assumption 1 and ηt ∼ i.i.d. with λ > 0, then

(e−λ + λ)

q∑
j=1

αj +

p∑
i=1

βi < 1. (23)

Conversely, if (23) holds, the unique strictly stationary solution of (3) is a second-order sta-

tionary solution.

Proof in Appendix B.5.

The introduction of the jump term in the MEM-J leads to a different stationarity condition

than that relative to the baseline MEM of Engle and Gallo (2006). Indeed, a multiplicative

term, depending on λ, appears in front of the ARCH coefficients, those capturing the impact of

innovations on the mean-evolution. This is a consequence of the fact that the jump term, Zt,

is a constituent of the model innovations, ηt, and it is not persistent by construction when the

jump intensity is constant. Interestingly, the larger the coefficient λ, the larger is the inflating

factor, and the smaller is the stationarity region given the parameters αi and βi.

We now move to the more complex case of the time-varying jump intensity. In this case, we

provide a sufficient condition for the stationarity of the MEM-J in (3) with density, conditional

on ηt, defined in (12), where ηt is a sequence of random variables with time-varying intensity

parameter λt defined as in (16). The process in (22) can be written in vector form (Markov

representation):

zt = bt +Atzt−1. (24)

with At = A � Et and Et is a square matrix of dimension p + q, with ηt on the first row and

ones elsewhere, see Appendix B.6.

Theorem 2 Given the MEM-J in (3) with Assumption 1 and the processes for λt and μt spec-

ified as in (16) and (22), respectively, a sufficient condition for the existence of a strictly sta-

tionary solution is

ρ(A) < exp(−E[log [(p+ q)(ηt + (p+ q)− 1)]])

where ρ(A) is the spectral radius of A (i.e. the greatest modulus of its eigenvalues).

Proof in Appendix B.6.

This second result is less intuitive than in the constant intensity case. Nevertheless, we stress

that the sufficient condition depends both on the number of the parameters in the process for

μt and on the expectation of the innovation ηt that combines the jump term and the error term

εt.
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4.4 Maximum likelihood estimation

The AHAR-MEM-J-λt can be estimated by maximum likelihood. Under the maintained as-

sumption that Nt|It−1 ∼ Poisson(λt) with Nt and εt independent processes, the conditional

density of RMt, f (RMt|It−1), can be computed in closed form as in (13). Indeed, the density of

the K distribution is known and it does not need to be simulated. Hence, the computation of the

log-likelihood function is straightforward. The model parameters are estimated by maximizing

the sample log-likelihood �(θ) =
∑T

t=1 log f (RMt|It−1; θ), where θ ∈ Θ ⊆ R11
+ is the vector of

parameters for the AHAR-MEM-J-λt, θ = [ω, α1, α2, α3, β, γ, ν, ς, φ1, φ2, φ3]
′ . The log-likelihood

function �(θ) is the log-transform of a mixture density. Since the conditional density of RMt

involves an infinite sum of densities, the sample log-likelihood function is computed for a finite

number of jumps (m = 0, 1, 2, . . . , m̄). As it emerges from the Monte Carlo simulations, reported

below, and the empirical application, any choice of m̄ larger than 10 leads to almost identical

parameter estimates. Indeed, for values of λ that are rarely larger than 1, the probability of

observing more than 10 jumps is of order 10−8. For the computation of log-likelihood of the

AHAR-MEM-J-λt, we need the filtered probabilities P (Nt = m|It) which are used to calculate

the innovations ξt’s in (17). The updating of the filtered probabilities is derived from Bayes rule

as follows

P (Nt = m|It) = f (RMt|Nt = m, It−1)× P (Nt = m|It−1)

f (RMt|It−1)
, m = 0, 1, 2, . . . , m̄. (25)

In general, the mixture likelihood function can be unbounded, that is the function is char-

acterized by the presence of singularities. Thus the ML estimator as global maximizer of the

mixture likelihood function may not exist. Several local maximizers may exist for a given sam-

ple, and a major difficulty is to identify if the correct one has been found, see the discussion in

Frühwirth-Schnatter (2006). Nevertheless, statistical theory outlined in Kiefer (1978) guarantees

that a particular local maximizer of the mixture likelihood function is consistent, efficient, and

asymptotically normal if the mixture is not overfitting. In the case of estimation of MixNormal-

GARCH models, Auśın and Galeano (2007) and Bauwens et al. (2007) have devised a Bayesian

estimation procedure to avoid such degenerated states. Alternatively, Broda et al. (2013) have

proposed a method based on an augmented likelihood function. We don’t adopt any of these

computational devices since the Monte Carlo results, reported below, show that this problem is

not a major concern in our case.

4.4.1 Monte Carlo Simulations

We run a set of Monte Carlo simulations to show that finite sample distribution of the ML

estimates of the MEM-J parameters are centered on the true values and unimodal. We simulate

three different specifications with the same μt as in (14) with no asymmetric effect: HAR-MEM

(model in (1)), HAR-MEM-J with constant λ (model in (3)) and HAR-MEM-J-λt.

The algorithm to simulate pseudo-random variates from a K density is illustrated in Ap-

pendix A. The true parameter values and the corresponding Monte Carlo average estimates are

reported in Table 1. The simulated sample size is set equal to 3000. Due to the computational

burden in estimating the MEM-J the Monte Carlo replications are 500. We investigate the

12



effects that the over-specification of the jump component can have on the maximum likelihood

estimates. This can be a typical situation which arises when we have to specify nonlinear models

with latent components. We estimate over-specified models (upper and middle panel of Table

1), i.e. the HAR-MEM-J-λt, when the data have been generated with either λ equal to zero

(i.e. φ1 = φ2 = φ3 = 0) or with a constant λ. The infinite sum of densities required to compute

the likelihood, see (11), is truncated at m̄ = 10. The same choice of m̄ is later adopted in the

empirical application. When the jumps are totally absent, the estimate of the unconditional

mean of λt, i.e. E[λt] = φ1/(1 − φ2), is almost equal to zero on average, meaning that there

is a very limited mixing effect in the conditional density of RMt due to the estimated jump

term. This means that the estimated model is very close to the HAR-MEM which is the DGP.

Indeed, the parameters governing μt are correctly estimated and with small RMSE. It should

also be noted that the parameter ς is not defined under the DGP, but is estimated when fitting

the HAR-MEM-J-λt on the data as it determines the shape of the K distribution. This has no

consequences on the parameters in μt, as they are all located around the true values. Indeed, as

noted by Engle and Gallo (2006), the nuisance parameters governing the shape of the distribu-

tion of the innovation term do not impact on the estimates of the parameters of μt. When jumps

are absent but the parameter ς is estimated, but bias and RMSE associated with this parameter

are very high, which is a consequence of the lack of identification. The average estimate of ς is

large, suggesting that the average size of the jumps is very small, as their expected size is the

reciprocal of ς. Concluding, when the jumps are absent, and a MEM-J is fitted to the data (i.e.

over-specification), the estimates of the parameters in μt are very close to the true values while

the estimated jump component is negligible.

ω α1 α2 α3 β ν ς φ1
1−φ2

φ2 φ3

DGP: λ = 0
0.001 0.4 0.15 0.1 0.3 20 - - - -

Mean 0.001 0.399 0.148 0.097 0.302 20.106 38.010 0.009 0.599 0.254
RMSE 0.000 0.021 0.069 0.023 0.076 0.577 40.972 0.033 0.636 0.334

DGP: λ = 0.25
0.001 0.4 0.15 0.1 0.3 35 20 0.25 - -

Mean 0.001 0.400 0.152 0.099 0.296 34.957 20.625 0.250 0.479 0.019
RMSE 0.000 0.017 0.050 0.017 0.056 1.646 3.710 0.018 0.611 0.033

DGP: λt > 0
0.001 0.4 0.15 0.1 0.3 35 20 0.2 0.95 0.1

Mean 0.001 0.400 0.147 0.100 0.301 35.011 20.620 0.201 0.931 0.106
RMSE 0.000 0.018 0.056 0.018 0.062 1.394 4.051 0.027 0.060 0.034

Table 1: Monte Carlo results. The true parameter values used in simulation are in bold. Sample
mean and Root mean squared error (RMSE) of maximum likelihood estimates of simulated
HAR-MEM’s models.

When λ is constant, but a HAR-MEM-J-λt is estimated, see the middle panel of Table 1, the

distributions of the parameters in the DGP are centered on the true values, so that the impact

of the over-specification is again very limited. For instance, if we look at the estimates of the

HAR parameters, they seem unaffected by this over-specification. Moreover, the estimate of the

parameter φ3 is close to zero, meaning that the estimated variation in λt is almost absent as
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implied by the DGP. In the third case considered, i.e. the correctly specified model, the ML

estimates have a very small finite sample bias and the RMSE’s of φ1/(1−φ2), φ2 and φ3 have the

same order of magnitude of the HAR parameters. Figure 1 displays the kernel density estimates

of the ML estimates based on the Monte Carlo simulations. The plots show that the finite

sample distributions for all parameters are centered on the true values. Furthermore, the ML

estimates of the HAR-MEM-J-λt model have Monte Carlo distributions that are well behaved

with no evidence of multimodality that may be an indication of the presence of multiple local

maxima.
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Figure 1: Kernel densities of the Monte Carlo estimates of the HAR-MEM-J-λt, where λt varies
according to (16).

The Monte Carlo simulations confirm the validity of the ML estimation method, made pos-

sible by the knowledge of the closed-form expression of the K distribution, and show that the

results are also valid when the jumps are absent, i.e. when the density of the innovation term

is Gamma distributed. In the empirical application we rely on standard asymptotic results for

the computation of the standard errors, as in Engle and Gallo (2006).
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5 Empirical Results

5.1 Database and ex-post volatility estimation

Our purpose is to estimate the probability and the size of the volatility jumps once that price

jumps have been disentangled from the volatility dynamics. Indeed, when price jumps are

present, the total price variation, or quadratic variation, is equal to the sum of integrated

variance plus the squared price jumps. The quadratic variation can be estimated by the realized

variance (or realized volatility), as

RVt =

M∑
j=1

r2t,j t = 1, ..., T (26)

where rt,j ≡ pt,j − pt,j−1 is the j-th intraday log-return on a fixed length grid with M intradaily

observations. When M → ∞ and microstructure noise is absent, the RV converges to the

quadratic variation.

Disentangling the squared price jumps from the integrated variance is important when the

focus is on the volatility dynamics. Indeed, as it has been noted by Huang and Tauchen (2005),

jumps in prices account for approximately 7% of the total price variability. Barndorff-Nielsen

and Shephard (2004) propose as an ex-post estimator of the integrated variance the bipower

variation, defined as

BPVt =
π

2

M∑
j=2

|rt,j ||rt,j−1| t = 1, . . . , T. (27)

BPV converges to the integrated variance as M diverges, also when the instantaneous volatility

process has a jump component.

The empirical analysis reported in the following sections is conducted with the BPV series

of two sets of assets. The first dataset includes seven stock indexes: S&P500, FTSE 100, DAX,

DJIA, NASDAQ 100, CAC 40, Bovespa, sampled from January 3, 2000 through January 31,

2013, as made available by the Oxford-Man Institute’s Realised Library. The second dataset

consists of 16 large cap equities quoted on the New York market: Boeing, Bank of America,

City Group, Caterpillar, Federal Express, Honeywell, Hewlett-Packard, IBM, JP Morgan, Kraft,

Pepsi, Procter & Gamble, AT&T, Time Warner, Texas Instruments, and Wells Fargo. Prices are

sampled at one minute frequency, from January 2, 2003 to June 30, 2012, and they are provided

by TickData. The BPV is estimated from the 1-minute prices. In both datasets, the realized

measure is expressed as daily volatility, i.e. the square root of BPV, RMt =
√
BPVt. The

descriptive statistics of both datasets3 highlight well known stylized facts such as high kurtosis

and asymmetry, due to the long upper tail characterizing the empirical density of RMt, and the

presence of a strong serial correlation as suggested by the very high values of the auto-correlations

at the selected lags 1, 5 and 22.

Several alternative multiplicative specifications are considered for modelling RMt. We con-

sider two alternative specifications of μt: the AMEM and the AHAR-MEM, where the former

is nested in the latter. For what concerns the jump component, we consider the following cases:

3See Table 1 in the supplementary document.
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• No jumps: φ1 = φ2 = φ3 = ς = 0;

• Constant jump intensity: from equation (16) we set λt = φ1 and φ2 = φ3 = 0;

• Time-varying jump intensity: with λt evolving as in equation (16).

Due to space constraints, only the estimates of the parameter of the AHAR-MEM-J-λt are

reported in the paper.4 To compare the alternative models we consider two different approaches.

Firstly, we pursuit a full-sample evaluation approach, where the MEM and MEM-J specifications

are compared with respect to their fit on the empirical data and a series of statistical tests for

restrictions on the parameters are performed. Secondly, we evaluate model abilities in fitting

the upper tail of the realized measure both in-sample and out-of-sample. This is not only crucial

for risk-management purposes, but also consistent with the expected ability of the MEM-J in

capturing sudden and large increases in the volatility.

5.2 Estimation results

The alternative MEM specifications are first compared in terms of their ability in fitting the

dynamics of the series. To this end, we analyze the dynamic properties of the residuals5

ε̂t =
RMt

E [RMt|It−1]
. (29)

Since the standard diagnostic statistics are designed for residuals that are assumed normally

distributed, we normalize the residuals with ε̂∗t = F−1
N [FΓ(ε̂t)], for t = 1, . . . , n, where FN () and

FΓ() are the cumulative density functions of the standard normal and Gamma distributions,

respectively. Table 2 reports the diagnostic statistics and tests for the estimated models: the

AMEM, AHAR-MEM, AHAR-MEM-J and AHAR-MEM-J-λt. The AMEM does not account

for the persistence present in RMt, as the Ljung-Box tests on the residuals strongly reject the

null hypothesis in nearly all cases. On the contrary, the Ljung-Box statistics of the AHAR-MEM

residuals do not reject the null of no residual autocorrelation in 4 out of the 7 stock indexes

considered, and only when we focus on lags up to the 22-nd. Looking at the individual stocks,

at the 5% confidence level we have only 4 out of the 16 equities with some evidence of residual

serial correlation, and only over 22 lags. The number of stocks with autocorrelated residuals of

the AHAR-MEM decreases to 1 at 1% significance level.

From the theoretical analysis in Section 3, the inclusion of jumps in the MEM specification

is mainly designed to provide a high degree of flexibility to the conditional density of RMt while

the dynamic features of the model are not affected. This is confirmed by the the Ljung-Box

statistics that are mainly unaffected by the inclusion of the jump component in the AHAR-MEM

model.

4The parameter estimates of the other sub-models are in the Tables 2-4 in the supplementary document.
5As an alternative, model residuals might be computed by standardization of RMt with respect to its expected

value, involving the impact of μt and (when present) Zt. In this case, innovations are defined as Pearson’s residuals

RMt − E [RMt|It−1]

V [RMt|It−1]
1/2

. (28)
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The estimated parameters in μt of the AHAR-MEM-J are close to those of the AHAR-MEM

even though the parameters associated with the jumps, ς and λ are statistically significant for

all series considered.6 Since the parameter ς is not defined in the AHAR-MEM, i.e. under the

null hypothesis (λ = 0), it is not possible to evaluate the significance of the jump term using the

quantiles of the χ2 distribution as in the standard LR test, see the discussion in Hansen (1996).7

However, from a comparison of the likelihood values in Table 2 (LRλ=0), it clearly emerges that

the log-likelihood functions of the AHAR-MEM-J are much larger than those of the AHAR-

MEM, as their difference is often larger than 100. This evidence supports the hypothesis of a

mixture of Gamma and K distributions in the innovation term as originated by the presence of

jumps.

Table 3 reports the parameter estimates of AHAR-MEM-J-λt model. The parameters in

μt are strongly significant in almost all cases, similarly to the estimates of AHAR-MEM and

AHAR-MEM-J. In particular, if we compare the estimated parameters of the stocks to those of

the indexes, we note that the stocks are characterized by a somewhat higher impact of previous

day RMt levels, i.e. coefficient α1. Differently, the impact of last week and last month average

of RMt is more heterogeneous across stocks, with some cases of reduced significance.

For what concerns the estimates of the parameters in the jump component, the unconditional

mean of λt is between 0.15 and 0.20 in most cases, and there are not relevant differences between

stock indexes and individual stocks. Indeed, obtaining significant coefficients for the jump

intensity, either in the constant or in the dynamic specification, is a first evidence that jumps in

volatility are a significant component of the variability of RMt. Interestingly, most markets and

stocks, among those considered, display estimates of φ2 larger than 0.8, suggesting persistence

in jump arrivals. Notable exceptions are FTSE-100, BOVESPA and CAT. For BOVESPA

the sensitivity to the news arrival, measured by the parameter φ3, is close to the persistence

parameter, i.e. φ2. This might suggest that the time-varying jump intensity specification is not

needed in this case. The LR tests for the joint nullity of φ2 and φ3 in the last column of Table 2

take always very large values. Even though an asymptotic theory for the LR test is not available,

when φ2 is not defined under the null, we believe that the observed values of the test statistic

can reasonably lead to the rejection of the null hypothesis in all cases considered. Introducing

dynamics in the jump intensity is empirically important as it provides the necessary degree of

flexibility in the conditional density of RMt.

Looking at the scale parameter estimates, ν, they are much larger for the AHAR-MEM-J-λt

than for the AHAR-MEM model without jumps. The variance of εt, equal to
1
ν , sensibly reduces

when jumps are included. As shown in (20), for a given level of the conditional variance of ηt

and a given arrival probability λt, there is an inverse relationship between ν and ς. Moreover,

since ς is much smaller than ν in all cases, it follows that the variance of the jump terms is

several times larger than that of εt. As a consequence, both a smooth and a discontinuous

component, responsible for big moves, must be included when modeling volatility in a discrete

time setting. This is in accordance with the findings of Todorov and Tauchen (2011) who show

6See the supplementary document.
7In this case simulation based approaches can be used to recover likelihood ratio test critical values following

Hansen (1996). We don’t pursue that strategy due to the computational burden implied in the estimation of the
MEM-J.
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that volatility can be well approximated by a pure jump process with infinite variation. Finally,

The estimates of ν for the individual stocks are sensibly higher than those of the indexes. This

reflects differences in the volatility-of-volatility as that of the indexes is higher than that of the

individual stocks. This may be due to the different sample periods under exam.

Figures 2 report two examples of fitted expected jump component E [Zt|It−1] = (e−λt+λt) ≥
1. The expected jump (which is a non-linear function of λt) is very close to 1, i.e. there are no

jumps, when the markets experience no major shocks, e.g. from 2003 through 2007. Instead,

it sharply increases during market turmoils, like: the end of technology market bubble in 2001-

2002, the sub-prime crisis in 2007-2008 and the European sovereign crisis in 2010. Notably, the

most recent crisis seem to be more relevant in France compared to the US market, a somewhat

expected result.

Figure 3 dislpay the impact of a change in the model structure, moving from an AHAR-

MEM without jumps to a specification including jumps, AHAR-MEM-J-λt. The figure shows

the relative difference between the expected realized measure, i.e. E [RMt|It−1], of AHAR-MEM-

J-λt and AHAR-MEM. Again, during market turmoils, the model with jumps has conditional

expected values of RMt that are from 5% to 25% larger than those obtained with a model

without jumps.
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Figure 3: Relative expected jump contribution. The figures display the ratio
EJ [RMt|It−1]−E0[RMt|It−1]

E0[RMt|It−1]
, where EJ [RMt|It−1] is the conditional expectation under AHAR-MEM-

J-λt, and E0[RMt|It−1] is the conditional expectation under AHAR-MEM.

The same evidence arises from Figure 4 which reports the ratio between the conditional

variance of RMt of the model with jumps and without jumps. The ratio is generally larger than

1, meaning that the conditional variance generated by jumps is by larger than that generated

without jumps. Especially during periods of high volatility the ratio takes extremely large values,

thus confirming that jumps are an important factor of variation in these periods. This can be

also interpreted as a further evidence in favour that the variation in volatility can be attributed

to a combination of continuous and discontinuous processes.
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Figure 2: Expected jump component in the AHAR-MEM-J-λt model for S&P500 and CAC 40.
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Figure 4: Volatility-of-volatility ratio. The figures display the ratio VJ [RMt|It−1]
V0[RMt|It−1]

, where

VJ [RMt|It−1] is the conditional variance under AHAR-MEM-J-λt, and V0[RMt|It−1] is the
conditional variance under AHAR-MEM.

5.3 Robustness checks

A series of robustness checks have been carried out to evaluate to what extent the empirical

results are affected by the measurement error and by the potential low power of BPV in dis-

entangling jump in prices from the volatility dynamics. First, the presence of the measurement

error can be accounted for by means of a parametric conditional model that includes an equation

for the returns and a measurement equation.8 The estimates of the MEM-J equation param-

eters change up to a very limited extent. This is perhaps due to the very liquid nature of the

indexes and individual stocks used in the empirical application. In Figure 5, it is evident the two

estimated seequences of λt are very close, meaning that the measurement error is not a major

concern and it can be considered negligible for the purposes of this paper.

Furthermore, another obvious concern is whether the results on the estimation of volatility

jumps depend on the particular realized measure employed in the analysis. Indeed, Christensen

et al. (2014) show that BPV may be biased when the underlying volatility process is charac-

terized by high volatility-of-volatility, so that volatility jumps can be easily confused as price

jumps. We have therefore estimated the MEM-J model on another set of volatility series that is

robust to price jumps. In particular, we estimated AHAR-MEM-J-λt with RMt =
√
MedRVt,

i.e. the median realized volatility computed as follows ,

MedRVt =
π

6− 4
√
3 + π

(
M

M − 2

)
×

M−1∑
j=2

med(|rt,j−1|, |rt,j |, |rt,j+1|)2

that is less efficient than BPV but more powerful in filtering the price jumps, see Andersen

8Due to space constraints, an exhaustive description of this model, that can be seen as an extension of the
realized GARCH model of Hansen et al. (2012), with volatility and price jumps and multiplicative measurement
equation, can not be outlined here. Therefore, a full discussion of the properties of this multivariate model is left
to future research. The estimation results are in Table 5 of the document with supplementary material.
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Figure 5: Estimated time-varying volatility jump intensity, λt, obtained with the univariate
AHAR-MEM-J-λt, solid line, and with the bivariate AHAR-MEM-J-λt based on daily returns
and

√
BPV , dotted line, (see details in the Supplementary document).

et al. (2012a). Notably, this replacement does not lead to any significant change in the AHAR-

MEM-J-λt parameters and in the estimates of the dynamics of the volatility jump intensity, as

shown in Figure 6.9

6 Volatility-at-Risk

In this section, we evaluate the ability of the MEM specifications considered in this study to

correctly predict the probability of tail events. The model with volatility jumps is expected to

provide a better description of tail events, i.e. extreme volatility realizations, as it is able to gen-

erate large and sudden increases in the conditional volatility-of-volatility levels, thus providing a

better fitting of the upper tail. By analogy to the Value-at-Risk introduced for quantifying the

risk of extremely negative returns, we define the VolaR, i.e. the risk of extreme high volatility

as

Pr {RMt > v(α)|It−1} = α

where Pr{·|It−1} denotes the conditional distribution at date t of the one-step-ahead volatility,

whereas v(α) is the realized volatility level that may occur with probability α. The VolaR might

be of interest for investors who trade in volatility, see Zhang et al. (2010), Euan (2013) and

therein cited references. In fact, the knowledge of the probability that volatility will exceed a

given threshold is useful both in designing volatility trading strategies based on options (allowing

for an optimal calibration of the option maturity as well as the option strike) and for strategies

9See Table 6 in the Supplementary document.
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Figure 6: Estimated time-varying volatility jump intensity, λt, obtained estimating the AHAR-
MEM-J-λt with RMt =

√
BPVt, solid line, and with RMt =

√
MedRVt, dotted line.

based on volatility indices or exchange traded volatility products (having an impact on the choice

of the investment direction as well as on the size of the position). In addition, the evaluation

of volatility risk might be of interest for options traders and market makers to define optimal

prices and order execution, and, finally, to portfolio managers willing to determine the need and

the amount of a volatility hedge.

In order to evaluate the estimation of the VolaR (i.e. the right tail coverage) obtained

with models with and without jumps, we consider the method introduced by Berkowitz (2001),

which allows to test for the adequacy of the proposed density with the realization of the modeled

variable. The test is flexible and can be applied to the fit of the entire density as well as over

specific segments of the density support. For our purposes, we apply the test over the upper q%

tail of the RMt density. In details, given the density of the RMt, we compute the conditional

CDF of RMt

yt = F (RMt|It−1) =

∫ RMt

0
f (x|It−1) dx,

where F (RMt|It−1) for the AHAR-MEM-J is given by the mixture of Gamma and K conditional

CDFs. Then, under correct model specification, the empirical CDF values should be distributed

according to the standard uniform, i.e. yt ∼ U (0, 1), which are further transformed as

zt = Φ−1 (yt)

where Φ (·) is the standard normal CDF, so that zt are distributed as a standardized normal.

To test the correct tail coverage, we choose a VolaR level of 1% (i.e. VolaR = 2.3263), and
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calculate a new truncated variable

z∗t =

⎧⎨⎩VolaR if zt ≤ VolaR

zt if zt > VolaR.
(30)

A tail coverage test can be derived using the LR principle. Under the null, the mean and the

variance of z∗t are 0 and 1, respectively, while under the alternative they are unrestricted. Under

the null of correct tail coverage the test statistic is distributed as χ2(2). See Berkowitz (2001)

for further details on this test.

Table 4 reports the p-values of the Berkowitz test relative to the in-sample estimates of differ-

ent volatility model specifications. Beyond the MEM specifications seen so far, we also include

in the comparison models which are based on more flexible innovation density specifications

than the Gamma distribution adopted in the baseline MEM. These are characterized by fatter

right tail than the Gamma distribution and are expected to accommodate extreme realizations

observed in the realized measures series. The models considered are:

• AHAR-MEM-GG: where εt follows a Generalized Gamma, as in Lunde (1999) and Andres

and Harvey (2012).

• AHAR-MEM-ν̄t: where the variance of εt, i.e. the parameter ν̄t =
1
νt
, follows a GARCH(1,1)

process.

• M-AHAR-MEM: that is the mixture model of Lanne (2006) with AHAR dynamics in each

volatility component.

Due to space constraints, the specifications and the parameter estimates for these models are

reported in the Supplementary document.10 We also estimate the HAR-V-J of Caporin et al.

(2014b) to have a model with jumps which is not based on a multiplicative structure.

It clearly emerges that the AHAR-MEM with jumps outperforms the corresponding specifi-

cation without jumps in estimating the VolaR. All the MEM specifications without jumps and

Gamma distribution for εt strongly reject the null hypothesis of correct specification of the upper

quantiles. It should be noted that also the AHAR-MEM-ν̄t model is poorly designed to capture

tail events. Letting the conditional variance of εt to be time varying is not sufficient for a proper

characterization of VolaR. This suggests a distinct role of the jumps from pure heteroskedastic

effects in εt. Interestingly, the M-AHAR-MEM of Lanne (2006) provides some evidence of cor-

rect specification of the upper tail, as the Berkowitz test cannot reject the null hypothesis in 8

cases. Conversely, the AHAR-MEM-GG model fails to give the correct probability mass on the

right tail. In other words, despite the generalized Gamma distribution provides a good fitting

for the entire distribution, it fails to properly account for the probability of tail events.

It is noteworthy that the introduction of jumps, with constant and time-varying λ, provides

a good fit of the VolaR. In only two cases, BOVESPA and PG, the presence of jumps does not

succeed in correctly estimating the VolaR. The introduction of the time-varying jump intensity

sensibly improves the performances for the CAC40 index, BA, HPQ and KRF. A possible

explanation for the good performance of the model with jumps can be derived from Figure 7.

10See Tables 7-9 in the Suppplementary document
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I II III IV V VI VII VIII

SP500 0.0000 0.0000 0.0000 0.0080 0.0000 0.5181 0.6749 0.3456
FTSE 100 0.0000 0.0000 0.0000 0.4882 0.0000 0.7394 0.3289 0.4896
DAX 0.0000 0.0000 0.0000 0.0241 0.0001 0.6660 0.1415 0.1337
DJIA 0.0000 0.0000 0.0000 0.0010 0.0000 0.4189 0.4334 0.5880
NSDQ 0.0000 0.0000 0.0000 0.6016 0.0000 0.6651 0.5216 0.5999
CAC 0.0000 0.0000 0.0000 0.0013 0.0004 0.0984 0.0677 0.3594
BOVESPA 0.0000 0.0000 0.0000 0.5952 0.0519 0.8380 0.0055 0.0145

BA 0.0000 0.0000 0.0000 0.0229 0.0000 0.5486 0.0423 0.1483
BAC 0.0000 0.0000 0.0000 0.0268 0.0000 0.0008 0.1095 0.2011
C 0.0000 0.0000 0.0000 0.0045 0.0000 0.0217 0.1608 0.6656
CAT 0.0000 0.0000 0.0000 0.0921 0.0000 0.5137 0.2131 0.2528
FDX 0.0000 0.0000 0.0000 0.8566 0.0000 0.5309 0.0746 0.0815
HON 0.0000 0.0000 0.0000 0.0013 0.0000 0.0369 0.2604 0.2923
HPQ 0.0000 0.0000 0.0000 0.5133 0.0000 0.0621 0.0601 0.1515
IBM 0.0000 0.0000 0.0000 0.0038 0.0000 0.5957 0.3150 0.0909
JPM 0.0000 0.0000 0.0000 0.0856 0.0000 0.0059 0.1312 0.1218
KFT 0.0000 0.0000 0.0000 0.0112 0.0000 0.6487 0.0000 0.2042
PEP 0.0000 0.0000 0.0000 0.0000 0.0000 0.6652 0.1350 0.9984
PG 0.0000 0.0000 0.0000 0.0123 0.0000 0.9482 0.0267 0.0290
T 0.0000 0.0000 0.0000 0.0078 0.0000 0.5549 0.5883 0.7226
TWX 0.0000 0.0000 0.0000 0.0023 0.0000 0.0487 0.4656 0.3480
TXN 0.0000 0.0000 0.0000 0.0001 0.0000 0.5385 0.1078 0.2782
WFC 0.0000 0.0000 0.0000 0.4959 0.0000 0.0128 0.1071 0.0930

Table 4: P -values of the Berkowitz (2001) test for the in-sample VolaR at 1% level, corresponding
to a value of 2.3263. The models considered are AMEM (I), AHAR-MEM (II), AHAR-MEM-νt
(III), M-AHAR-MEM (IV), AHAR-MEM-GG (V), HAR-V-J (VI), AHAR-MEM-J (VII) and
AHAR-MEM-J-λt (VIII).

The model with jumps is able to generate large and sudden spikes in the conditional variance of

RMt, as generated by the jump component Zt, while the model with time-varying νt, can only

generate smooth trajectories, and hence it is not able to assign enough probability to extreme

volatility events. Interestingly, also the HAR-V-J model of Caporin et al. (2014b), which is an

HAR specification with time-varying jump intensity on logRMt, provides a good fitting of the

tails of the volatility distribution.11 In this case, the null hypothesis cannot be rejected at 5%

significance level for all the indexes and many of the individual stocks.

Table 5 reports the p-values of the Berkowitz test based on the out-of-sample forecasts, for a

total of 1,000 observations (for the indexes the holdout sample starts on February 2, 2009, while

for the individual stocks it starts in July 14, 2008). The sample size of the rolling window used to

estimate the parameters in the cases of stock indexes is about 2,200 while for the individual stocks

is approximately 1,400. Given the sample dimensions used in the estimation, the uncertainty in

the parameters estimates is expected a fairly limited effect on the test results. When AMEM

and AHAR are used, the null hypothesis is always rejected, at 5% significance level, with the

exception of FTSE 100. Better results are obtained when the Generalized Gamma is adopted. In

5 out of 23 cases, the null hypothesis cannot be rejected. A similar performance is also achieved

11Due to space constraints, we do not report a complete discussion of the HAR-V-J model, which can be
found in Caporin et al. (2014b). It is however important to note, that, since the HAR-V-J model is linear in
the logarithms of realized volatility, this implies a multiplicative structure for the latter, similar to that obtained
under the AHAR-MEM-J.
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Figure 7: Conditional variance of RMt of S&P500 obtained with the AHAR-MEM-J-λt, dashed
line, and with the AHAR-MEM-νt, solid line.

with M-AHAR-MEM and AHAR-MEM-J with constant λ. Indeed, by including the jumps

(with constant intensity) the null is not rejected for 11 cases. A slightly better performance

is achieved with the HAR-V-J model as the null hypothesis cannot be rejected in 13 out of 23

cases. An impressive improvement is instead associated with the full model with persistence and

time-varying jump intensity. For the AHAR-MEM-J-λt the lowest p-value is associated with the

DAX index and equals 12%. The out-of-sample results confirm the adequacy of AHAR-MEM-

J-λt in predicting the presence of volatility jumps which turn out to be of crucial importance in

forecasting the VolaR.

7 Concluding remarks

We have introduced a new model for realized volatility measures, the AHAR-MEM-J. Our

model generalizes the MEM of Engle and Gallo (2006) by adding persistence (through HAR

terms, see Corsi, 2009) and multiplicative volatility jumps. A volatility jump takes the form of

an extreme event, for example a very large value of the daily volatility such as those observed

in the last years. By specifying the volatility process as a combination of a continuous volatility

component and a discrete compound Poisson process for the jumps, the conditional density of

the realized measure becomes a countably infinite mixture constituted by a Gamma random

variable and a weighted sum of K distributed random variables. We add further flexibility

considering both time-varying jump intensity. This flexible parametrization of the dynamics

of the realized measure allow capturing the extreme or abnormal movements in the volatility

level. We discuss the model estimation in finite samples and the effects of misspecification by

resorting to a Monte Carlo simulation. The empirical application shows that the AHAR-MEM-

J-λt captures the extreme moves registered in the last years in the volatilities of individual

stocks and equity indexes. We provide statistical evidence that, for the sample period analyzed,
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I II III IV V VI VII VIII

S&P500 0.0000 0.0000 0.0000 0.0035 0.0002 0.3503 0.0048 0.5133
FTSE 100 0.5577 0.1526 0.0000 0.0615 0.5078 0.0000 0.3551 0.4917
DAX 0.0010 0.0002 0.0000 0.0436 0.4529 0.1246 0.0171 0.1212
DJIA 0.0000 0.0000 0.0000 0.0009 0.0001 0.0260 0.0358 0.5111
NSDQ 0.0000 0.0000 0.0000 0.0025 0.0000 0.0010 0.0293 0.9532
CAC 0.0000 0.0000 0.0000 0.0696 0.1039 0.2384 0.0711 0.4825
BOVESPA 0.0279 0.0117 0.0000 0.3168 0.3036 0.8389 0.4567 0.2591

BA 0.0000 0.0000 0.0000 0.0477 0.0002 0.3503 0.2482 0.4850
BAC 0.0000 0.0000 0.0000 0.9360 0.0000 0.0010 0.0185 0.0768
C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0043 0.1416
CAT 0.0000 0.0000 0.0000 0.0231 0.0003 0.0631 0.0262 0.3891
FDX 0.0000 0.0000 0.0000 0.0362 0.0000 0.1076 0.1889 0.6195
HON 0.0000 0.0000 0.0000 0.0002 0.0006 0.6167 0.6935 0.1595
HPQ 0.0000 0.0000 0.0000 0.0416 0.0000 0.1246 0.0142 0.3614
IBM 0.0000 0.0000 0.0000 0.0000 0.0000 0.8587 0.7541 0.7128
JPM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0260 0.0453 0.1329
KFT 0.0000 0.0000 0.0000 0.3501 0.0000 0.0007 0.7700 0.6569
PEP 0.0000 0.0000 0.0000 0.0356 0.0001 0.0010 0.5746 0.5788
PG 0.0000 0.0000 0.0000 0.0119 0.0000 0.0000 0.3249 0.9246
T 0.0000 0.0000 0.0000 0.0140 0.0000 0.2384 0.7679 0.1859
TWX 0.0000 0.0000 0.0000 0.1001 0.0000 0.0409 0.0117 0.2544
TXN 0.0000 0.0000 0.0000 0.0031 0.0069 0.8389 0.0000 0.0055
WFC 0.0000 0.0000 0.0000 0.0000 0.0000 0.5799 0.0121 0.0002

Table 5: P -values of the Berkowitz (2001) test for the out-of-sample VolaR at 1% level, corre-
sponding to a value of 2.3263. The out-of-sample forecasts are computed with a rolling window
starting in February 2, 2009 for the stock indexes and July 14, 2008 for the individual stocks.
The total number of forecasts is 1,000 for both data sets. The models considered are AMEM (I),
AHAR-MEM (II), AHAR-MEM-νt (III), M-AHAR-MEM (IV), AHAR-MEM-GG (V), HAR-V-
J (VI), AHAR-MEM-J (VII) and AHAR-MEM-J-λt (VIII).

the model correctly predicts the probability of occurrence of abnormal volatility levels, i.e. of

jumps. We compare alternative models by means of a new measure called the volatility-at-risk,

i.e. the risk of extreme high volatility. The empirical analysis put in evidence how models that

cannot generate sudden and large movements in the realized measures, i.e. without jumps, fail in

fitting the extreme right tail of the distribution. Moreover, the recent empirical evidence on the

contemporaneous correlation between jumps in price and volatility would suggest an extension

of our set up to include the presence of price jumps. This is left for future research. Finally,

the potential application of this model is not limited to the study of volatility but it can be

employed in the analysis of any positive time series that features persistence and sudden large

variations, e.g. trading volume and durations.
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Bandi, F. and Renò, R. (2013). Price and volatility co-jumps. Technical report, University of
Siena.

Barndorff-Nielsen, O. E. and Shephard, N. (2004). Power and bipower variation with stochastic
volatility and jumps. Journal of Financial Econometrics, 2:1–37.

Bauwens, L., Hafner, C., and Rombouts, J. (2007). Multivariate mixed normal conditional
heteroskedasticity. Computational Statistics & Data Analysis, 51(7):3551 – 3566.

Bauwens, L. and Veredas, D. (2004). The stochastic conditional duration model: a latent factor
model for the analysis of financial durations. Journal of Econometrics, 119:381–412.

Berkowitz, J. (2001). The accuracy of density forecasts in risk management. Journal of Business
and Economic Statistics, 19:465–474.

Bollerslev, T., Kretschmer, U., Pigorsch, C., and Tauchen, G. E. (2009). A discrete-time model
for daily S&P 500 returns and realized variations: Jumps and leverage effects. Journal of
Econometrics, 150:151–166.

Bougerol, P. and Picard, N. (1992). Stationarity of GARCH processes and some nonnegative
time series. Journal of Econometrics, 52:115–127.

Broadie, M., Chernov, M., and Johannes, M. (2007). Model specification and risk premia:
Evidence from futures options. The Journal of Finance, 62:1453–1490.

29



Broda, S. A., Haas, M., Krause, J., Paolella, M. S., and Steude, S. C. (2013). Stable mixture
GARCH models. Journal of Econometrics, 172(2):292 – 306.

Brownlees, C. T., Cipollini, F., and Gallo, G. M. (2012). Multiplicative error models. In
Bauwens, L., Hafner, C., and Laurent, S., editors, Handbook of Volatility Models and Their
Applications, pages 223–247. John Wiley & Sons, Inc.
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A The K distribution

If X ∼ Γ (μ, ν1), in mean-shape form, and Y |X ∼ Γ (X, ν2) then we have Y ∼ K (μ, ν1, ν2) such
that

f (y) =
2

y

(
y
ν1ν2
μ

) ν1+ν2
2 1

Γ (ν1) Γ (ν2)
Kν1−ν2

(
2

√
y
ν1ν2
μ

)
, y ≥ 0

where Ka (·) is the modified Bessel function of the second kind. Moments of the K density are
given by

E [ys] =
μsΓ (ν1 + s) Γ (ν2 + s)

νs1ν
s
2Γ (ν1) Γ (ν2)

(31)

so that E [Y ] = μ and V [Y ] = μ2
(
ν1+ν2+1

ν1ν2

)
. Furthermore, if Y ∼ K (μ, ν1, ν2) then αY ∼

K (αμ, ν1, ν2), E [αY ] = αμ and V [αY ] = α2μ2
(
ν1+ν2+1

ν1ν2

)
. Different K densities, corresponding

to different values of ν1 and ν2, are plotted in Figure 8. Increasing both parameters reduces the
variance, as it is apparent in both plots.
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(a) K density calculated with ν1 = {1, 5, 10, 15, 20} and ν2 = 10.
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(b) K density calculated with ν2 = {1, 5, 10, 15, 20} and ν1 = 10.

Figure 8: K density computed for different values of ν1 (upper panel) and ν2 (lower panel).

Further, as noted by Redding (1999, p.3), the product of two independent Gamma random
variables, Z ∼ Γ(1, ν2) and X ∼ Γ(μ, ν1), is

Y = Z ·X ∼ K(μ, ν1, ν2)
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with density given by the following integral

fY (y) =

∫ ∞

−∞
1

x
fZ

(y
x

)
fX(x) dx.

Pseudo random numbers with K distribution can be generated from Z ∼ Γ(1, L) and X ∼
Γ(μ, ν), since Y = Z ·X is distributed as K(μ, ν, L).

Setting θ1 = ν1, θ2 = ν2 or viceversa, the cumulative distribution function (CDF) of a K -
distributed random variable can be written as

F (y;μ, θ1, θ2) =
22−θ1−θ2

Γ(θ1)Γ(θ1)

∫ 2
√

θ1θ2y/μ

0
tθ1+θ2−1

Kθ1−θ2(t)dt, y ≥ 0. (32)

The hypothesis of θ2 ∈ N instead of θ2 ∈ R+ is required in order to obtain the previous expression
in closed form. Writing ζ = θ1 − θ2, k = 2ν2 − 1 and z = 2

√
θ1θ2y/μ

F (y;μ, θ1, θ2) = 1 +
22−θ1−θ2

Γ(θ1)Γ(θ2)
g(z, ζ, k) (33)

where

g(y, ζ, k) =

⎧⎨⎩
−zζ+1

K(ζ+1)(z) k = 1

(k − 1)(2ζ + k − 1)g(y, ζ, k − 2)− zζ+k
Kζ+1(z)

−(k − 1)z(ζ+k−1)
Kζ(z)

elsewhere

The number of required recursions to compute a single value FY (y;μ, θ1, θ2) is θ2. The best
parametrization, in terms of computational speed, is θ1 = max{ν1, ν2} and θ1 = min{ν1, ν2}.

B Proofs and results

B.1 Proof of Proposition 1

Given εt|It−1 ∼ Γ(1, ν) and Zt|Nt = m > 0, It−1 ∼ Γ(m,mς), integrating out zt we have the
conditional density of ηt

f(ηt|Nt = m > 0, It−1; ν, ς) =
2

ηt

(
ηtςν

)mς+ν
2

1

Γ(mς)Γ(ν)
Kmς−ν

(
2
√
ηtςν

)
.

which is the K density, see Redding (1999). Ka (·) is the modified Bessel function of the second
kind. The moments of ηt, conditional on Nt = m > 0 and It−1, are derived from the moments
of the K density in (31). �

B.2 Proof of Proposition 2

From equation (10), the conditional density of RMt is derived as

f(RMt|Nt = m > 0, It−1; ζ, ς) = f
(RMt

μt
|Nt = m > 0, It−1

)∣∣∣ 1
μt

∣∣∣
=

2μt

RMt

(RMt

μt
ςν
)mς+ν

2
u 1

Γ(mς)Γ(ν)
Kmς−ν

(
2

√
RMt

μt
ςν

)∣∣∣ 1
μt

∣∣∣
=

2

RMt

(RMt

μt
ςν
)mς+ν

2 1

Γ(mς)Γ(ν)
Kmς−ν

(
2

√
RMt

μt
ςν

)
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Similarly to the case of ηt, the moments of RMt conditional on Nt = m > 0 and It−1 are derived
from the moments function of the K density. �

B.3 Moments of Zt

Lemma B.1 Given the MEM-J in (3) with Assumption 1 and the processes for λt specified as
in (16), the conditional moments of Zt are

E
[
Zt|It−1

]
= e−λt + λt (34)

V
[
Zt|It−1

]
=

λt

ς
+ e−λt +

(
λt + λ2

t

)− (
e−λt + λt

)2
. (35)

The filtered expected jumps are

E [Zt|It] =
∞∑

m=0

P (Nt = m|It)× E [Zt|Nt = m, It−1] (36)

Proof To prove this result, we start by computing the expectation (and for completeness the
variance) of the jump term Zt. We distinguish two cases depending on the presence of jumps.
When we have no jumps, the mean and variance of Zt are

E [Zt|Nt = 0, It−1] = 1

V [Zt|Nt = 0, It−1] = 0

Differently, when Nt > 0 we have

E [Zt|Nt = m > 0, It−1] = m

V [Zt|Nt = m > 0, It−1] =
m

ς
.

Integrating out the dependence on Nt, we obtain

E [Zt|It−1] =
∞∑

m=0

P (Nt = m|It−1)× E [Zt|Nt = m, It−1]

= P (Nt = 0|It−1)× 1 +
∞∑

m=1

P (Nt = m|It−1)×m

= e−λt + λt (37)

as, for the Poisson process governing the jumps number we have P (Nt = 0|It−1) = e−λt and
E [Nt|It−1] =

∑∞
m=0 P (Nt = m|It−1) × m = λt =

∑∞
m=1 P (Nt = m|It−1) × m since for m = 0

we do not have a contribution to the expected value.
For the variance we have

V [Zt|It−1] = E [V [Zt|Nt, It−1] |It−1] + V [E [Zt|Nt, It−1] |It−1] .
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Separately evaluating the two components, we obtain first

E [V [Zt|Nt, It−1] |It−1] =
∞∑

m=0

P (Nt = m|It−1)× V [Zt|Nt = m, It−1]

= P (Nt = 0|It−1)× 0 +
∞∑

m=1

P (Nt = m|It−1)× m

ς

=
λt

ς
. (38)

For the second element we can write

V [E [Zt|Nt, It−1] |It−1] = E

[
E [Zt|Nt, It−1]

2 |It−1

]
− (E [E [Zt|Nt, It−1] |It−1])

2 ,

where the first term is given as

E

[
E [Zt|Nt, It−1]

2 |It−1

]
=

∞∑
m=0

P (Nt = m|It−1)× E [Zt|Nt = m, It−1]
2

= P (Nt = 0|It−1)× 1 +
∞∑

m=1

P (Nt = m|It−1)×m2

= e−λt +
(
λt + λ2

t

)
,

from the second order moment of a Poisson and using the fact that the contribution of the
zero-jump component to the second order moment is equal to zero. By the law of iterated
expectations,

E [E [Zt|Nt, It−1] |It−1] = E [Zt|It−1] = e−λt + λt.

�
The filtered expected jumps are given by

E [Zt|It] =
∞∑

m=0

P (Nt = m|It)× E [Zt|Nt = m, It]

=
∞∑

m=0

P (Nt = m|It)× E [Zt|Nt = m, It−1] (39)

where P (Nt = m|It) is derived in equation (25).

B.4 Proof of Proposition 3

The expected value of RMt conditional on It−1 is obtained, noting that μt is measurable on
It−1, so that

E [RMt|It−1] = μtE [ηt|It−1]

= μt

∞∑
m=0

E [ηt|Nt = m, It−1]× P (Nt = m|It−1)

= μtE [Zt|It−1] .

It follows that
E [RMt|It−1] = μt

(
e−λt + λt

)
, (40)
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where the conditional expected value of Zt is derived in (37). The conditional variance of RMt

is obtained as

V [RMt|It−1] = E
[
RM2

t |It−1

]− E [RMt|It−1]
2

= μ2
t

{[
λt

ς
+ e−λt + (λt + λ2

t )

]
(1 + ν−1)− (e−λt + λt)

2

}
. (41)

�

B.5 Proof of Theorem 1

The proof follows closely that of Theorem 2.5 in Franq and Zakoian (2010). First, we show that
condition (23) is necessary. Since RMt is a strictly positive covariance stationary process with
λ > 0

E[RMt] = (e−λ + λ)E[μt]

is a positive real number which does not depend on t, with E[μt] > 0. Taking the expectation
of both sides of (22)

E[μt] = ω +

q∑
i=1

(e−λ + λ)E[μt] +

p∑
i=1

βiE[μt]

that is (
1− (e−λ + λ)

q∑
i=1

αi −
p∑

i=1

βi

)
E[μt] = ω

Since ω > 0, we must have condition (23).
Now we turn to the sufficient condition. Let yt ≡ RMt, the vector form of the process in

(22) is
zt = bt +Atzt−1 (42)

where

zt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt
yt−1
...

yt−q+1

μt
...

μt−p+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, bt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ωηt
...
0
ω
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

At =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1ηt . . . αq−1ηt αqηt β1ηt . . . βp−1ηt βpηt
1 . . . 0 0 0 . . . 0 0
0 . . . 0 0 0 . . . 0 0
...

. . . 1 0 0 . . . 0 0
α1 . . . αq−1 αq β1 . . . βp−1 βp
0 . . . 0 0 1 . . . 0 0
...

. . .
...

...
...

. . .
...

...
0 . . . 0 0 0 . . . 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
At is a (p+ q)× (p+ q) matrix with positive and independent coefficients. Further, A = E[At]
and b = E[bt] do not depend on t.

Given the condition in (23), we can construct a stationarity solution. For t, k ∈ Z, we define
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R
d-valued vectors as follows:

Zk(t) =

{
0 if k < 0

bt +AtZk−1(t− 1) if k ≥ 0

With a multiplicative norm, i.e. ‖A‖ =
∑ |aij |, we have, for any random matrix A with positive

coefficients, E‖A‖ = E
∑

i,j |ai,j | = ‖E[A]‖. For k > 0

E‖Zk(t)− Zk−1(t− 1)‖ = ‖E[AtAt−1 . . . At−k+bt−k]‖

because the matrix AtAt−1 . . . At−k+bt−k is positive. All the terms of the product are indepen-
dent (because the process {ηt} is i.i.d. and every term is function of a variable ηt−j). Provided
that A ≡ E[At] and b = E[bt] do not depend on t, it follows that

E‖Zk(t)− Zk−1(t− 1)‖ = ‖Akb‖ = ι′Akb

where ι = (1, . . . , 1)′, because all the elements in the vector Akb are positive. The condition (23)
implies that the eignevalues of A are strictly less than one. The characteristic polynomial can
be expressed as

det(λIp+q −A) = λp+q
(
1− (e−λ + λ)

q∑
j=1

αjλ
−j −

p∑
i=1

βiλ
−i
)

When |λ| ≥ 1, using the inequality |a− b| ≥ |a| − |b| we have

|det(λIp+q −A)| ≥
∣∣∣∣∣∣
(
1− (e−λ + λ)

q∑
j=1

αjλ
−j −

p∑
i=1

βiλ
−i
)∣∣∣∣∣∣

≥ 1− (e−λ + λ)

q∑
j=1

αj −
p∑

i=1

βi > 0

it follows that the spectral radius of A is less than one, i.e. ρ(A) < 1. This implies that Ak → 0
at exponential rate as k → ∞. For any fixed t, Zk(t) converges almost surely as k → ∞. Let
zt denote the limit of {Zk(t)}k∈Z. For fixed k, the process {Zk(t)}t∈Z is strictly stationary. It
follows that the limit process z(t) is strictly stationary and it is a solution of (42).

�

B.6 Proof of Theorem 2

Differently from Theorem 1, now At is a (p+q)×(p+q) matrix with positive coefficients but not
independent, since ηt is correlated through λt. The matrix At can be written as the Hadamard
product of two matrices, i.e.

At = A� Et
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with

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 . . . αq−1 αq β1 . . . βp−1 βp
1 . . . 0 0 0 . . . 0 0
0 . . . 0 0 0 . . . 0 0
...

. . . 1 0 0 . . . 0 0
α1 . . . αq−1 αq β1 . . . βp−1 βp
0 . . . 0 0 1 . . . 0 0
...

. . .
...

...
...

. . .
...

...
0 . . . 0 0 0 . . . 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and a (p+ q)× (p+ q) matrix

Et =

⎡⎢⎢⎢⎣
ηt ηt . . . ηt
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

⎤⎥⎥⎥⎦ .

The conditional mean of ηt is
E[ηt|It−1] = e−λt + λt.

whereas, the unconditional mean satisfies

E[ηt] = E[e−λt ] + E[λt] = E[e−λt ] +
φ1

1− φ2
.

In the last equality, since 0 < E[e−λt ] < 1, it follows that E[e−λt ] + φ1

1−φ2
< 1 + φ1

1−φ2
.

The sequence {At, t ∈ Z} is ergodic and strictly stationary. With a multiplicative norm,
i.e. ‖A‖ =

∑ |aij |, log ‖At‖ ≤ log ‖A‖+ log ‖Et‖, with log ‖Et‖ = log [(p+ q)(ηt + (p+ q)− 1)].
Therefore log+ ‖At‖ ≤ log ‖A‖ + log+ ‖Et‖, where log+(x) = max(log(x), 0). Given that the
Lyapunov exponent γ is equal to, see Franq and Zakoian (2010, Theorem 2.3),

γ = lim
t→∞ a.s.

1

t
log ‖AtAt−1 . . . A1‖ (43)

and

log (‖AtAt−1 . . . A1‖) ≤ log ‖At‖+
t∑

i=1

log ‖Ei‖

Since, limt→∞ 1
t log ‖At‖ = log{ρ(A)}, γ < 0 if and only if

ρ(A) < exp (−E[log ‖Et‖]). (44)

Now, we turn to the proof of the existence of a stationary and ergodic solution if the condition
in (44) is satisfied, i.e. γ < 0. Since the random variable ηt has finite variance, the components
of the matrix At are integrable. Hence,

E[log+ ‖At‖] ≤ E‖At‖ < ∞.

With γ < 0 it follows from (43) that

z̃t(N) = bt +
N∑

n=0

AtAt−1 . . . At−nbt−n−1
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converges a.s. when N goes to infinity, to some limit z̃t. Using the multiplicative norm

‖z̃t(N)‖ ≤ ‖bt‖+
∞∑
n=0

‖AtAt−1 . . . At−n‖‖bt−n−1‖

and

‖AtAt−1 . . . At−n‖1/n‖bt−n−1‖1/n = exp
[ 1
n
‖AtAt−1 . . . At−n‖+ 1

n
‖bt−n−1‖

]
a.s.→ exp (γ) < 1.

To show that n−1 log ‖bt−n−1‖ → 0 we have used the result that for a sequence Xn of identically
distributed random variables admitting an expectation holds that Xn/n

a.s.→ 0 when n → ∞. In
our case this can be applied because E| log ‖bt−n−1‖| < ∞, see Franq and Zakoian (2010, Proof
of Theorem 2.4, p.31). Let z̃q+1,t denote the (q + 1)-th element of z̃t. Setting yt = z̃q+1,tηt, we
define a solution of model (3). This solution is nonanticipative because yt can be expressed as a
measurable function of ηt, ηt−1, . . .. By the ergodicity of ηt this solution is also strictly stationary
and ergodic.

�
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